/** @file * IPRT - Common C and C++ definitions. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ #ifndef ___iprt_cdefs_h #define ___iprt_cdefs_h /** @defgroup grp_rt_cdefs IPRT Common Definitions and Macros * @{ */ /** @def RT_C_DECLS_BEGIN * Used to start a block of function declarations which are shared * between C and C++ program. */ /** @def RT_C_DECLS_END * Used to end a block of function declarations which are shared * between C and C++ program. */ #if defined(__cplusplus) # define RT_C_DECLS_BEGIN extern "C" { # define RT_C_DECLS_END } #else # define RT_C_DECLS_BEGIN # define RT_C_DECLS_END #endif /* * Shut up DOXYGEN warnings and guide it properly thru the code. */ #ifdef DOXYGEN_RUNNING # define __AMD64__ # define __X86__ # define RT_ARCH_AMD64 # define RT_ARCH_X86 # define IN_RING0 # define IN_RING3 # define IN_RC # define IN_RC # define IN_RT_RC # define IN_RT_R0 # define IN_RT_R3 # define IN_RT_STATIC # define RT_STRICT # define RT_NO_STRICT # define RT_LOCK_STRICT # define RT_LOCK_NO_STRICT # define RT_LOCK_STRICT_ORDER # define RT_LOCK_NO_STRICT_ORDER # define Breakpoint # define RT_NO_DEPRECATED_MACROS # define RT_EXCEPTIONS_ENABLED # define RT_BIG_ENDIAN # define RT_LITTLE_ENDIAN # define RT_COMPILER_GROKS_64BIT_BITFIELDS # define RT_COMPILER_WITH_80BIT_LONG_DOUBLE # define RT_NO_VISIBILITY_HIDDEN #endif /* DOXYGEN_RUNNING */ /** @def RT_ARCH_X86 * Indicates that we're compiling for the X86 architecture. */ /** @def RT_ARCH_AMD64 * Indicates that we're compiling for the AMD64 architecture. */ /** @def RT_ARCH_SPARC * Indicates that we're compiling for the SPARC V8 architecture (32-bit). */ /** @def RT_ARCH_SPARC64 * Indicates that we're compiling for the SPARC V9 architecture (64-bit). */ #if !defined(RT_ARCH_X86) \ && !defined(RT_ARCH_AMD64) \ && !defined(RT_ARCH_SPARC) \ && !defined(RT_ARCH_SPARC64) \ && !defined(RT_ARCH_ARM) # if defined(__amd64__) || defined(__x86_64__) || defined(_M_X64) || defined(__AMD64__) # define RT_ARCH_AMD64 # elif defined(__i386__) || defined(_M_IX86) || defined(__X86__) # define RT_ARCH_X86 # elif defined(__sparcv9) # define RT_ARCH_SPARC64 # elif defined(__sparc__) # define RT_ARCH_SPARC # elif defined(__arm__) || defined(__arm32__) # define RT_ARCH_ARM # else /* PORTME: append test for new archs. */ # error "Check what predefined macros your compiler uses to indicate architecture." # endif /* PORTME: append new archs checks. */ #elif defined(RT_ARCH_X86) && defined(RT_ARCH_AMD64) # error "Both RT_ARCH_X86 and RT_ARCH_AMD64 cannot be defined at the same time!" #elif defined(RT_ARCH_X86) && defined(RT_ARCH_SPARC) # error "Both RT_ARCH_X86 and RT_ARCH_SPARC cannot be defined at the same time!" #elif defined(RT_ARCH_X86) && defined(RT_ARCH_SPARC64) # error "Both RT_ARCH_X86 and RT_ARCH_SPARC64 cannot be defined at the same time!" #elif defined(RT_ARCH_AMD64) && defined(RT_ARCH_SPARC) # error "Both RT_ARCH_AMD64 and RT_ARCH_SPARC cannot be defined at the same time!" #elif defined(RT_ARCH_AMD64) && defined(RT_ARCH_SPARC64) # error "Both RT_ARCH_AMD64 and RT_ARCH_SPARC64 cannot be defined at the same time!" #elif defined(RT_ARCH_SPARC) && defined(RT_ARCH_SPARC64) # error "Both RT_ARCH_SPARC and RT_ARCH_SPARC64 cannot be defined at the same time!" #elif defined(RT_ARCH_ARM) && defined(RT_ARCH_AMD64) # error "Both RT_ARCH_ARM and RT_ARCH_AMD64 cannot be defined at the same time!" #elif defined(RT_ARCH_ARM) && defined(RT_ARCH_X86) # error "Both RT_ARCH_ARM and RT_ARCH_X86 cannot be defined at the same time!" #elif defined(RT_ARCH_ARM) && defined(RT_ARCH_SPARC64) # error "Both RT_ARCH_ARM and RT_ARCH_SPARC64 cannot be defined at the same time!" #elif defined(RT_ARCH_ARM) && defined(RT_ARCH_SPARC) # error "Both RT_ARCH_ARM and RT_ARCH_SPARC cannot be defined at the same time!" #endif /** @def __X86__ * Indicates that we're compiling for the X86 architecture. * @deprecated */ /** @def __AMD64__ * Indicates that we're compiling for the AMD64 architecture. * @deprecated */ #if !defined(__X86__) && !defined(__AMD64__) && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) # if defined(RT_ARCH_AMD64) # define __AMD64__ # elif defined(RT_ARCH_X86) # define __X86__ # else # error "Check what predefined macros your compiler uses to indicate architecture." # endif #elif defined(__X86__) && defined(__AMD64__) # error "Both __X86__ and __AMD64__ cannot be defined at the same time!" #elif defined(__X86__) && !defined(RT_ARCH_X86) # error "__X86__ without RT_ARCH_X86!" #elif defined(__AMD64__) && !defined(RT_ARCH_AMD64) # error "__AMD64__ without RT_ARCH_AMD64!" #endif /** @def RT_BIG_ENDIAN * Defined if the architecture is big endian. */ /** @def RT_LITTLE_ENDIAN * Defined if the architecture is little endian. */ #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(RT_ARCH_ARM) # define RT_LITTLE_ENDIAN #elif defined(RT_ARCH_SPARC) || defined(RT_ARCH_SPARC64) # define RT_BIG_ENDIAN #else # error "PORTME: architecture endianess" #endif #if defined(RT_BIG_ENDIAN) && defined(RT_LITTLE_ENDIAN) # error "Both RT_BIG_ENDIAN and RT_LITTLE_ENDIAN are defined" #endif /** @def IN_RING0 * Used to indicate that we're compiling code which is running * in Ring-0 Host Context. */ /** @def IN_RING3 * Used to indicate that we're compiling code which is running * in Ring-3 Host Context. */ /** @def IN_RC * Used to indicate that we're compiling code which is running * in the Raw-mode Context (implies R0). */ #if !defined(IN_RING3) && !defined(IN_RING0) && !defined(IN_RC) && !defined(IN_RC) # error "You must define which context the compiled code should run in; IN_RING3, IN_RING0 or IN_RC" #endif #if (defined(IN_RING3) && (defined(IN_RING0) || defined(IN_RC)) ) \ || (defined(IN_RING0) && (defined(IN_RING3) || defined(IN_RC)) ) \ || (defined(IN_RC) && (defined(IN_RING3) || defined(IN_RING0)) ) # error "Only one of the IN_RING3, IN_RING0, IN_RC defines should be defined." #endif /** @def ARCH_BITS * Defines the bit count of the current context. */ #if !defined(ARCH_BITS) || defined(DOXYGEN_RUNNING) # if defined(RT_ARCH_AMD64) || defined(RT_ARCH_SPARC64) # define ARCH_BITS 64 # else # define ARCH_BITS 32 # endif #endif /** @def HC_ARCH_BITS * Defines the host architecture bit count. */ #if !defined(HC_ARCH_BITS) || defined(DOXYGEN_RUNNING) # ifndef IN_RC # define HC_ARCH_BITS ARCH_BITS # else # define HC_ARCH_BITS 32 # endif #endif /** @def GC_ARCH_BITS * Defines the guest architecture bit count. */ #if !defined(GC_ARCH_BITS) && !defined(DOXYGEN_RUNNING) # ifdef VBOX_WITH_64_BITS_GUESTS # define GC_ARCH_BITS 64 # else # define GC_ARCH_BITS 32 # endif #endif /** @def R3_ARCH_BITS * Defines the host ring-3 architecture bit count. */ #if !defined(R3_ARCH_BITS) || defined(DOXYGEN_RUNNING) # ifdef IN_RING3 # define R3_ARCH_BITS ARCH_BITS # else # define R3_ARCH_BITS HC_ARCH_BITS # endif #endif /** @def R0_ARCH_BITS * Defines the host ring-0 architecture bit count. */ #if !defined(R0_ARCH_BITS) || defined(DOXYGEN_RUNNING) # ifdef IN_RING0 # define R0_ARCH_BITS ARCH_BITS # else # define R0_ARCH_BITS HC_ARCH_BITS # endif #endif /** @def GC_ARCH_BITS * Defines the guest architecture bit count. */ #if !defined(GC_ARCH_BITS) || defined(DOXYGEN_RUNNING) # ifdef IN_RC # define GC_ARCH_BITS ARCH_BITS # else # define GC_ARCH_BITS 32 # endif #endif /** @name RT_OPSYS_XXX - Operative System Identifiers. * These are the value that the RT_OPSYS \#define can take. @{ */ /** Unknown OS. */ #define RT_OPSYS_UNKNOWN 0 /** OS Agnostic. */ #define RT_OPSYS_AGNOSTIC 1 /** Darwin - aka Mac OS X. */ #define RT_OPSYS_DARWIN 2 /** DragonFly BSD. */ #define RT_OPSYS_DRAGONFLY 3 /** DOS. */ #define RT_OPSYS_DOS 4 /** FreeBSD. */ #define RT_OPSYS_FREEBSD 5 /** Haiku. */ #define RT_OPSYS_HAIKU 6 /** Linux. */ #define RT_OPSYS_LINUX 7 /** L4. */ #define RT_OPSYS_L4 8 /** Minix. */ #define RT_OPSYS_MINIX 9 /** NetBSD. */ #define RT_OPSYS_NETBSD 11 /** Netware. */ #define RT_OPSYS_NETWARE 12 /** NT (native). */ #define RT_OPSYS_NT 13 /** OpenBSD. */ #define RT_OPSYS_OPENBSD 14 /** OS/2. */ #define RT_OPSYS_OS2 15 /** Plan 9. */ #define RT_OPSYS_PLAN9 16 /** QNX. */ #define RT_OPSYS_QNX 17 /** Solaris. */ #define RT_OPSYS_SOLARIS 18 /** UEFI. */ #define RT_OPSYS_UEFI 19 /** Windows. */ #define RT_OPSYS_WINDOWS 20 /** The max RT_OPSYS_XXX value (exclusive). */ #define RT_OPSYS_MAX 21 /** @} */ /** @def RT_OPSYS * Indicates which OS we're targetting. It's a \#define with is * assigned one of the RT_OPSYS_XXX defines above. * * So to test if we're on FreeBSD do the following: * @code * #if RT_OPSYS == RT_OPSYS_FREEBSD * some_funky_freebsd_specific_stuff(); * #endif * @endcode */ /* * Set RT_OPSYS_XXX according to RT_OS_XXX. * * Search: #define RT_OPSYS_([A-Z0-9]+) .* * Replace: # elif defined(RT_OS_\1)\n# define RT_OPSYS RT_OPSYS_\1 */ #ifndef RT_OPSYS # if defined(RT_OS_UNKNOWN) # define RT_OPSYS RT_OPSYS_UNKNOWN # elif defined(RT_OS_AGNOSTIC) # define RT_OPSYS RT_OPSYS_AGNOSTIC # elif defined(RT_OS_DARWIN) # define RT_OPSYS RT_OPSYS_DARWIN # elif defined(RT_OS_DRAGONFLY) # define RT_OPSYS RT_OPSYS_DRAGONFLY # elif defined(RT_OS_DOS) # define RT_OPSYS RT_OPSYS_DOS # elif defined(RT_OS_FREEBSD) # define RT_OPSYS RT_OPSYS_FREEBSD # elif defined(RT_OS_HAIKU) # define RT_OPSYS RT_OPSYS_HAIKU # elif defined(RT_OS_LINUX) # define RT_OPSYS RT_OPSYS_LINUX # elif defined(RT_OS_L4) # define RT_OPSYS RT_OPSYS_L4 # elif defined(RT_OS_MINIX) # define RT_OPSYS RT_OPSYS_MINIX # elif defined(RT_OS_NETBSD) # define RT_OPSYS RT_OPSYS_NETBSD # elif defined(RT_OS_NETWARE) # define RT_OPSYS RT_OPSYS_NETWARE # elif defined(RT_OS_NT) # define RT_OPSYS RT_OPSYS_NT # elif defined(RT_OS_OPENBSD) # define RT_OPSYS RT_OPSYS_OPENBSD # elif defined(RT_OS_OS2) # define RT_OPSYS RT_OPSYS_OS2 # elif defined(RT_OS_PLAN9) # define RT_OPSYS RT_OPSYS_PLAN9 # elif defined(RT_OS_QNX) # define RT_OPSYS RT_OPSYS_QNX # elif defined(RT_OS_SOLARIS) # define RT_OPSYS RT_OPSYS_SOLARIS # elif defined(RT_OS_UEFI) # define RT_OPSYS RT_OPSYS_UEFI # elif defined(RT_OS_WINDOWS) # define RT_OPSYS RT_OPSYS_WINDOWS # endif #endif /* * Guess RT_OPSYS based on compiler predefined macros. */ #ifndef RT_OPSYS # if defined(__APPLE__) # define RT_OPSYS RT_OPSYS_DARWIN # elif defined(__DragonFly__) # define RT_OPSYS RT_OPSYS_DRAGONFLY # elif defined(__FreeBSD__) /*??*/ # define RT_OPSYS RT_OPSYS_FREEBSD # elif defined(__gnu_linux__) # define RT_OPSYS RT_OPSYS_LINUX # elif defined(__NetBSD__) /*??*/ # define RT_OPSYS RT_OPSYS_NETBSD # elif defined(__OpenBSD__) /*??*/ # define RT_OPSYS RT_OPSYS_OPENBSD # elif defined(__OS2__) # define RT_OPSYS RT_OPSYS_OS2 # elif defined(__sun__) || defined(__SunOS__) || defined(__sun) || defined(__SunOS) # define RT_OPSYS RT_OPSYS_SOLARIS # elif defined(_WIN32) || defined(_WIN64) # define RT_OPSYS RT_OPSYS_WINDOWS # else # error "Port Me" # endif #endif #if RT_OPSYS < RT_OPSYS_UNKNOWN || RT_OPSYS >= RT_OPSYS_MAX # error "Invalid RT_OPSYS value." #endif /* * Do some consistency checks. * * Search: #define RT_OPSYS_([A-Z0-9]+) .* * Replace: #if defined(RT_OS_\1) && RT_OPSYS != RT_OPSYS_\1\n# error RT_OPSYS vs RT_OS_\1\n#endif */ #if defined(RT_OS_UNKNOWN) && RT_OPSYS != RT_OPSYS_UNKNOWN # error RT_OPSYS vs RT_OS_UNKNOWN #endif #if defined(RT_OS_AGNOSTIC) && RT_OPSYS != RT_OPSYS_AGNOSTIC # error RT_OPSYS vs RT_OS_AGNOSTIC #endif #if defined(RT_OS_DARWIN) && RT_OPSYS != RT_OPSYS_DARWIN # error RT_OPSYS vs RT_OS_DARWIN #endif #if defined(RT_OS_DRAGONFLY) && RT_OPSYS != RT_OPSYS_DRAGONFLY # error RT_OPSYS vs RT_OS_DRAGONFLY #endif #if defined(RT_OS_DOS) && RT_OPSYS != RT_OPSYS_DOS # error RT_OPSYS vs RT_OS_DOS #endif #if defined(RT_OS_FREEBSD) && RT_OPSYS != RT_OPSYS_FREEBSD # error RT_OPSYS vs RT_OS_FREEBSD #endif #if defined(RT_OS_HAIKU) && RT_OPSYS != RT_OPSYS_HAIKU # error RT_OPSYS vs RT_OS_HAIKU #endif #if defined(RT_OS_LINUX) && RT_OPSYS != RT_OPSYS_LINUX # error RT_OPSYS vs RT_OS_LINUX #endif #if defined(RT_OS_L4) && RT_OPSYS != RT_OPSYS_L4 # error RT_OPSYS vs RT_OS_L4 #endif #if defined(RT_OS_MINIX) && RT_OPSYS != RT_OPSYS_MINIX # error RT_OPSYS vs RT_OS_MINIX #endif #if defined(RT_OS_NETBSD) && RT_OPSYS != RT_OPSYS_NETBSD # error RT_OPSYS vs RT_OS_NETBSD #endif #if defined(RT_OS_NETWARE) && RT_OPSYS != RT_OPSYS_NETWARE # error RT_OPSYS vs RT_OS_NETWARE #endif #if defined(RT_OS_NT) && RT_OPSYS != RT_OPSYS_NT # error RT_OPSYS vs RT_OS_NT #endif #if defined(RT_OS_OPENBSD) && RT_OPSYS != RT_OPSYS_OPENBSD # error RT_OPSYS vs RT_OS_OPENBSD #endif #if defined(RT_OS_OS2) && RT_OPSYS != RT_OPSYS_OS2 # error RT_OPSYS vs RT_OS_OS2 #endif #if defined(RT_OS_PLAN9) && RT_OPSYS != RT_OPSYS_PLAN9 # error RT_OPSYS vs RT_OS_PLAN9 #endif #if defined(RT_OS_QNX) && RT_OPSYS != RT_OPSYS_QNX # error RT_OPSYS vs RT_OS_QNX #endif #if defined(RT_OS_SOLARIS) && RT_OPSYS != RT_OPSYS_SOLARIS # error RT_OPSYS vs RT_OS_SOLARIS #endif #if defined(RT_OS_UEFI) && RT_OPSYS != RT_OPSYS_UEFI # error RT_OPSYS vs RT_OS_UEFI #endif #if defined(RT_OS_WINDOWS) && RT_OPSYS != RT_OPSYS_WINDOWS # error RT_OPSYS vs RT_OS_WINDOWS #endif /* * Make sure the RT_OS_XXX macro is defined. * * Search: #define RT_OPSYS_([A-Z0-9]+) .* * Replace: #elif RT_OPSYS == RT_OPSYS_\1\n# ifndef RT_OS_\1\n# define RT_OS_\1\n# endif */ #if RT_OPSYS == RT_OPSYS_UNKNOWN # ifndef RT_OS_UNKNOWN # define RT_OS_UNKNOWN # endif #elif RT_OPSYS == RT_OPSYS_AGNOSTIC # ifndef RT_OS_AGNOSTIC # define RT_OS_AGNOSTIC # endif #elif RT_OPSYS == RT_OPSYS_DARWIN # ifndef RT_OS_DARWIN # define RT_OS_DARWIN # endif #elif RT_OPSYS == RT_OPSYS_DRAGONFLY # ifndef RT_OS_DRAGONFLY # define RT_OS_DRAGONFLY # endif #elif RT_OPSYS == RT_OPSYS_DOS # ifndef RT_OS_DOS # define RT_OS_DOS # endif #elif RT_OPSYS == RT_OPSYS_FREEBSD # ifndef RT_OS_FREEBSD # define RT_OS_FREEBSD # endif #elif RT_OPSYS == RT_OPSYS_HAIKU # ifndef RT_OS_HAIKU # define RT_OS_HAIKU # endif #elif RT_OPSYS == RT_OPSYS_LINUX # ifndef RT_OS_LINUX # define RT_OS_LINUX # endif #elif RT_OPSYS == RT_OPSYS_L4 # ifndef RT_OS_L4 # define RT_OS_L4 # endif #elif RT_OPSYS == RT_OPSYS_MINIX # ifndef RT_OS_MINIX # define RT_OS_MINIX # endif #elif RT_OPSYS == RT_OPSYS_NETBSD # ifndef RT_OS_NETBSD # define RT_OS_NETBSD # endif #elif RT_OPSYS == RT_OPSYS_NETWARE # ifndef RT_OS_NETWARE # define RT_OS_NETWARE # endif #elif RT_OPSYS == RT_OPSYS_NT # ifndef RT_OS_NT # define RT_OS_NT # endif #elif RT_OPSYS == RT_OPSYS_OPENBSD # ifndef RT_OS_OPENBSD # define RT_OS_OPENBSD # endif #elif RT_OPSYS == RT_OPSYS_OS2 # ifndef RT_OS_OS2 # define RT_OS_OS2 # endif #elif RT_OPSYS == RT_OPSYS_PLAN9 # ifndef RT_OS_PLAN9 # define RT_OS_PLAN9 # endif #elif RT_OPSYS == RT_OPSYS_QNX # ifndef RT_OS_QNX # define RT_OS_QNX # endif #elif RT_OPSYS == RT_OPSYS_SOLARIS # ifndef RT_OS_SOLARIS # define RT_OS_SOLARIS # endif #elif RT_OPSYS == RT_OPSYS_UEFI # ifndef RT_OS_UEFI # define RT_OS_UEFI # endif #elif RT_OPSYS == RT_OPSYS_WINDOWS # ifndef RT_OS_WINDOWS # define RT_OS_WINDOWS # endif #else # error "Bad RT_OPSYS value." #endif /** * Checks whether the given OpSys uses DOS-style paths or not. * * By DOS-style paths we include drive lettering and UNC paths. * * @returns true / false * @param a_OpSys The RT_OPSYS_XXX value to check, will be reference * multiple times. */ #define RT_OPSYS_USES_DOS_PATHS(a_OpSys) \ ( (a_OpSys) == RT_OPSYS_WINDOWS \ || (a_OpSys) == RT_OPSYS_OS2 \ || (a_OpSys) == RT_OPSYS_DOS ) /** @def CTXTYPE * Declare a type differently in GC, R3 and R0. * * @param GCType The GC type. * @param R3Type The R3 type. * @param R0Type The R0 type. * @remark For pointers used only in one context use RCPTRTYPE(), R3R0PTRTYPE(), R3PTRTYPE() or R0PTRTYPE(). */ #ifdef IN_RC # define CTXTYPE(GCType, R3Type, R0Type) GCType #elif defined(IN_RING3) # define CTXTYPE(GCType, R3Type, R0Type) R3Type #else # define CTXTYPE(GCType, R3Type, R0Type) R0Type #endif /** @def RCPTRTYPE * Declare a pointer which is used in the raw mode context but appears in structure(s) used by * both HC and RC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param RCType The RC type. */ #define RCPTRTYPE(RCType) CTXTYPE(RCType, RTRCPTR, RTRCPTR) /** @def R3R0PTRTYPE * Declare a pointer which is used in HC, is explicitly valid in ring 3 and 0, * but appears in structure(s) used by both HC and GC. The main purpose is to * make sure structures have the same size when built for different architectures. * * @param R3R0Type The R3R0 type. * @remarks This used to be called HCPTRTYPE. */ #define R3R0PTRTYPE(R3R0Type) CTXTYPE(RTHCPTR, R3R0Type, R3R0Type) /** @def R3PTRTYPE * Declare a pointer which is used in R3 but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param R3Type The R3 type. */ #define R3PTRTYPE(R3Type) CTXTYPE(RTHCUINTPTR, R3Type, RTHCUINTPTR) /** @def R0PTRTYPE * Declare a pointer which is used in R0 but appears in structure(s) used by * both HC and GC. The main purpose is to make sure structures have the same * size when built for different architectures. * * @param R0Type The R0 type. */ #define R0PTRTYPE(R0Type) CTXTYPE(RTHCUINTPTR, RTHCUINTPTR, R0Type) /** @def CTXSUFF * Adds the suffix of the current context to the passed in * identifier name. The suffix is HC or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param var Identifier name. * @deprecated Use CTX_SUFF. Do NOT use this for new code. */ /** @def OTHERCTXSUFF * Adds the suffix of the other context to the passed in * identifier name. The suffix is HC or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param var Identifier name. * @deprecated Use CTX_SUFF. Do NOT use this for new code. */ #ifdef IN_RC # define CTXSUFF(var) var##GC # define OTHERCTXSUFF(var) var##HC #else # define CTXSUFF(var) var##HC # define OTHERCTXSUFF(var) var##GC #endif /** @def CTXALLSUFF * Adds the suffix of the current context to the passed in * identifier name. The suffix is R3, R0 or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param var Identifier name. * @deprecated Use CTX_SUFF. Do NOT use this for new code. */ #ifdef IN_RC # define CTXALLSUFF(var) var##GC #elif defined(IN_RING0) # define CTXALLSUFF(var) var##R0 #else # define CTXALLSUFF(var) var##R3 #endif /** @def CTX_SUFF * Adds the suffix of the current context to the passed in * identifier name. The suffix is R3, R0 or RC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param var Identifier name. * * @remark This will replace CTXALLSUFF and CTXSUFF before long. */ #ifdef IN_RC # define CTX_SUFF(var) var##RC #elif defined(IN_RING0) # define CTX_SUFF(var) var##R0 #else # define CTX_SUFF(var) var##R3 #endif /** @def CTX_SUFF_Z * Adds the suffix of the current context to the passed in * identifier name, combining RC and R0 into RZ. * The suffix thus is R3 or RZ. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param var Identifier name. * * @remark This will replace CTXALLSUFF and CTXSUFF before long. */ #ifdef IN_RING3 # define CTX_SUFF_Z(var) var##R3 #else # define CTX_SUFF_Z(var) var##RZ #endif /** @def CTXMID * Adds the current context as a middle name of an identifier name * The middle name is HC or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param first First name. * @param last Surname. */ /** @def OTHERCTXMID * Adds the other context as a middle name of an identifier name * The middle name is HC or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param first First name. * @param last Surname. * @deprecated use CTX_MID or CTX_MID_Z */ #ifdef IN_RC # define CTXMID(first, last) first##GC##last # define OTHERCTXMID(first, last) first##HC##last #else # define CTXMID(first, last) first##HC##last # define OTHERCTXMID(first, last) first##GC##last #endif /** @def CTXALLMID * Adds the current context as a middle name of an identifier name. * The middle name is R3, R0 or GC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param first First name. * @param last Surname. * @deprecated use CTX_MID or CTX_MID_Z */ #ifdef IN_RC # define CTXALLMID(first, last) first##GC##last #elif defined(IN_RING0) # define CTXALLMID(first, last) first##R0##last #else # define CTXALLMID(first, last) first##R3##last #endif /** @def CTX_MID * Adds the current context as a middle name of an identifier name. * The middle name is R3, R0 or RC. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param first First name. * @param last Surname. */ #ifdef IN_RC # define CTX_MID(first, last) first##RC##last #elif defined(IN_RING0) # define CTX_MID(first, last) first##R0##last #else # define CTX_MID(first, last) first##R3##last #endif /** @def CTX_MID_Z * Adds the current context as a middle name of an identifier name, combining RC * and R0 into RZ. * The middle name thus is either R3 or RZ. * * This is macro should only be used in shared code to avoid a forest of ifdefs. * @param first First name. * @param last Surname. */ #ifdef IN_RING3 # define CTX_MID_Z(first, last) first##R3##last #else # define CTX_MID_Z(first, last) first##RZ##last #endif /** @def R3STRING * A macro which in GC and R0 will return a dummy string while in R3 it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or GC. The intention is to avoid the \#ifdef IN_RING3 mess. * * @param pR3String The R3 string. Only referenced in R3. * @see R0STRING and GCSTRING */ #ifdef IN_RING3 # define R3STRING(pR3String) (pR3String) #else # define R3STRING(pR3String) ("") #endif /** @def R0STRING * A macro which in GC and R3 will return a dummy string while in R0 it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or GC. The intention is to avoid the \#ifdef IN_RING0 mess. * * @param pR0String The R0 string. Only referenced in R0. * @see R3STRING and GCSTRING */ #ifdef IN_RING0 # define R0STRING(pR0String) (pR0String) #else # define R0STRING(pR0String) ("") #endif /** @def RCSTRING * A macro which in R3 and R0 will return a dummy string while in RC it will return * the parameter. * * This is typically used to wrap description strings in structures shared * between R3, R0 and/or RC. The intention is to avoid the \#ifdef IN_RC mess. * * @param pRCString The RC string. Only referenced in RC. * @see R3STRING, R0STRING */ #ifdef IN_RC # define RCSTRING(pRCString) (pRCString) #else # define RCSTRING(pRCString) ("") #endif /** @def RT_NOTHING * A macro that expands to nothing. * This is primarily intended as a dummy argument for macros to avoid the * undefined behavior passing empty arguments to an macro (ISO C90 and C++98, * gcc v4.4 warns about it). */ #define RT_NOTHING /** @def RT_GCC_EXTENSION * Macro for shutting up GCC warnings about using language extensions. */ #ifdef __GNUC__ # define RT_GCC_EXTENSION __extension__ #else # define RT_GCC_EXTENSION #endif /** @def RT_COMPILER_GROKS_64BIT_BITFIELDS * Macro that is defined if the compiler understands 64-bit bitfields. */ #if !defined(RT_OS_OS2) || (!defined(__IBMC__) && !defined(__IBMCPP__)) # define RT_COMPILER_GROKS_64BIT_BITFIELDS #endif /** @def RT_COMPILER_WITH_80BIT_LONG_DOUBLE * Macro that is defined if the compiler implements long double as the * IEEE extended precision floating. */ #if (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)) && !defined(RT_OS_WINDOWS) # define RT_COMPILER_WITH_80BIT_LONG_DOUBLE #endif /** @def RT_EXCEPTIONS_ENABLED * Defined when C++ exceptions are enabled. */ #if !defined(RT_EXCEPTIONS_ENABLED) \ && defined(__cplusplus) \ && ( (defined(_MSC_VER) && defined(_CPPUNWIND)) \ || (defined(__GNUC__) && defined(__EXCEPTIONS))) # define RT_EXCEPTIONS_ENABLED #endif /** @def RT_NO_THROW * How to express that a function doesn't throw C++ exceptions * and the compiler can thus save itself the bother of trying * to catch any of them. Put this between the closing parenthesis * and the semicolon in function prototypes (and implementation if C++). */ #ifdef RT_EXCEPTIONS_ENABLED # define RT_NO_THROW throw() #else # define RT_NO_THROW #endif /** @def RT_THROW * How to express that a method or function throws a type of exceptions. Some * compilers does not want this kind of information and will warning about it. * * @param type The type exception. * * @remarks If the actual throwing is done from the header, enclose it by * \#ifdef RT_EXCEPTIONS_ENABLED ... \#else ... \#endif so the header * compiles cleanly without exceptions enabled. * * Do NOT use this for the actual throwing of exceptions! */ #ifdef RT_EXCEPTIONS_ENABLED # ifdef _MSC_VER # if _MSC_VER >= 1310 # define RT_THROW(type) # else # define RT_THROW(type) throw(type) # endif # else # define RT_THROW(type) throw(type) # endif #else # define RT_THROW(type) #endif /** @def RT_GCC_SUPPORTS_VISIBILITY_HIDDEN * Indicates that the "hidden" visibility attribute can be used (GCC) */ #if defined(__GNUC__) # if __GNUC__ >= 4 && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS) # define RT_GCC_SUPPORTS_VISIBILITY_HIDDEN # endif #endif /** @def RTCALL * The standard calling convention for the Runtime interfaces. */ #ifdef _MSC_VER # define RTCALL __cdecl #elif defined(RT_OS_OS2) # define RTCALL __cdecl #elif defined(__GNUC__) && defined(IN_RING0) && defined(RT_ARCH_X86) /** @todo consider dropping IN_RING0 here. */ # define RTCALL __attribute__((cdecl,regparm(0))) /* regparm(0) deals with -mregparm=x use in the linux kernel. */ #else # define RTCALL #endif /** @def DECLEXPORT * How to declare an exported function. * @param type The return type of the function declaration. */ #if defined(_MSC_VER) || defined(RT_OS_OS2) # define DECLEXPORT(type) __declspec(dllexport) type #elif defined(RT_USE_VISIBILITY_DEFAULT) # define DECLEXPORT(type) __attribute__((visibility("default"))) type #else # define DECLEXPORT(type) type #endif /** @def DECLIMPORT * How to declare an imported function. * @param type The return type of the function declaration. */ #if defined(_MSC_VER) || (defined(RT_OS_OS2) && !defined(__IBMC__) && !defined(__IBMCPP__)) # define DECLIMPORT(type) __declspec(dllimport) type #else # define DECLIMPORT(type) type #endif /** @def DECLHIDDEN * How to declare a non-exported function or variable. * @param type The return type of the function or the data type of the variable. */ #if !defined(RT_GCC_SUPPORTS_VISIBILITY_HIDDEN) || defined(RT_NO_VISIBILITY_HIDDEN) # define DECLHIDDEN(type) type #else # define DECLHIDDEN(type) __attribute__((visibility("hidden"))) type #endif /** @def DECL_HIDDEN_CONST * Workaround for g++ warnings when applying the hidden attribute to a const * definition. Use DECLHIDDEN for the declaration. * @param a_Type The return type of the function or the data type of * the variable. */ #if defined(__cplusplus) && defined(__GNUC__) # define DECL_HIDDEN_CONST(a_Type) a_Type #else # define DECL_HIDDEN_CONST(a_Type) DECLHIDDEN(a_Type) #endif /** @def DECL_INVALID * How to declare a function not available for linking in the current context. * The purpose is to create compile or like time errors when used. This isn't * possible on all platforms. * @param type The return type of the function. */ #if defined(_MSC_VER) # define DECL_INVALID(type) __declspec(dllimport) type __stdcall #elif defined(__GNUC__) && defined(__cplusplus) # define DECL_INVALID(type) extern "C++" type #else # define DECL_INVALID(type) type #endif /** @def DECLASM * How to declare an internal assembly function. * @param type The return type of the function declaration. */ #ifdef __cplusplus # if defined(_MSC_VER) || defined(RT_OS_OS2) # define DECLASM(type) extern "C" type __cdecl # elif defined(__GNUC__) && defined(RT_ARCH_X86) # define DECLASM(type) extern "C" type __attribute__((cdecl,regparm(0))) # else # define DECLASM(type) extern "C" type # endif #else # if defined(_MSC_VER) || defined(RT_OS_OS2) # define DECLASM(type) type __cdecl # elif defined(__GNUC__) && defined(RT_ARCH_X86) # define DECLASM(type) type __attribute__((cdecl,regparm(0))) # else # define DECLASM(type) type # endif #endif /** @def DECLASMTYPE * How to declare an internal assembly function type. * @param type The return type of the function. */ # if defined(_MSC_VER) || defined(RT_OS_OS2) # define DECLASMTYPE(type) type __cdecl #else # define DECLASMTYPE(type) type #endif /** @def DECLNORETURN * How to declare a function which does not return. * @note: This macro can be combined with other macros, for example * @code * EMR3DECL(DECLNORETURN(void)) foo(void); * @endcode */ #ifdef _MSC_VER # define DECLNORETURN(type) __declspec(noreturn) type #elif defined(__GNUC__) # define DECLNORETURN(type) __attribute__((noreturn)) type #else # define DECLNORETURN(type) type #endif /** @def DECLWEAK * How to declare a variable which is not necessarily resolved at * runtime. * @note: This macro can be combined with other macros, for example * @code * EMR3DECL(DECLWEAK(int)) foo; * @endcode */ #if defined(__GNUC__) # define DECLWEAK(type) type __attribute__((weak)) #else # define DECLWEAK(type) type #endif /** @def DECLCALLBACK * How to declare an call back function type. * @param type The return type of the function declaration. */ #define DECLCALLBACK(type) type RTCALL /** @def DECLCALLBACKPTR * How to declare an call back function pointer. * @param type The return type of the function declaration. * @param name The name of the variable member. */ #if defined(__IBMC__) || defined(__IBMCPP__) # define DECLCALLBACKPTR(type, name) type (* RTCALL name) #else # define DECLCALLBACKPTR(type, name) type (RTCALL * name) #endif /** @def DECLCALLBACKMEMBER * How to declare an call back function pointer member. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. */ #if defined(__IBMC__) || defined(__IBMCPP__) # define DECLCALLBACKMEMBER(type, name) type (* RTCALL name) #else # define DECLCALLBACKMEMBER(type, name) type (RTCALL * name) #endif /** @def DECLR3CALLBACKMEMBER * How to declare an call back function pointer member - R3 Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_RING3 # define DECLR3CALLBACKMEMBER(type, name, args) DECLCALLBACKMEMBER(type, name) args #else # define DECLR3CALLBACKMEMBER(type, name, args) RTR3PTR name #endif /** @def DECLRCCALLBACKMEMBER * How to declare an call back function pointer member - RC Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_RC # define DECLRCCALLBACKMEMBER(type, name, args) DECLCALLBACKMEMBER(type, name) args #else # define DECLRCCALLBACKMEMBER(type, name, args) RTRCPTR name #endif /** @def DECLR0CALLBACKMEMBER * How to declare an call back function pointer member - R0 Ptr. * @param type The return type of the function declaration. * @param name The name of the struct/union/class member. * @param args The argument list enclosed in parentheses. */ #ifdef IN_RING0 # define DECLR0CALLBACKMEMBER(type, name, args) DECLCALLBACKMEMBER(type, name) args #else # define DECLR0CALLBACKMEMBER(type, name, args) RTR0PTR name #endif /** @def DECLINLINE * How to declare a function as inline. * @param type The return type of the function declaration. * @remarks Don't use this macro on C++ methods. */ #ifdef __GNUC__ # define DECLINLINE(type) static __inline__ type #elif defined(__cplusplus) # define DECLINLINE(type) inline type #elif defined(_MSC_VER) # define DECLINLINE(type) _inline type #elif defined(__IBMC__) # define DECLINLINE(type) _Inline type #else # define DECLINLINE(type) inline type #endif /** @def DECL_FORCE_INLINE * How to declare a function as inline and try convince the compiler to always * inline it regardless of optimization switches. * @param type The return type of the function declaration. * @remarks Use sparsely and with care. Don't use this macro on C++ methods. */ #ifdef __GNUC__ # define DECL_FORCE_INLINE(type) __attribute__((__always_inline__)) DECLINLINE(type) #elif defined(_MSC_VER) # define DECL_FORCE_INLINE(type) __forceinline type #else # define DECL_FORCE_INLINE(type) DECLINLINE(type) #endif /** @def DECL_NO_INLINE * How to declare a function telling the compiler not to inline it. * @param scope The function scope, static or RT_NOTHING. * @param type The return type of the function declaration. * @remarks Don't use this macro on C++ methods. */ #ifdef __GNUC__ # define DECL_NO_INLINE(scope,type) __attribute__((noinline)) scope type #elif defined(_MSC_VER) # define DECL_NO_INLINE(scope,type) __declspec(noinline) scope type #else # define DECL_NO_INLINE(scope,type) scope type #endif /** @def IN_RT_STATIC * Used to indicate whether we're linking against a static IPRT * or not. The IPRT symbols will be declared as hidden (if * supported). Note that this define has no effect without setting * IN_RT_R0, IN_RT_R3 or IN_RT_RC indicators are set first. */ /** @def IN_RT_R0 * Used to indicate whether we're inside the same link module as * the HC Ring-0 Runtime Library. */ /** @def RTR0DECL(type) * Runtime Library HC Ring-0 export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_R0 # ifdef IN_RT_STATIC # define RTR0DECL(type) DECLHIDDEN(type) RTCALL # else # define RTR0DECL(type) DECLEXPORT(type) RTCALL # endif #else # define RTR0DECL(type) DECLIMPORT(type) RTCALL #endif /** @def IN_RT_R3 * Used to indicate whether we're inside the same link module as * the HC Ring-3 Runtime Library. */ /** @def RTR3DECL(type) * Runtime Library HC Ring-3 export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_R3 # ifdef IN_RT_STATIC # define RTR3DECL(type) DECLHIDDEN(type) RTCALL # else # define RTR3DECL(type) DECLEXPORT(type) RTCALL # endif #else # define RTR3DECL(type) DECLIMPORT(type) RTCALL #endif /** @def IN_RT_RC * Used to indicate whether we're inside the same link module as the raw-mode * context (RC) runtime library. */ /** @def RTRCDECL(type) * Runtime Library raw-mode context export or import declaration. * @param type The return type of the function declaration. */ #ifdef IN_RT_RC # ifdef IN_RT_STATIC # define RTRCDECL(type) DECLHIDDEN(type) RTCALL # else # define RTRCDECL(type) DECLEXPORT(type) RTCALL # endif #else # define RTRCDECL(type) DECLIMPORT(type) RTCALL #endif /** @def RTDECL(type) * Runtime Library export or import declaration. * Functions declared using this macro exists in all contexts. * @param type The return type of the function declaration. */ #if defined(IN_RT_R3) || defined(IN_RT_RC) || defined(IN_RT_R0) # ifdef IN_RT_STATIC # define RTDECL(type) DECLHIDDEN(type) RTCALL # else # define RTDECL(type) DECLEXPORT(type) RTCALL # endif #else # define RTDECL(type) DECLIMPORT(type) RTCALL #endif /** @def RTDATADECL(type) * Runtime Library export or import declaration. * Data declared using this macro exists in all contexts. * @param type The data type. */ /** @def RT_DECL_DATA_CONST(type) * Definition of a const variable. See DECL_HIDDEN_CONST. * @param type The const data type. */ #if defined(IN_RT_R3) || defined(IN_RT_RC) || defined(IN_RT_R0) # ifdef IN_RT_STATIC # define RTDATADECL(type) DECLHIDDEN(type) # define RT_DECL_DATA_CONST(type) DECL_HIDDEN_CONST(type) # else # define RTDATADECL(type) DECLEXPORT(type) # if defined(__cplusplus) && defined(__GNUC__) # define RT_DECL_DATA_CONST(type) type # else # define RT_DECL_DATA_CONST(type) DECLEXPORT(type) # endif # endif #else # define RTDATADECL(type) DECLIMPORT(type) # define RT_DECL_DATA_CONST(type) DECLIMPORT(type) #endif /** @def RT_DECL_CLASS * Declares an class living in the runtime. */ #if defined(IN_RT_R3) || defined(IN_RT_RC) || defined(IN_RT_R0) # ifdef IN_RT_STATIC # define RT_DECL_CLASS # else # define RT_DECL_CLASS DECLEXPORT_CLASS # endif #else # define RT_DECL_CLASS DECLIMPORT_CLASS #endif /** @def RT_NOCRT * Symbol name wrapper for the No-CRT bits. * * In order to coexist in the same process as other CRTs, we need to * decorate the symbols such that they don't conflict the ones in the * other CRTs. The result of such conflicts / duplicate symbols can * confuse the dynamic loader on Unix like systems. * * Define RT_WITHOUT_NOCRT_WRAPPERS to drop the wrapping. * Define RT_WITHOUT_NOCRT_WRAPPER_ALIASES to drop the aliases to the * wrapped names. */ /** @def RT_NOCRT_STR * Same as RT_NOCRT only it'll return a double quoted string of the result. */ #ifndef RT_WITHOUT_NOCRT_WRAPPERS # define RT_NOCRT(name) nocrt_ ## name # define RT_NOCRT_STR(name) "nocrt_" # name #else # define RT_NOCRT(name) name # define RT_NOCRT_STR(name) #name #endif /** @def RT_LIKELY * Give the compiler a hint that an expression is very likely to hold true. * * Some compilers support explicit branch prediction so that the CPU backend * can hint the processor and also so that code blocks can be reordered such * that the predicted path sees a more linear flow, thus improving cache * behaviour, etc. * * IPRT provides the macros RT_LIKELY() and RT_UNLIKELY() as a way to utilize * this compiler feature when present. * * A few notes about the usage: * * - Generally, use RT_UNLIKELY() with error condition checks (unless you * have some _strong_ reason to do otherwise, in which case document it), * and/or RT_LIKELY() with success condition checks, assuming you want * to optimize for the success path. * * - Other than that, if you don't know the likelihood of a test succeeding * from empirical or other 'hard' evidence, don't make predictions unless * you happen to be a Dirk Gently. * * - These macros are meant to be used in places that get executed a lot. It * is wasteful to make predictions in code that is executed rarely (e.g. * at subsystem initialization time) as the basic block reordering that this * affects can often generate larger code. * * - Note that RT_SUCCESS() and RT_FAILURE() already makes use of RT_LIKELY() * and RT_UNLIKELY(). Should you wish for prediction free status checks, * use the RT_SUCCESS_NP() and RT_FAILURE_NP() macros instead. * * * @returns the boolean result of the expression. * @param expr The expression that's very likely to be true. * @see RT_UNLIKELY */ /** @def RT_UNLIKELY * Give the compiler a hint that an expression is highly unlikely to hold true. * * See the usage instructions give in the RT_LIKELY() docs. * * @returns the boolean result of the expression. * @param expr The expression that's very unlikely to be true. * @see RT_LIKELY */ #if defined(__GNUC__) # if __GNUC__ >= 3 && !defined(FORTIFY_RUNNING) # define RT_LIKELY(expr) __builtin_expect(!!(expr), 1) # define RT_UNLIKELY(expr) __builtin_expect(!!(expr), 0) # else # define RT_LIKELY(expr) (expr) # define RT_UNLIKELY(expr) (expr) # endif #else # define RT_LIKELY(expr) (expr) # define RT_UNLIKELY(expr) (expr) #endif /** @def RT_STR * Returns the argument as a string constant. * @param str Argument to stringify. */ #define RT_STR(str) #str /** @def RT_XSTR * Returns the expanded argument as a string. * @param str Argument to expand and stringy. */ #define RT_XSTR(str) RT_STR(str) /** @def RT_CONCAT * Concatenate the expanded arguments without any extra spaces in between. * * @param a The first part. * @param b The second part. */ #define RT_CONCAT(a,b) RT_CONCAT_HLP(a,b) /** RT_CONCAT helper, don't use. */ #define RT_CONCAT_HLP(a,b) a##b /** @def RT_CONCAT * Concatenate the expanded arguments without any extra spaces in between. * * @param a The 1st part. * @param b The 2nd part. * @param c The 3rd part. */ #define RT_CONCAT3(a,b,c) RT_CONCAT3_HLP(a,b,c) /** RT_CONCAT3 helper, don't use. */ #define RT_CONCAT3_HLP(a,b,c) a##b##c /** @def RT_CONCAT * Concatenate the expanded arguments without any extra spaces in between. * * @param a The 1st part. * @param b The 2nd part. * @param c The 3rd part. */ #define RT_CONCAT4(a,b,c,d) RT_CONCAT4_HLP(a,b,c,d) /** RT_CONCAT4 helper, don't use. */ #define RT_CONCAT4_HLP(a,b,c,d) a##b##c##d /** * String constant tuple - string constant, strlen(string constant). * * @param a_szConst String constant. */ #define RT_STR_TUPLE(a_szConst) a_szConst, (sizeof(a_szConst) - 1) /** * Macro for using in switch statements that turns constants into strings. * * @param a_Const The constant (not string). */ #define RT_CASE_RET_STR(a_Const) case a_Const: return #a_Const /** @def RT_BIT * Convert a bit number into an integer bitmask (unsigned). * @param bit The bit number. */ #define RT_BIT(bit) ( 1U << (bit) ) /** @def RT_BIT_32 * Convert a bit number into a 32-bit bitmask (unsigned). * @param bit The bit number. */ #define RT_BIT_32(bit) ( UINT32_C(1) << (bit) ) /** @def RT_BIT_64 * Convert a bit number into a 64-bit bitmask (unsigned). * @param bit The bit number. */ #define RT_BIT_64(bit) ( UINT64_C(1) << (bit) ) /** @def RT_ALIGN * Align macro. * @param u Value to align. * @param uAlignment The alignment. Power of two! * * @remark Be extremely careful when using this macro with type which sizeof != sizeof int. * When possible use any of the other RT_ALIGN_* macros. And when that's not * possible, make 101% sure that uAlignment is specified with a right sized type. * * Specifying an unsigned 32-bit alignment constant with a 64-bit value will give * you a 32-bit return value! * * In short: Don't use this macro. Use RT_ALIGN_T() instead. */ #define RT_ALIGN(u, uAlignment) ( ((u) + ((uAlignment) - 1)) & ~((uAlignment) - 1) ) /** @def RT_ALIGN_T * Align macro. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param type Integer type to use while aligning. * @remark This macro is the preferred alignment macro, it doesn't have any of the pitfalls RT_ALIGN has. */ #define RT_ALIGN_T(u, uAlignment, type) ( ((type)(u) + ((uAlignment) - 1)) & ~(type)((uAlignment) - 1) ) /** @def RT_ALIGN_32 * Align macro for a 32-bit value. * @param u32 Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_32(u32, uAlignment) RT_ALIGN_T(u32, uAlignment, uint32_t) /** @def RT_ALIGN_64 * Align macro for a 64-bit value. * @param u64 Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_64(u64, uAlignment) RT_ALIGN_T(u64, uAlignment, uint64_t) /** @def RT_ALIGN_Z * Align macro for size_t. * @param cb Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_Z(cb, uAlignment) RT_ALIGN_T(cb, uAlignment, size_t) /** @def RT_ALIGN_P * Align macro for pointers. * @param pv Value to align. * @param uAlignment The alignment. Power of two! */ #define RT_ALIGN_P(pv, uAlignment) RT_ALIGN_PT(pv, uAlignment, void *) /** @def RT_ALIGN_PT * Align macro for pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_PT(u, uAlignment, CastType) ( (CastType)RT_ALIGN_T(u, uAlignment, uintptr_t) ) /** @def RT_ALIGN_R3PT * Align macro for ring-3 pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_R3PT(u, uAlignment, CastType) ( (CastType)RT_ALIGN_T(u, uAlignment, RTR3UINTPTR) ) /** @def RT_ALIGN_R0PT * Align macro for ring-0 pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_R0PT(u, uAlignment, CastType) ( (CastType)RT_ALIGN_T(u, uAlignment, RTR0UINTPTR) ) /** @def RT_ALIGN_GCPT * Align macro for GC pointers with type cast. * @param u Value to align. * @param uAlignment The alignment. Power of two! * @param CastType The type to cast the result to. */ #define RT_ALIGN_GCPT(u, uAlignment, CastType) ( (CastType)RT_ALIGN_T(u, uAlignment, RTGCUINTPTR) ) /** @def RT_OFFSETOF * Our own special offsetof() variant, returns a signed result. * * This differs from the usual offsetof() in that it's not relying on builtin * compiler stuff and thus can use variables in arrays the structure may * contain. This is useful to determine the sizes of structures ending * with a variable length field. * * @returns offset into the structure of the specified member. signed. * @param type Structure type. * @param member Member. */ #define RT_OFFSETOF(type, member) ( (int)(uintptr_t)&( ((type *)(void *)0)->member) ) /** @def RT_UOFFSETOF * Our own special offsetof() variant, returns an unsigned result. * * This differs from the usual offsetof() in that it's not relying on builtin * compiler stuff and thus can use variables in arrays the structure may * contain. This is useful to determine the sizes of structures ending * with a variable length field. * * @returns offset into the structure of the specified member. unsigned. * @param type Structure type. * @param member Member. */ #define RT_UOFFSETOF(type, member) ( (uintptr_t)&( ((type *)(void *)0)->member) ) /** @def RT_OFFSETOF_ADD * RT_OFFSETOF with an addend. * * @returns offset into the structure of the specified member. signed. * @param type Structure type. * @param member Member. * @param addend The addend to add to the offset. */ #define RT_OFFSETOF_ADD(type, member, addend) ( (int)RT_UOFFSETOF_ADD(type, member, addend) ) /** @def RT_UOFFSETOF_ADD * RT_UOFFSETOF with an addend. * * @returns offset into the structure of the specified member. signed. * @param type Structure type. * @param member Member. * @param addend The addend to add to the offset. */ #define RT_UOFFSETOF_ADD(type, member, addend) ( (uintptr_t)&( ((type *)(void *)(uintptr_t)(addend))->member) ) /** @def RT_SIZEOFMEMB * Get the size of a structure member. * * @returns size of the structure member. * @param type Structure type. * @param member Member. */ #define RT_SIZEOFMEMB(type, member) ( sizeof(((type *)(void *)0)->member) ) /** @def RT_FROM_MEMBER * Convert a pointer to a structure member into a pointer to the structure. * * @returns pointer to the structure. * @param pMem Pointer to the member. * @param Type Structure type. * @param Member Member name. */ #define RT_FROM_MEMBER(pMem, Type, Member) ( (Type *) ((uint8_t *)(void *)(pMem) - RT_UOFFSETOF(Type, Member)) ) /** @def RT_FROM_CPP_MEMBER * Same as RT_FROM_MEMBER except it avoids the annoying g++ warnings about * invalid access to non-static data member of NULL object. * * @returns pointer to the structure. * @param pMem Pointer to the member. * @param Type Structure type. * @param Member Member name. * * @remarks Using the __builtin_offsetof does not shut up the compiler. */ #if defined(__GNUC__) && defined(__cplusplus) # define RT_FROM_CPP_MEMBER(pMem, Type, Member) \ ( (Type *) ((uintptr_t)(pMem) - (uintptr_t)&((Type *)0x1000)->Member + 0x1000U) ) #else # define RT_FROM_CPP_MEMBER(pMem, Type, Member) RT_FROM_MEMBER(pMem, Type, Member) #endif /** @def RT_ELEMENTS * Calculates the number of elements in a statically sized array. * @returns Element count. * @param aArray Array in question. */ #define RT_ELEMENTS(aArray) ( sizeof(aArray) / sizeof((aArray)[0]) ) /** * Checks if the value is a power of two. * * @returns true if power of two, false if not. * @param uVal The value to test. * @remarks 0 is a power of two. * @see VERR_NOT_POWER_OF_TWO */ #define RT_IS_POWER_OF_TWO(uVal) ( ((uVal) & ((uVal) - 1)) == 0) #ifdef RT_OS_OS2 /* Undefine RT_MAX since there is an unfortunate clash with the max resource type define in os2.h. */ # undef RT_MAX #endif /** @def RT_MAX * Finds the maximum value. * @returns The higher of the two. * @param Value1 Value 1 * @param Value2 Value 2 */ #define RT_MAX(Value1, Value2) ( (Value1) >= (Value2) ? (Value1) : (Value2) ) /** @def RT_MIN * Finds the minimum value. * @returns The lower of the two. * @param Value1 Value 1 * @param Value2 Value 2 */ #define RT_MIN(Value1, Value2) ( (Value1) <= (Value2) ? (Value1) : (Value2) ) /** @def RT_CLAMP * Clamps the value to minimum and maximum values. * @returns The clamped value. * @param Value The value to check. * @param Min Minimum value. * @param Max Maximum value. */ #define RT_CLAMP(Value, Min, Max) ( (Value) > (Max) ? (Max) : (Value) < (Min) ? (Min) : (Value) ) /** @def RT_ABS * Get the absolute (non-negative) value. * @returns The absolute value of Value. * @param Value The value. */ #define RT_ABS(Value) ( (Value) >= 0 ? (Value) : -(Value) ) /** @def RT_BOOL * Turn non-zero/zero into true/false * @returns The resulting boolean value. * @param Value The value. */ #define RT_BOOL(Value) ( !!(Value) ) /** @def RT_LO_U8 * Gets the low uint8_t of a uint16_t or something equivalent. */ #ifdef __GNUC__ # define RT_LO_U8(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint16_t)); (uint8_t)(a); }) #else # define RT_LO_U8(a) ( (uint8_t)(a) ) #endif /** @def RT_HI_U16 * Gets the high uint16_t of a uint32_t or something equivalent). */ #ifdef __GNUC__ # define RT_HI_U8(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint16_t)); (uint8_t)((a) >> 8); }) #else # define RT_HI_U8(a) ( (uint8_t)((a) >> 8) ) #endif /** @def RT_LO_U16 * Gets the low uint16_t of a uint32_t or something equivalent. */ #ifdef __GNUC__ # define RT_LO_U16(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint32_t)); (uint16_t)(a); }) #else # define RT_LO_U16(a) ( (uint16_t)(a) ) #endif /** @def RT_HI_U16 * Gets the high uint16_t of a uint32_t or something equivalent). */ #ifdef __GNUC__ # define RT_HI_U16(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint32_t)); (uint16_t)((a) >> 16); }) #else # define RT_HI_U16(a) ( (uint16_t)((a) >> 16) ) #endif /** @def RT_LO_U32 * Gets the low uint32_t of a uint64_t or something equivalent. */ #ifdef __GNUC__ # define RT_LO_U32(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint64_t)); (uint32_t)(a); }) #else # define RT_LO_U32(a) ( (uint32_t)(a) ) #endif /** @def RT_HI_U32 * Gets the high uint32_t of a uint64_t or something equivalent). */ #ifdef __GNUC__ # define RT_HI_U32(a) __extension__ ({ AssertCompile(sizeof((a)) == sizeof(uint64_t)); (uint32_t)((a) >> 32); }) #else # define RT_HI_U32(a) ( (uint32_t)((a) >> 32) ) #endif /** @def RT_BYTE1 * Gets the first byte of something. */ #define RT_BYTE1(a) ( (a) & 0xff ) /** @def RT_BYTE2 * Gets the second byte of something. */ #define RT_BYTE2(a) ( ((a) >> 8) & 0xff ) /** @def RT_BYTE3 * Gets the second byte of something. */ #define RT_BYTE3(a) ( ((a) >> 16) & 0xff ) /** @def RT_BYTE4 * Gets the fourth byte of something. */ #define RT_BYTE4(a) ( ((a) >> 24) & 0xff ) /** @def RT_BYTE5 * Gets the fifth byte of something. */ #define RT_BYTE5(a) ( ((a) >> 32) & 0xff ) /** @def RT_BYTE6 * Gets the sixth byte of something. */ #define RT_BYTE6(a) ( ((a) >> 40) & 0xff ) /** @def RT_BYTE7 * Gets the seventh byte of something. */ #define RT_BYTE7(a) ( ((a) >> 48) & 0xff ) /** @def RT_BYTE8 * Gets the eight byte of something. */ #define RT_BYTE8(a) ( ((a) >> 56) & 0xff ) /** @def RT_LODWORD * Gets the low dword (=uint32_t) of something. * @deprecated Use RT_LO_U32. */ #define RT_LODWORD(a) ( (uint32_t)(a) ) /** @def RT_HIDWORD * Gets the high dword (=uint32_t) of a 64-bit of something. * @deprecated Use RT_HI_U32. */ #define RT_HIDWORD(a) ( (uint32_t)((a) >> 32) ) /** @def RT_LOWORD * Gets the low word (=uint16_t) of something. * @deprecated Use RT_LO_U16. */ #define RT_LOWORD(a) ( (a) & 0xffff ) /** @def RT_HIWORD * Gets the high word (=uint16_t) of a 32-bit something. * @deprecated Use RT_HI_U16. */ #define RT_HIWORD(a) ( (a) >> 16 ) /** @def RT_LOBYTE * Gets the low byte of something. * @deprecated Use RT_LO_U8. */ #define RT_LOBYTE(a) ( (a) & 0xff ) /** @def RT_HIBYTE * Gets the low byte of a 16-bit something. * @deprecated Use RT_HI_U8. */ #define RT_HIBYTE(a) ( (a) >> 8 ) /** @def RT_MAKE_U64 * Constructs a uint64_t value from two uint32_t values. */ #define RT_MAKE_U64(Lo, Hi) ( (uint64_t)((uint32_t)(Hi)) << 32 | (uint32_t)(Lo) ) /** @def RT_MAKE_U64_FROM_U16 * Constructs a uint64_t value from four uint16_t values. */ #define RT_MAKE_U64_FROM_U16(w0, w1, w2, w3) \ ((uint64_t)( (uint64_t)((uint16_t)(w3)) << 48 \ | (uint64_t)((uint16_t)(w2)) << 32 \ | (uint32_t)((uint16_t)(w1)) << 16 \ | (uint16_t)(w0) )) /** @def RT_MAKE_U64_FROM_U8 * Constructs a uint64_t value from eight uint8_t values. */ #define RT_MAKE_U64_FROM_U8(b0, b1, b2, b3, b4, b5, b6, b7) \ ((uint64_t)( (uint64_t)((uint8_t)(b7)) << 56 \ | (uint64_t)((uint8_t)(b6)) << 48 \ | (uint64_t)((uint8_t)(b5)) << 40 \ | (uint64_t)((uint8_t)(b4)) << 32 \ | (uint32_t)((uint8_t)(b3)) << 24 \ | (uint32_t)((uint8_t)(b2)) << 16 \ | (uint16_t)((uint8_t)(b1)) << 8 \ | (uint8_t)(b0) )) /** @def RT_MAKE_U32 * Constructs a uint32_t value from two uint16_t values. */ #define RT_MAKE_U32(Lo, Hi) \ ((uint32_t)( (uint32_t)((uint16_t)(Hi)) << 16 \ | (uint16_t)(Lo) )) /** @def RT_MAKE_U32_FROM_U8 * Constructs a uint32_t value from four uint8_t values. */ #define RT_MAKE_U32_FROM_U8(b0, b1, b2, b3) \ ((uint32_t)( (uint32_t)((uint8_t)(b3)) << 24 \ | (uint32_t)((uint8_t)(b2)) << 16 \ | (uint16_t)((uint8_t)(b1)) << 8 \ | (uint8_t)(b0) )) /** @def RT_MAKE_U16 * Constructs a uint16_t value from two uint8_t values. */ #define RT_MAKE_U16(Lo, Hi) \ ((uint16_t)( (uint16_t)((uint8_t)(Hi)) << 8 \ | (uint8_t)(Lo) )) /** @def RT_BSWAP_U64 * Reverses the byte order of an uint64_t value. */ #if 0 # define RT_BSWAP_U64(u64) RT_BSWAP_U64_C(u64) #elif defined(__GNUC__) # define RT_BSWAP_U64(u64) (__builtin_constant_p((u64)) \ ? RT_BSWAP_U64_C(u64) : ASMByteSwapU64(u64)) #else # define RT_BSWAP_U64(u64) ASMByteSwapU64(u64) #endif /** @def RT_BSWAP_U32 * Reverses the byte order of an uint32_t value. */ #if 0 # define RT_BSWAP_U32(u32) RT_BSWAP_U32_C(u32) #elif defined(__GNUC__) # define RT_BSWAP_U32(u32) (__builtin_constant_p((u32)) \ ? RT_BSWAP_U32_C(u32) : ASMByteSwapU32(u32)) #else # define RT_BSWAP_U32(u32) ASMByteSwapU32(u32) #endif /** @def RT_BSWAP_U16 * Reverses the byte order of an uint16_t value. */ #if 0 # define RT_BSWAP_U16(u16) RT_BSWAP_U16_C(u16) #elif defined(__GNUC__) # define RT_BSWAP_U16(u16) (__builtin_constant_p((u16)) \ ? RT_BSWAP_U16_C(u16) : ASMByteSwapU16(u16)) #else # define RT_BSWAP_U16(u16) ASMByteSwapU16(u16) #endif /** @def RT_BSWAP_U64_C * Reverses the byte order of an uint64_t constant. */ #define RT_BSWAP_U64_C(u64) RT_MAKE_U64(RT_BSWAP_U32_C((u64) >> 32), RT_BSWAP_U32_C((u64) & 0xffffffff)) /** @def RT_BSWAP_U32_C * Reverses the byte order of an uint32_t constant. */ #define RT_BSWAP_U32_C(u32) RT_MAKE_U32_FROM_U8(RT_BYTE4(u32), RT_BYTE3(u32), RT_BYTE2(u32), RT_BYTE1(u32)) /** @def RT_BSWAP_U16_C * Reverses the byte order of an uint16_t constant. */ #define RT_BSWAP_U16_C(u16) RT_MAKE_U16(RT_HIBYTE(u16), RT_LOBYTE(u16)) /** @def RT_H2LE_U64 * Converts an uint64_t value from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U64(u64) RT_BSWAP_U64(u64) #else # define RT_H2LE_U64(u64) (u64) #endif /** @def RT_H2LE_U64_C * Converts an uint64_t constant from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U64_C(u64) RT_BSWAP_U64_C(u64) #else # define RT_H2LE_U64_C(u64) (u64) #endif /** @def RT_H2LE_U32 * Converts an uint32_t value from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U32(u32) RT_BSWAP_U32(u32) #else # define RT_H2LE_U32(u32) (u32) #endif /** @def RT_H2LE_U32_C * Converts an uint32_t constant from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U32_C(u32) RT_BSWAP_U32_C(u32) #else # define RT_H2LE_U32_C(u32) (u32) #endif /** @def RT_H2LE_U16 * Converts an uint16_t value from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U16(u16) RT_BSWAP_U16(u16) #else # define RT_H2LE_U16(u16) (u16) #endif /** @def RT_H2LE_U16_C * Converts an uint16_t constant from host to little endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2LE_U16_C(u16) RT_BSWAP_U16_C(u16) #else # define RT_H2LE_U16_C(u16) (u16) #endif /** @def RT_LE2H_U64 * Converts an uint64_t value from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U64(u64) RT_BSWAP_U64(u64) #else # define RT_LE2H_U64(u64) (u64) #endif /** @def RT_LE2H_U64_C * Converts an uint64_t constant from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U64_C(u64) RT_BSWAP_U64_C(u64) #else # define RT_LE2H_U64_C(u64) (u64) #endif /** @def RT_LE2H_U32 * Converts an uint32_t value from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U32(u32) RT_BSWAP_U32(u32) #else # define RT_LE2H_U32(u32) (u32) #endif /** @def RT_LE2H_U32_C * Converts an uint32_t constant from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U32_C(u32) RT_BSWAP_U32_C(u32) #else # define RT_LE2H_U32_C(u32) (u32) #endif /** @def RT_LE2H_U16 * Converts an uint16_t value from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U16(u16) RT_BSWAP_U16(u16) #else # define RT_LE2H_U16(u16) (u16) #endif /** @def RT_LE2H_U16_C * Converts an uint16_t constant from little endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_LE2H_U16_C(u16) RT_BSWAP_U16_C(u16) #else # define RT_LE2H_U16_C(u16) (u16) #endif /** @def RT_H2BE_U64 * Converts an uint64_t value from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U64(u64) (u64) #else # define RT_H2BE_U64(u64) RT_BSWAP_U64(u64) #endif /** @def RT_H2BE_U64_C * Converts an uint64_t constant from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U64_C(u64) (u64) #else # define RT_H2BE_U64_C(u64) RT_BSWAP_U64_C(u64) #endif /** @def RT_H2BE_U32 * Converts an uint32_t value from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U32(u32) (u32) #else # define RT_H2BE_U32(u32) RT_BSWAP_U32(u32) #endif /** @def RT_H2BE_U32_C * Converts an uint32_t constant from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U32_C(u32) (u32) #else # define RT_H2BE_U32_C(u32) RT_BSWAP_U32_C(u32) #endif /** @def RT_H2BE_U16 * Converts an uint16_t value from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U16(u16) (u16) #else # define RT_H2BE_U16(u16) RT_BSWAP_U16(u16) #endif /** @def RT_H2BE_U16_C * Converts an uint16_t constant from host to big endian byte order. */ #ifdef RT_BIG_ENDIAN # define RT_H2BE_U16_C(u16) (u16) #else # define RT_H2BE_U16_C(u16) RT_BSWAP_U16_C(u16) #endif /** @def RT_BE2H_U64 * Converts an uint64_t value from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U64(u64) (u64) #else # define RT_BE2H_U64(u64) RT_BSWAP_U64(u64) #endif /** @def RT_BE2H_U64 * Converts an uint64_t constant from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U64_C(u64) (u64) #else # define RT_BE2H_U64_C(u64) RT_BSWAP_U64_C(u64) #endif /** @def RT_BE2H_U32 * Converts an uint32_t value from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U32(u32) (u32) #else # define RT_BE2H_U32(u32) RT_BSWAP_U32(u32) #endif /** @def RT_BE2H_U32_C * Converts an uint32_t value from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U32_C(u32) (u32) #else # define RT_BE2H_U32_C(u32) RT_BSWAP_U32_C(u32) #endif /** @def RT_BE2H_U16 * Converts an uint16_t value from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U16(u16) (u16) #else # define RT_BE2H_U16(u16) RT_BSWAP_U16(u16) #endif /** @def RT_BE2H_U16_C * Converts an uint16_t constant from big endian to host byte order. */ #ifdef RT_BIG_ENDIAN # define RT_BE2H_U16_C(u16) (u16) #else # define RT_BE2H_U16_C(u16) RT_BSWAP_U16_C(u16) #endif /** @def RT_H2N_U64 * Converts an uint64_t value from host to network byte order. */ #define RT_H2N_U64(u64) RT_H2BE_U64(u64) /** @def RT_H2N_U64_C * Converts an uint64_t constant from host to network byte order. */ #define RT_H2N_U64_C(u64) RT_H2BE_U64_C(u64) /** @def RT_H2N_U32 * Converts an uint32_t value from host to network byte order. */ #define RT_H2N_U32(u32) RT_H2BE_U32(u32) /** @def RT_H2N_U32_C * Converts an uint32_t constant from host to network byte order. */ #define RT_H2N_U32_C(u32) RT_H2BE_U32_C(u32) /** @def RT_H2N_U16 * Converts an uint16_t value from host to network byte order. */ #define RT_H2N_U16(u16) RT_H2BE_U16(u16) /** @def RT_H2N_U16_C * Converts an uint16_t constant from host to network byte order. */ #define RT_H2N_U16_C(u16) RT_H2BE_U16_C(u16) /** @def RT_N2H_U64 * Converts an uint64_t value from network to host byte order. */ #define RT_N2H_U64(u64) RT_BE2H_U64(u64) /** @def RT_N2H_U64_C * Converts an uint64_t constant from network to host byte order. */ #define RT_N2H_U64_C(u64) RT_BE2H_U64_C(u64) /** @def RT_N2H_U32 * Converts an uint32_t value from network to host byte order. */ #define RT_N2H_U32(u32) RT_BE2H_U32(u32) /** @def RT_N2H_U32_C * Converts an uint32_t constant from network to host byte order. */ #define RT_N2H_U32_C(u32) RT_BE2H_U32_C(u32) /** @def RT_N2H_U16 * Converts an uint16_t value from network to host byte order. */ #define RT_N2H_U16(u16) RT_BE2H_U16(u16) /** @def RT_N2H_U16_C * Converts an uint16_t value from network to host byte order. */ #define RT_N2H_U16_C(u16) RT_BE2H_U16_C(u16) /* * The BSD sys/param.h + machine/param.h file is a major source of * namespace pollution. Kill off some of the worse ones unless we're * compiling kernel code. */ #if defined(RT_OS_DARWIN) \ && !defined(KERNEL) \ && !defined(RT_NO_BSD_PARAM_H_UNDEFING) \ && ( defined(_SYS_PARAM_H_) || defined(_I386_PARAM_H_) ) /* sys/param.h: */ # undef PSWP # undef PVM # undef PINOD # undef PRIBO # undef PVFS # undef PZERO # undef PSOCK # undef PWAIT # undef PLOCK # undef PPAUSE # undef PUSER # undef PRIMASK # undef MINBUCKET # undef MAXALLOCSAVE # undef FSHIFT # undef FSCALE /* i386/machine.h: */ # undef ALIGN # undef ALIGNBYTES # undef DELAY # undef STATUS_WORD # undef USERMODE # undef BASEPRI # undef MSIZE # undef CLSIZE # undef CLSIZELOG2 #endif /** @def NIL_OFFSET * NIL offset. * Whenever we use offsets instead of pointers to save space and relocation effort * NIL_OFFSET shall be used as the equivalent to NULL. */ #define NIL_OFFSET (~0U) /** @def NOREF * Keeps the compiler from bitching about an unused parameter. */ #define NOREF(var) (void)(var) /** @def RT_BREAKPOINT * Emit a debug breakpoint instruction. * * @remarks In the x86/amd64 gnu world we add a nop instruction after the int3 * to force gdb to remain at the int3 source line. * @remarks The L4 kernel will try make sense of the breakpoint, thus the jmp on * x86/amd64. */ #ifdef __GNUC__ # if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # if !defined(__L4ENV__) # define RT_BREAKPOINT() __asm__ __volatile__("int $3\n\tnop\n\t") # else # define RT_BREAKPOINT() __asm__ __volatile__("int3; jmp 1f; 1:\n\t") # endif # elif defined(RT_ARCH_SPARC64) # define RT_BREAKPOINT() __asm__ __volatile__("illtrap 0\n\t") /** @todo Sparc64: this is just a wild guess. */ # elif defined(RT_ARCH_SPARC) # define RT_BREAKPOINT() __asm__ __volatile__("unimp 0\n\t") /** @todo Sparc: this is just a wild guess (same as Sparc64, just different name). */ # endif #endif #ifdef _MSC_VER # define RT_BREAKPOINT() __debugbreak() #endif #if defined(__IBMC__) || defined(__IBMCPP__) # define RT_BREAKPOINT() __interrupt(3) #endif #ifndef RT_BREAKPOINT # error "This compiler/arch is not supported!" #endif /** @defgroup grp_rt_cdefs_size Size Constants * (Of course, these are binary computer terms, not SI.) * @{ */ /** 1 K (Kilo) (1 024). */ #define _1K 0x00000400 /** 2 K (Kilo) (2 048). */ #define _2K 0x00000800 /** 4 K (Kilo) (4 096). */ #define _4K 0x00001000 /** 8 K (Kilo) (8 192). */ #define _8K 0x00002000 /** 16 K (Kilo) (16 384). */ #define _16K 0x00004000 /** 32 K (Kilo) (32 678). */ #define _32K 0x00008000 /** 64 K (Kilo) (65 536). */ #define _64K 0x00010000 /** 128 K (Kilo) (131 072). */ #define _128K 0x00020000 /** 256 K (Kilo) (262 144). */ #define _256K 0x00040000 /** 512 K (Kilo) (524 288). */ #define _512K 0x00080000 /** 1 M (Mega) (1 048 576). */ #define _1M 0x00100000 /** 2 M (Mega) (2 097 152). */ #define _2M 0x00200000 /** 4 M (Mega) (4 194 304). */ #define _4M 0x00400000 /** 1 G (Giga) (1 073 741 824). (32-bit) */ #define _1G 0x40000000 /** 1 G (Giga) (1 073 741 824). (64-bit) */ #define _1G64 0x40000000LL /** 2 G (Giga) (2 147 483 648). (32-bit) */ #define _2G32 0x80000000U /** 2 G (Giga) (2 147 483 648). (64-bit) */ #define _2G 0x0000000080000000LL /** 4 G (Giga) (4 294 967 296). */ #define _4G 0x0000000100000000LL /** 1 T (Tera) (1 099 511 627 776). */ #define _1T 0x0000010000000000LL /** 1 P (Peta) (1 125 899 906 842 624). */ #define _1P 0x0004000000000000LL /** 1 E (Exa) (1 152 921 504 606 846 976). */ #define _1E 0x1000000000000000LL /** 2 E (Exa) (2 305 843 009 213 693 952). */ #define _2E 0x2000000000000000ULL /** @} */ /** @defgroup grp_rt_cdefs_decimal_grouping Decimal Constant Grouping Macros * @{ */ #define RT_D1(g1) g1 #define RT_D2(g1, g2) g1#g2 #define RT_D3(g1, g2, g3) g1#g2#g3 #define RT_D4(g1, g2, g3, g4) g1#g2#g3#g4 #define RT_D5(g1, g2, g3, g4, g5) g1#g2#g3#g4#g5 #define RT_D6(g1, g2, g3, g4, g5, g6) g1#g2#g3#g4#g5#g6 #define RT_D7(g1, g2, g3, g4, g5, g6, g7) g1#g2#g3#g4#g5#g6#g7 #define RT_D1_U(g1) UINT32_C(g1) #define RT_D2_U(g1, g2) UINT32_C(g1#g2) #define RT_D3_U(g1, g2, g3) UINT32_C(g1#g2#g3) #define RT_D4_U(g1, g2, g3, g4) UINT64_C(g1#g2#g3#g4) #define RT_D5_U(g1, g2, g3, g4, g5) UINT64_C(g1#g2#g3#g4#g5) #define RT_D6_U(g1, g2, g3, g4, g5, g6) UINT64_C(g1#g2#g3#g4#g5#g6) #define RT_D7_U(g1, g2, g3, g4, g5, g6, g7) UINT64_C(g1#g2#g3#g4#g5#g6#g7) #define RT_D1_S(g1) INT32_C(g1) #define RT_D2_S(g1, g2) INT32_C(g1#g2) #define RT_D3_S(g1, g2, g3) INT32_C(g1#g2#g3) #define RT_D4_S(g1, g2, g3, g4) INT64_C(g1#g2#g3#g4) #define RT_D5_S(g1, g2, g3, g4, g5) INT64_C(g1#g2#g3#g4#g5) #define RT_D6_S(g1, g2, g3, g4, g5, g6) INT64_C(g1#g2#g3#g4#g5#g6) #define RT_D7_S(g1, g2, g3, g4, g5, g6, g7) INT64_C(g1#g2#g3#g4#g5#g6#g7) #define RT_D1_U32(g1) UINT32_C(g1) #define RT_D2_U32(g1, g2) UINT32_C(g1#g2) #define RT_D3_U32(g1, g2, g3) UINT32_C(g1#g2#g3) #define RT_D4_U32(g1, g2, g3, g4) UINT32_C(g1#g2#g3#g4) #define RT_D1_S32(g1) INT32_C(g1) #define RT_D2_S32(g1, g2) INT32_C(g1#g2) #define RT_D3_S32(g1, g2, g3) INT32_C(g1#g2#g3) #define RT_D4_S32(g1, g2, g3, g4) INT32_C(g1#g2#g3#g4) #define RT_D1_U64(g1) UINT64_C(g1) #define RT_D2_U64(g1, g2) UINT64_C(g1#g2) #define RT_D3_U64(g1, g2, g3) UINT64_C(g1#g2#g3) #define RT_D4_U64(g1, g2, g3, g4) UINT64_C(g1#g2#g3#g4) #define RT_D5_U64(g1, g2, g3, g4, g5) UINT64_C(g1#g2#g3#g4#g5) #define RT_D6_U64(g1, g2, g3, g4, g5, g6) UINT64_C(g1#g2#g3#g4#g5#g6) #define RT_D7_U64(g1, g2, g3, g4, g5, g6, g7) UINT64_C(g1#g2#g3#g4#g5#g6#g7) #define RT_D1_S64(g1) INT64_C(g1) #define RT_D2_S64(g1, g2) INT64_C(g1#g2) #define RT_D3_S64(g1, g2, g3) INT64_C(g1#g2#g3) #define RT_D4_S64(g1, g2, g3, g4) INT64_C(g1#g2#g3#g4) #define RT_D5_S64(g1, g2, g3, g4, g5) INT64_C(g1#g2#g3#g4#g5) #define RT_D6_S64(g1, g2, g3, g4, g5, g6) INT64_C(g1#g2#g3#g4#g5#g6) #define RT_D7_S64(g1, g2, g3, g4, g5, g6, g7) INT64_C(g1#g2#g3#g4#g5#g6#g7) /** @} */ /** @defgroup grp_rt_cdefs_time Time Constants * @{ */ /** 1 hour expressed in nanoseconds (64-bit). */ #define RT_NS_1HOUR UINT64_C(3600000000000) /** 1 minute expressed in nanoseconds (64-bit). */ #define RT_NS_1MIN UINT64_C(60000000000) /** 45 second expressed in nanoseconds. */ #define RT_NS_45SEC UINT64_C(45000000000) /** 30 second expressed in nanoseconds. */ #define RT_NS_30SEC UINT64_C(30000000000) /** 20 second expressed in nanoseconds. */ #define RT_NS_20SEC UINT64_C(20000000000) /** 15 second expressed in nanoseconds. */ #define RT_NS_15SEC UINT64_C(15000000000) /** 10 second expressed in nanoseconds. */ #define RT_NS_10SEC UINT64_C(10000000000) /** 1 second expressed in nanoseconds. */ #define RT_NS_1SEC UINT32_C(1000000000) /** 100 millsecond expressed in nanoseconds. */ #define RT_NS_100MS UINT32_C(100000000) /** 10 millsecond expressed in nanoseconds. */ #define RT_NS_10MS UINT32_C(10000000) /** 1 millsecond expressed in nanoseconds. */ #define RT_NS_1MS UINT32_C(1000000) /** 100 microseconds expressed in nanoseconds. */ #define RT_NS_100US UINT32_C(100000) /** 10 microseconds expressed in nanoseconds. */ #define RT_NS_10US UINT32_C(10000) /** 1 microsecond expressed in nanoseconds. */ #define RT_NS_1US UINT32_C(1000) /** 1 second expressed in nanoseconds - 64-bit type. */ #define RT_NS_1SEC_64 UINT64_C(1000000000) /** 100 millsecond expressed in nanoseconds - 64-bit type. */ #define RT_NS_100MS_64 UINT64_C(100000000) /** 10 millsecond expressed in nanoseconds - 64-bit type. */ #define RT_NS_10MS_64 UINT64_C(10000000) /** 1 millsecond expressed in nanoseconds - 64-bit type. */ #define RT_NS_1MS_64 UINT64_C(1000000) /** 100 microseconds expressed in nanoseconds - 64-bit type. */ #define RT_NS_100US_64 UINT64_C(100000) /** 10 microseconds expressed in nanoseconds - 64-bit type. */ #define RT_NS_10US_64 UINT64_C(10000) /** 1 microsecond expressed in nanoseconds - 64-bit type. */ #define RT_NS_1US_64 UINT64_C(1000) /** 1 hour expressed in microseconds. */ #define RT_US_1HOUR UINT32_C(3600000000) /** 1 minute expressed in microseconds. */ #define RT_US_1MIN UINT32_C(60000000) /** 1 second expressed in microseconds. */ #define RT_US_1SEC UINT32_C(1000000) /** 100 millsecond expressed in microseconds. */ #define RT_US_100MS UINT32_C(100000) /** 10 millsecond expressed in microseconds. */ #define RT_US_10MS UINT32_C(10000) /** 1 millsecond expressed in microseconds. */ #define RT_US_1MS UINT32_C(1000) /** 1 hour expressed in microseconds - 64-bit type. */ #define RT_US_1HOUR_64 UINT64_C(3600000000) /** 1 minute expressed in microseconds - 64-bit type. */ #define RT_US_1MIN_64 UINT64_C(60000000) /** 1 second expressed in microseconds - 64-bit type. */ #define RT_US_1SEC_64 UINT64_C(1000000) /** 100 millsecond expressed in microseconds - 64-bit type. */ #define RT_US_100MS_64 UINT64_C(100000) /** 10 millsecond expressed in microseconds - 64-bit type. */ #define RT_US_10MS_64 UINT64_C(10000) /** 1 millsecond expressed in microseconds - 64-bit type. */ #define RT_US_1MS_64 UINT64_C(1000) /** 1 hour expressed in milliseconds. */ #define RT_MS_1HOUR UINT32_C(3600000) /** 1 minute expressed in milliseconds. */ #define RT_MS_1MIN UINT32_C(60000) /** 1 second expressed in milliseconds. */ #define RT_MS_1SEC UINT32_C(1000) /** 1 hour expressed in milliseconds - 64-bit type. */ #define RT_MS_1HOUR_64 UINT64_C(3600000) /** 1 minute expressed in milliseconds - 64-bit type. */ #define RT_MS_1MIN_64 UINT64_C(60000) /** 1 second expressed in milliseconds - 64-bit type. */ #define RT_MS_1SEC_64 UINT64_C(1000) /** The number of seconds per week. */ #define RT_SEC_1WEEK UINT32_C(604800) /** The number of seconds per day. */ #define RT_SEC_1DAY UINT32_C(86400) /** The number of seconds per hour. */ #define RT_SEC_1HOUR UINT32_C(3600) /** The number of seconds per week - 64-bit type. */ #define RT_SEC_1WEEK_64 UINT64_C(604800) /** The number of seconds per day - 64-bit type. */ #define RT_SEC_1DAY_64 UINT64_C(86400) /** The number of seconds per hour - 64-bit type. */ #define RT_SEC_1HOUR_64 UINT64_C(3600) /** @} */ /** @defgroup grp_rt_cdefs_dbgtype Debug Info Types * @{ */ /** Other format. */ #define RT_DBGTYPE_OTHER RT_BIT_32(0) /** Stabs. */ #define RT_DBGTYPE_STABS RT_BIT_32(1) /** Debug With Arbitrary Record Format (DWARF). */ #define RT_DBGTYPE_DWARF RT_BIT_32(2) /** Microsoft Codeview debug info. */ #define RT_DBGTYPE_CODEVIEW RT_BIT_32(3) /** Watcom debug info. */ #define RT_DBGTYPE_WATCOM RT_BIT_32(4) /** IBM High Level Language debug info. */ #define RT_DBGTYPE_HLL RT_BIT_32(5) /** Old OS/2 and Windows symbol file. */ #define RT_DBGTYPE_SYM RT_BIT_32(6) /** Map file. */ #define RT_DBGTYPE_MAP RT_BIT_32(7) /** @} */ /** @defgroup grp_rt_cdefs_exetype Executable Image Types * @{ */ /** Some other format. */ #define RT_EXETYPE_OTHER RT_BIT_32(0) /** Portable Executable. */ #define RT_EXETYPE_PE RT_BIT_32(1) /** Linear eXecutable. */ #define RT_EXETYPE_LX RT_BIT_32(2) /** Linear Executable. */ #define RT_EXETYPE_LE RT_BIT_32(3) /** New Executable. */ #define RT_EXETYPE_NE RT_BIT_32(4) /** DOS Executable (Mark Zbikowski). */ #define RT_EXETYPE_MZ RT_BIT_32(5) /** COM Executable. */ #define RT_EXETYPE_COM RT_BIT_32(6) /** a.out Executable. */ #define RT_EXETYPE_AOUT RT_BIT_32(7) /** Executable and Linkable Format. */ #define RT_EXETYPE_ELF RT_BIT_32(8) /** Mach-O Executable (including FAT ones). */ #define RT_EXETYPE_MACHO RT_BIT_32(9) /** TE from UEFI. */ #define RT_EXETYPE_TE RT_BIT_32(9) /** @} */ /** @def VALID_PTR * Pointer validation macro. * @param ptr The pointer. */ #if defined(RT_ARCH_AMD64) # ifdef IN_RING3 # if defined(RT_OS_DARWIN) /* first 4GB is reserved for legacy kernel. */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) >= _4G \ && !((uintptr_t)(ptr) & 0xffff800000000000ULL) ) # elif defined(RT_OS_SOLARIS) /* The kernel only used the top 2TB, but keep it simple. */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U \ && ( ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0xffff800000000000ULL \ || ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0) ) # else # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U \ && !((uintptr_t)(ptr) & 0xffff800000000000ULL) ) # endif # else /* !IN_RING3 */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U \ && ( ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0xffff800000000000ULL \ || ((uintptr_t)(ptr) & 0xffff800000000000ULL) == 0) ) # endif /* !IN_RING3 */ #elif defined(RT_ARCH_X86) # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U ) #elif defined(RT_ARCH_SPARC64) # ifdef IN_RING3 # if defined(RT_OS_SOLARIS) /** Sparc64 user mode: According to Figure 9.4 in solaris internals */ /** @todo # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x80004000U >= 0x80004000U + 0x100000000ULL ) - figure this. */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x80000000U >= 0x80000000U + 0x100000000ULL ) # else # error "Port me" # endif # else /* !IN_RING3 */ # if defined(RT_OS_SOLARIS) /** @todo Sparc64 kernel mode: This is according to Figure 11.1 in solaris * internals. Verify in sources. */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) >= 0x01000000U ) # else # error "Port me" # endif # endif /* !IN_RING3 */ #elif defined(RT_ARCH_SPARC) # ifdef IN_RING3 # ifdef RT_OS_SOLARIS /** Sparc user mode: According to * http://cvs.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/sun4/os/startup.c#510 */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x400000U >= 0x400000U + 0x2000U ) # else # error "Port me" # endif # else /* !IN_RING3 */ # ifdef RT_OS_SOLARIS /** @todo Sparc kernel mode: Check the sources! */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U ) # else # error "Port me" # endif # endif /* !IN_RING3 */ #elif defined(RT_ARCH_ARM) /* ASSUMES that at least the last and first 4K are out of bounds. */ # define RT_VALID_PTR(ptr) ( (uintptr_t)(ptr) + 0x1000U >= 0x2000U ) #else # error "Architecture identifier missing / not implemented." #endif /** Old name for RT_VALID_PTR. */ #define VALID_PTR(ptr) RT_VALID_PTR(ptr) /** @def RT_VALID_ALIGNED_PTR * Pointer validation macro that also checks the alignment. * @param ptr The pointer. * @param align The alignment, must be a power of two. */ #define RT_VALID_ALIGNED_PTR(ptr, align) \ ( !((uintptr_t)(ptr) & (uintptr_t)((align) - 1)) \ && VALID_PTR(ptr) ) /** @def VALID_PHYS32 * 32 bits physical address validation macro. * @param Phys The RTGCPHYS address. */ #define VALID_PHYS32(Phys) ( (uint64_t)(Phys) < (uint64_t)_4G ) /** @def N_ * The \#define N_ is used to mark a string for translation. This is usable in * any part of the code, as it is only used by the tools that create message * catalogs. This macro is a no-op as far as the compiler and code generation * is concerned. * * If you want to both mark a string for translation and translate it, use _(). */ #define N_(s) (s) /** @def _ * The \#define _ is used to mark a string for translation and to translate it * in one step. * * If you want to only mark a string for translation, use N_(). */ #define _(s) gettext(s) /** @def __PRETTY_FUNCTION__ * With GNU C we'd like to use the builtin __PRETTY_FUNCTION__, so define that * for the other compilers. */ #if !defined(__GNUC__) && !defined(__PRETTY_FUNCTION__) # ifdef _MSC_VER # define __PRETTY_FUNCTION__ __FUNCSIG__ # else # define __PRETTY_FUNCTION__ __FUNCTION__ # endif #endif /** @def RT_STRICT * The \#define RT_STRICT controls whether or not assertions and other runtime * checks should be compiled in or not. This is defined when DEBUG is defined. * If RT_NO_STRICT is defined, it will unconditionally be undefined. * * If you want assertions which are not subject to compile time options use * the AssertRelease*() flavors. */ #if !defined(RT_STRICT) && defined(DEBUG) # define RT_STRICT #endif #ifdef RT_NO_STRICT # undef RT_STRICT #endif /** @todo remove this: */ #if !defined(RT_LOCK_STRICT) && !defined(DEBUG_bird) # define RT_LOCK_NO_STRICT #endif #if !defined(RT_LOCK_STRICT_ORDER) && !defined(DEBUG_bird) # define RT_LOCK_NO_STRICT_ORDER #endif /** @def RT_LOCK_STRICT * The \#define RT_LOCK_STRICT controls whether deadlock detection and related * checks are done in the lock and semaphore code. It is by default enabled in * RT_STRICT builds, but this behavior can be overridden by defining * RT_LOCK_NO_STRICT. */ #if !defined(RT_LOCK_STRICT) && !defined(RT_LOCK_NO_STRICT) && defined(RT_STRICT) # define RT_LOCK_STRICT #endif /** @def RT_LOCK_NO_STRICT * The \#define RT_LOCK_NO_STRICT disables RT_LOCK_STRICT. */ #if defined(RT_LOCK_NO_STRICT) && defined(RT_LOCK_STRICT) # undef RT_LOCK_STRICT #endif /** @def RT_LOCK_STRICT_ORDER * The \#define RT_LOCK_STRICT_ORDER controls whether locking order is checked * by the lock and semaphore code. It is by default enabled in RT_STRICT * builds, but this behavior can be overridden by defining * RT_LOCK_NO_STRICT_ORDER. */ #if !defined(RT_LOCK_STRICT_ORDER) && !defined(RT_LOCK_NO_STRICT_ORDER) && defined(RT_STRICT) # define RT_LOCK_STRICT_ORDER #endif /** @def RT_LOCK_NO_STRICT_ORDER * The \#define RT_LOCK_NO_STRICT_ORDER disables RT_LOCK_STRICT_ORDER. */ #if defined(RT_LOCK_NO_STRICT_ORDER) && defined(RT_LOCK_STRICT_ORDER) # undef RT_LOCK_STRICT_ORDER #endif /** Source position. */ #define RT_SRC_POS __FILE__, __LINE__, __PRETTY_FUNCTION__ /** Source position declaration. */ #define RT_SRC_POS_DECL const char *pszFile, unsigned iLine, const char *pszFunction /** Source position arguments. */ #define RT_SRC_POS_ARGS pszFile, iLine, pszFunction /** Applies NOREF() to the source position arguments. */ #define RT_SRC_POS_NOREF() do { NOREF(pszFile); NOREF(iLine); NOREF(pszFunction); } while (0) /** @def RT_INLINE_ASM_EXTERNAL * Defined as 1 if the compiler does not support inline assembly. * The ASM* functions will then be implemented in external .asm files. */ #if (defined(_MSC_VER) && defined(RT_ARCH_AMD64)) \ || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)) # define RT_INLINE_ASM_EXTERNAL 1 #else # define RT_INLINE_ASM_EXTERNAL 0 #endif /** @def RT_INLINE_ASM_GNU_STYLE * Defined as 1 if the compiler understands GNU style inline assembly. */ #if defined(_MSC_VER) # define RT_INLINE_ASM_GNU_STYLE 0 #else # define RT_INLINE_ASM_GNU_STYLE 1 #endif /** @def RT_INLINE_ASM_USES_INTRIN * Defined as the major MSC version if the compiler have and uses intrin.h. * Otherwise it is 0. */ #ifdef _MSC_VER # if _MSC_VER >= 1700 /* Visual C++ v11.0 / 2012 */ # define RT_INLINE_ASM_USES_INTRIN 17 # elif _MSC_VER >= 1600 /* Visual C++ v10.0 / 2010 */ # define RT_INLINE_ASM_USES_INTRIN 16 # elif _MSC_VER >= 1500 /* Visual C++ v9.0 / 2008 */ # define RT_INLINE_ASM_USES_INTRIN 15 # elif _MSC_VER >= 1400 /* Visual C++ v8.0 / 2005 */ # define RT_INLINE_ASM_USES_INTRIN 14 # endif #endif #ifndef RT_INLINE_ASM_USES_INTRIN # define RT_INLINE_ASM_USES_INTRIN 0 #endif /** @} */ /** @defgroup grp_rt_cdefs_cpp Special Macros for C++ * @ingroup grp_rt_cdefs * @{ */ #ifdef __cplusplus /** @def DECLEXPORT_CLASS * How to declare an exported class. Place this macro after the 'class' * keyword in the declaration of every class you want to export. * * @note It is necessary to use this macro even for inner classes declared * inside the already exported classes. This is a GCC specific requirement, * but it seems not to harm other compilers. */ #if defined(_MSC_VER) || defined(RT_OS_OS2) # define DECLEXPORT_CLASS __declspec(dllexport) #elif defined(RT_USE_VISIBILITY_DEFAULT) # define DECLEXPORT_CLASS __attribute__((visibility("default"))) #else # define DECLEXPORT_CLASS #endif /** @def DECLIMPORT_CLASS * How to declare an imported class Place this macro after the 'class' * keyword in the declaration of every class you want to export. * * @note It is necessary to use this macro even for inner classes declared * inside the already exported classes. This is a GCC specific requirement, * but it seems not to harm other compilers. */ #if defined(_MSC_VER) || (defined(RT_OS_OS2) && !defined(__IBMC__) && !defined(__IBMCPP__)) # define DECLIMPORT_CLASS __declspec(dllimport) #elif defined(RT_USE_VISIBILITY_DEFAULT) # define DECLIMPORT_CLASS __attribute__((visibility("default"))) #else # define DECLIMPORT_CLASS #endif /** @def WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP * Macro to work around error C2593 of the not-so-smart MSVC 7.x ambiguity * resolver. The following snippet clearly demonstrates the code causing this * error: * @code * class A * { * public: * operator bool() const { return false; } * operator int*() const { return NULL; } * }; * int main() * { * A a; * if (!a); * if (a && 0); * return 0; * } * @endcode * The code itself seems pretty valid to me and GCC thinks the same. * * This macro fixes the compiler error by explicitly overloading implicit * global operators !, && and || that take the given class instance as one of * their arguments. * * The best is to use this macro right after the class declaration. * * @note The macro expands to nothing for compilers other than MSVC. * * @param Cls Class to apply the workaround to */ #if defined(_MSC_VER) # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP(Cls) \ inline bool operator! (const Cls &that) { return !bool (that); } \ inline bool operator&& (const Cls &that, bool b) { return bool (that) && b; } \ inline bool operator|| (const Cls &that, bool b) { return bool (that) || b; } \ inline bool operator&& (bool b, const Cls &that) { return b && bool (that); } \ inline bool operator|| (bool b, const Cls &that) { return b || bool (that); } #else # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP(Cls) #endif /** @def WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL * Version of WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP for template classes. * * @param Tpl Name of the template class to apply the workaround to * @param ArgsDecl arguments of the template, as declared in |<>| after the * |template| keyword, including |<>| * @param Args arguments of the template, as specified in |<>| after the * template class name when using the, including |<>| * * Example: * @code * // template class declaration * template * class Foo { ... }; * // applied workaround * WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL (Foo, , ) * @endcode */ #if defined(_MSC_VER) # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL(Tpl, ArgsDecl, Args) \ template ArgsDecl \ inline bool operator! (const Tpl Args &that) { return !bool (that); } \ template ArgsDecl \ inline bool operator&& (const Tpl Args &that, bool b) { return bool (that) && b; } \ template ArgsDecl \ inline bool operator|| (const Tpl Args &that, bool b) { return bool (that) || b; } \ template ArgsDecl \ inline bool operator&& (bool b, const Tpl Args &that) { return b && bool (that); } \ template ArgsDecl \ inline bool operator|| (bool b, const Tpl Args &that) { return b || bool (that); } #else # define WORKAROUND_MSVC7_ERROR_C2593_FOR_BOOL_OP_TPL(Tpl, ArgsDecl, Args) #endif /** @def DECLARE_CLS_COPY_CTOR_ASSIGN_NOOP * Declares the copy constructor and the assignment operation as inlined no-ops * (non-existent functions) for the given class. Use this macro inside the * private section if you want to effectively disable these operations for your * class. * * @param Cls class name to declare for */ #define DECLARE_CLS_COPY_CTOR_ASSIGN_NOOP(Cls) \ inline Cls (const Cls &); \ inline Cls &operator= (const Cls &); /** @def DECLARE_CLS_NEW_DELETE_NOOP * Declares the new and delete operations as no-ops (non-existent functions) * for the given class. Use this macro inside the private section if you want * to effectively limit creating class instances on the stack only. * * @note The destructor of the given class must not be virtual, otherwise a * compile time error will occur. Note that this is not a drawback: having * the virtual destructor for a stack-based class is absolutely useless * (the real class of the stack-based instance is always known to the compiler * at compile time, so it will always call the correct destructor). * * @param Cls class name to declare for */ #define DECLARE_CLS_NEW_DELETE_NOOP(Cls) \ inline static void *operator new (size_t); \ inline static void operator delete (void *); #endif /* __cplusplus */ /** @} */ #endif