/** @file * * vboxvfs -- VirtualBox Guest Additions for Linux: * Utility functions. * Mainly conversion from/to VirtualBox/Linux data structures */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ #include "vfsmod.h" #include #include /* #define USE_VMALLOC */ #if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 0) /* * sf_reg_aops and sf_backing_dev_info are just quick implementations to make * sendfile work. For more information have a look at * * http://us1.samba.org/samba/ftp/cifs-cvs/ols2006-fs-tutorial-smf.odp * * and the sample implementation * * http://pserver.samba.org/samba/ftp/cifs-cvs/samplefs.tar.gz */ static struct backing_dev_info sf_backing_dev_info = { .ra_pages = 0, /* No readahead */ # if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 12) .capabilities = BDI_CAP_MAP_DIRECT /* MAP_SHARED */ | BDI_CAP_MAP_COPY /* MAP_PRIVATE */ | BDI_CAP_READ_MAP /* can be mapped for reading */ | BDI_CAP_WRITE_MAP /* can be mapped for writing */ | BDI_CAP_EXEC_MAP, /* can be mapped for execution */ # endif }; #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 0) */ #if LINUX_VERSION_CODE < KERNEL_VERSION (2, 6, 0) static void sf_ftime_from_timespec (time_t *time, RTTIMESPEC *ts) { int64_t t = RTTimeSpecGetNano (ts); do_div (t, 1000000000); *time = t; } #else static void sf_ftime_from_timespec (struct timespec *tv, RTTIMESPEC *ts) { int64_t t = RTTimeSpecGetNano (ts); int64_t nsec; nsec = do_div (t, 1000000000); tv->tv_sec = t; tv->tv_nsec = nsec; } #endif /* set [inode] attributes based on [info], uid/gid based on [sf_g] */ void sf_init_inode (struct sf_glob_info *sf_g, struct inode *inode, RTFSOBJINFO *info) { int is_dir; RTFSOBJATTR *attr; int mode; TRACE (); attr = &info->Attr; is_dir = RTFS_IS_DIRECTORY (attr->fMode); #define mode_set(r) attr->fMode & (RTFS_UNIX_##r) ? (S_##r) : 0; mode = mode_set (ISUID); mode |= mode_set (ISGID); mode |= mode_set (IRUSR); mode |= mode_set (IWUSR); mode |= mode_set (IXUSR); mode |= mode_set (IRGRP); mode |= mode_set (IWGRP); mode |= mode_set (IXGRP); mode |= mode_set (IROTH); mode |= mode_set (IWOTH); mode |= mode_set (IXOTH); #undef mode_set #if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 0) inode->i_mapping->a_ops = &sf_reg_aops; inode->i_mapping->backing_dev_info = &sf_backing_dev_info; #endif if (is_dir) { inode->i_mode = sf_g->dmode != ~0 ? (sf_g->dmode & 0777) : mode; inode->i_mode &= ~sf_g->dmask; inode->i_mode |= S_IFDIR; inode->i_op = &sf_dir_iops; inode->i_fop = &sf_dir_fops; /* XXX: this probably should be set to the number of entries in the directory plus two (. ..) */ inode->i_nlink = 1; } else { inode->i_mode = sf_g->fmode != ~0 ? (sf_g->fmode & 0777): mode; inode->i_mode &= ~sf_g->fmask; inode->i_mode |= S_IFREG; inode->i_op = &sf_reg_iops; inode->i_fop = &sf_reg_fops; inode->i_nlink = 1; } inode->i_uid = sf_g->uid; inode->i_gid = sf_g->gid; inode->i_size = info->cbObject; #if LINUX_VERSION_CODE < KERNEL_VERSION (2, 6, 19) && !defined(KERNEL_FC6) inode->i_blksize = 4096; #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 4, 11) inode->i_blkbits = 12; #endif inode->i_blocks = (info->cbObject + 4095) / 4096; sf_ftime_from_timespec (&inode->i_atime, &info->AccessTime); sf_ftime_from_timespec (&inode->i_ctime, &info->ChangeTime); sf_ftime_from_timespec (&inode->i_mtime, &info->ModificationTime); } int sf_stat (const char *caller, struct sf_glob_info *sf_g, SHFLSTRING *path, RTFSOBJINFO *result, int ok_to_fail) { int rc; SHFLCREATEPARMS params; TRACE (); params.CreateFlags = SHFL_CF_LOOKUP | SHFL_CF_ACT_FAIL_IF_NEW; LogFunc(("calling vboxCallCreate, file %s, flags %#x\n", path->String.utf8, params.CreateFlags)); rc = vboxCallCreate (&client_handle, &sf_g->map, path, ¶ms); if (RT_FAILURE (rc)) { LogFunc(("vboxCallCreate(%s) failed. caller=%s, rc=%Rrc\n", path->String.utf8, rc, caller)); return -EPROTO; } if (params.Result != SHFL_FILE_EXISTS) { if (!ok_to_fail) { LogFunc(("vboxCallCreate(%s) file does not exist. caller=%s, result=%d\n", path->String.utf8, params.Result, caller)); } return -ENOENT; } *result = params.Info; return 0; } /* this is called directly as iop on 2.4, indirectly as dop [sf_dentry_revalidate] on 2.4/2.6, indirectly as iop through [sf_getattr] on 2.6. the job is to find out whether dentry/inode is still valid. the test is failed if [dentry] does not have an inode or [sf_stat] is unsuccessful, otherwise we return success and update inode attributes */ int sf_inode_revalidate (struct dentry *dentry) { int err; struct sf_glob_info *sf_g; struct sf_inode_info *sf_i; RTFSOBJINFO info; TRACE (); if (!dentry || !dentry->d_inode) { LogFunc(("no dentry(%p) or inode(%p)\n", dentry, dentry->d_inode)); return -EINVAL; } sf_g = GET_GLOB_INFO (dentry->d_inode->i_sb); sf_i = GET_INODE_INFO (dentry->d_inode); #if 0 printk ("%s called by %p:%p\n", sf_i->path->String.utf8, __builtin_return_address (0), __builtin_return_address (1)); #endif BUG_ON (!sf_g); BUG_ON (!sf_i); if (!sf_i->force_restat) { if (jiffies - dentry->d_time < sf_g->ttl) { return 0; } } err = sf_stat (__func__, sf_g, sf_i->path, &info, 1); if (err) { return err; } dentry->d_time = jiffies; sf_init_inode (sf_g, dentry->d_inode, &info); return 0; } /* this is called during name resolution/lookup to check if the [dentry] in the cache is still valid. the job is handled by [sf_inode_revalidate] */ static int #if LINUX_VERSION_CODE < KERNEL_VERSION (2, 6, 0) sf_dentry_revalidate (struct dentry *dentry, int flags) #else sf_dentry_revalidate (struct dentry *dentry, struct nameidata *nd) #endif { TRACE (); if (sf_inode_revalidate (dentry)) { return 0; } return 1; } /* on 2.6 this is a proxy for [sf_inode_revalidate] which (as a side effect) updates inode attributes for [dentry] (given that [dentry] has inode at all) from these new attributes we derive [kstat] via [generic_fillattr] */ #if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6, 0) int sf_getattr (struct vfsmount *mnt, struct dentry *dentry, struct kstat *kstat) { int err; TRACE (); err = sf_inode_revalidate (dentry); if (err) { return err; } generic_fillattr (dentry->d_inode, kstat); return 0; } #endif static int sf_make_path (const char *caller, struct sf_inode_info *sf_i, const char *d_name, size_t d_len, SHFLSTRING **result) { size_t path_len, shflstring_len; SHFLSTRING *tmp; uint16_t p_len; uint8_t *p_name; uint8_t *dst; int is_root = 0; TRACE (); p_len = sf_i->path->u16Length; p_name = sf_i->path->String.utf8; if (p_len == 1 && *p_name == '/') { path_len = d_len + 1; is_root = 1; } else { /* lengths of constituents plus terminating zero plus slash */ path_len = p_len + d_len + 2; if (path_len > 0xffff) { LogFunc(("path too long. caller=%s, path_len=%zu\n", caller, path_len)); return -ENAMETOOLONG; } } shflstring_len = offsetof (SHFLSTRING, String.utf8) + path_len; tmp = kmalloc (shflstring_len, GFP_KERNEL); if (!tmp) { LogRelFunc(("kmalloc failed, caller=%s\n", caller)); return -ENOMEM; } tmp->u16Length = path_len - 1; tmp->u16Size = path_len; if (is_root) { memcpy (tmp->String.utf8, d_name, d_len + 1); } else { dst = tmp->String.utf8; memcpy (dst, p_name, p_len); dst += p_len; *dst++ = '/'; memcpy (dst, d_name, d_len); dst[d_len] = 0; } *result = tmp; return 0; } /* [dentry] contains string encoded in coding system that corresponds to [sf_g]->nls, we must convert it to UTF8 here and pass down to [sf_make_path] which will allocate SHFLSTRING and fill it in */ int sf_path_from_dentry (const char *caller, struct sf_glob_info *sf_g, struct sf_inode_info *sf_i, struct dentry *dentry, SHFLSTRING **result) { int err; const char *d_name; size_t d_len; const char *name; size_t len = 0; TRACE (); d_name = dentry->d_name.name; d_len = dentry->d_name.len; if (sf_g->nls) { size_t in_len, i, out_bound_len; const char *in; char *out; in = d_name; in_len = d_len; out_bound_len = PATH_MAX; out = kmalloc (out_bound_len, GFP_KERNEL); name = out; for (i = 0; i < d_len; ++i) { /* We renamed the linux kernel wchar_t type to linux_wchar_t in the-linux-kernel.h, as it conflicts with the C++ type of that name. */ linux_wchar_t uni; int nb; nb = sf_g->nls->char2uni (in, in_len, &uni); if (nb < 0) { LogFunc(("nls->char2uni failed %x %d\n", *in, in_len)); err = -EINVAL; goto fail1; } in_len -= nb; in += nb; nb = utf8_wctomb (out, uni, out_bound_len); if (nb < 0) { LogFunc(("nls->uni2char failed %x %d\n", uni, out_bound_len)); err = -EINVAL; goto fail1; } out_bound_len -= nb; out += nb; len += nb; } if (len >= PATH_MAX - 1) { err = -ENAMETOOLONG; goto fail1; } LogFunc(("result(%d) = %.*s\n", len, len, name)); *out = 0; } else { name = d_name; len = d_len; } err = sf_make_path (caller, sf_i, name, len, result); if (name != d_name) { kfree (name); } return err; fail1: kfree (name); return err; } int sf_nlscpy (struct sf_glob_info *sf_g, char *name, size_t name_bound_len, const unsigned char *utf8_name, size_t utf8_len) { if (sf_g->nls) { const char *in; char *out; size_t out_len; size_t out_bound_len; size_t in_bound_len; in = utf8_name; in_bound_len = utf8_len; out = name; out_len = 0; out_bound_len = name_bound_len; while (in_bound_len) { int nb; wchar_t uni; nb = utf8_mbtowc (&uni, in, in_bound_len); if (nb < 0) { LogFunc(("utf8_mbtowc failed(%s) %x:%d\n", (const char *) utf8_name, *in, in_bound_len)); return -EINVAL; } in += nb; in_bound_len -= nb; nb = sf_g->nls->uni2char (uni, out, out_bound_len); if (nb < 0) { LogFunc(("nls->uni2char failed(%s) %x:%d\n", utf8_name, uni, out_bound_len)); return nb; } out += nb; out_bound_len -= nb; out_len += nb; } *out = 0; return 0; } else { if (utf8_len + 1 > name_bound_len) { return -ENAMETOOLONG; } else { memcpy (name, utf8_name, utf8_len + 1); } return 0; } } static struct sf_dir_buf * sf_dir_buf_alloc (void) { struct sf_dir_buf *b; TRACE (); b = kmalloc (sizeof (*b), GFP_KERNEL); if (!b) { LogRelFunc(("could not alloc directory buffer\n")); return NULL; } #ifdef USE_VMALLOC b->buf = vmalloc (16384); #else b->buf = kmalloc (16384, GFP_KERNEL); #endif if (!b->buf) { kfree (b); LogRelFunc(("could not alloc directory buffer storage\n")); return NULL; } INIT_LIST_HEAD (&b->head); b->nb_entries = 0; b->used_bytes = 0; b->free_bytes = 16384; return b; } static void sf_dir_buf_free (struct sf_dir_buf *b) { BUG_ON (!b || !b->buf); TRACE (); list_del (&b->head); #ifdef USE_VMALLOC vfree (b->buf); #else kfree (b->buf); #endif kfree (b); } void sf_dir_info_free (struct sf_dir_info *p) { struct list_head *list, *pos, *tmp; TRACE (); list = &p->info_list; list_for_each_safe (pos, tmp, list) { struct sf_dir_buf *b; b = list_entry (pos, struct sf_dir_buf, head); sf_dir_buf_free (b); } kfree (p); } struct sf_dir_info * sf_dir_info_alloc (void) { struct sf_dir_info *p; TRACE (); p = kmalloc (sizeof (*p), GFP_KERNEL); if (!p) { LogRelFunc(("could not alloc directory info\n")); return NULL; } INIT_LIST_HEAD (&p->info_list); return p; } static struct sf_dir_buf * sf_get_non_empty_dir_buf (struct sf_dir_info *sf_d) { struct list_head *list, *pos; list = &sf_d->info_list; list_for_each (pos, list) { struct sf_dir_buf *b; b = list_entry (pos, struct sf_dir_buf, head); if (!b) { return NULL; } else { if (b->free_bytes > 0) { return b; } } } return NULL; } int sf_dir_read_all (struct sf_glob_info *sf_g, struct sf_inode_info *sf_i, struct sf_dir_info *sf_d, SHFLHANDLE handle) { int err; SHFLSTRING *mask; struct sf_dir_buf *b; TRACE (); err = sf_make_path (__func__, sf_i, "*", 1, &mask); if (err) { goto fail0; } b = sf_get_non_empty_dir_buf (sf_d); for (;;) { int rc; void *buf; uint32_t buf_size; uint32_t nb_ents; if (!b) { b = sf_dir_buf_alloc (); if (!b) { err = -ENOMEM; LogRelFunc(("could not alloc directory buffer\n")); goto fail1; } } list_add (&b->head, &sf_d->info_list); buf = b->buf; buf_size = b->free_bytes; rc = vboxCallDirInfo ( &client_handle, &sf_g->map, handle, mask, 0, 0, &buf_size, buf, &nb_ents ); switch (rc) { case VINF_SUCCESS: /* fallthrough */ case VERR_NO_MORE_FILES: break; case VERR_NO_TRANSLATION: LogFunc(("host could not translate entry\n")); /* XXX */ break; default: err = -RTErrConvertToErrno (rc); LogFunc(("vboxCallDirInfo failed rc=%Rrc\n", rc)); goto fail1; } b->nb_entries += nb_ents; b->free_bytes -= buf_size; b->used_bytes += buf_size; b = NULL; if (RT_FAILURE (rc)) { break; } } return 0; fail1: kfree (mask); fail0: return err; } int sf_get_volume_info(struct super_block *sb, STRUCT_STATFS *stat) { struct sf_glob_info *sf_g; SHFLVOLINFO SHFLVolumeInfo; uint32_t cbBuffer; int rc; sf_g = GET_GLOB_INFO (sb); cbBuffer = sizeof(SHFLVolumeInfo); rc = vboxCallFSInfo(&client_handle, &sf_g->map, 0, SHFL_INFO_GET | SHFL_INFO_VOLUME, &cbBuffer, (PSHFLDIRINFO)&SHFLVolumeInfo); if (RT_FAILURE(rc)) return -RTErrConvertToErrno(rc); stat->f_type = NFS_SUPER_MAGIC; /* XXX vboxsf type? */ stat->f_bsize = SHFLVolumeInfo.ulBytesPerAllocationUnit; stat->f_blocks = SHFLVolumeInfo.ullTotalAllocationBytes / SHFLVolumeInfo.ulBytesPerAllocationUnit; stat->f_bfree = SHFLVolumeInfo.ullAvailableAllocationBytes / SHFLVolumeInfo.ulBytesPerAllocationUnit; stat->f_bavail = SHFLVolumeInfo.ullAvailableAllocationBytes / SHFLVolumeInfo.ulBytesPerAllocationUnit; stat->f_files = 1000; stat->f_ffree = 1000; /* don't return 0 here since the guest may think * that it is not possible to create any more files */ stat->f_fsid.val[0] = 0; stat->f_fsid.val[1] = 0; stat->f_namelen = 255; return 0; } struct dentry_operations sf_dentry_ops = { .d_revalidate = sf_dentry_revalidate };