/* $Id: DBGCOps.cpp 62480 2016-07-22 18:29:41Z vboxsync $ */ /** @file * DBGC - Debugger Console, Operators. */ /* * Copyright (C) 2006-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGC #include #include #include #include #include #include #include #include #include "DBGCInternal.h" /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) dbgcOpMinus(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpPluss(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBooleanNot(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseNot(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpVar(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpAddrFar(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpMult(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpDiv(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpMod(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpAdd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpSub(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseShiftLeft(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseShiftRight(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseAnd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseXor(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBitwiseOr(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBooleanAnd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpBooleanOr(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpRangeLength(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpRangeLengthBytes(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); static DECLCALLBACK(int) dbgcOpRangeTo(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult); /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** * Generic implementation of a binary operator. * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. * @param Operator The C operator. * @param fIsDiv Set if it's division and we need to check for zero on the * right hand side. */ #define DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, Operator, fIsDiv) \ do \ { \ if ((pArg1)->enmType == DBGCVAR_TYPE_STRING) \ return VERR_DBGC_PARSE_INVALID_OPERATION; \ \ /* Get the 64-bit right side value. */ \ uint64_t u64Right; \ int rc = dbgcOpHelperGetNumber((pDbgc), (pArg2), &u64Right); \ if ((fIsDiv) && RT_SUCCESS(rc) && !u64Right) /* div/0 kludge */ \ DBGCVAR_INIT_NUMBER((pResult), UINT64_MAX); \ else if (RT_SUCCESS(rc)) \ { \ /* Apply it to the left hand side. */ \ if ((pArg1)->enmType == DBGCVAR_TYPE_SYMBOL) \ { \ rc = dbgcSymbolGet((pDbgc), (pArg1)->u.pszString, DBGCVAR_TYPE_ANY, (pResult)); \ if (RT_FAILURE(rc)) \ return rc; \ } \ else \ *(pResult) = *(pArg1); \ switch ((pResult)->enmType) \ { \ case DBGCVAR_TYPE_GC_FLAT: \ (pResult)->u.GCFlat = (pResult)->u.GCFlat Operator u64Right; \ break; \ case DBGCVAR_TYPE_GC_FAR: \ (pResult)->u.GCFar.off = (pResult)->u.GCFar.off Operator u64Right; \ break; \ case DBGCVAR_TYPE_GC_PHYS: \ (pResult)->u.GCPhys = (pResult)->u.GCPhys Operator u64Right; \ break; \ case DBGCVAR_TYPE_HC_FLAT: \ (pResult)->u.pvHCFlat = (void *)((uintptr_t)(pResult)->u.pvHCFlat Operator u64Right); \ break; \ case DBGCVAR_TYPE_HC_PHYS: \ (pResult)->u.HCPhys = (pResult)->u.HCPhys Operator u64Right; \ break; \ case DBGCVAR_TYPE_NUMBER: \ (pResult)->u.u64Number = (pResult)->u.u64Number Operator u64Right; \ break; \ default: \ return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; \ } \ } \ return rc; \ } while (0) /** * Switch the factors/whatever so we preserve pointers. * Far pointers are considered more important that physical and flat pointers. * * @param pArg1 The left side argument. Input & output. * @param pArg2 The right side argument. Input & output. */ #define DBGC_GEN_ARIT_POINTER_TO_THE_LEFT(pArg1, pArg2) \ do \ { \ if ( DBGCVAR_ISPOINTER((pArg2)->enmType) \ && ( !DBGCVAR_ISPOINTER((pArg1)->enmType) \ || ( DBGCVAR_IS_FAR_PTR((pArg2)->enmType) \ && !DBGCVAR_IS_FAR_PTR((pArg1)->enmType)))) \ { \ PCDBGCVAR pTmp = (pArg1); \ (pArg2) = (pArg1); \ (pArg1) = pTmp; \ } \ } while (0) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Operators. */ const DBGCOP g_aDbgcOps[] = { /* szName is initialized as a 4 char array because of M$C elsewise optimizing it away in /Ox mode (the 'const char' vs 'char' problem). */ /* szName, cchName, fBinary, iPrecedence, pfnHandlerUnary, pfnHandlerBitwise */ { {'-'}, 1, false, 1, dbgcOpMinus, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Unary minus." }, { {'+'}, 1, false, 1, dbgcOpPluss, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Unary plus." }, { {'!'}, 1, false, 1, dbgcOpBooleanNot, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Boolean not." }, { {'~'}, 1, false, 1, dbgcOpBitwiseNot, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise complement." }, { {':'}, 1, true, 2, NULL, dbgcOpAddrFar, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Far pointer." }, { {'%'}, 1, false, 3, dbgcOpAddrFlat, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Flat address." }, { {'%','%'}, 2, false, 3, dbgcOpAddrPhys, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Physical address." }, { {'#'}, 1, false, 3, dbgcOpAddrHost, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Flat host address." }, { {'#','%','%'}, 3, false, 3, dbgcOpAddrHostPhys, NULL, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Physical host address." }, { {'$'}, 1, false, 3, dbgcOpVar, NULL, DBGCVAR_CAT_SYMBOL, DBGCVAR_CAT_ANY, "Reference a variable." }, { {'@'}, 1, false, 3, dbgcOpRegister, NULL, DBGCVAR_CAT_SYMBOL, DBGCVAR_CAT_ANY, "Reference a register." }, { {'*'}, 1, true, 10, NULL, dbgcOpMult, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Multiplication." }, { {'/'}, 1, true, 11, NULL, dbgcOpDiv, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Division." }, { {'m','o','d'}, 3, true, 12, NULL, dbgcOpMod, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Modulus." }, { {'+'}, 1, true, 13, NULL, dbgcOpAdd, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Addition." }, { {'-'}, 1, true, 14, NULL, dbgcOpSub, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Subtraction." }, { {'<','<'}, 2, true, 15, NULL, dbgcOpBitwiseShiftLeft, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise left shift." }, { {'>','>'}, 2, true, 16, NULL, dbgcOpBitwiseShiftRight, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise right shift." }, { {'&'}, 1, true, 17, NULL, dbgcOpBitwiseAnd, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise and." }, { {'^'}, 1, true, 18, NULL, dbgcOpBitwiseXor, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise exclusiv or." }, { {'|'}, 1, true, 19, NULL, dbgcOpBitwiseOr, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Bitwise inclusive or." }, { {'&','&'}, 2, true, 20, NULL, dbgcOpBooleanAnd, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Boolean and." }, { {'|','|'}, 2, true, 21, NULL, dbgcOpBooleanOr, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Boolean or." }, { {'L'}, 1, true, 22, NULL, dbgcOpRangeLength, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Range elements." }, { {'L','B'}, 2, true, 23, NULL, dbgcOpRangeLengthBytes, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Range bytes." }, { {'T'}, 1, true, 24, NULL, dbgcOpRangeTo, DBGCVAR_CAT_ANY, DBGCVAR_CAT_ANY, "Range to." } }; /** Number of operators in the operator array. */ const uint32_t g_cDbgcOps = RT_ELEMENTS(g_aDbgcOps); /** * Converts an argument to a number value. * * @returns VBox status code. * @param pDbgc The DBGC instance. * @param pArg The argument to convert. * @param pu64Ret Where to return the value. */ static int dbgcOpHelperGetNumber(PDBGC pDbgc, PCDBGCVAR pArg, uint64_t *pu64Ret) { DBGCVAR Var = *pArg; switch (Var.enmType) { case DBGCVAR_TYPE_GC_FLAT: *pu64Ret = Var.u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: *pu64Ret = Var.u.GCFar.off; break; case DBGCVAR_TYPE_GC_PHYS: *pu64Ret = Var.u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: *pu64Ret = (uintptr_t)Var.u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: *pu64Ret = Var.u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: *pu64Ret = Var.u.u64Number; break; case DBGCVAR_TYPE_SYMBOL: { int rc = dbgcSymbolGet(pDbgc, Var.u.pszString, DBGCVAR_TYPE_NUMBER, &Var); if (RT_FAILURE(rc)) return rc; /* fall thru */ } case DBGCVAR_TYPE_STRING: default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCOPUNARY, Negate (unary).} */ static DECLCALLBACK(int) dbgcOpMinus(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpMinus\n")); *pResult = *pArg; switch (pArg->enmType) { case DBGCVAR_TYPE_GC_FLAT: pResult->u.GCFlat = -(RTGCINTPTR)pResult->u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: pResult->u.GCFar.off = -(int32_t)pResult->u.GCFar.off; break; case DBGCVAR_TYPE_GC_PHYS: pResult->u.GCPhys = (RTGCPHYS) -(int64_t)pResult->u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: pResult->u.pvHCFlat = (void *) -(intptr_t)pResult->u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: pResult->u.HCPhys = (RTHCPHYS) -(int64_t)pResult->u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: pResult->u.u64Number = -(int64_t)pResult->u.u64Number; break; case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } NOREF(pDbgc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCOPUNARY, Plus (unary).} */ static DECLCALLBACK(int) dbgcOpPluss(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpPluss\n")); *pResult = *pArg; switch (pArg->enmType) { case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: case DBGCVAR_TYPE_NUMBER: break; case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } NOREF(pDbgc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCOPUNARY, Boolean not (unary).} */ static DECLCALLBACK(int) dbgcOpBooleanNot(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpBooleanNot\n")); *pResult = *pArg; switch (pArg->enmType) { case DBGCVAR_TYPE_GC_FLAT: pResult->u.u64Number = !pResult->u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: pResult->u.u64Number = !pResult->u.GCFar.off && pResult->u.GCFar.sel <= 3; break; case DBGCVAR_TYPE_GC_PHYS: pResult->u.u64Number = !pResult->u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: pResult->u.u64Number = !pResult->u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: pResult->u.u64Number = !pResult->u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: pResult->u.u64Number = !pResult->u.u64Number; break; case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: pResult->u.u64Number = !pResult->u64Range; break; case DBGCVAR_TYPE_UNKNOWN: default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } pResult->enmType = DBGCVAR_TYPE_NUMBER; NOREF(pDbgc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCOPUNARY, Bitwise not (unary).} */ static DECLCALLBACK(int) dbgcOpBitwiseNot(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseNot\n")); *pResult = *pArg; switch (pArg->enmType) { case DBGCVAR_TYPE_GC_FLAT: pResult->u.GCFlat = ~pResult->u.GCFlat; break; case DBGCVAR_TYPE_GC_FAR: pResult->u.GCFar.off = ~pResult->u.GCFar.off; break; case DBGCVAR_TYPE_GC_PHYS: pResult->u.GCPhys = ~pResult->u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: pResult->u.pvHCFlat = (void *)~(uintptr_t)pResult->u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: pResult->u.HCPhys = ~pResult->u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: pResult->u.u64Number = ~pResult->u.u64Number; break; case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } NOREF(pDbgc); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCOPUNARY, Reference variable (unary).} */ static DECLCALLBACK(int) dbgcOpVar(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpVar: %s\n", pArg->u.pszString)); AssertReturn(pArg->enmType == DBGCVAR_TYPE_SYMBOL, VERR_DBGC_PARSE_BUG); /* * Lookup the variable. */ const char *pszVar = pArg->u.pszString; for (unsigned iVar = 0; iVar < pDbgc->cVars; iVar++) { if (!strcmp(pszVar, pDbgc->papVars[iVar]->szName)) { *pResult = pDbgc->papVars[iVar]->Var; return VINF_SUCCESS; } } return VERR_DBGC_PARSE_VARIABLE_NOT_FOUND; } /** * @callback_method_impl{FNDBGCOPUNARY, Reference register (unary).} */ DECLCALLBACK(int) dbgcOpRegister(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpRegister: %s\n", pArg->u.pszString)); AssertReturn(pArg->enmType == DBGCVAR_TYPE_SYMBOL, VERR_DBGC_PARSE_BUG); /* Detect references to hypervisor registers. */ const char *pszReg = pArg->u.pszString; VMCPUID idCpu = pDbgc->idCpu; if (pszReg[0] == '.') { pszReg++; idCpu |= DBGFREG_HYPER_VMCPUID; } /* * If the desired result is a symbol, pass the argument along unmodified. * This is a great help for "r @eax" and such, since it will be translated to "r eax". */ if (enmCat == DBGCVAR_CAT_SYMBOL) { int rc = DBGFR3RegNmValidate(pDbgc->pUVM, idCpu, pszReg); if (RT_SUCCESS(rc)) DBGCVAR_INIT_STRING(pResult, pArg->u.pszString); return rc; } /* * Get the register. */ DBGFREGVALTYPE enmType; DBGFREGVAL Value; int rc = DBGFR3RegNmQuery(pDbgc->pUVM, idCpu, pszReg, &Value, &enmType); if (RT_SUCCESS(rc)) { switch (enmType) { case DBGFREGVALTYPE_U8: DBGCVAR_INIT_NUMBER(pResult, Value.u8); return VINF_SUCCESS; case DBGFREGVALTYPE_U16: DBGCVAR_INIT_NUMBER(pResult, Value.u16); return VINF_SUCCESS; case DBGFREGVALTYPE_U32: DBGCVAR_INIT_NUMBER(pResult, Value.u32); return VINF_SUCCESS; case DBGFREGVALTYPE_U64: DBGCVAR_INIT_NUMBER(pResult, Value.u64); return VINF_SUCCESS; case DBGFREGVALTYPE_U128: DBGCVAR_INIT_NUMBER(pResult, Value.u128.s.Lo); return VINF_SUCCESS; case DBGFREGVALTYPE_R80: #ifdef RT_COMPILER_WITH_80BIT_LONG_DOUBLE DBGCVAR_INIT_NUMBER(pResult, (uint64_t)Value.r80Ex.lrd); #else DBGCVAR_INIT_NUMBER(pResult, (uint64_t)Value.r80Ex.sj64.u63Fraction); #endif return VINF_SUCCESS; case DBGFREGVALTYPE_DTR: DBGCVAR_INIT_NUMBER(pResult, Value.dtr.u64Base); return VINF_SUCCESS; case DBGFREGVALTYPE_INVALID: case DBGFREGVALTYPE_END: case DBGFREGVALTYPE_32BIT_HACK: break; } rc = VERR_INTERNAL_ERROR_5; } return rc; } /** * @callback_method_impl{FNDBGCOPUNARY, Flat address (unary).} */ DECLCALLBACK(int) dbgcOpAddrFlat(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpAddrFlat\n")); DBGCVARTYPE enmType = DBGCVAR_ISHCPOINTER(pArg->enmType) ? DBGCVAR_TYPE_HC_FLAT : DBGCVAR_TYPE_GC_FLAT; return DBGCCmdHlpConvert(&pDbgc->CmdHlp, pArg, enmType, true /*fConvSyms*/, pResult); } /** * @callback_method_impl{FNDBGCOPUNARY, Physical address (unary).} */ DECLCALLBACK(int) dbgcOpAddrPhys(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpAddrPhys\n")); DBGCVARTYPE enmType = DBGCVAR_ISHCPOINTER(pArg->enmType) ? DBGCVAR_TYPE_HC_PHYS : DBGCVAR_TYPE_GC_PHYS; return DBGCCmdHlpConvert(&pDbgc->CmdHlp, pArg, enmType, true /*fConvSyms*/, pResult); } /** * @callback_method_impl{FNDBGCOPUNARY, Physical host address (unary).} */ DECLCALLBACK(int) dbgcOpAddrHostPhys(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpAddrPhys\n")); return DBGCCmdHlpConvert(&pDbgc->CmdHlp, pArg, DBGCVAR_TYPE_HC_PHYS, true /*fConvSyms*/, pResult); } /** * @callback_method_impl{FNDBGCOPUNARY, Host address (unary).} */ DECLCALLBACK(int) dbgcOpAddrHost(PDBGC pDbgc, PCDBGCVAR pArg, DBGCVARCAT enmCat, PDBGCVAR pResult) { LogFlow(("dbgcOpAddrHost\n")); return DBGCCmdHlpConvert(&pDbgc->CmdHlp, pArg, DBGCVAR_TYPE_HC_FLAT, true /*fConvSyms*/, pResult); } /** * @callback_method_impl{FNDBGCOPUNARY, Far address (unary).} */ static DECLCALLBACK(int) dbgcOpAddrFar(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpAddrFar\n")); int rc; switch (pArg1->enmType) { case DBGCVAR_TYPE_SYMBOL: rc = dbgcSymbolGet(pDbgc, pArg1->u.pszString, DBGCVAR_TYPE_NUMBER, pResult); if (RT_FAILURE(rc)) return rc; break; case DBGCVAR_TYPE_NUMBER: *pResult = *pArg1; break; default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } pResult->u.GCFar.sel = (RTSEL)pResult->u.u64Number; /* common code for the two types we support. */ switch (pArg2->enmType) { case DBGCVAR_TYPE_GC_FLAT: pResult->u.GCFar.off = pArg2->u.GCFlat; pResult->enmType = DBGCVAR_TYPE_GC_FAR; break; case DBGCVAR_TYPE_HC_FLAT: pResult->u.pvHCFlat = (void *)(uintptr_t)pArg2->u.GCFlat; pResult->enmType = DBGCVAR_TYPE_GC_FAR; break; case DBGCVAR_TYPE_NUMBER: pResult->u.GCFar.off = (RTGCPTR)pArg2->u.u64Number; pResult->enmType = DBGCVAR_TYPE_GC_FAR; break; case DBGCVAR_TYPE_SYMBOL: { DBGCVAR Var; rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_NUMBER, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.GCFar.off = (RTGCPTR)Var.u.u64Number; pResult->enmType = DBGCVAR_TYPE_GC_FAR; break; } default: return VERR_DBGC_PARSE_INCORRECT_ARG_TYPE; } return VINF_SUCCESS; } /** * Multiplication operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpMult(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpMult\n")); DBGC_GEN_ARIT_POINTER_TO_THE_LEFT(pArg1, pArg2); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, *, false); } /** * Division operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpDiv(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpDiv\n")); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, /, true); } /** * Modulus operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpMod(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpMod\n")); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, %, false); } /** * Addition operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpAdd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpAdd\n")); /* * An addition operation will return (when possible) the left side type in the * expression. We make an omission for numbers, where we'll take the right side * type instead. An expression where only the left hand side is a symbol we'll * use the right hand type to try resolve it. */ if ( pArg1->enmType == DBGCVAR_TYPE_STRING || pArg2->enmType == DBGCVAR_TYPE_STRING) return VERR_DBGC_PARSE_INVALID_OPERATION; /** @todo string contactenation later. */ if ( (pArg1->enmType == DBGCVAR_TYPE_NUMBER && pArg2->enmType != DBGCVAR_TYPE_SYMBOL) || (pArg1->enmType == DBGCVAR_TYPE_SYMBOL && pArg2->enmType != DBGCVAR_TYPE_SYMBOL)) { PCDBGCVAR pTmp = pArg2; pArg2 = pArg1; pArg1 = pTmp; } DBGCVAR Sym1, Sym2; if (pArg1->enmType == DBGCVAR_TYPE_SYMBOL) { int rc = dbgcSymbolGet(pDbgc, pArg1->u.pszString, DBGCVAR_TYPE_ANY, &Sym1); if (RT_FAILURE(rc)) return rc; pArg1 = &Sym1; rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_ANY, &Sym2); if (RT_FAILURE(rc)) return rc; pArg2 = &Sym2; } int rc; DBGCVAR Var; DBGCVAR Var2; switch (pArg1->enmType) { /* * GC Flat */ case DBGCVAR_TYPE_GC_FLAT: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; default: *pResult = *pArg1; rc = dbgcOpAddrFlat(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.GCFlat += pArg2->u.GCFlat; break; } break; /* * GC Far */ case DBGCVAR_TYPE_GC_FAR: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; case DBGCVAR_TYPE_NUMBER: *pResult = *pArg1; pResult->u.GCFar.off += (RTGCPTR)pArg2->u.u64Number; break; default: rc = dbgcOpAddrFlat(pDbgc, pArg1, DBGCVAR_CAT_ANY, pResult); if (RT_FAILURE(rc)) return rc; rc = dbgcOpAddrFlat(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.GCFlat += pArg2->u.GCFlat; break; } break; /* * GC Phys */ case DBGCVAR_TYPE_GC_PHYS: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; default: *pResult = *pArg1; rc = dbgcOpAddrPhys(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; if (Var.enmType != DBGCVAR_TYPE_GC_PHYS) return VERR_DBGC_PARSE_INVALID_OPERATION; pResult->u.GCPhys += Var.u.GCPhys; break; } break; /* * HC Flat */ case DBGCVAR_TYPE_HC_FLAT: *pResult = *pArg1; rc = dbgcOpAddrHost(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var2); if (RT_FAILURE(rc)) return rc; rc = dbgcOpAddrFlat(pDbgc, &Var2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.pvHCFlat = (char *)pResult->u.pvHCFlat + (uintptr_t)Var.u.pvHCFlat; break; /* * HC Phys */ case DBGCVAR_TYPE_HC_PHYS: *pResult = *pArg1; rc = dbgcOpAddrHostPhys(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.HCPhys += Var.u.HCPhys; break; /* * Numbers (see start of function) */ case DBGCVAR_TYPE_NUMBER: *pResult = *pArg1; switch (pArg2->enmType) { case DBGCVAR_TYPE_SYMBOL: rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_NUMBER, &Var); if (RT_FAILURE(rc)) return rc; case DBGCVAR_TYPE_NUMBER: pResult->u.u64Number += pArg2->u.u64Number; break; default: return VERR_DBGC_PARSE_INVALID_OPERATION; } break; default: return VERR_DBGC_PARSE_INVALID_OPERATION; } return VINF_SUCCESS; } /** * Subtraction operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpSub(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpSub\n")); /* * An subtraction operation will return the left side type in the expression. * However, if the left hand side is a number and the right hand a pointer of * some kind we'll convert the left hand side to the same type as the right hand. * Any symbols will be resolved, strings will be rejected. */ DBGCVAR Sym1, Sym2; if ( pArg2->enmType == DBGCVAR_TYPE_SYMBOL && ( pArg1->enmType == DBGCVAR_TYPE_NUMBER || pArg1->enmType == DBGCVAR_TYPE_SYMBOL)) { int rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_ANY, &Sym2); if (RT_FAILURE(rc)) return rc; pArg2 = &Sym2; } if ( pArg1->enmType == DBGCVAR_TYPE_STRING || pArg2->enmType == DBGCVAR_TYPE_STRING) return VERR_DBGC_PARSE_INVALID_OPERATION; if (pArg1->enmType == DBGCVAR_TYPE_SYMBOL) { DBGCVARTYPE enmType; switch (pArg2->enmType) { case DBGCVAR_TYPE_NUMBER: enmType = DBGCVAR_TYPE_ANY; break; case DBGCVAR_TYPE_GC_FLAT: case DBGCVAR_TYPE_GC_PHYS: case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: enmType = pArg2->enmType; break; case DBGCVAR_TYPE_GC_FAR: enmType = DBGCVAR_TYPE_GC_FLAT; break; default: AssertFailedReturn(VERR_DBGC_IPE); } if (enmType != DBGCVAR_TYPE_STRING) { int rc = dbgcSymbolGet(pDbgc, pArg1->u.pszString, DBGCVAR_TYPE_ANY, &Sym1); if (RT_FAILURE(rc)) return rc; pArg1 = &Sym1; } } else if (pArg1->enmType == DBGCVAR_TYPE_NUMBER) { PFNDBGCOPUNARY pOp = NULL; switch (pArg2->enmType) { case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_GC_FLAT: pOp = dbgcOpAddrFlat; break; case DBGCVAR_TYPE_GC_PHYS: pOp = dbgcOpAddrPhys; break; case DBGCVAR_TYPE_HC_FLAT: pOp = dbgcOpAddrHost; break; case DBGCVAR_TYPE_HC_PHYS: pOp = dbgcOpAddrHostPhys; break; case DBGCVAR_TYPE_NUMBER: break; default: AssertFailedReturn(VERR_DBGC_IPE); } if (pOp) { int rc = pOp(pDbgc, pArg1, DBGCVAR_CAT_ANY, &Sym1); if (RT_FAILURE(rc)) return rc; pArg1 = &Sym1; } } /* * Normal processing. */ int rc; DBGCVAR Var; DBGCVAR Var2; switch (pArg1->enmType) { /* * GC Flat */ case DBGCVAR_TYPE_GC_FLAT: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; default: *pResult = *pArg1; rc = dbgcOpAddrFlat(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.GCFlat -= pArg2->u.GCFlat; break; } break; /* * GC Far */ case DBGCVAR_TYPE_GC_FAR: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; case DBGCVAR_TYPE_NUMBER: *pResult = *pArg1; pResult->u.GCFar.off -= (RTGCPTR)pArg2->u.u64Number; break; default: rc = dbgcOpAddrFlat(pDbgc, pArg1, DBGCVAR_CAT_ANY, pResult); if (RT_FAILURE(rc)) return rc; rc = dbgcOpAddrFlat(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.GCFlat -= pArg2->u.GCFlat; break; } break; /* * GC Phys */ case DBGCVAR_TYPE_GC_PHYS: switch (pArg2->enmType) { case DBGCVAR_TYPE_HC_FLAT: case DBGCVAR_TYPE_HC_PHYS: return VERR_DBGC_PARSE_INVALID_OPERATION; default: *pResult = *pArg1; rc = dbgcOpAddrPhys(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; if (Var.enmType != DBGCVAR_TYPE_GC_PHYS) return VERR_DBGC_PARSE_INVALID_OPERATION; pResult->u.GCPhys -= Var.u.GCPhys; break; } break; /* * HC Flat */ case DBGCVAR_TYPE_HC_FLAT: *pResult = *pArg1; rc = dbgcOpAddrHost(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var2); if (RT_FAILURE(rc)) return rc; rc = dbgcOpAddrFlat(pDbgc, &Var2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.pvHCFlat = (char *)pResult->u.pvHCFlat - (uintptr_t)Var.u.pvHCFlat; break; /* * HC Phys */ case DBGCVAR_TYPE_HC_PHYS: *pResult = *pArg1; rc = dbgcOpAddrHostPhys(pDbgc, pArg2, DBGCVAR_CAT_ANY, &Var); if (RT_FAILURE(rc)) return rc; pResult->u.HCPhys -= Var.u.HCPhys; break; /* * Numbers (see start of function) */ case DBGCVAR_TYPE_NUMBER: *pResult = *pArg1; switch (pArg2->enmType) { case DBGCVAR_TYPE_SYMBOL: rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_NUMBER, &Var); if (RT_FAILURE(rc)) return rc; case DBGCVAR_TYPE_NUMBER: pResult->u.u64Number -= pArg2->u.u64Number; break; default: return VERR_DBGC_PARSE_INVALID_OPERATION; } break; default: return VERR_DBGC_PARSE_INVALID_OPERATION; } return VINF_SUCCESS; } /** * Bitwise shift left operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBitwiseShiftLeft(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseShiftLeft\n")); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, <<, false); } /** * Bitwise shift right operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBitwiseShiftRight(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseShiftRight\n")); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, >>, false); } /** * Bitwise and operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBitwiseAnd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseAnd\n")); DBGC_GEN_ARIT_POINTER_TO_THE_LEFT(pArg1, pArg2); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, &, false); } /** * Bitwise exclusive or operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBitwiseXor(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseXor\n")); DBGC_GEN_ARIT_POINTER_TO_THE_LEFT(pArg1, pArg2); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, ^, false); } /** * Bitwise inclusive or operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBitwiseOr(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBitwiseOr\n")); DBGC_GEN_ARIT_POINTER_TO_THE_LEFT(pArg1, pArg2); DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, |, false); } /** * Boolean and operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBooleanAnd(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBooleanAnd\n")); /** @todo force numeric return value? */ DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, &&, false); } /** * Boolean or operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpBooleanOr(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpBooleanOr\n")); /** @todo force numeric return value? */ DBGC_GEN_ARIT_BINARY_OP(pDbgc, pArg1, pArg2, pResult, ||, false); } /** * Range to operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpRangeLength(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpRangeLength\n")); if (pArg1->enmType == DBGCVAR_TYPE_STRING) return VERR_DBGC_PARSE_INVALID_OPERATION; /* * Make result. Symbols needs to be resolved. */ if (pArg1->enmType == DBGCVAR_TYPE_SYMBOL) { int rc = dbgcSymbolGet(pDbgc, pArg1->u.pszString, DBGCVAR_TYPE_ANY, pResult); if (RT_FAILURE(rc)) return rc; } else *pResult = *pArg1; /* * Convert 2nd argument to element count. */ pResult->enmRangeType = DBGCVAR_RANGE_ELEMENTS; switch (pArg2->enmType) { case DBGCVAR_TYPE_NUMBER: pResult->u64Range = pArg2->u.u64Number; break; case DBGCVAR_TYPE_SYMBOL: { int rc = dbgcSymbolGet(pDbgc, pArg2->u.pszString, DBGCVAR_TYPE_NUMBER, pResult); if (RT_FAILURE(rc)) return rc; pResult->u64Range = pArg2->u.u64Number; break; } case DBGCVAR_TYPE_STRING: default: return VERR_DBGC_PARSE_INVALID_OPERATION; } return VINF_SUCCESS; } /** * Range to operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpRangeLengthBytes(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpRangeLengthBytes\n")); int rc = dbgcOpRangeLength(pDbgc, pArg1, pArg2, pResult); if (RT_SUCCESS(rc)) pResult->enmRangeType = DBGCVAR_RANGE_BYTES; return rc; } /** * Range to operator (binary). * * @returns VINF_SUCCESS on success. * @returns VBox evaluation / parsing error code on failure. * The caller does the bitching. * @param pDbgc Debugger console instance data. * @param pArg1 The first argument. * @param pArg2 The 2nd argument. * @param pResult Where to store the result. */ static DECLCALLBACK(int) dbgcOpRangeTo(PDBGC pDbgc, PCDBGCVAR pArg1, PCDBGCVAR pArg2, PDBGCVAR pResult) { LogFlow(("dbgcOpRangeTo\n")); /* * Calc number of bytes between the two args. */ DBGCVAR Diff; int rc = dbgcOpSub(pDbgc, pArg2, pArg1, &Diff); if (RT_FAILURE(rc)) return rc; /* * Use the diff as the range of Arg1. */ *pResult = *pArg1; pResult->enmRangeType = DBGCVAR_RANGE_BYTES; switch (Diff.enmType) { case DBGCVAR_TYPE_GC_FLAT: pResult->u64Range = (RTGCUINTPTR)Diff.u.GCFlat; break; case DBGCVAR_TYPE_GC_PHYS: pResult->u64Range = Diff.u.GCPhys; break; case DBGCVAR_TYPE_HC_FLAT: pResult->u64Range = (uintptr_t)Diff.u.pvHCFlat; break; case DBGCVAR_TYPE_HC_PHYS: pResult->u64Range = Diff.u.HCPhys; break; case DBGCVAR_TYPE_NUMBER: pResult->u64Range = Diff.u.u64Number; break; case DBGCVAR_TYPE_GC_FAR: case DBGCVAR_TYPE_STRING: case DBGCVAR_TYPE_SYMBOL: default: AssertMsgFailed(("Impossible!\n")); return VERR_DBGC_PARSE_INVALID_OPERATION; } return VINF_SUCCESS; } /** * Searches for an operator descriptor which matches the start of * the expression given us. * * @returns Pointer to the operator on success. * @param pDbgc The debug console instance. * @param pszExpr Pointer to the expression string which might start with an operator. * @param fPreferBinary Whether to favour binary or unary operators. * Caller must assert that it's the desired type! Both types will still * be returned, this is only for resolving duplicates. * @param chPrev The previous char. Some operators requires a blank in front of it. */ PCDBGCOP dbgcOperatorLookup(PDBGC pDbgc, const char *pszExpr, bool fPreferBinary, char chPrev) { PCDBGCOP pOp = NULL; for (unsigned iOp = 0; iOp < RT_ELEMENTS(g_aDbgcOps); iOp++) { if ( g_aDbgcOps[iOp].szName[0] == pszExpr[0] && (!g_aDbgcOps[iOp].szName[1] || g_aDbgcOps[iOp].szName[1] == pszExpr[1]) && (!g_aDbgcOps[iOp].szName[2] || g_aDbgcOps[iOp].szName[2] == pszExpr[2])) { /* * Check that we don't mistake it for some other operator which have more chars. */ unsigned j; for (j = iOp + 1; j < RT_ELEMENTS(g_aDbgcOps); j++) if ( g_aDbgcOps[j].cchName > g_aDbgcOps[iOp].cchName && g_aDbgcOps[j].szName[0] == pszExpr[0] && (!g_aDbgcOps[j].szName[1] || g_aDbgcOps[j].szName[1] == pszExpr[1]) && (!g_aDbgcOps[j].szName[2] || g_aDbgcOps[j].szName[2] == pszExpr[2]) ) break; if (j < RT_ELEMENTS(g_aDbgcOps)) continue; /* we'll catch it later. (for theoretical +,++,+++ cases.) */ pOp = &g_aDbgcOps[iOp]; /* * Preferred type? */ if (g_aDbgcOps[iOp].fBinary == fPreferBinary) break; } } if (pOp) Log2(("dbgcOperatorLookup: pOp=%p %s\n", pOp, pOp->szName)); NOREF(pDbgc); NOREF(chPrev); return pOp; }