/* $Id: DevHDA.cpp 76057 2018-12-07 13:30:19Z vboxsync $ */ /** @file * DevHDA.cpp - VBox Intel HD Audio Controller. * * Implemented against the specifications found in "High Definition Audio * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller * HUB 6 (ICH6) Family, Datasheet", document number 301473-002. */ /* * Copyright (C) 2006-2018 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #ifdef DEBUG_bird # define RT_NO_STRICT /* I'm tried of this crap asserting on save and restore of Maverics guests. */ #endif #define LOG_GROUP LOG_GROUP_DEV_HDA #include #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include # include #endif #include "VBoxDD.h" #include "AudioMixBuffer.h" #include "AudioMixer.h" #include "DevHDA.h" #include "DevHDACommon.h" #include "HDACodec.h" #include "HDAStream.h" #include "HDAStreamMap.h" #include "HDAStreamPeriod.h" #include "DrvAudio.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ //#define HDA_AS_PCI_EXPRESS /* Installs a DMA access handler (via PGM callback) to monitor * HDA's DMA operations, that is, writing / reading audio stream data. * * !!! Note: Certain guests are *that* timing sensitive that when enabling !!! * !!! such a handler will mess up audio completely (e.g. Windows 7). !!! */ //#define HDA_USE_DMA_ACCESS_HANDLER #ifdef HDA_USE_DMA_ACCESS_HANDLER # include #endif /* Uses the DMA access handler to read the written DMA audio (output) data. * Only valid if HDA_USE_DMA_ACCESS_HANDLER is set. * * Also see the note / warning for HDA_USE_DMA_ACCESS_HANDLER. */ //# define HDA_USE_DMA_ACCESS_HANDLER_WRITING /* Useful to debug the device' timing. */ //#define HDA_DEBUG_TIMING /* To debug silence coming from the guest in form of audio gaps. * Very crude implementation for now. */ //#define HDA_DEBUG_SILENCE #if defined(VBOX_WITH_HP_HDA) /* HP Pavilion dv4t-1300 */ # define HDA_PCI_VENDOR_ID 0x103c # define HDA_PCI_DEVICE_ID 0x30f7 #elif defined(VBOX_WITH_INTEL_HDA) /* Intel HDA controller */ # define HDA_PCI_VENDOR_ID 0x8086 # define HDA_PCI_DEVICE_ID 0x2668 #elif defined(VBOX_WITH_NVIDIA_HDA) /* nVidia HDA controller */ # define HDA_PCI_VENDOR_ID 0x10de # define HDA_PCI_DEVICE_ID 0x0ac0 #else # error "Please specify your HDA device vendor/device IDs" #endif /** * Acquires the HDA lock. */ #define DEVHDA_LOCK(a_pThis) \ do { \ int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \ AssertRC(rcLock); \ } while (0) /** * Acquires the HDA lock or returns. */ # define DEVHDA_LOCK_RETURN(a_pThis, a_rcBusy) \ do { \ int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, a_rcBusy); \ if (rcLock != VINF_SUCCESS) \ { \ AssertRC(rcLock); \ return rcLock; \ } \ } while (0) /** * Acquires the HDA lock or returns. */ # define DEVHDA_LOCK_RETURN_VOID(a_pThis) \ do { \ int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \ if (rcLock != VINF_SUCCESS) \ { \ AssertRC(rcLock); \ return; \ } \ } while (0) /** * Releases the HDA lock. */ #define DEVHDA_UNLOCK(a_pThis) \ do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0) /** * Acquires the TM lock and HDA lock, returns on failure. */ #define DEVHDA_LOCK_BOTH_RETURN_VOID(a_pThis, a_SD) \ do { \ int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], VERR_IGNORED); \ if (rcLock != VINF_SUCCESS) \ { \ AssertRC(rcLock); \ return; \ } \ rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, VERR_IGNORED); \ if (rcLock != VINF_SUCCESS) \ { \ AssertRC(rcLock); \ TMTimerUnlock((a_pThis)->pTimer[a_SD]); \ return; \ } \ } while (0) /** * Acquires the TM lock and HDA lock, returns on failure. */ #define DEVHDA_LOCK_BOTH_RETURN(a_pThis, a_SD, a_rcBusy) \ do { \ int rcLock = TMTimerLock((a_pThis)->pTimer[a_SD], (a_rcBusy)); \ if (rcLock != VINF_SUCCESS) \ return rcLock; \ rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \ if (rcLock != VINF_SUCCESS) \ { \ AssertRC(rcLock); \ TMTimerUnlock((a_pThis)->pTimer[a_SD]); \ return rcLock; \ } \ } while (0) /** * Releases the HDA lock and TM lock. */ #define DEVHDA_UNLOCK_BOTH(a_pThis, a_SD) \ do { \ PDMCritSectLeave(&(a_pThis)->CritSect); \ TMTimerUnlock((a_pThis)->pTimer[a_SD]); \ } while (0) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Structure defining a (host backend) driver stream. * Each driver has its own instances of audio mixer streams, which then * can go into the same (or even different) audio mixer sinks. */ typedef struct HDADRIVERSTREAM { /** Associated mixer handle. */ R3PTRTYPE(PAUDMIXSTREAM) pMixStrm; } HDADRIVERSTREAM, *PHDADRIVERSTREAM; #ifdef HDA_USE_DMA_ACCESS_HANDLER /** * Struct for keeping an HDA DMA access handler context. */ typedef struct HDADMAACCESSHANDLER { /** Node for storing this handler in our list in HDASTREAMSTATE. */ RTLISTNODER3 Node; /** Pointer to stream to which this access handler is assigned to. */ R3PTRTYPE(PHDASTREAM) pStream; /** Access handler type handle. */ PGMPHYSHANDLERTYPE hAccessHandlerType; /** First address this handler uses. */ RTGCPHYS GCPhysFirst; /** Last address this handler uses. */ RTGCPHYS GCPhysLast; /** Actual BDLE address to handle. */ RTGCPHYS BDLEAddr; /** Actual BDLE buffer size to handle. */ RTGCPHYS BDLESize; /** Whether the access handler has been registered or not. */ bool fRegistered; uint8_t Padding[3]; } HDADMAACCESSHANDLER, *PHDADMAACCESSHANDLER; #endif /** * Struct for maintaining a host backend driver. * This driver must be associated to one, and only one, * HDA codec. The HDA controller does the actual multiplexing * of HDA codec data to various host backend drivers then. * * This HDA device uses a timer in order to synchronize all * read/write accesses across all attached LUNs / backends. */ typedef struct HDADRIVER { /** Node for storing this driver in our device driver list of HDASTATE. */ RTLISTNODER3 Node; /** Pointer to HDA controller (state). */ R3PTRTYPE(PHDASTATE) pHDAState; /** Driver flags. */ PDMAUDIODRVFLAGS fFlags; uint8_t u32Padding0[2]; /** LUN to which this driver has been assigned. */ uint8_t uLUN; /** Whether this driver is in an attached state or not. */ bool fAttached; /** Pointer to attached driver base interface. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** Audio connector interface to the underlying host backend. */ R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector; /** Mixer stream for line input. */ HDADRIVERSTREAM LineIn; #ifdef VBOX_WITH_AUDIO_HDA_MIC_IN /** Mixer stream for mic input. */ HDADRIVERSTREAM MicIn; #endif /** Mixer stream for front output. */ HDADRIVERSTREAM Front; #ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND /** Mixer stream for center/LFE output. */ HDADRIVERSTREAM CenterLFE; /** Mixer stream for rear output. */ HDADRIVERSTREAM Rear; #endif } HDADRIVER; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifndef VBOX_DEVICE_STRUCT_TESTCASE #ifdef IN_RING3 static void hdaR3GCTLReset(PHDASTATE pThis); #endif /** @name Register read/write stubs. * @{ */ static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); /** @} */ /** @name Global register set read/write functions. * @{ */ static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); /** @} */ /** @name {IOB}SDn write functions. * @{ */ static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); /** @} */ /** @name Generic register read/write functions. * @{ */ static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); #ifdef IN_RING3 static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); #endif static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); /** @} */ /** @name HDA device functions. * @{ */ #ifdef IN_RING3 static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg); static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg); # ifdef HDA_USE_DMA_ACCESS_HANDLER static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser); # endif #endif /* IN_RING3 */ /** @} */ /** @name HDA mixer functions. * @{ */ #ifdef IN_RING3 static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv); #endif /** @} */ /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** No register description (RD) flags defined. */ #define HDA_RD_FLAG_NONE 0 /** Writes to SD are allowed while RUN bit is set. */ #define HDA_RD_FLAG_SD_WRITE_RUN RT_BIT(0) /** Emits a single audio stream register set (e.g. OSD0) at a specified offset. */ #define HDA_REG_MAP_STRM(offset, name) \ /* offset size read mask write mask flags read callback write callback index + abbrev description */ \ /* ------- ------- ---------- ---------- ------------------------- -------------- ----------------- ----------------------------- ----------- */ \ /* Offset 0x80 (SD0) */ \ { offset, 0x00003, 0x00FF001F, 0x00F0001F, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU24 , hdaRegWriteSDCTL , HDA_REG_IDX_STRM(name, CTL) , #name " Stream Descriptor Control" }, \ /* Offset 0x83 (SD0) */ \ { offset + 0x3, 0x00001, 0x0000003C, 0x0000001C, HDA_RD_FLAG_SD_WRITE_RUN, hdaRegReadU8 , hdaRegWriteSDSTS , HDA_REG_IDX_STRM(name, STS) , #name " Status" }, \ /* Offset 0x84 (SD0) */ \ { offset + 0x4, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadLPIB, hdaRegWriteU32 , HDA_REG_IDX_STRM(name, LPIB) , #name " Link Position In Buffer" }, \ /* Offset 0x88 (SD0) */ \ { offset + 0x8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDCBL , HDA_REG_IDX_STRM(name, CBL) , #name " Cyclic Buffer Length" }, \ /* Offset 0x8C (SD0) */ \ { offset + 0xC, 0x00002, 0x0000FFFF, 0x0000FFFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDLVI , HDA_REG_IDX_STRM(name, LVI) , #name " Last Valid Index" }, \ /* Reserved: FIFO Watermark. ** @todo Document this! */ \ { offset + 0xE, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOW, HDA_REG_IDX_STRM(name, FIFOW), #name " FIFO Watermark" }, \ /* Offset 0x90 (SD0) */ \ { offset + 0x10, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFIFOS, HDA_REG_IDX_STRM(name, FIFOS), #name " FIFO Size" }, \ /* Offset 0x92 (SD0) */ \ { offset + 0x12, 0x00002, 0x00007F7F, 0x00007F7F, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteSDFMT , HDA_REG_IDX_STRM(name, FMT) , #name " Stream Format" }, \ /* Reserved: 0x94 - 0x98. */ \ /* Offset 0x98 (SD0) */ \ { offset + 0x18, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPL , HDA_REG_IDX_STRM(name, BDPL) , #name " Buffer Descriptor List Pointer-Lower Base Address" }, \ /* Offset 0x9C (SD0) */ \ { offset + 0x1C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteSDBDPU , HDA_REG_IDX_STRM(name, BDPU) , #name " Buffer Descriptor List Pointer-Upper Base Address" } /** Defines a single audio stream register set (e.g. OSD0). */ #define HDA_REG_MAP_DEF_STREAM(index, name) \ HDA_REG_MAP_STRM(HDA_REG_DESC_SD0_BASE + (index * 32 /* 0x20 */), name) /* See 302349 p 6.2. */ const HDAREGDESC g_aHdaRegMap[HDA_NUM_REGS] = { /* offset size read mask write mask flags read callback write callback index + abbrev */ /*------- ------- ---------- ---------- ----------------- ---------------- ------------------- ------------------------ */ { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(GCAP) }, /* Global Capabilities */ { 0x00002, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMIN) }, /* Minor Version */ { 0x00003, 0x00001, 0x000000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(VMAJ) }, /* Major Version */ { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTPAY) }, /* Output Payload Capabilities */ { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INPAY) }, /* Input Payload Capabilities */ { 0x00008, 0x00004, 0x00000103, 0x00000103, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteGCTL , HDA_REG_IDX(GCTL) }, /* Global Control */ { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(WAKEEN) }, /* Wake Enable */ { 0x0000e, 0x00002, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteSTATESTS, HDA_REG_IDX(STATESTS) }, /* State Change Status */ { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadUnimpl, hdaRegWriteUnimpl , HDA_REG_IDX(GSTS) }, /* Global Status */ { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteU16 , HDA_REG_IDX(OUTSTRMPAY) }, /* Output Stream Payload Capability */ { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteUnimpl , HDA_REG_IDX(INSTRMPAY) }, /* Input Stream Payload Capability */ { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(INTCTL) }, /* Interrupt Control */ { 0x00024, 0x00004, 0xC00000FF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(INTSTS) }, /* Interrupt Status */ { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadWALCLK, hdaRegWriteUnimpl , HDA_REG_IDX_NOMEM(WALCLK) }, /* Wall Clock Counter */ { 0x00034, 0x00004, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(SSYNC) }, /* Stream Synchronization */ { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBLBASE) }, /* CORB Lower Base Address */ { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(CORBUBASE) }, /* CORB Upper Base Address */ { 0x00048, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBWP , HDA_REG_IDX(CORBWP) }, /* CORB Write Pointer */ { 0x0004A, 0x00002, 0x000080FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteCORBRP , HDA_REG_IDX(CORBRP) }, /* CORB Read Pointer */ { 0x0004C, 0x00001, 0x00000003, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBCTL , HDA_REG_IDX(CORBCTL) }, /* CORB Control */ { 0x0004D, 0x00001, 0x00000001, 0x00000001, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSTS , HDA_REG_IDX(CORBSTS) }, /* CORB Status */ { 0x0004E, 0x00001, 0x000000F3, 0x00000003, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteCORBSIZE, HDA_REG_IDX(CORBSIZE) }, /* CORB Size */ { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBLBASE) }, /* RIRB Lower Base Address */ { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(RIRBUBASE) }, /* RIRB Upper Base Address */ { 0x00058, 0x00002, 0x000000FF, 0x00008000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBWP , HDA_REG_IDX(RIRBWP) }, /* RIRB Write Pointer */ { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, HDA_RD_FLAG_NONE, hdaRegReadU16 , hdaRegWriteRINTCNT , HDA_REG_IDX(RINTCNT) }, /* Response Interrupt Count */ { 0x0005C, 0x00001, 0x00000007, 0x00000007, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteU8 , HDA_REG_IDX(RIRBCTL) }, /* RIRB Control */ { 0x0005D, 0x00001, 0x00000005, 0x00000005, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteRIRBSTS , HDA_REG_IDX(RIRBSTS) }, /* RIRB Status */ { 0x0005E, 0x00001, 0x000000F3, 0x00000000, HDA_RD_FLAG_NONE, hdaRegReadU8 , hdaRegWriteUnimpl , HDA_REG_IDX(RIRBSIZE) }, /* RIRB Size */ { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteU32 , HDA_REG_IDX(IC) }, /* Immediate Command */ { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteUnimpl , HDA_REG_IDX(IR) }, /* Immediate Response */ { 0x00068, 0x00002, 0x00000002, 0x00000002, HDA_RD_FLAG_NONE, hdaRegReadIRS , hdaRegWriteIRS , HDA_REG_IDX(IRS) }, /* Immediate Command Status */ { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPLBASE) }, /* DMA Position Lower Base */ { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, HDA_RD_FLAG_NONE, hdaRegReadU32 , hdaRegWriteBase , HDA_REG_IDX(DPUBASE) }, /* DMA Position Upper Base */ /* 4 Serial Data In (SDI). */ HDA_REG_MAP_DEF_STREAM(0, SD0), HDA_REG_MAP_DEF_STREAM(1, SD1), HDA_REG_MAP_DEF_STREAM(2, SD2), HDA_REG_MAP_DEF_STREAM(3, SD3), /* 4 Serial Data Out (SDO). */ HDA_REG_MAP_DEF_STREAM(4, SD4), HDA_REG_MAP_DEF_STREAM(5, SD5), HDA_REG_MAP_DEF_STREAM(6, SD6), HDA_REG_MAP_DEF_STREAM(7, SD7) }; const HDAREGALIAS g_aHdaRegAliases[] = { { 0x2084, HDA_REG_SD0LPIB }, { 0x20a4, HDA_REG_SD1LPIB }, { 0x20c4, HDA_REG_SD2LPIB }, { 0x20e4, HDA_REG_SD3LPIB }, { 0x2104, HDA_REG_SD4LPIB }, { 0x2124, HDA_REG_SD5LPIB }, { 0x2144, HDA_REG_SD6LPIB }, { 0x2164, HDA_REG_SD7LPIB } }; #ifdef IN_RING3 /** HDABDLEDESC field descriptors for the v7 saved state. */ static SSMFIELD const g_aSSMBDLEDescFields7[] = { SSMFIELD_ENTRY(HDABDLEDESC, u64BufAddr), SSMFIELD_ENTRY(HDABDLEDESC, u32BufSize), SSMFIELD_ENTRY(HDABDLEDESC, fFlags), SSMFIELD_ENTRY_TERM() }; /** HDABDLESTATE field descriptors for the v6+ saved state. */ static SSMFIELD const g_aSSMBDLEStateFields6[] = { SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex), SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW), SSMFIELD_ENTRY_OLD(FIFO, HDA_FIFO_MAX), /* Deprecated; now is handled in the stream's circular buffer. */ SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff), SSMFIELD_ENTRY_TERM() }; /** HDABDLESTATE field descriptors for the v7 saved state. */ static SSMFIELD const g_aSSMBDLEStateFields7[] = { SSMFIELD_ENTRY(HDABDLESTATE, u32BDLIndex), SSMFIELD_ENTRY(HDABDLESTATE, cbBelowFIFOW), SSMFIELD_ENTRY(HDABDLESTATE, u32BufOff), SSMFIELD_ENTRY_TERM() }; /** HDASTREAMSTATE field descriptors for the v6 saved state. */ static SSMFIELD const g_aSSMStreamStateFields6[] = { SSMFIELD_ENTRY_OLD(cBDLE, sizeof(uint16_t)), /* Deprecated. */ SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE), SSMFIELD_ENTRY_OLD(fStop, 1), /* Deprecated; see SSMR3PutBool(). */ SSMFIELD_ENTRY_OLD(fRunning, 1), /* Deprecated; using the HDA_SDCTL_RUN bit is sufficient. */ SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset), SSMFIELD_ENTRY_TERM() }; /** HDASTREAMSTATE field descriptors for the v7 saved state. */ static SSMFIELD const g_aSSMStreamStateFields7[] = { SSMFIELD_ENTRY(HDASTREAMSTATE, uCurBDLE), SSMFIELD_ENTRY(HDASTREAMSTATE, fInReset), SSMFIELD_ENTRY(HDASTREAMSTATE, tsTransferNext), SSMFIELD_ENTRY_TERM() }; /** HDASTREAMPERIOD field descriptors for the v7 saved state. */ static SSMFIELD const g_aSSMStreamPeriodFields7[] = { SSMFIELD_ENTRY(HDASTREAMPERIOD, u64StartWalClk), SSMFIELD_ENTRY(HDASTREAMPERIOD, u64ElapsedWalClk), SSMFIELD_ENTRY(HDASTREAMPERIOD, framesTransferred), SSMFIELD_ENTRY(HDASTREAMPERIOD, cIntPending), SSMFIELD_ENTRY_TERM() }; /** * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff. */ static uint32_t const g_afMasks[5] = { UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff) }; #endif /* IN_RING3 */ /** * Retrieves the number of bytes of a FIFOW register. * * @return Number of bytes of a given FIFOW register. */ DECLINLINE(uint8_t) hdaSDFIFOWToBytes(uint32_t u32RegFIFOW) { uint32_t cb; switch (u32RegFIFOW) { case HDA_SDFIFOW_8B: cb = 8; break; case HDA_SDFIFOW_16B: cb = 16; break; case HDA_SDFIFOW_32B: cb = 32; break; default: cb = 0; break; } Assert(RT_IS_POWER_OF_TWO(cb)); return cb; } #ifdef IN_RING3 /** * Reschedules pending interrupts for all audio streams which have complete * audio periods but did not have the chance to issue their (pending) interrupts yet. * * @param pThis The HDA device state. */ static void hdaR3ReschedulePendingInterrupts(PHDASTATE pThis) { bool fInterrupt = false; for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i) { PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i); if (!pStream) continue; if ( hdaR3StreamPeriodIsComplete (&pStream->State.Period) && hdaR3StreamPeriodNeedsInterrupt(&pStream->State.Period) && hdaR3WalClkSet(pThis, hdaR3StreamPeriodGetAbsElapsedWalClk(&pStream->State.Period), false /* fForce */)) { fInterrupt = true; break; } } LogFunc(("fInterrupt=%RTbool\n", fInterrupt)); # ifndef LOG_ENABLED hdaProcessInterrupt(pThis); # else hdaProcessInterrupt(pThis, __FUNCTION__); # endif } #endif /* IN_RING3 */ /** * Looks up a register at the exact offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param offReg The register offset. */ static int hdaRegLookup(uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) if (offReg == g_aHdaRegAliases[i].offReg) return g_aHdaRegAliases[i].idxAlias; Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg > g_aHdaRegMap[idxMiddle].offset) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } #ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(g_aHdaRegMap[i].offset != offReg); #endif return -1; } #ifdef IN_RING3 /** * Looks up a register covering the offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param offReg The register offset. */ static int hdaR3RegLookupWithin(uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) { uint32_t off = offReg - g_aHdaRegAliases[i].offReg; if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size) return g_aHdaRegAliases[i].idxAlias; } Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the register map. */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } # ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size); # endif return -1; } /** * Synchronizes the CORB / RIRB buffers between internal <-> device state. * * @returns IPRT status code. * @param pThis HDA state. * @param fLocal Specify true to synchronize HDA state's CORB buffer with the device state, * or false to synchronize the device state's RIRB buffer with the HDA state. * * @todo r=andy Break this up into two functions? */ static int hdaR3CmdSync(PHDASTATE pThis, bool fLocal) { int rc = VINF_SUCCESS; if (fLocal) { if (pThis->u64CORBBase) { AssertPtr(pThis->pu32CorbBuf); Assert(pThis->cbCorbBuf); /** @todo r=bird: An explanation is required why PDMDevHlpPhysRead is used with * the CORB and PDMDevHlpPCIPhysWrite with RIRB below. There are * similar unexplained inconsistencies in DevHDACommon.cpp. */ rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf); Log(("hdaR3CmdSync/CORB: read %RGp LB %#x (%Rrc)\n", pThis->u64CORBBase, pThis->cbCorbBuf, rc)); AssertRCReturn(rc, rc); } } else { if (pThis->u64RIRBBase) { AssertPtr(pThis->pu64RirbBuf); Assert(pThis->cbRirbBuf); rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf); Log(("hdaR3CmdSync/RIRB: phys read %RGp LB %#x (%Rrc)\n", pThis->u64RIRBBase, pThis->pu64RirbBuf, rc)); AssertRCReturn(rc, rc); } } # ifdef DEBUG_CMD_BUFFER LogFunc(("fLocal=%RTbool\n", fLocal)); uint8_t i = 0; do { LogFunc(("CORB%02x: ", i)); uint8_t j = 0; do { const char *pszPrefix; if ((i + j) == HDA_REG(pThis, CORBRP)) pszPrefix = "[R]"; else if ((i + j) == HDA_REG(pThis, CORBWP)) pszPrefix = "[W]"; else pszPrefix = " "; /* three spaces */ Log((" %s%08x", pszPrefix, pThis->pu32CorbBuf[i + j])); j++; } while (j < 8); Log(("\n")); i += 8; } while(i != 0); do { LogFunc(("RIRB%02x: ", i)); uint8_t j = 0; do { const char *prefix; if ((i + j) == HDA_REG(pThis, RIRBWP)) prefix = "[W]"; else prefix = " "; Log((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j])); } while (++j < 8); Log(("\n")); i += 8; } while (i != 0); # endif return rc; } /** * Processes the next CORB buffer command in the queue. * * This will invoke the HDA codec verb dispatcher. * * @returns IPRT status code. * @param pThis HDA state. */ static int hdaR3CORBCmdProcess(PHDASTATE pThis) { uint8_t corbRp = HDA_REG(pThis, CORBRP); uint8_t corbWp = HDA_REG(pThis, CORBWP); uint8_t rirbWp = HDA_REG(pThis, RIRBWP); Log3Func(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", corbRp, corbWp, rirbWp)); if (!(HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA)) { LogFunc(("CORB DMA not active, skipping\n")); return VINF_SUCCESS; } Assert(pThis->cbCorbBuf); int rc = hdaR3CmdSync(pThis, true /* Sync from guest */); AssertRCReturn(rc, rc); uint16_t cIntCnt = HDA_REG(pThis, RINTCNT) & 0xff; if (!cIntCnt) /* 0 means 256 interrupts. */ cIntCnt = HDA_MAX_RINTCNT; Log3Func(("START CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n", corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt)); while (corbRp != corbWp) { corbRp = (corbRp + 1) % (pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE); /* Advance +1 as the first command(s) are at CORBWP + 1. */ uint32_t uCmd = pThis->pu32CorbBuf[corbRp]; uint64_t uResp = 0; rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* Codec index */), &uResp); if (RT_FAILURE(rc)) LogFunc(("Codec lookup failed with rc=%Rrc\n", rc)); Log3Func(("Codec verb %08x -> response %016lx\n", uCmd, uResp)); if ( (uResp & CODEC_RESPONSE_UNSOLICITED) && !(HDA_REG(pThis, GCTL) & HDA_GCTL_UNSOL)) { LogFunc(("Unexpected unsolicited response.\n")); HDA_REG(pThis, CORBRP) = corbRp; /** @todo r=andy No CORB/RIRB syncing to guest required in that case? */ return rc; } rirbWp = (rirbWp + 1) % HDA_RIRB_SIZE; pThis->pu64RirbBuf[rirbWp] = uResp; pThis->u16RespIntCnt++; bool fSendInterrupt = false; if (pThis->u16RespIntCnt == cIntCnt) /* Response interrupt count reached? */ { pThis->u16RespIntCnt = 0; /* Reset internal interrupt response counter. */ Log3Func(("Response interrupt count reached (%RU16)\n", pThis->u16RespIntCnt)); fSendInterrupt = true; } else if (corbRp == corbWp) /* Did we reach the end of the current command buffer? */ { Log3Func(("Command buffer empty\n")); fSendInterrupt = true; } if (fSendInterrupt) { if (HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RINTCTL) /* Response Interrupt Control (RINTCTL) enabled? */ { HDA_REG(pThis, RIRBSTS) |= HDA_RIRBSTS_RINTFL; # ifndef LOG_ENABLED rc = hdaProcessInterrupt(pThis); # else rc = hdaProcessInterrupt(pThis, __FUNCTION__); # endif } } } Log3Func(("END CORB(RP:%x, WP:%x) RIRBWP:%x, RINTCNT:%RU8/%RU8\n", corbRp, corbWp, rirbWp, pThis->u16RespIntCnt, cIntCnt)); HDA_REG(pThis, CORBRP) = corbRp; HDA_REG(pThis, RIRBWP) = rirbWp; rc = hdaR3CmdSync(pThis, false /* Sync to guest */); AssertRCReturn(rc, rc); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); return rc; } #endif /* IN_RING3 */ /* Register access handlers. */ static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); *pu32Value = 0; return VINF_SUCCESS; } static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); return VINF_SUCCESS; } /* U8 */ static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffffff00) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U16 */ static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffff0000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U24 */ static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } #ifdef IN_RING3 static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xff000000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } #endif /* U32 */ static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ); *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable; DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable) | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF_PV(iReg); #ifdef IN_RING3 DEVHDA_LOCK(pThis); #else if (!(u32Value & HDA_GCTL_CRST)) return VINF_IOM_R3_MMIO_WRITE; DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); #endif if (u32Value & HDA_GCTL_CRST) { /* Set the CRST bit to indicate that we're leaving reset mode. */ HDA_REG(pThis, GCTL) |= HDA_GCTL_CRST; LogFunc(("Guest leaving HDA reset\n")); } else { #ifdef IN_RING3 /* Enter reset state. */ LogFunc(("Guest entering HDA reset with DMA(RIRB:%s, CORB:%s)\n", HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA ? "on" : "off", HDA_REG(pThis, RIRBCTL) & HDA_RIRBCTL_RDMAEN ? "on" : "off")); /* Clear the CRST bit to indicate that we're in reset state. */ HDA_REG(pThis, GCTL) &= ~HDA_GCTL_CRST; hdaR3GCTLReset(pThis); #else AssertFailedReturnStmt(DEVHDA_UNLOCK(pThis), VINF_IOM_R3_MMIO_WRITE); #endif } if (u32Value & HDA_GCTL_FCNTRL) { /* Flush: GSTS:1 set, see 6.2.6. */ HDA_REG(pThis, GSTS) |= HDA_GSTS_FSTS; /* Set the flush status. */ /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6). */ } DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); uint32_t v = HDA_REG_IND(pThis, iReg); uint32_t nv = u32Value & HDA_STATESTS_SCSF_MASK; HDA_REG(pThis, STATESTS) &= ~(v & nv); /* Write of 1 clears corresponding bit. */ DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegReadLPIB(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ); const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LPIB, iReg); uint32_t u32LPIB = HDA_STREAM_REG(pThis, LPIB, uSD); #ifdef LOG_ENABLED const uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, uSD); LogFlowFunc(("[SD%RU8] LPIB=%RU32, CBL=%RU32\n", uSD, u32LPIB, u32CBL)); #endif *pu32Value = u32LPIB; DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } #ifdef IN_RING3 /** * Returns the current maximum value the wall clock counter can be set to. * This maximum value depends on all currently handled HDA streams and their own current timing. * * @return Current maximum value the wall clock counter can be set to. * @param pThis HDA state. * * @remark Does not actually set the wall clock counter. */ static uint64_t hdaR3WalClkGetMax(PHDASTATE pThis) { const uint64_t u64WalClkCur = ASMAtomicReadU64(&pThis->u64WalClk); const uint64_t u64FrontAbsWalClk = pThis->SinkFront.pStream ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkFront.pStream->State.Period) : 0; # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND # error "Implement me!" # endif const uint64_t u64LineInAbsWalClk = pThis->SinkLineIn.pStream ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkLineIn.pStream->State.Period) : 0; # ifdef VBOX_WITH_HDA_MIC_IN const uint64_t u64MicInAbsWalClk = pThis->SinkMicIn.pStream ? hdaR3StreamPeriodGetAbsElapsedWalClk(&pThis->SinkMicIn.pStream->State.Period) : 0; # endif uint64_t u64WalClkNew = RT_MAX(u64WalClkCur, u64FrontAbsWalClk); # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND # error "Implement me!" # endif u64WalClkNew = RT_MAX(u64WalClkNew, u64LineInAbsWalClk); # ifdef VBOX_WITH_HDA_MIC_IN u64WalClkNew = RT_MAX(u64WalClkNew, u64MicInAbsWalClk); # endif Log3Func(("%RU64 -> Front=%RU64, LineIn=%RU64 -> %RU64\n", u64WalClkCur, u64FrontAbsWalClk, u64LineInAbsWalClk, u64WalClkNew)); return u64WalClkNew; } #endif /* IN_RING3 */ static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { #ifdef IN_RING3 RT_NOREF(iReg); DEVHDA_LOCK(pThis); *pu32Value = RT_LO_U32(ASMAtomicReadU64(&pThis->u64WalClk)); Log3Func(("%RU32 (max @ %RU64)\n",*pu32Value, hdaR3WalClkGetMax(pThis))); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; #else RT_NOREF(pThis, iReg, pu32Value); return VINF_IOM_R3_MMIO_READ; #endif } static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); if (u32Value & HDA_CORBRP_RST) { /* Do a CORB reset. */ if (pThis->cbCorbBuf) { #ifdef IN_RING3 Assert(pThis->pu32CorbBuf); RT_BZERO((void *)pThis->pu32CorbBuf, pThis->cbCorbBuf); #else DEVHDA_UNLOCK(pThis); return VINF_IOM_R3_MMIO_WRITE; #endif } LogRel2(("HDA: CORB reset\n")); HDA_REG(pThis, CORBRP) = HDA_CORBRP_RST; /* Clears the pointer. */ } else HDA_REG(pThis, CORBRP) &= ~HDA_CORBRP_RST; /* Only CORBRP_RST bit is writable. */ DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); int rc = hdaRegWriteU8(pThis, iReg, u32Value); AssertRC(rc); if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Start DMA engine. */ { rc = hdaR3CORBCmdProcess(pThis); } else LogFunc(("CORB DMA not running, skipping\n")); DEVHDA_UNLOCK(pThis); return rc; #else RT_NOREF(pThis, iReg, u32Value); return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteCORBSIZE(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 RT_NOREF(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */ { LogFunc(("CORB DMA is (still) running, skipping\n")); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } u32Value = (u32Value & HDA_CORBSIZE_SZ); uint16_t cEntries = HDA_CORB_SIZE; /* Set default. */ switch (u32Value) { case 0: /* 8 byte; 2 entries. */ cEntries = 2; break; case 1: /* 64 byte; 16 entries. */ cEntries = 16; break; case 2: /* 1 KB; 256 entries. */ /* Use default size. */ break; default: LogRel(("HDA: Guest tried to set an invalid CORB size (0x%x), keeping default\n", u32Value)); u32Value = 2; /* Use default size. */ break; } uint32_t cbCorbBuf = cEntries * HDA_CORB_ELEMENT_SIZE; Assert(cbCorbBuf <= HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Paranoia. */ if (cbCorbBuf != pThis->cbCorbBuf) { RT_BZERO(pThis->pu32CorbBuf, HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE); /* Clear CORB when setting a new size. */ pThis->cbCorbBuf = cbCorbBuf; } LogFunc(("CORB buffer size is now %RU32 bytes (%u entries)\n", pThis->cbCorbBuf, pThis->cbCorbBuf / HDA_CORB_ELEMENT_SIZE)); HDA_REG(pThis, CORBSIZE) = u32Value; DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; #else RT_NOREF(pThis, iReg, u32Value); return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF_PV(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); uint32_t v = HDA_REG(pThis, CORBSTS); HDA_REG(pThis, CORBSTS) &= ~(v & u32Value); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); int rc = hdaRegWriteU16(pThis, iReg, u32Value); AssertRCSuccess(rc); rc = hdaR3CORBCmdProcess(pThis); DEVHDA_UNLOCK(pThis); return rc; #else RT_NOREF(pThis, iReg, u32Value); return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteSDCBL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); int rc = hdaRegWriteU32(pThis, iReg, u32Value); AssertRCSuccess(rc); DEVHDA_UNLOCK(pThis); return rc; } static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 /* Get the stream descriptor. */ const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, CTL, iReg); DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE); /* * Some guests write too much (that is, 32-bit with the top 8 bit being junk) * instead of 24-bit required for SDCTL. So just mask this here to be safe. */ u32Value &= 0x00ffffff; const bool fRun = RT_BOOL(u32Value & HDA_SDCTL_RUN); const bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_RUN); const bool fReset = RT_BOOL(u32Value & HDA_SDCTL_SRST); const bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_SDCTL_SRST); /*LogFunc(("[SD%RU8] fRun=%RTbool, fInRun=%RTbool, fReset=%RTbool, fInReset=%RTbool, %R[sdctl]\n", uSD, fRun, fInRun, fReset, fInReset, u32Value));*/ /* * Extract the stream tag the guest wants to use for this specific * stream descriptor (SDn). This only can happen if the stream is in a non-running * state, so we're doing the lookup and assignment here. * * So depending on the guest OS, SD3 can use stream tag 4, for example. */ uint8_t uTag = (u32Value >> HDA_SDCTL_NUM_SHIFT) & HDA_SDCTL_NUM_MASK; if (uTag > HDA_MAX_TAGS) { LogFunc(("[SD%RU8] Warning: Invalid stream tag %RU8 specified!\n", uSD, uTag)); int rc = hdaRegWriteU24(pThis, iReg, u32Value); DEVHDA_UNLOCK_BOTH(pThis, uSD); return rc; } PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD); AssertPtr(pStream); if (fInReset) { Assert(!fReset); Assert(!fInRun && !fRun); /* Exit reset state. */ ASMAtomicXchgBool(&pStream->State.fInReset, false); /* Report that we're done resetting this stream by clearing SRST. */ HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_SRST; LogFunc(("[SD%RU8] Reset exit\n", uSD)); } else if (fReset) { /* ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */ Assert(!fInRun && !fRun); LogFunc(("[SD%RU8] Reset enter\n", uSD)); hdaR3StreamLock(pStream); # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO hdaR3StreamAsyncIOLock(pStream); # endif /* Make sure to remove the run bit before doing the actual stream reset. */ HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN; hdaR3StreamReset(pThis, pStream, pStream->u8SD); # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO hdaR3StreamAsyncIOUnlock(pStream); # endif hdaR3StreamUnlock(pStream); } else { /* * We enter here to change DMA states only. */ if (fInRun != fRun) { Assert(!fReset && !fInReset); LogFunc(("[SD%RU8] State changed (fRun=%RTbool)\n", uSD, fRun)); hdaR3StreamLock(pStream); int rc2; # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO if (fRun) rc2 = hdaR3StreamAsyncIOCreate(pStream); hdaR3StreamAsyncIOLock(pStream); # endif if (fRun) { if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT) { const uint8_t uStripeCtl = ((u32Value >> HDA_SDCTL_STRIPE_SHIFT) & HDA_SDCTL_STRIPE_MASK) + 1; LogFunc(("[SD%RU8] Using %RU8 SDOs (stripe control)\n", uSD, uStripeCtl)); if (uStripeCtl > 1) LogRel2(("HDA: Warning: Striping output over more than one SDO for stream #%RU8 currently is not implemented " \ "(%RU8 SDOs requested)\n", uSD, uStripeCtl)); } PHDATAG pTag = &pThis->aTags[uTag]; AssertPtr(pTag); LogFunc(("[SD%RU8] Using stream tag=%RU8\n", uSD, uTag)); /* Assign new values. */ pTag->uTag = uTag; pTag->pStream = hdaGetStreamFromSD(pThis, uSD); # ifdef LOG_ENABLED PDMAUDIOPCMPROPS Props; rc2 = hdaR3SDFMTToPCMProps(HDA_STREAM_REG(pThis, FMT, pStream->u8SD), &Props); AssertRC(rc2); LogFunc(("[SD%RU8] %RU32Hz, %RU8bit, %RU8 channel(s)\n", pStream->u8SD, Props.uHz, Props.cBytes * 8 /* Bit */, Props.cChannels)); # endif /* (Re-)initialize the stream with current values. */ rc2 = hdaR3StreamInit(pStream, pStream->u8SD); if ( RT_SUCCESS(rc2) /* Any vital stream change occurred so that we need to (re-)add the stream to our setup? * Otherwise just skip this, as this costs a lot of performance. */ && rc2 != VINF_NO_CHANGE) { /* Remove the old stream from the device setup. */ rc2 = hdaR3RemoveStream(pThis, &pStream->State.Cfg); AssertRC(rc2); /* Add the stream to the device setup. */ rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg); AssertRC(rc2); } } /* Enable/disable the stream. */ rc2 = hdaR3StreamEnable(pStream, fRun /* fEnable */); AssertRC(rc2); if (fRun) { /* Keep track of running streams. */ pThis->cStreamsActive++; /* (Re-)init the stream's period. */ hdaR3StreamPeriodInit(&pStream->State.Period, pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg); /* Begin a new period for this stream. */ rc2 = hdaR3StreamPeriodBegin(&pStream->State.Period, hdaWalClkGetCurrent(pThis)/* Use current wall clock time */); AssertRC(rc2); rc2 = hdaR3TimerSet(pThis, pStream, TMTimerGet(pThis->pTimer[pStream->u8SD]) + pStream->State.cTransferTicks, false /* fForce */); AssertRC(rc2); } else { /* Keep track of running streams. */ Assert(pThis->cStreamsActive); if (pThis->cStreamsActive) pThis->cStreamsActive--; /* Make sure to (re-)schedule outstanding (delayed) interrupts. */ hdaR3ReschedulePendingInterrupts(pThis); /* Reset the period. */ hdaR3StreamPeriodReset(&pStream->State.Period); } # ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO hdaR3StreamAsyncIOUnlock(pStream); # endif /* Make sure to leave the lock before (eventually) starting the timer. */ hdaR3StreamUnlock(pStream); } } int rc2 = hdaRegWriteU24(pThis, iReg, u32Value); AssertRC(rc2); DEVHDA_UNLOCK_BOTH(pThis, uSD); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ #else /* !IN_RING3 */ RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); return VINF_IOM_R3_MMIO_WRITE; #endif /* IN_RING3 */ } static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 const uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, STS, iReg); DEVHDA_LOCK_BOTH_RETURN(pThis, uSD, VINF_IOM_R3_MMIO_WRITE); PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD); if (!pStream) { AssertMsgFailed(("[SD%RU8] Warning: Writing SDSTS on non-attached stream (0x%x)\n", HDA_SD_NUM_FROM_REG(pThis, STS, iReg), u32Value)); int rc = hdaRegWriteU16(pThis, iReg, u32Value); DEVHDA_UNLOCK_BOTH(pThis, uSD); return rc; } hdaR3StreamLock(pStream); uint32_t v = HDA_REG_IND(pThis, iReg); /* Clear (zero) FIFOE, DESE and BCIS bits when writing 1 to it (6.2.33). */ HDA_REG_IND(pThis, iReg) &= ~(u32Value & v); /* Some guests tend to write SDnSTS even if the stream is not running. * So make sure to check if the RUN bit is set first. */ const bool fRunning = pStream->State.fRunning; Log3Func(("[SD%RU8] fRunning=%RTbool %R[sdsts]\n", pStream->u8SD, fRunning, v)); PHDASTREAMPERIOD pPeriod = &pStream->State.Period; if (hdaR3StreamPeriodLock(pPeriod)) { const bool fNeedsInterrupt = hdaR3StreamPeriodNeedsInterrupt(pPeriod); if (fNeedsInterrupt) hdaR3StreamPeriodReleaseInterrupt(pPeriod); if (hdaR3StreamPeriodIsComplete(pPeriod)) { /* Make sure to try to update the WALCLK register if a period is complete. * Use the maximum WALCLK value all (active) streams agree to. */ const uint64_t uWalClkMax = hdaR3WalClkGetMax(pThis); if (uWalClkMax > hdaWalClkGetCurrent(pThis)) hdaR3WalClkSet(pThis, uWalClkMax, false /* fForce */); hdaR3StreamPeriodEnd(pPeriod); if (fRunning) hdaR3StreamPeriodBegin(pPeriod, hdaWalClkGetCurrent(pThis) /* Use current wall clock time */); } hdaR3StreamPeriodUnlock(pPeriod); /* Unlock before processing interrupt. */ } # ifndef LOG_ENABLED hdaProcessInterrupt(pThis); # else hdaProcessInterrupt(pThis, __FUNCTION__); # endif const uint64_t tsNow = TMTimerGet(pThis->pTimer[uSD]); Assert(tsNow >= pStream->State.tsTransferLast); const uint64_t cTicksElapsed = tsNow - pStream->State.tsTransferLast; # ifdef LOG_ENABLED const uint64_t cTicksTransferred = pStream->State.cbTransferProcessed * pStream->State.cTicksPerByte; # endif uint64_t cTicksToNext = pStream->State.cTransferTicks; if (cTicksToNext) /* Only do any calculations if the stream currently is set up for transfers. */ { Log3Func(("[SD%RU8] cTicksElapsed=%RU64, cTicksTransferred=%RU64, cTicksToNext=%RU64\n", pStream->u8SD, cTicksElapsed, cTicksTransferred, cTicksToNext)); Log3Func(("[SD%RU8] cbTransferProcessed=%RU32, cbTransferChunk=%RU32, cbTransferSize=%RU32\n", pStream->u8SD, pStream->State.cbTransferProcessed, pStream->State.cbTransferChunk, pStream->State.cbTransferSize)); if (cTicksElapsed <= cTicksToNext) { cTicksToNext = cTicksToNext - cTicksElapsed; } else /* Catch up. */ { Log3Func(("[SD%RU8] Warning: Lagging behind (%RU64 ticks elapsed, maximum allowed is %RU64)\n", pStream->u8SD, cTicksElapsed, cTicksToNext)); LogRelMax2(64, ("HDA: Stream #%RU8 interrupt lagging behind (expected %uus, got %uus), trying to catch up ...\n", pStream->u8SD, (TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pThis->uTimerHz) / 1000,(tsNow - pStream->State.tsTransferLast) / 1000)); cTicksToNext = 0; } Log3Func(("[SD%RU8] -> cTicksToNext=%RU64\n", pStream->u8SD, cTicksToNext)); /* Reset processed data counter. */ pStream->State.cbTransferProcessed = 0; pStream->State.tsTransferNext = tsNow + cTicksToNext; /* Only re-arm the timer if there were pending transfer interrupts left * -- it could happen that we land in here if a guest writes to SDnSTS * unconditionally. */ if (pStream->State.cTransferPendingInterrupts) { pStream->State.cTransferPendingInterrupts--; /* Re-arm the timer. */ LogFunc(("Timer set SD%RU8\n", pStream->u8SD)); hdaR3TimerSet(pThis, pStream, tsNow + cTicksToNext, false /* fForce */); } } hdaR3StreamUnlock(pStream); DEVHDA_UNLOCK_BOTH(pThis, uSD); return VINF_SUCCESS; #else /* IN_RING3 */ RT_NOREF(pThis, iReg, u32Value); return VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); #ifdef HDA_USE_DMA_ACCESS_HANDLER uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, LVI, iReg); if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT) { PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD); /* Try registering the DMA handlers. * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */ if ( pStream && hdaR3StreamRegisterDMAHandlers(pThis, pStream)) { LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD)); } } #endif int rc2 = hdaRegWriteU16(pThis, iReg, u32Value); AssertRC(rc2); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ } static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg); if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_IN) /* FIFOW for input streams only. */ { #ifndef IN_RING0 LogRel(("HDA: Warning: Guest tried to write read-only FIFOW to output stream #%RU8, ignoring\n", uSD)); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; #else DEVHDA_UNLOCK(pThis); return VINF_IOM_R3_MMIO_WRITE; #endif } PHDASTREAM pStream = hdaGetStreamFromSD(pThis, HDA_SD_NUM_FROM_REG(pThis, FIFOW, iReg)); if (!pStream) { AssertMsgFailed(("[SD%RU8] Warning: Changing FIFOW on non-attached stream (0x%x)\n", uSD, u32Value)); int rc = hdaRegWriteU16(pThis, iReg, u32Value); DEVHDA_UNLOCK(pThis); return rc; } uint32_t u32FIFOW = 0; switch (u32Value) { case HDA_SDFIFOW_8B: case HDA_SDFIFOW_16B: case HDA_SDFIFOW_32B: u32FIFOW = u32Value; break; default: ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOW (0x%x) to stream #%RU8, defaulting to 32 bytes\n", u32Value, uSD)); u32FIFOW = HDA_SDFIFOW_32B; break; } if (u32FIFOW) { pStream->u16FIFOW = hdaSDFIFOWToBytes(u32FIFOW); LogFunc(("[SD%RU8] Updating FIFOW to %RU32 bytes\n", uSD, pStream->u16FIFOW)); int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOW); AssertRC(rc2); } DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ } /** * @note This method could be called for changing value on Output Streams only (ICH6 datasheet 18.2.39). */ static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); uint8_t uSD = HDA_SD_NUM_FROM_REG(pThis, FIFOS, iReg); if (hdaGetDirFromSD(uSD) != PDMAUDIODIR_OUT) /* FIFOS for output streams only. */ { LogRel(("HDA: Warning: Guest tried to write read-only FIFOS to input stream #%RU8, ignoring\n", uSD)); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } uint32_t u32FIFOS; switch(u32Value) { case HDA_SDOFIFO_16B: case HDA_SDOFIFO_32B: case HDA_SDOFIFO_64B: case HDA_SDOFIFO_128B: case HDA_SDOFIFO_192B: case HDA_SDOFIFO_256B: u32FIFOS = u32Value; break; default: ASSERT_GUEST_LOGREL_MSG_FAILED(("Guest tried write unsupported FIFOS (0x%x) to stream #%RU8, defaulting to 192 bytes\n", u32Value, uSD)); u32FIFOS = HDA_SDOFIFO_192B; break; } int rc2 = hdaRegWriteU16(pThis, iReg, u32FIFOS); AssertRC(rc2); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ } #ifdef IN_RING3 /** * Adds an audio output stream to the device setup using the given configuration. * * @returns IPRT status code. * @param pThis Device state. * @param pCfg Stream configuration to use for adding a stream. */ static int hdaR3AddStreamOut(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); AssertReturn(pCfg->enmDir == PDMAUDIODIR_OUT, VERR_INVALID_PARAMETER); LogFlowFunc(("Stream=%s\n", pCfg->szName)); int rc = VINF_SUCCESS; bool fUseFront = true; /* Always use front out by default. */ # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND bool fUseRear; bool fUseCenter; bool fUseLFE; fUseRear = fUseCenter = fUseLFE = false; /* * Use commonly used setups for speaker configurations. */ /** @todo Make the following configurable through mixer API and/or CFGM? */ switch (pCfg->Props.cChannels) { case 3: /* 2.1: Front (Stereo) + LFE. */ { fUseLFE = true; break; } case 4: /* Quadrophonic: Front (Stereo) + Rear (Stereo). */ { fUseRear = true; break; } case 5: /* 4.1: Front (Stereo) + Rear (Stereo) + LFE. */ { fUseRear = true; fUseLFE = true; break; } case 6: /* 5.1: Front (Stereo) + Rear (Stereo) + Center/LFE. */ { fUseRear = true; fUseCenter = true; fUseLFE = true; break; } default: /* Unknown; fall back to 2 front channels (stereo). */ { rc = VERR_NOT_SUPPORTED; break; } } # endif /* !VBOX_WITH_AUDIO_HDA_51_SURROUND */ if (rc == VERR_NOT_SUPPORTED) { LogRel2(("HDA: Warning: Unsupported channel count (%RU8), falling back to stereo channels (2)\n", pCfg->Props.cChannels)); /* Fall back to 2 channels (see below in fUseFront block). */ rc = VINF_SUCCESS; } do { if (RT_FAILURE(rc)) break; if (fUseFront) { RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Front"); pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_FRONT; pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED; pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBytes, pCfg->Props.cChannels); rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_FRONT, pCfg); } # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND if ( RT_SUCCESS(rc) && (fUseCenter || fUseLFE)) { RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Center/LFE"); pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_CENTER_LFE; pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED; pCfg->Props.cChannels = (fUseCenter && fUseLFE) ? 2 : 1; pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBytes, pCfg->Props.cChannels); rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_CENTER_LFE, pCfg); } if ( RT_SUCCESS(rc) && fUseRear) { RTStrPrintf(pCfg->szName, RT_ELEMENTS(pCfg->szName), "Rear"); pCfg->DestSource.Dest = PDMAUDIOPLAYBACKDEST_REAR; pCfg->enmLayout = PDMAUDIOSTREAMLAYOUT_NON_INTERLEAVED; pCfg->Props.cChannels = 2; pCfg->Props.cShift = PDMAUDIOPCMPROPS_MAKE_SHIFT_PARMS(pCfg->Props.cBytes, pCfg->Props.cChannels); rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_REAR, pCfg); } # endif /* VBOX_WITH_AUDIO_HDA_51_SURROUND */ } while (0); LogFlowFuncLeaveRC(rc); return rc; } /** * Adds an audio input stream to the device setup using the given configuration. * * @returns IPRT status code. * @param pThis Device state. * @param pCfg Stream configuration to use for adding a stream. */ static int hdaR3AddStreamIn(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); AssertReturn(pCfg->enmDir == PDMAUDIODIR_IN, VERR_INVALID_PARAMETER); LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source)); int rc; switch (pCfg->DestSource.Source) { case PDMAUDIORECSOURCE_LINE: { rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_LINE_IN, pCfg); break; } # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN case PDMAUDIORECSOURCE_MIC: { rc = hdaCodecAddStream(pThis->pCodec, PDMAUDIOMIXERCTL_MIC_IN, pCfg); break; } # endif default: rc = VERR_NOT_SUPPORTED; break; } LogFlowFuncLeaveRC(rc); return rc; } /** * Adds an audio stream to the device setup using the given configuration. * * @returns IPRT status code. * @param pThis Device state. * @param pCfg Stream configuration to use for adding a stream. */ static int hdaR3AddStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); int rc; LogFlowFuncEnter(); switch (pCfg->enmDir) { case PDMAUDIODIR_OUT: rc = hdaR3AddStreamOut(pThis, pCfg); break; case PDMAUDIODIR_IN: rc = hdaR3AddStreamIn(pThis, pCfg); break; default: rc = VERR_NOT_SUPPORTED; AssertFailed(); break; } LogFlowFunc(("Returning %Rrc\n", rc)); return rc; } /** * Removes an audio stream from the device setup using the given configuration. * * @returns IPRT status code. * @param pThis Device state. * @param pCfg Stream configuration to use for removing a stream. */ static int hdaR3RemoveStream(PHDASTATE pThis, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); int rc = VINF_SUCCESS; PDMAUDIOMIXERCTL enmMixerCtl = PDMAUDIOMIXERCTL_UNKNOWN; switch (pCfg->enmDir) { case PDMAUDIODIR_IN: { LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Source)); switch (pCfg->DestSource.Source) { case PDMAUDIORECSOURCE_UNKNOWN: break; case PDMAUDIORECSOURCE_LINE: enmMixerCtl = PDMAUDIOMIXERCTL_LINE_IN; break; # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN case PDMAUDIORECSOURCE_MIC: enmMixerCtl = PDMAUDIOMIXERCTL_MIC_IN; break; # endif default: rc = VERR_NOT_SUPPORTED; break; } break; } case PDMAUDIODIR_OUT: { LogFlowFunc(("Stream=%s, Source=%ld\n", pCfg->szName, pCfg->DestSource.Dest)); switch (pCfg->DestSource.Dest) { case PDMAUDIOPLAYBACKDEST_UNKNOWN: break; case PDMAUDIOPLAYBACKDEST_FRONT: enmMixerCtl = PDMAUDIOMIXERCTL_FRONT; break; # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND case PDMAUDIOPLAYBACKDEST_CENTER_LFE: enmMixerCtl = PDMAUDIOMIXERCTL_CENTER_LFE; break; case PDMAUDIOPLAYBACKDEST_REAR: enmMixerCtl = PDMAUDIOMIXERCTL_REAR; break; # endif default: rc = VERR_NOT_SUPPORTED; break; } break; } default: rc = VERR_NOT_SUPPORTED; break; } if ( RT_SUCCESS(rc) && enmMixerCtl != PDMAUDIOMIXERCTL_UNKNOWN) { rc = hdaCodecRemoveStream(pThis->pCodec, enmMixerCtl); } LogFlowFuncLeaveRC(rc); return rc; } #endif /* IN_RING3 */ static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); /* Write the wanted stream format into the register in any case. * * This is important for e.g. MacOS guests, as those try to initialize streams which are not reported * by the device emulation (wants 4 channels, only have 2 channels at the moment). * * When ignoring those (invalid) formats, this leads to MacOS thinking that the device is malfunctioning * and therefore disabling the device completely. */ int rc = hdaRegWriteU16(pThis, iReg, u32Value); AssertRC(rc); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ } /* Note: Will be called for both, BDPL and BDPU, registers. */ DECLINLINE(int) hdaRegWriteSDBDPX(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value, uint8_t uSD) { #ifdef IN_RING3 DEVHDA_LOCK(pThis); # ifdef HDA_USE_DMA_ACCESS_HANDLER if (hdaGetDirFromSD(uSD) == PDMAUDIODIR_OUT) { PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD); /* Try registering the DMA handlers. * As we can't be sure in which order LVI + BDL base are set, try registering in both routines. */ if ( pStream && hdaR3StreamRegisterDMAHandlers(pThis, pStream)) { LogFunc(("[SD%RU8] DMA logging enabled\n", pStream->u8SD)); } } # else RT_NOREF(uSD); # endif int rc2 = hdaRegWriteU32(pThis, iReg, u32Value); AssertRC(rc2); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; /* Always return success to the MMIO handler. */ #else /* !IN_RING3 */ RT_NOREF_PV(pThis); RT_NOREF_PV(iReg); RT_NOREF_PV(u32Value); RT_NOREF_PV(uSD); return VINF_IOM_R3_MMIO_WRITE; #endif /* IN_RING3 */ } static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPL, iReg)); } static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { return hdaRegWriteSDBDPX(pThis, iReg, u32Value, HDA_SD_NUM_FROM_REG(pThis, BDPU, iReg)); } static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ); /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */ if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP) || (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA)) { HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */ } int rc = hdaRegReadU32(pThis, iReg, pu32Value); DEVHDA_UNLOCK(pThis); return rc; } static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF_PV(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); /* * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register, * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register. */ if ( (u32Value & HDA_IRS_ICB) && !(HDA_REG(pThis, IRS) & HDA_IRS_ICB)) { #ifdef IN_RING3 uint32_t uCmd = HDA_REG(pThis, IC); if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)) { DEVHDA_UNLOCK(pThis); /* * 3.4.3: Defines behavior of immediate Command status register. */ LogRel(("HDA: Guest attempted process immediate verb (%x) with active CORB\n", uCmd)); return VINF_SUCCESS; } HDA_REG(pThis, IRS) = HDA_IRS_ICB; /* busy */ uint64_t uResp; int rc2 = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(uCmd, 0 /* LUN */), &uResp); if (RT_FAILURE(rc2)) LogFunc(("Codec lookup failed with rc2=%Rrc\n", rc2)); HDA_REG(pThis, IR) = (uint32_t)uResp; /** @todo r=andy Do we need a 64-bit response? */ HDA_REG(pThis, IRS) = HDA_IRS_IRV; /* result is ready */ /** @todo r=michaln We just set the IRS value, why are we clearing unset bits? */ HDA_REG(pThis, IRS) &= ~HDA_IRS_ICB; /* busy is clear */ DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; #else /* !IN_RING3 */ DEVHDA_UNLOCK(pThis); return VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } /* * Once the guest read the response, it should clear the IRV bit of the IRS register. */ HDA_REG(pThis, IRS) &= ~(u32Value & HDA_IRS_IRV); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */ { LogFunc(("CORB DMA (still) running, skipping\n")); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } if (u32Value & HDA_RIRBWP_RST) { /* Do a RIRB reset. */ if (pThis->cbRirbBuf) { Assert(pThis->pu64RirbBuf); RT_BZERO((void *)pThis->pu64RirbBuf, pThis->cbRirbBuf); } LogRel2(("HDA: RIRB reset\n")); HDA_REG(pThis, RIRBWP) = 0; } /* The remaining bits are O, see 6.2.22. */ DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } static int hdaRegWriteRINTCNT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); if (HDA_REG(pThis, CORBCTL) & HDA_CORBCTL_DMA) /* Ignore request if CORB DMA engine is (still) running. */ { LogFunc(("CORB DMA is (still) running, skipping\n")); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } int rc = hdaRegWriteU16(pThis, iReg, u32Value); AssertRC(rc); LogFunc(("Response interrupt count is now %RU8\n", HDA_REG(pThis, RINTCNT) & 0xFF)); DEVHDA_UNLOCK(pThis); return rc; } static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); int rc = hdaRegWriteU32(pThis, iReg, u32Value); AssertRCSuccess(rc); switch (iReg) { case HDA_REG_CORBLBASE: pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64CORBBase |= pThis->au32Regs[iRegMem]; break; case HDA_REG_CORBUBASE: pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32); break; case HDA_REG_RIRBLBASE: pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64RIRBBase |= pThis->au32Regs[iRegMem]; break; case HDA_REG_RIRBUBASE: pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32); break; case HDA_REG_DPLBASE: { pThis->u64DPBase = pThis->au32Regs[iRegMem] & DPBASE_ADDR_MASK; Assert(pThis->u64DPBase % 128 == 0); /* Must be 128-byte aligned. */ /* Also make sure to handle the DMA position enable bit. */ pThis->fDMAPosition = pThis->au32Regs[iRegMem] & RT_BIT_32(0); LogRel(("HDA: %s DMA position buffer\n", pThis->fDMAPosition ? "Enabled" : "Disabled")); break; } case HDA_REG_DPUBASE: pThis->u64DPBase = RT_MAKE_U64(RT_LO_U32(pThis->u64DPBase) & DPBASE_ADDR_MASK, pThis->au32Regs[iRegMem]); break; default: AssertMsgFailed(("Invalid index\n")); break; } LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n", pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase)); DEVHDA_UNLOCK(pThis); return rc; } static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { RT_NOREF_PV(iReg); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); uint8_t v = HDA_REG(pThis, RIRBSTS); HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value); #ifndef LOG_ENABLED int rc = hdaProcessInterrupt(pThis); #else int rc = hdaProcessInterrupt(pThis, __FUNCTION__); #endif DEVHDA_UNLOCK(pThis); return rc; } #ifdef IN_RING3 /** * Retrieves a corresponding sink for a given mixer control. * Returns NULL if no sink is found. * * @return PHDAMIXERSINK * @param pThis HDA state. * @param enmMixerCtl Mixer control to get the corresponding sink for. */ static PHDAMIXERSINK hdaR3MixerControlToSink(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl) { PHDAMIXERSINK pSink; switch (enmMixerCtl) { case PDMAUDIOMIXERCTL_VOLUME_MASTER: /* Fall through is intentional. */ case PDMAUDIOMIXERCTL_FRONT: pSink = &pThis->SinkFront; break; # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND case PDMAUDIOMIXERCTL_CENTER_LFE: pSink = &pThis->SinkCenterLFE; break; case PDMAUDIOMIXERCTL_REAR: pSink = &pThis->SinkRear; break; # endif case PDMAUDIOMIXERCTL_LINE_IN: pSink = &pThis->SinkLineIn; break; # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN case PDMAUDIOMIXERCTL_MIC_IN: pSink = &pThis->SinkMicIn; break; # endif default: pSink = NULL; AssertMsgFailed(("Unhandled mixer control\n")); break; } return pSink; } /** * Adds a specific HDA driver to the driver chain. * * @return IPRT status code. * @param pThis HDA state. * @param pDrv HDA driver to add. */ static int hdaR3MixerAddDrv(PHDASTATE pThis, PHDADRIVER pDrv) { int rc = VINF_SUCCESS; PHDASTREAM pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkLineIn); if ( pStream && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg)) { int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkLineIn.pMixSink, &pStream->State.Cfg, pDrv); if (RT_SUCCESS(rc)) rc = rc2; } # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkMicIn); if ( pStream && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg)) { int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkMicIn.pMixSink, &pStream->State.Cfg, pDrv); if (RT_SUCCESS(rc)) rc = rc2; } # endif pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkFront); if ( pStream && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg)) { int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkFront.pMixSink, &pStream->State.Cfg, pDrv); if (RT_SUCCESS(rc)) rc = rc2; } # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkCenterLFE); if ( pStream && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg)) { int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkCenterLFE.pMixSink, &pStream->State.Cfg, pDrv); if (RT_SUCCESS(rc)) rc = rc2; } pStream = hdaR3GetStreamFromSink(pThis, &pThis->SinkRear); if ( pStream && DrvAudioHlpStreamCfgIsValid(&pStream->State.Cfg)) { int rc2 = hdaR3MixerAddDrvStream(pThis, pThis->SinkRear.pMixSink, &pStream->State.Cfg, pDrv); if (RT_SUCCESS(rc)) rc = rc2; } # endif return rc; } /** * Removes a specific HDA driver from the driver chain and destroys its * associated streams. * * @param pThis HDA state. * @param pDrv HDA driver to remove. */ static void hdaR3MixerRemoveDrv(PHDASTATE pThis, PHDADRIVER pDrv) { AssertPtrReturnVoid(pThis); AssertPtrReturnVoid(pDrv); if (pDrv->LineIn.pMixStrm) { if (AudioMixerSinkGetRecordingSource(pThis->SinkLineIn.pMixSink) == pDrv->LineIn.pMixStrm) AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, NULL); AudioMixerSinkRemoveStream(pThis->SinkLineIn.pMixSink, pDrv->LineIn.pMixStrm); AudioMixerStreamDestroy(pDrv->LineIn.pMixStrm); pDrv->LineIn.pMixStrm = NULL; } # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN if (pDrv->MicIn.pMixStrm) { if (AudioMixerSinkGetRecordingSource(pThis->SinkMicIn.pMixSink) == pDrv->MicIn.pMixStrm) AudioMixerSinkSetRecordingSource(&pThis->SinkMicIn.pMixSink, NULL); AudioMixerSinkRemoveStream(pThis->SinkMicIn.pMixSink, pDrv->MicIn.pMixStrm); AudioMixerStreamDestroy(pDrv->MicIn.pMixStrm); pDrv->MicIn.pMixStrm = NULL; } # endif if (pDrv->Front.pMixStrm) { AudioMixerSinkRemoveStream(pThis->SinkFront.pMixSink, pDrv->Front.pMixStrm); AudioMixerStreamDestroy(pDrv->Front.pMixStrm); pDrv->Front.pMixStrm = NULL; } # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND if (pDrv->CenterLFE.pMixStrm) { AudioMixerSinkRemoveStream(pThis->SinkCenterLFE.pMixSink, pDrv->CenterLFE.pMixStrm); AudioMixerStreamDestroy(pDrv->CenterLFE.pMixStrm); pDrv->CenterLFE.pMixStrm = NULL; } if (pDrv->Rear.pMixStrm) { AudioMixerSinkRemoveStream(pThis->SinkRear.pMixSink, pDrv->Rear.pMixStrm); AudioMixerStreamDestroy(pDrv->Rear.pMixStrm); pDrv->Rear.pMixStrm = NULL; } # endif RTListNodeRemove(&pDrv->Node); } /** * Adds a driver stream to a specific mixer sink. * * @returns IPRT status code (ignored by caller). * @param pThis HDA state. * @param pMixSink Audio mixer sink to add audio streams to. * @param pCfg Audio stream configuration to use for the audio streams to add. * @param pDrv Driver stream to add. */ static int hdaR3MixerAddDrvStream(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg, PHDADRIVER pDrv) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pMixSink, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); LogFunc(("szSink=%s, szStream=%s, cChannels=%RU8\n", pMixSink->pszName, pCfg->szName, pCfg->Props.cChannels)); PPDMAUDIOSTREAMCFG pStreamCfg = DrvAudioHlpStreamCfgDup(pCfg); if (!pStreamCfg) return VERR_NO_MEMORY; LogFunc(("[LUN#%RU8] %s\n", pDrv->uLUN, pStreamCfg->szName)); int rc = VINF_SUCCESS; PHDADRIVERSTREAM pDrvStream = NULL; if (pStreamCfg->enmDir == PDMAUDIODIR_IN) { LogFunc(("enmRecSource=%d\n", pStreamCfg->DestSource.Source)); switch (pStreamCfg->DestSource.Source) { case PDMAUDIORECSOURCE_LINE: pDrvStream = &pDrv->LineIn; break; # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN case PDMAUDIORECSOURCE_MIC: pDrvStream = &pDrv->MicIn; break; # endif default: rc = VERR_NOT_SUPPORTED; break; } } else if (pStreamCfg->enmDir == PDMAUDIODIR_OUT) { LogFunc(("enmPlaybackDest=%d\n", pStreamCfg->DestSource.Dest)); switch (pStreamCfg->DestSource.Dest) { case PDMAUDIOPLAYBACKDEST_FRONT: pDrvStream = &pDrv->Front; break; # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND case PDMAUDIOPLAYBACKDEST_CENTER_LFE: pDrvStream = &pDrv->CenterLFE; break; case PDMAUDIOPLAYBACKDEST_REAR: pDrvStream = &pDrv->Rear; break; # endif default: rc = VERR_NOT_SUPPORTED; break; } } else rc = VERR_NOT_SUPPORTED; if (RT_SUCCESS(rc)) { AssertPtr(pDrvStream); AssertMsg(pDrvStream->pMixStrm == NULL, ("[LUN#%RU8] Driver stream already present when it must not\n", pDrv->uLUN)); PAUDMIXSTREAM pMixStrm; rc = AudioMixerSinkCreateStream(pMixSink, pDrv->pConnector, pStreamCfg, 0 /* fFlags */, &pMixStrm); LogFlowFunc(("LUN#%RU8: Created stream \"%s\" for sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc)); if (RT_SUCCESS(rc)) { rc = AudioMixerSinkAddStream(pMixSink, pMixStrm); LogFlowFunc(("LUN#%RU8: Added stream \"%s\" to sink, rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc)); if (RT_SUCCESS(rc)) { /* If this is an input stream, always set the latest (added) stream * as the recording source. * @todo Make the recording source dynamic (CFGM?). */ if (pStreamCfg->enmDir == PDMAUDIODIR_IN) { PDMAUDIOBACKENDCFG Cfg; rc = pDrv->pConnector->pfnGetConfig(pDrv->pConnector, &Cfg); if (RT_SUCCESS(rc)) { if (Cfg.cMaxStreamsIn) /* At least one input source available? */ { rc = AudioMixerSinkSetRecordingSource(pMixSink, pMixStrm); LogFlowFunc(("LUN#%RU8: Recording source for '%s' -> '%s', rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, Cfg.szName, rc)); if (RT_SUCCESS(rc)) LogRel(("HDA: Set recording source for '%s' to '%s'\n", pStreamCfg->szName, Cfg.szName)); } else LogRel(("HDA: Backend '%s' currently is not offering any recording source for '%s'\n", Cfg.szName, pStreamCfg->szName)); } else if (RT_FAILURE(rc)) LogFunc(("LUN#%RU8: Unable to retrieve backend configuration for '%s', rc=%Rrc\n", pDrv->uLUN, pStreamCfg->szName, rc)); } } } if (RT_SUCCESS(rc)) pDrvStream->pMixStrm = pMixStrm; } if (pStreamCfg) { RTMemFree(pStreamCfg); pStreamCfg = NULL; } LogFlowFuncLeaveRC(rc); return rc; } /** * Adds all current driver streams to a specific mixer sink. * * @returns IPRT status code. * @param pThis HDA state. * @param pMixSink Audio mixer sink to add stream to. * @param pCfg Audio stream configuration to use for the audio streams to add. */ static int hdaR3MixerAddDrvStreams(PHDASTATE pThis, PAUDMIXSINK pMixSink, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pMixSink, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); LogFunc(("Sink=%s, Stream=%s\n", pMixSink->pszName, pCfg->szName)); if (!DrvAudioHlpStreamCfgIsValid(pCfg)) return VERR_INVALID_PARAMETER; int rc = AudioMixerSinkSetFormat(pMixSink, &pCfg->Props); if (RT_FAILURE(rc)) return rc; PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { int rc2 = hdaR3MixerAddDrvStream(pThis, pMixSink, pCfg, pDrv); if (RT_FAILURE(rc2)) LogFunc(("Attaching stream failed with %Rrc\n", rc2)); /* Do not pass failure to rc here, as there might be drivers which aren't * configured / ready yet. */ } return rc; } /** * @interface_method_impl{HDACODEC,pfnCbMixerAddStream} * * Adds a new audio stream to a specific mixer control. * * Depending on the mixer control the stream then gets assigned to one of the internal * mixer sinks, which in turn then handle the mixing of all connected streams to that sink. * * @return IPRT status code. * @param pThis HDA state. * @param enmMixerCtl Mixer control to assign new stream to. * @param pCfg Stream configuration for the new stream. */ static DECLCALLBACK(int) hdaR3MixerAddStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pCfg, VERR_INVALID_POINTER); int rc; PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl); if (pSink) { rc = hdaR3MixerAddDrvStreams(pThis, pSink->pMixSink, pCfg); AssertPtr(pSink->pMixSink); LogFlowFunc(("Sink=%s, Mixer control=%s\n", pSink->pMixSink->pszName, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl))); } else rc = VERR_NOT_FOUND; LogFlowFuncLeaveRC(rc); return rc; } /** * @interface_method_impl{HDACODEC,pfnCbMixerRemoveStream} * * Removes a specified mixer control from the HDA's mixer. * * @return IPRT status code. * @param pThis HDA state. * @param enmMixerCtl Mixer control to remove. * * @remarks Can be called as a callback by the HDA codec. */ static DECLCALLBACK(int) hdaR3MixerRemoveStream(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); int rc; PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl); if (pSink) { PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { PAUDMIXSTREAM pMixStream = NULL; switch (enmMixerCtl) { /* * Input. */ case PDMAUDIOMIXERCTL_LINE_IN: pMixStream = pDrv->LineIn.pMixStrm; pDrv->LineIn.pMixStrm = NULL; break; # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN case PDMAUDIOMIXERCTL_MIC_IN: pMixStream = pDrv->MicIn.pMixStrm; pDrv->MicIn.pMixStrm = NULL; break; # endif /* * Output. */ case PDMAUDIOMIXERCTL_FRONT: pMixStream = pDrv->Front.pMixStrm; pDrv->Front.pMixStrm = NULL; break; # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND case PDMAUDIOMIXERCTL_CENTER_LFE: pMixStream = pDrv->CenterLFE.pMixStrm; pDrv->CenterLFE.pMixStrm = NULL; break; case PDMAUDIOMIXERCTL_REAR: pMixStream = pDrv->Rear.pMixStrm; pDrv->Rear.pMixStrm = NULL; break; # endif default: AssertMsgFailed(("Mixer control %d not implemented\n", enmMixerCtl)); break; } if (pMixStream) { AudioMixerSinkRemoveStream(pSink->pMixSink, pMixStream); AudioMixerStreamDestroy(pMixStream); pMixStream = NULL; } } AudioMixerSinkRemoveAllStreams(pSink->pMixSink); rc = VINF_SUCCESS; } else rc = VERR_NOT_FOUND; LogFunc(("Mixer control=%s, rc=%Rrc\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc)); return rc; } /** * @interface_method_impl{HDACODEC,pfnCbMixerControl} * * Controls an input / output converter widget, that is, which converter is connected * to which stream (and channel). * * @returns IPRT status code. * @param pThis HDA State. * @param enmMixerCtl Mixer control to set SD stream number and channel for. * @param uSD SD stream number (number + 1) to set. Set to 0 for unassign. * @param uChannel Channel to set. Only valid if a valid SD stream number is specified. * * @remarks Can be called as a callback by the HDA codec. */ static DECLCALLBACK(int) hdaR3MixerControl(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, uint8_t uSD, uint8_t uChannel) { LogFunc(("enmMixerCtl=%s, uSD=%RU8, uChannel=%RU8\n", DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), uSD, uChannel)); if (uSD == 0) /* Stream number 0 is reserved. */ { Log2Func(("Invalid SDn (%RU8) number for mixer control '%s', ignoring\n", uSD, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl))); return VINF_SUCCESS; } /* uChannel is optional. */ /* SDn0 starts as 1. */ Assert(uSD); uSD--; # ifndef VBOX_WITH_AUDIO_HDA_MIC_IN /* Only SDI0 (Line-In) is supported. */ if ( hdaGetDirFromSD(uSD) == PDMAUDIODIR_IN && uSD >= 1) { LogRel2(("HDA: Dedicated Mic-In support not imlpemented / built-in (stream #%RU8), using Line-In (stream #0) instead\n", uSD)); uSD = 0; } # endif int rc = VINF_SUCCESS; PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl); if (pSink) { AssertPtr(pSink->pMixSink); /* If this an output stream, determine the correct SD#. */ if ( (uSD < HDA_MAX_SDI) && AudioMixerSinkGetDir(pSink->pMixSink) == AUDMIXSINKDIR_OUTPUT) { uSD += HDA_MAX_SDI; } /* Detach the existing stream from the sink. */ if ( pSink->pStream && ( pSink->pStream->u8SD != uSD || pSink->pStream->u8Channel != uChannel) ) { LogFunc(("Sink '%s' was assigned to stream #%RU8 (channel %RU8) before\n", pSink->pMixSink->pszName, pSink->pStream->u8SD, pSink->pStream->u8Channel)); hdaR3StreamLock(pSink->pStream); /* Only disable the stream if the stream descriptor # has changed. */ if (pSink->pStream->u8SD != uSD) hdaR3StreamEnable(pSink->pStream, false); pSink->pStream->pMixSink = NULL; hdaR3StreamUnlock(pSink->pStream); pSink->pStream = NULL; } Assert(uSD < HDA_MAX_STREAMS); /* Attach the new stream to the sink. * Enabling the stream will be done by the gust via a separate SDnCTL call then. */ if (pSink->pStream == NULL) { LogRel2(("HDA: Setting sink '%s' to stream #%RU8 (channel %RU8), mixer control=%s\n", pSink->pMixSink->pszName, uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl))); PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uSD); if (pStream) { hdaR3StreamLock(pStream); pSink->pStream = pStream; pStream->u8Channel = uChannel; pStream->pMixSink = pSink; hdaR3StreamUnlock(pStream); rc = VINF_SUCCESS; } else rc = VERR_NOT_IMPLEMENTED; } } else rc = VERR_NOT_FOUND; if (RT_FAILURE(rc)) LogRel(("HDA: Converter control for stream #%RU8 (channel %RU8) / mixer control '%s' failed with %Rrc, skipping\n", uSD, uChannel, DrvAudioHlpAudMixerCtlToStr(enmMixerCtl), rc)); LogFlowFuncLeaveRC(rc); return rc; } /** * @interface_method_impl{HDACODEC,pfnCbMixerSetVolume} * * Sets the volume of a specified mixer control. * * @return IPRT status code. * @param pThis HDA State. * @param enmMixerCtl Mixer control to set volume for. * @param pVol Pointer to volume data to set. * * @remarks Can be called as a callback by the HDA codec. */ static DECLCALLBACK(int) hdaR3MixerSetVolume(PHDASTATE pThis, PDMAUDIOMIXERCTL enmMixerCtl, PPDMAUDIOVOLUME pVol) { int rc; PHDAMIXERSINK pSink = hdaR3MixerControlToSink(pThis, enmMixerCtl); if ( pSink && pSink->pMixSink) { LogRel2(("HDA: Setting volume for mixer sink '%s' to %RU8/%RU8 (%s)\n", pSink->pMixSink->pszName, pVol->uLeft, pVol->uRight, pVol->fMuted ? "Muted" : "Unmuted")); /* Set the volume. * We assume that the codec already converted it to the correct range. */ rc = AudioMixerSinkSetVolume(pSink->pMixSink, pVol); } else rc = VERR_NOT_FOUND; LogFlowFuncLeaveRC(rc); return rc; } /** * Main routine for the stream's timer. * * @param pDevIns Device instance. * @param pTimer Timer this callback was called for. * @param pvUser Pointer to associated HDASTREAM. */ static DECLCALLBACK(void) hdaR3Timer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser) { RT_NOREF(pDevIns, pTimer); PHDASTREAM pStream = (PHDASTREAM)pvUser; AssertPtr(pStream); PHDASTATE pThis = pStream->pHDAState; DEVHDA_LOCK_BOTH_RETURN_VOID(pStream->pHDAState, pStream->u8SD); hdaR3StreamUpdate(pStream, true /* fInTimer */); /* Flag indicating whether to kick the timer again for a new data processing round. */ bool fSinkActive = false; if (pStream->pMixSink) fSinkActive = AudioMixerSinkIsActive(pStream->pMixSink->pMixSink); if (fSinkActive) { const bool fTimerScheduled = hdaR3StreamTransferIsScheduled(pStream); Log3Func(("fSinksActive=%RTbool, fTimerScheduled=%RTbool\n", fSinkActive, fTimerScheduled)); if (!fTimerScheduled) hdaR3TimerSet(pThis, pStream, TMTimerGet(pThis->pTimer[pStream->u8SD]) + TMTimerGetFreq(pThis->pTimer[pStream->u8SD]) / pStream->pHDAState->uTimerHz, true /* fForce */); } else Log3Func(("fSinksActive=%RTbool\n", fSinkActive)); DEVHDA_UNLOCK_BOTH(pThis, pStream->u8SD); } # ifdef HDA_USE_DMA_ACCESS_HANDLER /** * HC access handler for the FIFO. * * @returns VINF_SUCCESS if the handler have carried out the operation. * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation. * @param pVM VM Handle. * @param pVCpu The cross context CPU structure for the calling EMT. * @param GCPhys The physical address the guest is writing to. * @param pvPhys The HC mapping of that address. * @param pvBuf What the guest is reading/writing. * @param cbBuf How much it's reading/writing. * @param enmAccessType The access type. * @param enmOrigin Who is making the access. * @param pvUser User argument. */ static DECLCALLBACK(VBOXSTRICTRC) hdaR3DMAAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser) { RT_NOREF(pVM, pVCpu, pvPhys, pvBuf, enmOrigin); PHDADMAACCESSHANDLER pHandler = (PHDADMAACCESSHANDLER)pvUser; AssertPtr(pHandler); PHDASTREAM pStream = pHandler->pStream; AssertPtr(pStream); Assert(GCPhys >= pHandler->GCPhysFirst); Assert(GCPhys <= pHandler->GCPhysLast); Assert(enmAccessType == PGMACCESSTYPE_WRITE); /* Not within BDLE range? Bail out. */ if ( (GCPhys < pHandler->BDLEAddr) || (GCPhys + cbBuf > pHandler->BDLEAddr + pHandler->BDLESize)) { return VINF_PGM_HANDLER_DO_DEFAULT; } switch(enmAccessType) { case PGMACCESSTYPE_WRITE: { # ifdef DEBUG PHDASTREAMDBGINFO pStreamDbg = &pStream->Dbg; const uint64_t tsNowNs = RTTimeNanoTS(); const uint32_t tsElapsedMs = (tsNowNs - pStreamDbg->tsWriteSlotBegin) / 1000 / 1000; uint64_t cWritesHz = ASMAtomicReadU64(&pStreamDbg->cWritesHz); uint64_t cbWrittenHz = ASMAtomicReadU64(&pStreamDbg->cbWrittenHz); if (tsElapsedMs >= (1000 / HDA_TIMER_HZ_DEFAULT)) { LogFunc(("[SD%RU8] %RU32ms elapsed, cbWritten=%RU64, cWritten=%RU64 -- %RU32 bytes on average per time slot (%zums)\n", pStream->u8SD, tsElapsedMs, cbWrittenHz, cWritesHz, ASMDivU64ByU32RetU32(cbWrittenHz, cWritesHz ? cWritesHz : 1), 1000 / HDA_TIMER_HZ_DEFAULT)); pStreamDbg->tsWriteSlotBegin = tsNowNs; cWritesHz = 0; cbWrittenHz = 0; } cWritesHz += 1; cbWrittenHz += cbBuf; ASMAtomicIncU64(&pStreamDbg->cWritesTotal); ASMAtomicAddU64(&pStreamDbg->cbWrittenTotal, cbBuf); ASMAtomicWriteU64(&pStreamDbg->cWritesHz, cWritesHz); ASMAtomicWriteU64(&pStreamDbg->cbWrittenHz, cbWrittenHz); LogFunc(("[SD%RU8] Writing %3zu @ 0x%x (off %zu)\n", pStream->u8SD, cbBuf, GCPhys, GCPhys - pHandler->BDLEAddr)); LogFunc(("[SD%RU8] cWrites=%RU64, cbWritten=%RU64 -> %RU32 bytes on average\n", pStream->u8SD, pStreamDbg->cWritesTotal, pStreamDbg->cbWrittenTotal, ASMDivU64ByU32RetU32(pStreamDbg->cbWrittenTotal, pStreamDbg->cWritesTotal))); # endif if (pThis->fDebugEnabled) { RTFILE fh; RTFileOpen(&fh, VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH "hdaDMAAccessWrite.pcm", RTFILE_O_OPEN_CREATE | RTFILE_O_APPEND | RTFILE_O_WRITE | RTFILE_O_DENY_NONE); RTFileWrite(fh, pvBuf, cbBuf, NULL); RTFileClose(fh); } # ifdef HDA_USE_DMA_ACCESS_HANDLER_WRITING PRTCIRCBUF pCircBuf = pStream->State.pCircBuf; AssertPtr(pCircBuf); uint8_t *pbBuf = (uint8_t *)pvBuf; while (cbBuf) { /* Make sure we only copy as much as the stream's FIFO can hold (SDFIFOS, 18.2.39). */ void *pvChunk; size_t cbChunk; RTCircBufAcquireWriteBlock(pCircBuf, cbBuf, &pvChunk, &cbChunk); if (cbChunk) { memcpy(pvChunk, pbBuf, cbChunk); pbBuf += cbChunk; Assert(cbBuf >= cbChunk); cbBuf -= cbChunk; } else { //AssertMsg(RTCircBufFree(pCircBuf), ("No more space but still %zu bytes to write\n", cbBuf)); break; } LogFunc(("[SD%RU8] cbChunk=%zu\n", pStream->u8SD, cbChunk)); RTCircBufReleaseWriteBlock(pCircBuf, cbChunk); } # endif /* HDA_USE_DMA_ACCESS_HANDLER_WRITING */ break; } default: AssertMsgFailed(("Access type not implemented\n")); break; } return VINF_PGM_HANDLER_DO_DEFAULT; } # endif /* HDA_USE_DMA_ACCESS_HANDLER */ /** * Soft reset of the device triggered via GCTL. * * @param pThis HDA state. * */ static void hdaR3GCTLReset(PHDASTATE pThis) { LogFlowFuncEnter(); pThis->cStreamsActive = 0; HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(HDA_MAX_SDO, HDA_MAX_SDI, 0, 0, 1); /* see 6.2.1 */ HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */ HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */ HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */ HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */ HDA_REG(pThis, CORBSIZE) = 0x42; /* Up to 256 CORB entries see 6.2.1 */ HDA_REG(pThis, RIRBSIZE) = 0x42; /* Up to 256 RIRB entries see 6.2.1 */ HDA_REG(pThis, CORBRP) = 0x0; HDA_REG(pThis, CORBWP) = 0x0; HDA_REG(pThis, RIRBWP) = 0x0; /* Some guests (like Haiku) don't set RINTCNT explicitly but expect an interrupt after each * RIRB response -- so initialize RINTCNT to 1 by default. */ HDA_REG(pThis, RINTCNT) = 0x1; /* * Stop any audio currently playing and/or recording. */ pThis->SinkFront.pStream = NULL; if (pThis->SinkFront.pMixSink) AudioMixerSinkReset(pThis->SinkFront.pMixSink); # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN pThis->SinkMicIn.pStream = NULL; if (pThis->SinkMicIn.pMixSink) AudioMixerSinkReset(pThis->SinkMicIn.pMixSink); # endif pThis->SinkLineIn.pStream = NULL; if (pThis->SinkLineIn.pMixSink) AudioMixerSinkReset(pThis->SinkLineIn.pMixSink); # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND pThis->SinkCenterLFE = NULL; if (pThis->SinkCenterLFE.pMixSink) AudioMixerSinkReset(pThis->SinkCenterLFE.pMixSink); pThis->SinkRear.pStream = NULL; if (pThis->SinkRear.pMixSink) AudioMixerSinkReset(pThis->SinkRear.pMixSink); # endif /* * Reset the codec. */ if ( pThis->pCodec && pThis->pCodec->pfnReset) { pThis->pCodec->pfnReset(pThis->pCodec); } /* * Set some sensible defaults for which HDA sinks * are connected to which stream number. * * We use SD0 for input and SD4 for output by default. * These stream numbers can be changed by the guest dynamically lateron. */ # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_MIC_IN , 1 /* SD0 */, 0 /* Channel */); # endif hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_LINE_IN , 1 /* SD0 */, 0 /* Channel */); hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_FRONT , 5 /* SD4 */, 0 /* Channel */); # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_CENTER_LFE, 5 /* SD4 */, 0 /* Channel */); hdaR3MixerControl(pThis, PDMAUDIOMIXERCTL_REAR , 5 /* SD4 */, 0 /* Channel */); # endif /* Reset CORB. */ pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE; RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf); /* Reset RIRB. */ pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE; RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf); /* Clear our internal response interrupt counter. */ pThis->u16RespIntCnt = 0; for (uint8_t uSD = 0; uSD < HDA_MAX_STREAMS; ++uSD) { int rc2 = hdaR3StreamEnable(&pThis->aStreams[uSD], false /* fEnable */); if (RT_SUCCESS(rc2)) { /* Remove the RUN bit from SDnCTL in case the stream was in a running state before. */ HDA_STREAM_REG(pThis, CTL, uSD) &= ~HDA_SDCTL_RUN; hdaR3StreamReset(pThis, &pThis->aStreams[uSD], uSD); } } /* Clear stream tags <-> objects mapping table. */ RT_ZERO(pThis->aTags); /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */ HDA_REG(pThis, STATESTS) = 0x1; LogFlowFuncLeave(); LogRel(("HDA: Reset\n")); } #endif /* IN_RING3 */ /* MMIO callbacks */ /** * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.} * * @note During implementation, we discovered so-called "forgotten" or "hole" * registers whose description is not listed in the RPM, datasheet, or * spec. */ PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; RT_NOREF_PV(pvUser); Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC); /* * Look up and log. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxRegDsc = hdaRegLookup(offReg); /* Register descriptor index. */ #ifdef LOG_ENABLED unsigned const cbLog = cb; uint32_t offRegLog = offReg; #endif Log3Func(("offReg=%#x cb=%#x\n", offReg, cb)); Assert(cb == 4); Assert((offReg & 3) == 0); DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ); if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL) LogFunc(("Access to registers except GCTL is blocked while reset\n")); if (idxRegDsc == -1) LogRel(("HDA: Invalid read access @0x%x (bytes=%u)\n", offReg, cb)); if (idxRegDsc != -1) { /* Leave lock before calling read function. */ DEVHDA_UNLOCK(pThis); /* ASSUMES gapless DWORD at end of map. */ if (g_aHdaRegMap[idxRegDsc].size == 4) { /* * Straight forward DWORD access. */ rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv); Log3Func(("\tRead %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc)); } else { /* * Multi register read (unless there are trailing gaps). * ASSUMES that only DWORD reads have sideeffects. */ #ifdef IN_RING3 uint32_t u32Value = 0; unsigned cbLeft = 4; do { uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size; uint32_t u32Tmp = 0; rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp); Log3Func(("\tRead %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc)); if (rc != VINF_SUCCESS) break; u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8); cbLeft -= cbReg; offReg += cbReg; idxRegDsc++; } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg); if (rc == VINF_SUCCESS) *(uint32_t *)pv = u32Value; else Assert(!IOM_SUCCESS(rc)); #else /* !IN_RING3 */ /* Take the easy way out. */ rc = VINF_IOM_R3_MMIO_READ; #endif /* !IN_RING3 */ } } else { DEVHDA_UNLOCK(pThis); rc = VINF_IOM_MMIO_UNUSED_FF; Log3Func(("\tHole at %x is accessed for read\n", offReg)); } /* * Log the outcome. */ #ifdef LOG_ENABLED if (cbLog == 4) Log3Func(("\tReturning @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc)); else if (cbLog == 2) Log3Func(("\tReturning @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc)); else if (cbLog == 1) Log3Func(("\tReturning @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc)); #endif return rc; } DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog) { DEVHDA_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE); if (!(HDA_REG(pThis, GCTL) & HDA_GCTL_CRST) && idxRegDsc != HDA_REG_GCTL) { Log(("hdaWriteReg: Warning: Access to %s is blocked while controller is in reset mode\n", g_aHdaRegMap[idxRegDsc].abbrev)); LogRel2(("HDA: Warning: Access to register %s is blocked while controller is in reset mode\n", g_aHdaRegMap[idxRegDsc].abbrev)); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } /* * Handle RD (register description) flags. */ /* For SDI / SDO: Check if writes to those registers are allowed while SDCTL's RUN bit is set. */ if (idxRegDsc >= HDA_NUM_GENERAL_REGS) { const uint32_t uSDCTL = HDA_STREAM_REG(pThis, CTL, HDA_SD_NUM_FROM_REG(pThis, CTL, idxRegDsc)); /* * Some OSes (like Win 10 AU) violate the spec by writing stuff to registers which are not supposed to be be touched * while SDCTL's RUN bit is set. So just ignore those values. */ /* Is the RUN bit currently set? */ if ( RT_BOOL(uSDCTL & HDA_SDCTL_RUN) /* Are writes to the register denied if RUN bit is set? */ && !(g_aHdaRegMap[idxRegDsc].fFlags & HDA_RD_FLAG_SD_WRITE_RUN)) { Log(("hdaWriteReg: Warning: Access to %s is blocked! %R[sdctl]\n", g_aHdaRegMap[idxRegDsc].abbrev, uSDCTL)); LogRel2(("HDA: Warning: Access to register %s is blocked while the stream's RUN bit is set\n", g_aHdaRegMap[idxRegDsc].abbrev)); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } } /* Leave the lock before calling write function. */ /** @todo r=bird: Why do we need to do that?? There is no * explanation why this is necessary here... * * More or less all write functions retake the lock, so why not let * those who need to drop the lock or take additional locks release * it? See, releasing a lock you already got always runs the risk * of someone else grabbing it and forcing you to wait, better to * do the two-three things a write handle needs to do than enter * and exit the lock all the time. */ DEVHDA_UNLOCK(pThis); #ifdef LOG_ENABLED uint32_t const idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; uint32_t const u32OldValue = pThis->au32Regs[idxRegMem]; #endif int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value); Log3Func(("Written value %#x to %s[%d byte]; %x => %x%s, rc=%d\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev, g_aHdaRegMap[idxRegDsc].size, u32OldValue, pThis->au32Regs[idxRegMem], pszLog, rc)); RT_NOREF(pszLog); return rc; } /** * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.} */ PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; RT_NOREF_PV(pvUser); Assert(pThis->uAlignmentCheckMagic == HDASTATE_ALIGNMENT_CHECK_MAGIC); /* * The behavior of accesses that aren't aligned on natural boundraries is * undefined. Just reject them outright. */ /** @todo IOM could check this, it could also split the 8 byte accesses for us. */ Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8); if (GCPhysAddr & (cb - 1)) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb); /* * Look up and log the access. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxRegDsc = hdaRegLookup(offReg); #if defined(IN_RING3) || defined(LOG_ENABLED) uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX; #endif uint64_t u64Value; if (cb == 4) u64Value = *(uint32_t const *)pv; else if (cb == 2) u64Value = *(uint16_t const *)pv; else if (cb == 1) u64Value = *(uint8_t const *)pv; else if (cb == 8) u64Value = *(uint64_t const *)pv; else { u64Value = 0; /* shut up gcc. */ AssertReleaseMsgFailed(("%u\n", cb)); } #ifdef LOG_ENABLED uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX; if (idxRegDsc == -1) Log3Func(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb)); else if (cb == 4) Log3Func(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); else if (cb == 2) Log3Func(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); else if (cb == 1) Log3Func(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb) Log3Func(("\tsize=%RU32 != cb=%u!!\n", g_aHdaRegMap[idxRegDsc].size, cb)); #endif /* * Try for a direct hit first. */ if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb) { rc = hdaWriteReg(pThis, idxRegDsc, u64Value, ""); Log3Func(("\t%#x -> %#x\n", u32LogOldValue, idxRegMem != UINT32_MAX ? pThis->au32Regs[idxRegMem] : UINT32_MAX)); } /* * Partial or multiple register access, loop thru the requested memory. */ else { #ifdef IN_RING3 /* * If it's an access beyond the start of the register, shift the input * value and fill in missing bits. Natural alignment rules means we * will only see 1 or 2 byte accesses of this kind, so no risk of * shifting out input values. */ if (idxRegDsc == -1 && (idxRegDsc = hdaR3RegLookupWithin(offReg)) != -1) { uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4); offReg -= cbBefore; idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; u64Value <<= cbBefore * 8; u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore]; Log3Func(("\tWithin register, supplied %u leading bits: %#llx -> %#llx ...\n", cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value)); } /* Loop thru the write area, it may cover multiple registers. */ rc = VINF_SUCCESS; for (;;) { uint32_t cbReg; if (idxRegDsc != -1) { idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; cbReg = g_aHdaRegMap[idxRegDsc].size; if (cb < cbReg) { u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb]; Log3Func(("\tSupplying missing bits (%#x): %#llx -> %#llx ...\n", g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value)); } # ifdef LOG_ENABLED uint32_t uLogOldVal = pThis->au32Regs[idxRegMem]; # endif rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*"); Log3Func(("\t%#x -> %#x\n", uLogOldVal, pThis->au32Regs[idxRegMem])); } else { LogRel(("HDA: Invalid write access @0x%x\n", offReg)); cbReg = 1; } if (rc != VINF_SUCCESS) break; if (cbReg >= cb) break; /* Advance. */ offReg += cbReg; cb -= cbReg; u64Value >>= cbReg * 8; if (idxRegDsc == -1) idxRegDsc = hdaRegLookup(offReg); else { idxRegDsc++; if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap) || g_aHdaRegMap[idxRegDsc].offset != offReg) { idxRegDsc = -1; } } } #else /* !IN_RING3 */ /* Take the simple way out. */ rc = VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } return rc; } /* PCI callback. */ #ifdef IN_RING3 /** * @callback_method_impl{FNPCIIOREGIONMAP} */ static DECLCALLBACK(int) hdaR3PciIoRegionMap(PPDMDEVINS pDevIns, PPDMPCIDEV pPciDev, uint32_t iRegion, RTGCPHYS GCPhysAddress, RTGCPHYS cb, PCIADDRESSSPACE enmType) { RT_NOREF(iRegion, enmType); PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev); /* * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word. * * Let IOM talk DWORDs when reading, saves a lot of complications. On * writing though, we have to do it all ourselves because of sideeffects. */ Assert(enmType == PCI_ADDRESS_SPACE_MEM); int rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_PASSTHRU, hdaMMIOWrite, hdaMMIORead, "HDA"); if (RT_FAILURE(rc)) return rc; if (pThis->fRZEnabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; } pThis->MMIOBaseAddr = GCPhysAddress; return VINF_SUCCESS; } /* Saved state workers and callbacks. */ static int hdaR3SaveStream(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, PHDASTREAM pStream) { RT_NOREF(pDevIns); #if defined(LOG_ENABLED) PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); #endif Log2Func(("[SD%RU8]\n", pStream->u8SD)); /* Save stream ID. */ int rc = SSMR3PutU8(pSSM, pStream->u8SD); AssertRCReturn(rc, rc); Assert(pStream->u8SD < HDA_MAX_STREAMS); rc = SSMR3PutStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /*fFlags*/, g_aSSMStreamStateFields7, NULL); AssertRCReturn(rc, rc); rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC), 0 /*fFlags*/, g_aSSMBDLEDescFields7, NULL); AssertRCReturn(rc, rc); rc = SSMR3PutStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE), 0 /*fFlags*/, g_aSSMBDLEStateFields7, NULL); AssertRCReturn(rc, rc); rc = SSMR3PutStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD), 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL); AssertRCReturn(rc, rc); uint32_t cbCircBufSize = 0; uint32_t cbCircBufUsed = 0; if (pStream->State.pCircBuf) { cbCircBufSize = (uint32_t)RTCircBufSize(pStream->State.pCircBuf); cbCircBufUsed = (uint32_t)RTCircBufUsed(pStream->State.pCircBuf); } rc = SSMR3PutU32(pSSM, cbCircBufSize); AssertRCReturn(rc, rc); rc = SSMR3PutU32(pSSM, cbCircBufUsed); AssertRCReturn(rc, rc); if (cbCircBufUsed) { /* * We now need to get the circular buffer's data without actually modifying * the internal read / used offsets -- otherwise we would end up with broken audio * data after saving the state. * * So get the current read offset and serialize the buffer data manually based on that. */ size_t const offBuf = RTCircBufOffsetRead(pStream->State.pCircBuf); void *pvBuf; size_t cbBuf; RTCircBufAcquireReadBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf); Assert(cbBuf); if (cbBuf) { rc = SSMR3PutMem(pSSM, pvBuf, cbBuf); AssertRC(rc); if ( RT_SUCCESS(rc) && cbBuf < cbCircBufUsed) { rc = SSMR3PutMem(pSSM, (uint8_t *)pvBuf - offBuf, cbCircBufUsed - cbBuf); } } RTCircBufReleaseReadBlock(pStream->State.pCircBuf, 0 /* Don't advance read pointer -- see comment above */); } Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n", pStream->u8SD, HDA_STREAM_REG(pThis, LPIB, pStream->u8SD), HDA_STREAM_REG(pThis, CBL, pStream->u8SD), HDA_STREAM_REG(pThis, LVI, pStream->u8SD))); #ifdef LOG_ENABLED hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1); #endif return rc; } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) hdaR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); /* Save Codec nodes states. */ hdaCodecSaveState(pThis->pCodec, pSSM); /* Save MMIO registers. */ SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs)); SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); /* Save controller-specifc internals. */ SSMR3PutU64(pSSM, pThis->u64WalClk); SSMR3PutU8(pSSM, pThis->u8IRQL); /* Save number of streams. */ SSMR3PutU32(pSSM, HDA_MAX_STREAMS); /* Save stream states. */ for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++) { int rc = hdaR3SaveStream(pDevIns, pSSM, &pThis->aStreams[i]); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Does required post processing when loading a saved state. * * @param pThis Pointer to HDA state. */ static int hdaR3LoadExecPost(PHDASTATE pThis) { int rc = VINF_SUCCESS; /* * Enable all previously active streams. */ for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++) { PHDASTREAM pStream = hdaGetStreamFromSD(pThis, i); if (pStream) { int rc2; bool fActive = RT_BOOL(HDA_STREAM_REG(pThis, CTL, i) & HDA_SDCTL_RUN); if (fActive) { #ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO /* Make sure to also create the async I/O thread before actually enabling the stream. */ rc2 = hdaR3StreamAsyncIOCreate(pStream); AssertRC(rc2); /* ... and enabling it. */ hdaR3StreamAsyncIOEnable(pStream, true /* fEnable */); #endif /* Resume the stream's period. */ hdaR3StreamPeriodResume(&pStream->State.Period); /* (Re-)enable the stream. */ rc2 = hdaR3StreamEnable(pStream, true /* fEnable */); AssertRC(rc2); /* Add the stream to the device setup. */ rc2 = hdaR3AddStream(pThis, &pStream->State.Cfg); AssertRC(rc2); #ifdef HDA_USE_DMA_ACCESS_HANDLER /* (Re-)install the DMA handler. */ hdaR3StreamRegisterDMAHandlers(pThis, pStream); #endif if (hdaR3StreamTransferIsScheduled(pStream)) hdaR3TimerSet(pThis, pStream, hdaR3StreamTransferGetNext(pStream), true /* fForce */); /* Also keep track of the currently active streams. */ pThis->cStreamsActive++; } } } LogFlowFuncLeaveRC(rc); return rc; } /** * Handles loading of all saved state versions older than the current one. * * @param pThis Pointer to HDA state. * @param pSSM Pointer to SSM handle. * @param uVersion Saved state version to load. * @param uPass Loading stage to handle. */ static int hdaR3LoadExecLegacy(PHDASTATE pThis, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { RT_NOREF(uPass); int rc = VINF_SUCCESS; /* * Load MMIO registers. */ uint32_t cRegs; switch (uVersion) { case HDA_SSM_VERSION_1: /* Starting with r71199, we would save 112 instead of 113 registers due to some code cleanups. This only affected trunk builds in the 4.1 development period. */ cRegs = 113; if (SSMR3HandleRevision(pSSM) >= 71199) { uint32_t uVer = SSMR3HandleVersion(pSSM); if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51) cRegs = 112; } break; case HDA_SSM_VERSION_2: case HDA_SSM_VERSION_3: cRegs = 112; AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= 112); break; /* Since version 4 we store the register count to stay flexible. */ case HDA_SSM_VERSION_4: case HDA_SSM_VERSION_5: case HDA_SSM_VERSION_6: rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc); if (cRegs != RT_ELEMENTS(pThis->au32Regs)) LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs))); break; default: LogRel(("HDA: Warning: Unsupported / too new saved state version (%RU32)\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (cRegs >= RT_ELEMENTS(pThis->au32Regs)) { SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs))); } else SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs); /* Make sure to update the base addresses first before initializing any streams down below. */ pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE)); pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE)); pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE)); /* Also make sure to update the DMA position bit if this was enabled when saving the state. */ pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0)); /* * Note: Saved states < v5 store LVI (u32BdleMaxCvi) for * *every* BDLE state, whereas it only needs to be stored * *once* for every stream. Most of the BDLE state we can * get out of the registers anyway, so just ignore those values. * * Also, only the current BDLE was saved, regardless whether * there were more than one (and there are at least two entries, * according to the spec). */ #define HDA_SSM_LOAD_BDLE_STATE_PRE_V5(v, x) \ { \ rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ \ AssertRCReturn(rc, rc); \ rc = SSMR3GetU64(pSSM, &x.Desc.u64BufAddr); /* u64BdleCviAddr */ \ AssertRCReturn(rc, rc); \ rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* u32BdleMaxCvi */ \ AssertRCReturn(rc, rc); \ rc = SSMR3GetU32(pSSM, &x.State.u32BDLIndex); /* u32BdleCvi */ \ AssertRCReturn(rc, rc); \ rc = SSMR3GetU32(pSSM, &x.Desc.u32BufSize); /* u32BdleCviLen */ \ AssertRCReturn(rc, rc); \ rc = SSMR3GetU32(pSSM, &x.State.u32BufOff); /* u32BdleCviPos */ \ AssertRCReturn(rc, rc); \ bool fIOC; \ rc = SSMR3GetBool(pSSM, &fIOC); /* fBdleCviIoc */ \ AssertRCReturn(rc, rc); \ x.Desc.fFlags = fIOC ? HDA_BDLE_FLAG_IOC : 0; \ rc = SSMR3GetU32(pSSM, &x.State.cbBelowFIFOW); /* cbUnderFifoW */ \ AssertRCReturn(rc, rc); \ rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO */ \ AssertRCReturn(rc, rc); \ rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ \ AssertRCReturn(rc, rc); \ } /* * Load BDLEs (Buffer Descriptor List Entries) and DMA counters. */ switch (uVersion) { case HDA_SSM_VERSION_1: case HDA_SSM_VERSION_2: case HDA_SSM_VERSION_3: case HDA_SSM_VERSION_4: { /* Only load the internal states. * The rest will be initialized from the saved registers later. */ /* Note 1: Only the *current* BDLE for a stream was saved! */ /* Note 2: The stream's saving order is/was fixed, so don't touch! */ /* Output */ PHDASTREAM pStream = &pThis->aStreams[4]; rc = hdaR3StreamInit(pStream, 4 /* Stream descriptor, hardcoded */); if (RT_FAILURE(rc)) break; HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE); pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex; /* Microphone-In */ pStream = &pThis->aStreams[2]; rc = hdaR3StreamInit(pStream, 2 /* Stream descriptor, hardcoded */); if (RT_FAILURE(rc)) break; HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE); pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex; /* Line-In */ pStream = &pThis->aStreams[0]; rc = hdaR3StreamInit(pStream, 0 /* Stream descriptor, hardcoded */); if (RT_FAILURE(rc)) break; HDA_SSM_LOAD_BDLE_STATE_PRE_V5(uVersion, pStream->State.BDLE); pStream->State.uCurBDLE = pStream->State.BDLE.State.u32BDLIndex; break; } #undef HDA_SSM_LOAD_BDLE_STATE_PRE_V5 default: /* Since v5 we support flexible stream and BDLE counts. */ { uint32_t cStreams; rc = SSMR3GetU32(pSSM, &cStreams); if (RT_FAILURE(rc)) break; if (cStreams > HDA_MAX_STREAMS) cStreams = HDA_MAX_STREAMS; /* Sanity. */ /* Load stream states. */ for (uint32_t i = 0; i < cStreams; i++) { uint8_t uStreamID; rc = SSMR3GetU8(pSSM, &uStreamID); if (RT_FAILURE(rc)) break; PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID); HDASTREAM StreamDummy; if (!pStream) { pStream = &StreamDummy; LogRel2(("HDA: Warning: Stream ID=%RU32 not supported, skipping to load ...\n", uStreamID)); } rc = hdaR3StreamInit(pStream, uStreamID); if (RT_FAILURE(rc)) { LogRel(("HDA: Stream #%RU32: Initialization of stream %RU8 failed, rc=%Rrc\n", i, uStreamID, rc)); break; } /* * Load BDLEs (Buffer Descriptor List Entries) and DMA counters. */ if (uVersion == HDA_SSM_VERSION_5) { /* Get the current BDLE entry and skip the rest. */ uint16_t cBDLE; rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ AssertRC(rc); rc = SSMR3GetU16(pSSM, &cBDLE); /* cBDLE */ AssertRC(rc); rc = SSMR3GetU16(pSSM, &pStream->State.uCurBDLE); /* uCurBDLE */ AssertRC(rc); rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ AssertRC(rc); uint32_t u32BDLEIndex; for (uint16_t a = 0; a < cBDLE; a++) { rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* Begin marker */ AssertRC(rc); rc = SSMR3GetU32(pSSM, &u32BDLEIndex); /* u32BDLIndex */ AssertRC(rc); /* Does the current BDLE index match the current BDLE to process? */ if (u32BDLEIndex == pStream->State.uCurBDLE) { rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.cbBelowFIFOW); /* cbBelowFIFOW */ AssertRC(rc); rc = SSMR3Skip(pSSM, sizeof(uint8_t) * 256); /* FIFO, deprecated */ AssertRC(rc); rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.State.u32BufOff); /* u32BufOff */ AssertRC(rc); rc = SSMR3Skip(pSSM, sizeof(uint32_t)); /* End marker */ AssertRC(rc); } else /* Skip not current BDLEs. */ { rc = SSMR3Skip(pSSM, sizeof(uint32_t) /* cbBelowFIFOW */ + sizeof(uint8_t) * 256 /* au8FIFO */ + sizeof(uint32_t) /* u32BufOff */ + sizeof(uint32_t)); /* End marker */ AssertRC(rc); } } } else { rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /* fFlags */, g_aSSMStreamStateFields6, NULL); if (RT_FAILURE(rc)) break; /* Get HDABDLEDESC. */ uint32_t uMarker; rc = SSMR3GetU32(pSSM, &uMarker); /* Begin marker. */ AssertRC(rc); Assert(uMarker == UINT32_C(0x19200102) /* SSMR3STRUCT_BEGIN */); rc = SSMR3GetU64(pSSM, &pStream->State.BDLE.Desc.u64BufAddr); AssertRC(rc); rc = SSMR3GetU32(pSSM, &pStream->State.BDLE.Desc.u32BufSize); AssertRC(rc); bool fFlags = false; rc = SSMR3GetBool(pSSM, &fFlags); /* Saved states < v7 only stored the IOC as boolean flag. */ AssertRC(rc); pStream->State.BDLE.Desc.fFlags = fFlags ? HDA_BDLE_FLAG_IOC : 0; rc = SSMR3GetU32(pSSM, &uMarker); /* End marker. */ AssertRC(rc); Assert(uMarker == UINT32_C(0x19920406) /* SSMR3STRUCT_END */); rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE), 0 /* fFlags */, g_aSSMBDLEStateFields6, NULL); if (RT_FAILURE(rc)) break; Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n", uStreamID, HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID))); #ifdef LOG_ENABLED hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1); #endif } } /* for cStreams */ break; } /* default */ } return rc; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) hdaR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); LogRel2(("hdaR3LoadExec: uVersion=%RU32, uPass=0x%x\n", uVersion, uPass)); /* * Load Codec nodes states. */ int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion); if (RT_FAILURE(rc)) { LogRel(("HDA: Failed loading codec state (version %RU32, pass 0x%x), rc=%Rrc\n", uVersion, uPass, rc)); return rc; } if (uVersion < HDA_SSM_VERSION) /* Handle older saved states? */ { rc = hdaR3LoadExecLegacy(pThis, pSSM, uVersion, uPass); if (RT_SUCCESS(rc)) rc = hdaR3LoadExecPost(pThis); return rc; } /* * Load MMIO registers. */ uint32_t cRegs; rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc); if (cRegs != RT_ELEMENTS(pThis->au32Regs)) LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs))); if (cRegs >= RT_ELEMENTS(pThis->au32Regs)) { SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs))); } else SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs); /* Make sure to update the base addresses first before initializing any streams down below. */ pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE)); pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE)); pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE) & DPBASE_ADDR_MASK, HDA_REG(pThis, DPUBASE)); /* Also make sure to update the DMA position bit if this was enabled when saving the state. */ pThis->fDMAPosition = RT_BOOL(HDA_REG(pThis, DPLBASE) & RT_BIT_32(0)); /* * Load controller-specifc internals. * Don't annoy other team mates (forgot this for state v7). */ if ( SSMR3HandleRevision(pSSM) >= 116273 || SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(5, 2, 0)) { rc = SSMR3GetU64(pSSM, &pThis->u64WalClk); AssertRC(rc); rc = SSMR3GetU8(pSSM, &pThis->u8IRQL); AssertRC(rc); } /* * Load streams. */ uint32_t cStreams; rc = SSMR3GetU32(pSSM, &cStreams); AssertRC(rc); if (cStreams > HDA_MAX_STREAMS) cStreams = HDA_MAX_STREAMS; /* Sanity. */ Log2Func(("cStreams=%RU32\n", cStreams)); /* Load stream states. */ for (uint32_t i = 0; i < cStreams; i++) { uint8_t uStreamID; rc = SSMR3GetU8(pSSM, &uStreamID); AssertRC(rc); PHDASTREAM pStream = hdaGetStreamFromSD(pThis, uStreamID); HDASTREAM StreamDummy; if (!pStream) { pStream = &StreamDummy; LogRel2(("HDA: Warning: Loading of stream #%RU8 not supported, skipping to load ...\n", uStreamID)); } rc = hdaR3StreamInit(pStream, uStreamID); if (RT_FAILURE(rc)) { LogRel(("HDA: Stream #%RU8: Loading initialization failed, rc=%Rrc\n", uStreamID, rc)); /* Continue. */ } rc = SSMR3GetStructEx(pSSM, &pStream->State, sizeof(HDASTREAMSTATE), 0 /* fFlags */, g_aSSMStreamStateFields7, NULL); AssertRC(rc); /* * Load BDLEs (Buffer Descriptor List Entries) and DMA counters. */ rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.Desc, sizeof(HDABDLEDESC), 0 /* fFlags */, g_aSSMBDLEDescFields7, NULL); AssertRC(rc); rc = SSMR3GetStructEx(pSSM, &pStream->State.BDLE.State, sizeof(HDABDLESTATE), 0 /* fFlags */, g_aSSMBDLEStateFields7, NULL); AssertRC(rc); Log2Func(("[SD%RU8] %R[bdle]\n", pStream->u8SD, &pStream->State.BDLE)); /* * Load period state. */ hdaR3StreamPeriodInit(&pStream->State.Period, pStream->u8SD, pStream->u16LVI, pStream->u32CBL, &pStream->State.Cfg); rc = SSMR3GetStructEx(pSSM, &pStream->State.Period, sizeof(HDASTREAMPERIOD), 0 /* fFlags */, g_aSSMStreamPeriodFields7, NULL); AssertRC(rc); /* * Load internal (FIFO) buffer. */ uint32_t cbCircBufSize = 0; rc = SSMR3GetU32(pSSM, &cbCircBufSize); /* cbCircBuf */ AssertRC(rc); uint32_t cbCircBufUsed = 0; rc = SSMR3GetU32(pSSM, &cbCircBufUsed); /* cbCircBuf */ AssertRC(rc); if (cbCircBufSize) /* If 0, skip the buffer. */ { /* Paranoia. */ AssertReleaseMsg(cbCircBufSize <= _1M, ("HDA: Saved state contains bogus DMA buffer size (%RU32) for stream #%RU8", cbCircBufSize, uStreamID)); AssertReleaseMsg(cbCircBufUsed <= cbCircBufSize, ("HDA: Saved state contains invalid DMA buffer usage (%RU32/%RU32) for stream #%RU8", cbCircBufUsed, cbCircBufSize, uStreamID)); /* Do we need to cre-create the circular buffer do fit the data size? */ if ( pStream->State.pCircBuf && cbCircBufSize != (uint32_t)RTCircBufSize(pStream->State.pCircBuf)) { RTCircBufDestroy(pStream->State.pCircBuf); pStream->State.pCircBuf = NULL; } rc = RTCircBufCreate(&pStream->State.pCircBuf, cbCircBufSize); AssertRC(rc); if ( RT_SUCCESS(rc) && cbCircBufUsed) { void *pvBuf; size_t cbBuf; RTCircBufAcquireWriteBlock(pStream->State.pCircBuf, cbCircBufUsed, &pvBuf, &cbBuf); if (cbBuf) { rc = SSMR3GetMem(pSSM, pvBuf, cbBuf); AssertRC(rc); } RTCircBufReleaseWriteBlock(pStream->State.pCircBuf, cbBuf); Assert(cbBuf == cbCircBufUsed); } } Log2Func(("[SD%RU8] LPIB=%RU32, CBL=%RU32, LVI=%RU32\n", uStreamID, HDA_STREAM_REG(pThis, LPIB, uStreamID), HDA_STREAM_REG(pThis, CBL, uStreamID), HDA_STREAM_REG(pThis, LVI, uStreamID))); #ifdef LOG_ENABLED hdaR3BDLEDumpAll(pThis, pStream->u64BDLBase, pStream->u16LVI + 1); #endif /** @todo (Re-)initialize active periods? */ } /* for cStreams */ rc = hdaR3LoadExecPost(pThis); AssertRC(rc); LogFlowFuncLeaveRC(rc); return rc; } /* IPRT format type handlers. */ /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaR3StrFmtBDLE(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser); PHDABDLE pBDLE = (PHDABDLE)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "BDLE(idx:%RU32, off:%RU32, fifow:%RU32, IOC:%RTbool, DMA[%RU32 bytes @ 0x%x])", pBDLE->State.u32BDLIndex, pBDLE->State.u32BufOff, pBDLE->State.cbBelowFIFOW, pBDLE->Desc.fFlags & HDA_BDLE_FLAG_IOC, pBDLE->Desc.u32BufSize, pBDLE->Desc.u64BufAddr); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaR3StrFmtSDCTL(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser); uint32_t uSDCTL = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDCTL(raw:%#x, DIR:%s, TP:%RTbool, STRIPE:%x, DEIE:%RTbool, FEIE:%RTbool, IOCE:%RTbool, RUN:%RTbool, RESET:%RTbool)", uSDCTL, uSDCTL & HDA_SDCTL_DIR ? "OUT" : "IN", RT_BOOL(uSDCTL & HDA_SDCTL_TP), (uSDCTL & HDA_SDCTL_STRIPE_MASK) >> HDA_SDCTL_STRIPE_SHIFT, RT_BOOL(uSDCTL & HDA_SDCTL_DEIE), RT_BOOL(uSDCTL & HDA_SDCTL_FEIE), RT_BOOL(uSDCTL & HDA_SDCTL_IOCE), RT_BOOL(uSDCTL & HDA_SDCTL_RUN), RT_BOOL(uSDCTL & HDA_SDCTL_SRST)); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser); uint32_t uSDFIFOS = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw:%#x, sdfifos:%RU8 B)", uSDFIFOS, uSDFIFOS ? uSDFIFOS + 1 : 0); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaR3StrFmtSDFIFOW(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser); uint32_t uSDFIFOW = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSDFIFOW, hdaSDFIFOWToBytes(uSDFIFOW)); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaR3StrFmtSDSTS(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(pszType, cchWidth, cchPrecision, fFlags, pvUser); uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDSTS(raw:%#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)", uSdSts, RT_BOOL(uSdSts & HDA_SDSTS_FIFORDY), RT_BOOL(uSdSts & HDA_SDSTS_DESE), RT_BOOL(uSdSts & HDA_SDSTS_FIFOE), RT_BOOL(uSdSts & HDA_SDSTS_BCIS)); } /* Debug info dumpers */ static int hdaR3DbgLookupRegByName(const char *pszArgs) { int iReg = 0; for (; iReg < HDA_NUM_REGS; ++iReg) if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs)) return iReg; return -1; } static void hdaR3DbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex) { Assert( pThis && iHdaIndex >= 0 && iHdaIndex < HDA_NUM_REGS); pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaRegisterIndex = hdaR3DbgLookupRegByName(pszArgs); if (iHdaRegisterIndex != -1) hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); else { for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NUM_REGS; ++iHdaRegisterIndex) hdaR3DbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); } } static void hdaR3DbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx) { Assert( pThis && iIdx >= 0 && iIdx < HDA_MAX_STREAMS); const PHDASTREAM pStream = &pThis->aStreams[iIdx]; pHlp->pfnPrintf(pHlp, "Stream #%d:\n", iIdx); pHlp->pfnPrintf(pHlp, "\tSD%dCTL : %R[sdctl]\n", iIdx, HDA_STREAM_REG(pThis, CTL, iIdx)); pHlp->pfnPrintf(pHlp, "\tSD%dCTS : %R[sdsts]\n", iIdx, HDA_STREAM_REG(pThis, STS, iIdx)); pHlp->pfnPrintf(pHlp, "\tSD%dFIFOS: %R[sdfifos]\n", iIdx, HDA_STREAM_REG(pThis, FIFOS, iIdx)); pHlp->pfnPrintf(pHlp, "\tSD%dFIFOW: %R[sdfifow]\n", iIdx, HDA_STREAM_REG(pThis, FIFOW, iIdx)); pHlp->pfnPrintf(pHlp, "\tBDLE : %R[bdle]\n", &pStream->State.BDLE); } static void hdaR3DbgPrintBDLE(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iIdx) { Assert( pThis && iIdx >= 0 && iIdx < HDA_MAX_STREAMS); const PHDASTREAM pStream = &pThis->aStreams[iIdx]; const PHDABDLE pBDLE = &pStream->State.BDLE; pHlp->pfnPrintf(pHlp, "Stream #%d BDLE:\n", iIdx); uint64_t u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, iIdx), HDA_STREAM_REG(pThis, BDPU, iIdx)); uint16_t u16LVI = HDA_STREAM_REG(pThis, LVI, iIdx); uint32_t u32CBL = HDA_STREAM_REG(pThis, CBL, iIdx); if (!u64BaseDMA) return; pHlp->pfnPrintf(pHlp, "\tCurrent: %R[bdle]\n\n", pBDLE); pHlp->pfnPrintf(pHlp, "\tMemory:\n"); uint32_t cbBDLE = 0; for (uint16_t i = 0; i < u16LVI + 1; i++) { HDABDLEDESC bd; PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i * sizeof(HDABDLEDESC), &bd, sizeof(bd)); pHlp->pfnPrintf(pHlp, "\t\t%s #%03d BDLE(adr:0x%llx, size:%RU32, ioc:%RTbool)\n", pBDLE->State.u32BDLIndex == i ? "*" : " ", i, bd.u64BufAddr, bd.u32BufSize, bd.fFlags & HDA_BDLE_FLAG_IOC); cbBDLE += bd.u32BufSize; } pHlp->pfnPrintf(pHlp, "Total: %RU32 bytes\n", cbBDLE); if (cbBDLE != u32CBL) pHlp->pfnPrintf(pHlp, "Warning: %RU32 bytes does not match CBL (%RU32)!\n", cbBDLE, u32CBL); pHlp->pfnPrintf(pHlp, "DMA counters (base @ 0x%llx):\n", u64BaseDMA); if (!u64BaseDMA) /* No DMA base given? Bail out. */ { pHlp->pfnPrintf(pHlp, "\tNo counters found\n"); return; } for (int i = 0; i < u16LVI + 1; i++) { uint32_t uDMACnt; PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + (i * 2 * sizeof(uint32_t)), &uDMACnt, sizeof(uDMACnt)); pHlp->pfnPrintf(pHlp, "\t#%03d DMA @ 0x%x\n", i , uDMACnt); } } static int hdaR3DbgLookupStrmIdx(PHDASTATE pThis, const char *pszArgs) { RT_NOREF(pThis, pszArgs); /** @todo Add args parsing. */ return -1; } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs); if (iHdaStreamdex != -1) hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex); else for(iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex) hdaR3DbgPrintStream(pThis, pHlp, iHdaStreamdex); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfoBDLE(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaStreamdex = hdaR3DbgLookupStrmIdx(pThis, pszArgs); if (iHdaStreamdex != -1) hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex); else for (iHdaStreamdex = 0; iHdaStreamdex < HDA_MAX_STREAMS; ++iHdaStreamdex) hdaR3DbgPrintBDLE(pThis, pHlp, iHdaStreamdex); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnDbgListNodes) pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n"); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnDbgSelector) pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n"); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaR3DbgInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pMixer) AudioMixerDebug(pThis->pMixer, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Mixer not available\n"); } /* PDMIBASE */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) hdaR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase); Assert(&pThis->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); return NULL; } /* PDMDEVREG */ /** * Attach command, internal version. * * This is called to let the device attach to a driver for a specified LUN * during runtime. This is not called during VM construction, the device * constructor has to attach to all the available drivers. * * @returns VBox status code. * @param pThis HDA state. * @param uLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. * @param ppDrv Attached driver instance on success. Optional. */ static int hdaR3AttachInternal(PHDASTATE pThis, unsigned uLUN, uint32_t fFlags, PHDADRIVER *ppDrv) { RT_NOREF(fFlags); /* * Attach driver. */ char *pszDesc; if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0) AssertLogRelFailedReturn(VERR_NO_MEMORY); PPDMIBASE pDrvBase; int rc = PDMDevHlpDriverAttach(pThis->pDevInsR3, uLUN, &pThis->IBase, &pDrvBase, pszDesc); if (RT_SUCCESS(rc)) { PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER)); if (pDrv) { pDrv->pDrvBase = pDrvBase; pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pDrvBase, PDMIAUDIOCONNECTOR); AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc)); pDrv->pHDAState = pThis; pDrv->uLUN = uLUN; /* * For now we always set the driver at LUN 0 as our primary * host backend. This might change in the future. */ if (pDrv->uLUN == 0) pDrv->fFlags |= PDMAUDIODRVFLAGS_PRIMARY; LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->fFlags)); /* Attach to driver list if not attached yet. */ if (!pDrv->fAttached) { RTListAppend(&pThis->lstDrv, &pDrv->Node); pDrv->fAttached = true; } if (ppDrv) *ppDrv = pDrv; } else rc = VERR_NO_MEMORY; } else if (rc == VERR_PDM_NO_ATTACHED_DRIVER) LogFunc(("No attached driver for LUN #%u\n", uLUN)); if (RT_FAILURE(rc)) { /* Only free this string on failure; * must remain valid for the live of the driver instance. */ RTStrFree(pszDesc); } LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc)); return rc; } /** * Detach command, internal version. * * This is called to let the device detach from a driver for a specified LUN * during runtime. * * @returns VBox status code. * @param pThis HDA state. * @param pDrv Driver to detach from device. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static int hdaR3DetachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint32_t fFlags) { RT_NOREF(fFlags); /* First, remove the driver from our list and destory it's associated streams. * This also will un-set the driver as a recording source (if associated). */ hdaR3MixerRemoveDrv(pThis, pDrv); /* Next, search backwards for a capable (attached) driver which now will be the * new recording source. */ PHDADRIVER pDrvCur; RTListForEachReverse(&pThis->lstDrv, pDrvCur, HDADRIVER, Node) { if (!pDrvCur->pConnector) continue; PDMAUDIOBACKENDCFG Cfg; int rc2 = pDrvCur->pConnector->pfnGetConfig(pDrvCur->pConnector, &Cfg); if (RT_FAILURE(rc2)) continue; PHDADRIVERSTREAM pDrvStrm; # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN pDrvStrm = &pDrvCur->MicIn; if ( pDrvStrm && pDrvStrm->pMixStrm) { rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkMicIn.pMixSink, pDrvStrm->pMixStrm); if (RT_SUCCESS(rc2)) LogRel2(("HDA: Set new recording source for 'Mic In' to '%s'\n", Cfg.szName)); } # endif pDrvStrm = &pDrvCur->LineIn; if ( pDrvStrm && pDrvStrm->pMixStrm) { rc2 = AudioMixerSinkSetRecordingSource(pThis->SinkLineIn.pMixSink, pDrvStrm->pMixStrm); if (RT_SUCCESS(rc2)) LogRel2(("HDA: Set new recording source for 'Line In' to '%s'\n", Cfg.szName)); } } LogFunc(("uLUN=%u, fFlags=0x%x\n", pDrv->uLUN, fFlags)); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnAttach} */ static DECLCALLBACK(int) hdaR3Attach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); DEVHDA_LOCK_RETURN(pThis, VERR_IGNORED); LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags)); PHDADRIVER pDrv; int rc2 = hdaR3AttachInternal(pThis, uLUN, fFlags, &pDrv); if (RT_SUCCESS(rc2)) rc2 = hdaR3MixerAddDrv(pThis, pDrv); if (RT_FAILURE(rc2)) LogFunc(("Failed with %Rrc\n", rc2)); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnDetach} */ static DECLCALLBACK(void) hdaR3Detach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); DEVHDA_LOCK(pThis); LogFunc(("uLUN=%u, fFlags=0x%x\n", uLUN, fFlags)); PHDADRIVER pDrv, pDrvNext; RTListForEachSafe(&pThis->lstDrv, pDrv, pDrvNext, HDADRIVER, Node) { if (pDrv->uLUN == uLUN) { int rc2 = hdaR3DetachInternal(pThis, pDrv, fFlags); if (RT_SUCCESS(rc2)) { RTMemFree(pDrv); pDrv = NULL; } break; } } DEVHDA_UNLOCK(pThis); } /** * Powers off the device. * * @param pDevIns Device instance to power off. */ static DECLCALLBACK(void) hdaR3PowerOff(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); DEVHDA_LOCK_RETURN_VOID(pThis); LogRel2(("HDA: Powering off ...\n")); /* Ditto goes for the codec, which in turn uses the mixer. */ hdaCodecPowerOff(pThis->pCodec); /* * Note: Destroy the mixer while powering off and *not* in hdaR3Destruct, * giving the mixer the chance to release any references held to * PDM audio streams it maintains. */ if (pThis->pMixer) { AudioMixerDestroy(pThis->pMixer); pThis->pMixer = NULL; } DEVHDA_UNLOCK(pThis); } /** * Re-attaches (replaces) a driver with a new driver. * * This is only used by to attach the Null driver when it failed to attach the * one that was configured. * * @returns VBox status code. * @param pThis Device instance to re-attach driver to. * @param pDrv Driver instance used for attaching to. * If NULL is specified, a new driver will be created and appended * to the driver list. * @param uLUN The logical unit which is being re-detached. * @param pszDriver New driver name to attach. */ static int hdaR3ReattachInternal(PHDASTATE pThis, PHDADRIVER pDrv, uint8_t uLUN, const char *pszDriver) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); AssertPtrReturn(pszDriver, VERR_INVALID_POINTER); int rc; if (pDrv) { rc = hdaR3DetachInternal(pThis, pDrv, 0 /* fFlags */); if (RT_SUCCESS(rc)) rc = PDMDevHlpDriverDetach(pThis->pDevInsR3, PDMIBASE_2_PDMDRV(pDrv->pDrvBase), 0 /* fFlags */); if (RT_FAILURE(rc)) return rc; pDrv = NULL; } PVM pVM = PDMDevHlpGetVM(pThis->pDevInsR3); PCFGMNODE pRoot = CFGMR3GetRoot(pVM); PCFGMNODE pDev0 = CFGMR3GetChild(pRoot, "Devices/hda/0/"); /* Remove LUN branch. */ CFGMR3RemoveNode(CFGMR3GetChildF(pDev0, "LUN#%u/", uLUN)); #define RC_CHECK() if (RT_FAILURE(rc)) { AssertReleaseRC(rc); break; } do { PCFGMNODE pLunL0; rc = CFGMR3InsertNodeF(pDev0, &pLunL0, "LUN#%u/", uLUN); RC_CHECK(); rc = CFGMR3InsertString(pLunL0, "Driver", "AUDIO"); RC_CHECK(); rc = CFGMR3InsertNode(pLunL0, "Config/", NULL); RC_CHECK(); PCFGMNODE pLunL1, pLunL2; rc = CFGMR3InsertNode (pLunL0, "AttachedDriver/", &pLunL1); RC_CHECK(); rc = CFGMR3InsertNode (pLunL1, "Config/", &pLunL2); RC_CHECK(); rc = CFGMR3InsertString(pLunL1, "Driver", pszDriver); RC_CHECK(); rc = CFGMR3InsertString(pLunL2, "AudioDriver", pszDriver); RC_CHECK(); } while (0); if (RT_SUCCESS(rc)) rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */); LogFunc(("pThis=%p, uLUN=%u, pszDriver=%s, rc=%Rrc\n", pThis, uLUN, pszDriver, rc)); #undef RC_CHECK return rc; } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) hdaR3Reset(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); LogFlowFuncEnter(); DEVHDA_LOCK_RETURN_VOID(pThis); /* * 18.2.6,7 defines that values of this registers might be cleared on power on/reset * hdaR3Reset shouldn't affects these registers. */ HDA_REG(pThis, WAKEEN) = 0x0; hdaR3GCTLReset(pThis); /* Indicate that HDA is not in reset. The firmware is supposed to (un)reset HDA, * but we can take a shortcut. */ HDA_REG(pThis, GCTL) = HDA_GCTL_CRST; DEVHDA_UNLOCK(pThis); } /** * @interface_method_impl{PDMDEVREG,pfnRelocate} */ static DECLCALLBACK(void) hdaR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { NOREF(offDelta); PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) hdaR3Destruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); /* this shall come first */ PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); DEVHDA_LOCK(pThis); /** @todo r=bird: this will fail on early constructor failure. */ PHDADRIVER pDrv; while (!RTListIsEmpty(&pThis->lstDrv)) { pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node); RTListNodeRemove(&pDrv->Node); RTMemFree(pDrv); } if (pThis->pCodec) { hdaCodecDestruct(pThis->pCodec); RTMemFree(pThis->pCodec); pThis->pCodec = NULL; } RTMemFree(pThis->pu32CorbBuf); pThis->pu32CorbBuf = NULL; RTMemFree(pThis->pu64RirbBuf); pThis->pu64RirbBuf = NULL; for (uint8_t i = 0; i < HDA_MAX_STREAMS; i++) hdaR3StreamDestroy(&pThis->aStreams[i]); DEVHDA_UNLOCK(pThis); return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) hdaR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* this shall come first */ PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); Assert(iInstance == 0); RT_NOREF(iInstance); /* * Initialize the state sufficently to make the destructor work. */ pThis->uAlignmentCheckMagic = HDASTATE_ALIGNMENT_CHECK_MAGIC; RTListInit(&pThis->lstDrv); /** @todo r=bird: There are probably other things which should be * initialized here before we start failing. */ /* * Validations. */ if (!CFGMR3AreValuesValid(pCfg, "RZEnabled\0" "TimerHz\0" "PosAdjustEnabled\0" "PosAdjustFrames\0" "DebugEnabled\0" "DebugPathOut\0")) { return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_ ("Invalid configuration for the Intel HDA device")); } int rc = CFGMR3QueryBoolDef(pCfg, "RZEnabled", &pThis->fRZEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read RCEnabled as boolean")); rc = CFGMR3QueryU16Def(pCfg, "TimerHz", &pThis->uTimerHz, HDA_TIMER_HZ_DEFAULT /* Default value, if not set. */); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read Hertz (Hz) rate as unsigned integer")); if (pThis->uTimerHz != HDA_TIMER_HZ_DEFAULT) LogRel(("HDA: Using custom device timer rate (%RU16Hz)\n", pThis->uTimerHz)); rc = CFGMR3QueryBoolDef(pCfg, "PosAdjustEnabled", &pThis->fPosAdjustEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read position adjustment enabled as boolean")); if (!pThis->fPosAdjustEnabled) LogRel(("HDA: Position adjustment is disabled\n")); rc = CFGMR3QueryU16Def(pCfg, "PosAdjustFrames", &pThis->cPosAdjustFrames, HDA_POS_ADJUST_DEFAULT); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read position adjustment frames as unsigned integer")); if (pThis->cPosAdjustFrames) LogRel(("HDA: Using custom position adjustment (%RU16 audio frames)\n", pThis->cPosAdjustFrames)); rc = CFGMR3QueryBoolDef(pCfg, "DebugEnabled", &pThis->Dbg.fEnabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read debugging enabled flag as boolean")); rc = CFGMR3QueryStringDef(pCfg, "DebugPathOut", pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath), VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read debugging output path flag as string")); if (!strlen(pThis->Dbg.szOutPath)) RTStrPrintf(pThis->Dbg.szOutPath, sizeof(pThis->Dbg.szOutPath), VBOX_AUDIO_DEBUG_DUMP_PCM_DATA_PATH); if (pThis->Dbg.fEnabled) LogRel2(("HDA: Debug output will be saved to '%s'\n", pThis->Dbg.szOutPath)); /* * Use an own critical section for the device instead of the default * one provided by PDM. This allows fine-grained locking in combination * with TM when timer-specific stuff is being called in e.g. the MMIO handlers. */ rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "HDA"); AssertRCReturn(rc, rc); rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); /* * Initialize data (most of it anyway). */ pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); /* IBase */ pThis->IBase.pfnQueryInterface = hdaR3QueryInterface; /* PCI Device */ PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */ PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */ PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */ PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */ PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */ PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */ PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */ PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */ PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */ PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */ false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000); PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */ PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */ #if defined(HDA_AS_PCI_EXPRESS) PCIDevSetCapabilityList (&pThis->PciDev, 0x80); #elif defined(VBOX_WITH_MSI_DEVICES) PCIDevSetCapabilityList (&pThis->PciDev, 0x60); #else PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */ #endif /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning /// of these values needs to be properly documented! /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ PCIDevSetByte(&pThis->PciDev, 0x40, 0x01); /* Power Management */ PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM); PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */ PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ ); #ifdef HDA_AS_PCI_EXPRESS /* PCI Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */ /* Device flags */ PCIDevSetWord(&pThis->PciDev, 0x80 + 2, /* version */ 0x1 | /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) | /* MSI */ (100) << 9 ); /* Device capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET); /* Device control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0); /* Device status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0); /* Link caps */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0); /* Link control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0); /* Link status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0); /* Slot capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0); /* Slot control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0); /* Slot status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0); /* Root control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0); /* Root capabilities */ PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0); /* Root status */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0); /* Device capabilities 2 */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0); /* Device control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0); /* Link control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0); /* Slot control 2 */ PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0); #endif /* * Register the PCI device. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaR3PciIoRegionMap); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = 0x60; MsiReg.iMsiNextOffset = 0x50; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE(rc)) { /* That's OK, we can work without MSI */ PCIDevSetCapabilityList(&pThis->PciDev, 0x50); } #endif rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaR3SaveExec, hdaR3LoadExec); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_AUDIO_HDA_ASYNC_IO LogRel(("HDA: Asynchronous I/O enabled\n")); #endif uint8_t uLUN; for (uLUN = 0; uLUN < UINT8_MAX; ++uLUN) { LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", uLUN)); rc = hdaR3AttachInternal(pThis, uLUN, 0 /* fFlags */, NULL /* ppDrv */); if (RT_FAILURE(rc)) { if (rc == VERR_PDM_NO_ATTACHED_DRIVER) rc = VINF_SUCCESS; else if (rc == VERR_AUDIO_BACKEND_INIT_FAILED) { hdaR3ReattachInternal(pThis, NULL /* pDrv */, uLUN, "NullAudio"); PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding", N_("Host audio backend initialization has failed. Selecting the NULL audio backend " "with the consequence that no sound is audible")); /* Attaching to the NULL audio backend will never fail. */ rc = VINF_SUCCESS; } break; } } LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc)); if (RT_SUCCESS(rc)) { rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer); if (RT_SUCCESS(rc)) { /* * Add mixer output sinks. */ #ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Front", AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink); AssertRC(rc); rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Center / Subwoofer", AUDMIXSINKDIR_OUTPUT, &pThis->SinkCenterLFE.pMixSink); AssertRC(rc); rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] Rear", AUDMIXSINKDIR_OUTPUT, &pThis->SinkRear.pMixSink); AssertRC(rc); #else rc = AudioMixerCreateSink(pThis->pMixer, "[Playback] PCM Output", AUDMIXSINKDIR_OUTPUT, &pThis->SinkFront.pMixSink); AssertRC(rc); #endif /* * Add mixer input sinks. */ rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Line In", AUDMIXSINKDIR_INPUT, &pThis->SinkLineIn.pMixSink); AssertRC(rc); #ifdef VBOX_WITH_AUDIO_HDA_MIC_IN rc = AudioMixerCreateSink(pThis->pMixer, "[Recording] Microphone In", AUDMIXSINKDIR_INPUT, &pThis->SinkMicIn.pMixSink); AssertRC(rc); #endif /* There is no master volume control. Set the master to max. */ PDMAUDIOVOLUME vol = { false, 255, 255 }; rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol); AssertRC(rc); } } if (RT_SUCCESS(rc)) { /* Allocate CORB buffer. */ pThis->cbCorbBuf = HDA_CORB_SIZE * HDA_CORB_ELEMENT_SIZE; pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf); if (pThis->pu32CorbBuf) { /* Allocate RIRB buffer. */ pThis->cbRirbBuf = HDA_RIRB_SIZE * HDA_RIRB_ELEMENT_SIZE; pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf); if (pThis->pu64RirbBuf) { /* Allocate codec. */ pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC)); if (!pThis->pCodec) rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state")); } else rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating RIRB")); } else rc = PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating CORB")); if (RT_SUCCESS(rc)) { /* Set codec callbacks to this controller. */ pThis->pCodec->pfnCbMixerAddStream = hdaR3MixerAddStream; pThis->pCodec->pfnCbMixerRemoveStream = hdaR3MixerRemoveStream; pThis->pCodec->pfnCbMixerControl = hdaR3MixerControl; pThis->pCodec->pfnCbMixerSetVolume = hdaR3MixerSetVolume; pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */ /* Construct the codec. */ rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfg); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for verb F20 should provide device/codec recognition. */ Assert(pThis->pCodec->u16VendorId); Assert(pThis->pCodec->u16DeviceId); PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */ PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */ } } if (RT_SUCCESS(rc)) { /* * Create all hardware streams. */ static const char * const s_apszNames[] = { "HDA SD0", "HDA SD1", "HDA SD2", "HDA SD3", "HDA SD4", "HDA SD5", "HDA SD6", "HDA SD7", }; AssertCompile(RT_ELEMENTS(s_apszNames) == HDA_MAX_STREAMS); for (uint8_t i = 0; i < HDA_MAX_STREAMS; ++i) { /* Create the emulation timer (per stream). * * Note: Use TMCLOCK_VIRTUAL_SYNC here, as the guest's HDA driver * relies on exact (virtual) DMA timing and uses DMA Position Buffers * instead of the LPIB registers. */ rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, hdaR3Timer, &pThis->aStreams[i], TMTIMER_FLAGS_NO_CRIT_SECT, s_apszNames[i], &pThis->pTimer[i]); AssertRCReturn(rc, rc); /* Use our own critcal section for the device timer. * That way we can control more fine-grained when to lock what. */ rc = TMR3TimerSetCritSect(pThis->pTimer[i], &pThis->CritSect); AssertRCReturn(rc, rc); rc = hdaR3StreamCreate(&pThis->aStreams[i], pThis, i /* u8SD */); AssertRC(rc); } #ifdef VBOX_WITH_AUDIO_HDA_ONETIME_INIT /* * Initialize the driver chain. */ PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { /* * Only primary drivers are critical for the VM to run. Everything else * might not worth showing an own error message box in the GUI. */ if (!(pDrv->fFlags & PDMAUDIODRVFLAGS_PRIMARY)) continue; PPDMIAUDIOCONNECTOR pCon = pDrv->pConnector; AssertPtr(pCon); bool fValidLineIn = AudioMixerStreamIsValid(pDrv->LineIn.pMixStrm); # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN bool fValidMicIn = AudioMixerStreamIsValid(pDrv->MicIn.pMixStrm); # endif bool fValidOut = AudioMixerStreamIsValid(pDrv->Front.pMixStrm); # ifdef VBOX_WITH_AUDIO_HDA_51_SURROUND /** @todo Anything to do here? */ # endif if ( !fValidLineIn # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN && !fValidMicIn # endif && !fValidOut) { LogRel(("HDA: Falling back to NULL backend (no sound audible)\n")); hdaR3Reset(pDevIns); hdaR3ReattachInternal(pThis, pDrv, pDrv->uLUN, "NullAudio"); PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding", N_("No audio devices could be opened. Selecting the NULL audio backend " "with the consequence that no sound is audible")); } else { bool fWarn = false; PDMAUDIOBACKENDCFG backendCfg; int rc2 = pCon->pfnGetConfig(pCon, &backendCfg); if (RT_SUCCESS(rc2)) { if (backendCfg.cMaxStreamsIn) { # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN /* If the audio backend supports two or more input streams at once, * warn if one of our two inputs (microphone-in and line-in) failed to initialize. */ if (backendCfg.cMaxStreamsIn >= 2) fWarn = !fValidLineIn || !fValidMicIn; /* If the audio backend only supports one input stream at once (e.g. pure ALSA, and * *not* ALSA via PulseAudio plugin!), only warn if both of our inputs failed to initialize. * One of the two simply is not in use then. */ else if (backendCfg.cMaxStreamsIn == 1) fWarn = !fValidLineIn && !fValidMicIn; /* Don't warn if our backend is not able of supporting any input streams at all. */ # else /* !VBOX_WITH_AUDIO_HDA_MIC_IN */ /* We only have line-in as input source. */ fWarn = !fValidLineIn; # endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */ } if ( !fWarn && backendCfg.cMaxStreamsOut) { fWarn = !fValidOut; } } else { LogRel(("HDA: Unable to retrieve audio backend configuration for LUN #%RU8, rc=%Rrc\n", pDrv->uLUN, rc2)); fWarn = true; } if (fWarn) { char szMissingStreams[255]; size_t len = 0; if (!fValidLineIn) { LogRel(("HDA: WARNING: Unable to open PCM line input for LUN #%RU8!\n", pDrv->uLUN)); len = RTStrPrintf(szMissingStreams, sizeof(szMissingStreams), "PCM Input"); } # ifdef VBOX_WITH_AUDIO_HDA_MIC_IN if (!fValidMicIn) { LogRel(("HDA: WARNING: Unable to open PCM microphone input for LUN #%RU8!\n", pDrv->uLUN)); len += RTStrPrintf(szMissingStreams + len, sizeof(szMissingStreams) - len, len ? ", PCM Microphone" : "PCM Microphone"); } # endif /* VBOX_WITH_AUDIO_HDA_MIC_IN */ if (!fValidOut) { LogRel(("HDA: WARNING: Unable to open PCM output for LUN #%RU8!\n", pDrv->uLUN)); len += RTStrPrintf(szMissingStreams + len, sizeof(szMissingStreams) - len, len ? ", PCM Output" : "PCM Output"); } PDMDevHlpVMSetRuntimeError(pDevIns, 0 /*fFlags*/, "HostAudioNotResponding", N_("Some HDA audio streams (%s) could not be opened. Guest applications generating audio " "output or depending on audio input may hang. Make sure your host audio device " "is working properly. Check the logfile for error messages of the audio " "subsystem"), szMissingStreams); } } } #endif /* VBOX_WITH_AUDIO_HDA_ONETIME_INIT */ } if (RT_SUCCESS(rc)) { hdaR3Reset(pDevIns); /* * Debug and string formatter types. */ PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaR3DbgInfo); PDMDevHlpDBGFInfoRegister(pDevIns, "hdabdle", "HDA stream BDLE info. (hdabdle [stream number])", hdaR3DbgInfoBDLE); PDMDevHlpDBGFInfoRegister(pDevIns, "hdastream", "HDA stream info. (hdastream [stream number])", hdaR3DbgInfoStream); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaR3DbgInfoCodecNodes); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaR3DbgInfoCodecSelector); PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaR3DbgInfoMixer); rc = RTStrFormatTypeRegister("bdle", hdaR3StrFmtBDLE, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdctl", hdaR3StrFmtSDCTL, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdsts", hdaR3StrFmtSDSTS, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifos", hdaR3StrFmtSDFIFOS, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifow", hdaR3StrFmtSDFIFOW, NULL); AssertRC(rc); /* * Some debug assertions. */ for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) { struct HDAREGDESC const *pReg = &g_aHdaRegMap[i]; struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL; /* binary search order. */ AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); /* alignment. */ AssertReleaseMsg( pReg->size == 1 || (pReg->size == 2 && (pReg->offset & 1) == 0) || (pReg->size == 3 && (pReg->offset & 3) == 0) || (pReg->size == 4 && (pReg->offset & 3) == 0), ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */ AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg); if (pReg->offset & 3) { struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL; AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pPrevReg) AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size)); } #if 0 if ((pReg->offset + pReg->size) & 3) { AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pNextReg) AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); } #endif /* The final entry is a full DWORD, no gaps! Allows shortcuts. */ AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); } } # ifdef VBOX_WITH_STATISTICS if (RT_SUCCESS(rc)) { /* * Register statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaR3Timer."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIn, STAMTYPE_PROFILE, "/Devices/HDA/Input", STAMUNIT_TICKS_PER_CALL, "Profiling input."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatOut, STAMTYPE_PROFILE, "/Devices/HDA/Output", STAMUNIT_TICKS_PER_CALL, "Profiling output."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation."); } # endif LogFlowFuncLeaveRC(rc); return rc; } /** * The device registration structure. */ const PDMDEVREG g_DeviceHDA = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "hda", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Intel HD Audio Controller", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_AUDIO, /* cMaxInstances */ 1, /* cbInstance */ sizeof(HDASTATE), /* pfnConstruct */ hdaR3Construct, /* pfnDestruct */ hdaR3Destruct, /* pfnRelocate */ hdaR3Relocate, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ hdaR3Reset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ hdaR3Attach, /* pfnDetach */ hdaR3Detach, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ hdaR3PowerOff, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */