/* $Id: DevIchHda.cpp 46272 2013-05-26 18:02:48Z vboxsync $ */ /** @file * DevIchHda - VBox ICH Intel HD Audio Controller. * * Implemented against the specifications found in "High Definition Audio * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller * HUB 6 (ICH6) Family, Datasheet", document number 301473-002. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_AUDIO #include #include #include #include #include #ifdef IN_RING3 # include # include # include #endif #include "VBoxDD.h" extern "C" { #include "audio.h" } #include "DevIchHdaCodec.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ //#define HDA_AS_PCI_EXPRESS #define VBOX_WITH_INTEL_HDA #if defined(VBOX_WITH_HP_HDA) /* HP Pavilion dv4t-1300 */ # define HDA_PCI_VENDOR_ID 0x103c # define HDA_PCI_DEVICE_ID 0x30f7 #elif defined(VBOX_WITH_INTEL_HDA) /* Intel HDA controller */ # define HDA_PCI_VENDOR_ID 0x8086 # define HDA_PCI_DEVICE_ID 0x2668 #elif defined(VBOX_WITH_NVIDIA_HDA) /* nVidia HDA controller */ # define HDA_PCI_VENDOR_ID 0x10de # define HDA_PCI_DEVICE_ID 0x0ac0 #else # error "Please specify your HDA device vendor/device IDs" #endif /** @todo r=bird: Looking at what the linux driver (accidentally?) does when * updating CORBWP, I belive that the ICH6 datahsheet is wrong and that CORBRP * is read only except for bit 15 like the HDA spec states. * * Btw. the CORBRPRST implementation is incomplete according to both docs (sw * writes 1, hw sets it to 1 (after completion), sw reads 1, sw writes 0). */ #define BIRD_THINKS_CORBRP_IS_MOSTLY_RO #define HDA_NREGS 112 /* Registers */ #define HDA_REG_IND_NAME(x) ICH6_HDA_REG_##x #define HDA_REG_FIELD_NAME(reg, x) ICH6_HDA_##reg##_##x #define HDA_REG_FIELD_MASK(reg, x) ICH6_HDA_##reg##_##x##_MASK #define HDA_REG_FIELD_FLAG_MASK(reg, x) RT_BIT(ICH6_HDA_##reg##_##x##_SHIFT) #define HDA_REG_FIELD_SHIFT(reg, x) ICH6_HDA_##reg##_##x##_SHIFT #define HDA_REG_IND(pThis, x) ((pThis)->au32Regs[(x)]) #define HDA_REG(pThis, x) (HDA_REG_IND((pThis), HDA_REG_IND_NAME(x))) #define HDA_REG_VALUE(pThis, reg, val) (HDA_REG((pThis),reg) & (((HDA_REG_FIELD_MASK(reg, val))) << (HDA_REG_FIELD_SHIFT(reg, val)))) #define HDA_REG_FLAG_VALUE(pThis, reg, val) (HDA_REG((pThis),reg) & (((HDA_REG_FIELD_FLAG_MASK(reg, val))))) #define HDA_REG_SVALUE(pThis, reg, val) (HDA_REG_VALUE(pThis, reg, val) >> (HDA_REG_FIELD_SHIFT(reg, val))) #define ICH6_HDA_REG_GCAP 0 /* range 0x00-0x01*/ #define GCAP(pThis) (HDA_REG((pThis), GCAP)) /* GCAP HDASpec 3.3.2 This macro encodes the following information about HDA in a compact manner: * oss (15:12) - number of output streams supported * iss (11:8) - number of input streams supported * bss (7:3) - number of bidirectional streams supported * bds (2:1) - number of serial data out signals supported * b64sup (0) - 64 bit addressing supported. */ #define HDA_MAKE_GCAP(oss, iss, bss, bds, b64sup) \ ( (((oss) & 0xF) << 12) \ | (((iss) & 0xF) << 8) \ | (((bss) & 0x1F) << 3) \ | (((bds) & 0x3) << 2) \ | ((b64sup) & 1)) #define ICH6_HDA_REG_VMIN 1 /* range 0x02 */ #define VMIN(pThis) (HDA_REG((pThis), VMIN)) #define ICH6_HDA_REG_VMAJ 2 /* range 0x03 */ #define VMAJ(pThis) (HDA_REG((pThis), VMAJ)) #define ICH6_HDA_REG_OUTPAY 3 /* range 0x04-0x05 */ #define OUTPAY(pThis) (HDA_REG((pThis), OUTPAY)) #define ICH6_HDA_REG_INPAY 4 /* range 0x06-0x07 */ #define INPAY(pThis) (HDA_REG((pThis), INPAY)) #define ICH6_HDA_REG_GCTL (5) #define ICH6_HDA_GCTL_RST_SHIFT (0) #define ICH6_HDA_GCTL_FSH_SHIFT (1) #define ICH6_HDA_GCTL_UR_SHIFT (8) #define GCTL(pThis) (HDA_REG((pThis), GCTL)) #define ICH6_HDA_REG_WAKEEN 6 /* 0x0C */ #define WAKEEN(pThis) (HDA_REG((pThis), WAKEEN)) #define ICH6_HDA_REG_STATESTS 7 /* range 0x0E */ #define STATESTS(pThis) (HDA_REG((pThis), STATESTS)) #define ICH6_HDA_STATES_SCSF 0x7 #define ICH6_HDA_REG_GSTS 8 /* range 0x10-0x11*/ #define ICH6_HDA_GSTS_FSH_SHIFT (1) #define GSTS(pThis) (HDA_REG(pThis, GSTS)) #define ICH6_HDA_REG_INTCTL 9 /* 0x20 */ #define ICH6_HDA_INTCTL_GIE_SHIFT 31 #define ICH6_HDA_INTCTL_CIE_SHIFT 30 #define ICH6_HDA_INTCTL_S0_SHIFT (0) #define ICH6_HDA_INTCTL_S1_SHIFT (1) #define ICH6_HDA_INTCTL_S2_SHIFT (2) #define ICH6_HDA_INTCTL_S3_SHIFT (3) #define ICH6_HDA_INTCTL_S4_SHIFT (4) #define ICH6_HDA_INTCTL_S5_SHIFT (5) #define ICH6_HDA_INTCTL_S6_SHIFT (6) #define ICH6_HDA_INTCTL_S7_SHIFT (7) #define INTCTL(pThis) (HDA_REG((pThis), INTCTL)) #define INTCTL_GIE(pThis) (HDA_REG_FLAG_VALUE(pThis, INTCTL, GIE)) #define INTCTL_CIE(pThis) (HDA_REG_FLAG_VALUE(pThis, INTCTL, CIE)) #define INTCTL_SX(pThis, X) (HDA_REG_FLAG_VALUE((pThis), INTCTL, S##X)) #define INTCTL_SALL(pThis) (INTCTL((pThis)) & 0xFF) /* Note: The HDA specification defines a SSYNC register at offset 0x38. The * ICH6/ICH9 datahseet defines SSYNC at offset 0x34. The Linux HDA driver matches * the datasheet. */ #define ICH6_HDA_REG_SSYNC 12 /* 0x34 */ #define SSYNC(pThis) (HDA_REG((pThis), SSYNC)) #define ICH6_HDA_REG_INTSTS 10 /* 0x24 */ #define ICH6_HDA_INTSTS_GIS_SHIFT (31) #define ICH6_HDA_INTSTS_CIS_SHIFT (30) #define ICH6_HDA_INTSTS_S0_SHIFT (0) #define ICH6_HDA_INTSTS_S1_SHIFT (1) #define ICH6_HDA_INTSTS_S2_SHIFT (2) #define ICH6_HDA_INTSTS_S3_SHIFT (3) #define ICH6_HDA_INTSTS_S4_SHIFT (4) #define ICH6_HDA_INTSTS_S5_SHIFT (5) #define ICH6_HDA_INTSTS_S6_SHIFT (6) #define ICH6_HDA_INTSTS_S7_SHIFT (7) #define ICH6_HDA_INTSTS_S_MASK(num) RT_BIT(HDA_REG_FIELD_SHIFT(S##num)) #define INTSTS(pThis) (HDA_REG((pThis), INTSTS)) #define INTSTS_GIS(pThis) (HDA_REG_FLAG_VALUE((pThis), INTSTS, GIS) #define INTSTS_CIS(pThis) (HDA_REG_FLAG_VALUE((pThis), INTSTS, CIS) #define INTSTS_SX(pThis, X) (HDA_REG_FLAG_VALUE(pThis), INTSTS, S##X) #define INTSTS_SANY(pThis) (INTSTS((pThis)) & 0xFF) #define ICH6_HDA_REG_CORBLBASE 13 /* 0x40 */ #define CORBLBASE(pThis) (HDA_REG((pThis), CORBLBASE)) #define ICH6_HDA_REG_CORBUBASE 14 /* 0x44 */ #define CORBUBASE(pThis) (HDA_REG((pThis), CORBUBASE)) #define ICH6_HDA_REG_CORBWP 15 /* 48 */ #define ICH6_HDA_REG_CORBRP 16 /* 4A */ #define ICH6_HDA_CORBRP_RST_SHIFT 15 #define ICH6_HDA_CORBRP_WP_SHIFT 0 #define ICH6_HDA_CORBRP_WP_MASK 0xFF #define CORBRP(pThis) (HDA_REG(pThis, CORBRP)) #define CORBWP(pThis) (HDA_REG(pThis, CORBWP)) #define ICH6_HDA_REG_CORBCTL 17 /* 0x4C */ #define ICH6_HDA_CORBCTL_DMA_SHIFT (1) #define ICH6_HDA_CORBCTL_CMEIE_SHIFT (0) #define CORBCTL(pThis) (HDA_REG(pThis, CORBCTL)) #define ICH6_HDA_REG_CORBSTS 18 /* 0x4D */ #define CORBSTS(pThis) (HDA_REG(pThis, CORBSTS)) #define ICH6_HDA_CORBSTS_CMEI_SHIFT (0) #define ICH6_HDA_REG_CORBSIZE 19 /* 0x4E */ #define ICH6_HDA_CORBSIZE_SZ_CAP 0xF0 #define ICH6_HDA_CORBSIZE_SZ 0x3 #define CORBSIZE_SZ(pThis) (HDA_REG(pThis, ICH6_HDA_REG_CORBSIZE) & ICH6_HDA_CORBSIZE_SZ) #define CORBSIZE_SZ_CAP(pThis) (HDA_REG(pThis, ICH6_HDA_REG_CORBSIZE) & ICH6_HDA_CORBSIZE_SZ_CAP) /* till ich 10 sizes of CORB and RIRB are hardcoded to 256 in real hw */ #define ICH6_HDA_REG_RIRLBASE 20 /* 0x50 */ #define RIRLBASE(pThis) (HDA_REG((pThis), RIRLBASE)) #define ICH6_HDA_REG_RIRUBASE 21 /* 0x54 */ #define RIRUBASE(pThis) (HDA_REG((pThis), RIRUBASE)) #define ICH6_HDA_REG_RIRBWP 22 /* 0x58 */ #define ICH6_HDA_RIRBWP_RST_SHIFT (15) #define ICH6_HDA_RIRBWP_WP_MASK 0xFF #define RIRBWP(pThis) (HDA_REG(pThis, RIRBWP)) #define ICH6_HDA_REG_RINTCNT 23 /* 0x5A */ #define RINTCNT(pThis) (HDA_REG((pThis), RINTCNT)) #define RINTCNT_N(pThis) (RINTCNT((pThis)) & 0xff) #define ICH6_HDA_REG_RIRBCTL 24 /* 0x5C */ #define ICH6_HDA_RIRBCTL_RIC_SHIFT (0) #define ICH6_HDA_RIRBCTL_DMA_SHIFT (1) #define ICH6_HDA_ROI_DMA_SHIFT (2) #define RIRBCTL(pThis) (HDA_REG((pThis), RIRBCTL)) #define RIRBCTL_RIRB_RIC(pThis) (HDA_REG_FLAG_VALUE(pThis, RIRBCTL, RIC)) #define RIRBCTL_RIRB_DMA(pThis) (HDA_REG_FLAG_VALUE((pThis), RIRBCTL, DMA) #define RIRBCTL_ROI(pThis) (HDA_REG_FLAG_VALUE((pThis), RIRBCTL, ROI)) #define ICH6_HDA_REG_RIRBSTS 25 /* 0x5D */ #define ICH6_HDA_RIRBSTS_RINTFL_SHIFT (0) #define ICH6_HDA_RIRBSTS_RIRBOIS_SHIFT (2) #define RIRBSTS(pThis) (HDA_REG(pThis, RIRBSTS)) #define RIRBSTS_RINTFL(pThis) (HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL)) #define RIRBSTS_RIRBOIS(pThis) (HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS)) #define ICH6_HDA_REG_RIRBSIZE 26 /* 0x5E */ #define ICH6_HDA_RIRBSIZE_SZ_CAP 0xF0 #define ICH6_HDA_RIRBSIZE_SZ 0x3 #define RIRBSIZE_SZ(pThis) (HDA_REG(pThis, ICH6_HDA_REG_RIRBSIZE) & ICH6_HDA_RIRBSIZE_SZ) #define RIRBSIZE_SZ_CAP(pThis) (HDA_REG(pThis, ICH6_HDA_REG_RIRBSIZE) & ICH6_HDA_RIRBSIZE_SZ_CAP) #define ICH6_HDA_REG_IC 27 /* 0x60 */ #define IC(pThis) (HDA_REG(pThis, IC)) #define ICH6_HDA_REG_IR 28 /* 0x64 */ #define IR(pThis) (HDA_REG(pThis, IR)) #define ICH6_HDA_REG_IRS 29 /* 0x68 */ #define ICH6_HDA_IRS_ICB_SHIFT (0) #define ICH6_HDA_IRS_IRV_SHIFT (1) #define IRS(pThis) (HDA_REG(pThis, IRS)) #define IRS_ICB(pThis) (HDA_REG_FLAG_VALUE(pThis, IRS, ICB)) #define IRS_IRV(pThis) (HDA_REG_FLAG_VALUE(pThis, IRS, IRV)) #define ICH6_HDA_REG_DPLBASE 30 /* 0x70 */ #define DPLBASE(pThis) (HDA_REG((pThis), DPLBASE)) #define ICH6_HDA_REG_DPUBASE 31 /* 0x74 */ #define DPUBASE(pThis) (HDA_REG((pThis), DPUBASE)) #define DPBASE_ENABLED 1 #define DPBASE_ADDR_MASK (~(uint64_t)0x7f) #define HDA_STREAM_REG_DEF(name, num) (ICH6_HDA_REG_SD##num##name) #define HDA_STREAM_REG(pThis, name, num) (HDA_REG((pThis), N_(HDA_STREAM_REG_DEF(name, num)))) /* Note: sdnum here _MUST_ be stream reg number [0,7] */ #define HDA_STREAM_REG2(pThis, name, sdnum) (HDA_REG_IND((pThis), ICH6_HDA_REG_SD0##name + (sdnum) * 10)) #define ICH6_HDA_REG_SD0CTL 32 /* 0x80 */ #define ICH6_HDA_REG_SD1CTL (HDA_STREAM_REG_DEF(CTL, 0) + 10) /* 0xA0 */ #define ICH6_HDA_REG_SD2CTL (HDA_STREAM_REG_DEF(CTL, 0) + 20) /* 0xC0 */ #define ICH6_HDA_REG_SD3CTL (HDA_STREAM_REG_DEF(CTL, 0) + 30) /* 0xE0 */ #define ICH6_HDA_REG_SD4CTL (HDA_STREAM_REG_DEF(CTL, 0) + 40) /* 0x100 */ #define ICH6_HDA_REG_SD5CTL (HDA_STREAM_REG_DEF(CTL, 0) + 50) /* 0x120 */ #define ICH6_HDA_REG_SD6CTL (HDA_STREAM_REG_DEF(CTL, 0) + 60) /* 0x140 */ #define ICH6_HDA_REG_SD7CTL (HDA_STREAM_REG_DEF(CTL, 0) + 70) /* 0x160 */ #define SD(func, num) SD##num##func #define SDCTL(pThis, num) HDA_REG((pThis), SD(CTL, num)) #define SDCTL_NUM(pThis, num) ((SDCTL((pThis), num) & HDA_REG_FIELD_MASK(SDCTL,NUM)) >> HDA_REG_FIELD_SHIFT(SDCTL, NUM)) #define ICH6_HDA_SDCTL_NUM_MASK (0xF) #define ICH6_HDA_SDCTL_NUM_SHIFT (20) #define ICH6_HDA_SDCTL_DIR_SHIFT (19) #define ICH6_HDA_SDCTL_TP_SHIFT (18) #define ICH6_HDA_SDCTL_STRIPE_MASK (0x3) #define ICH6_HDA_SDCTL_STRIPE_SHIFT (16) #define ICH6_HDA_SDCTL_DEIE_SHIFT (4) #define ICH6_HDA_SDCTL_FEIE_SHIFT (3) #define ICH6_HDA_SDCTL_ICE_SHIFT (2) #define ICH6_HDA_SDCTL_RUN_SHIFT (1) #define ICH6_HDA_SDCTL_SRST_SHIFT (0) #define ICH6_HDA_REG_SD0STS 33 /* 0x83 */ #define ICH6_HDA_REG_SD1STS (HDA_STREAM_REG_DEF(STS, 0) + 10) /* 0xA3 */ #define ICH6_HDA_REG_SD2STS (HDA_STREAM_REG_DEF(STS, 0) + 20) /* 0xC3 */ #define ICH6_HDA_REG_SD3STS (HDA_STREAM_REG_DEF(STS, 0) + 30) /* 0xE3 */ #define ICH6_HDA_REG_SD4STS (HDA_STREAM_REG_DEF(STS, 0) + 40) /* 0x103 */ #define ICH6_HDA_REG_SD5STS (HDA_STREAM_REG_DEF(STS, 0) + 50) /* 0x123 */ #define ICH6_HDA_REG_SD6STS (HDA_STREAM_REG_DEF(STS, 0) + 60) /* 0x143 */ #define ICH6_HDA_REG_SD7STS (HDA_STREAM_REG_DEF(STS, 0) + 70) /* 0x163 */ #define SDSTS(pThis, num) HDA_REG((pThis), SD(STS, num)) #define ICH6_HDA_SDSTS_FIFORDY_SHIFT (5) #define ICH6_HDA_SDSTS_DE_SHIFT (4) #define ICH6_HDA_SDSTS_FE_SHIFT (3) #define ICH6_HDA_SDSTS_BCIS_SHIFT (2) #define ICH6_HDA_REG_SD0LPIB 34 /* 0x84 */ #define ICH6_HDA_REG_SD1LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 10) /* 0xA4 */ #define ICH6_HDA_REG_SD2LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 20) /* 0xC4 */ #define ICH6_HDA_REG_SD3LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 30) /* 0xE4 */ #define ICH6_HDA_REG_SD4LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 40) /* 0x104 */ #define ICH6_HDA_REG_SD5LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 50) /* 0x124 */ #define ICH6_HDA_REG_SD6LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 60) /* 0x144 */ #define ICH6_HDA_REG_SD7LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 70) /* 0x164 */ #define SDLPIB(pThis, num) HDA_REG((pThis), SD(LPIB, num)) #define ICH6_HDA_REG_SD0CBL 35 /* 0x88 */ #define ICH6_HDA_REG_SD1CBL (HDA_STREAM_REG_DEF(CBL, 0) + 10) /* 0xA8 */ #define ICH6_HDA_REG_SD2CBL (HDA_STREAM_REG_DEF(CBL, 0) + 20) /* 0xC8 */ #define ICH6_HDA_REG_SD3CBL (HDA_STREAM_REG_DEF(CBL, 0) + 30) /* 0xE8 */ #define ICH6_HDA_REG_SD4CBL (HDA_STREAM_REG_DEF(CBL, 0) + 40) /* 0x108 */ #define ICH6_HDA_REG_SD5CBL (HDA_STREAM_REG_DEF(CBL, 0) + 50) /* 0x128 */ #define ICH6_HDA_REG_SD6CBL (HDA_STREAM_REG_DEF(CBL, 0) + 60) /* 0x148 */ #define ICH6_HDA_REG_SD7CBL (HDA_STREAM_REG_DEF(CBL, 0) + 70) /* 0x168 */ #define SDLCBL(pThis, num) HDA_REG((pThis), SD(CBL, num)) #define ICH6_HDA_REG_SD0LVI 36 /* 0x8C */ #define ICH6_HDA_REG_SD1LVI (HDA_STREAM_REG_DEF(LVI, 0) + 10) /* 0xAC */ #define ICH6_HDA_REG_SD2LVI (HDA_STREAM_REG_DEF(LVI, 0) + 20) /* 0xCC */ #define ICH6_HDA_REG_SD3LVI (HDA_STREAM_REG_DEF(LVI, 0) + 30) /* 0xEC */ #define ICH6_HDA_REG_SD4LVI (HDA_STREAM_REG_DEF(LVI, 0) + 40) /* 0x10C */ #define ICH6_HDA_REG_SD5LVI (HDA_STREAM_REG_DEF(LVI, 0) + 50) /* 0x12C */ #define ICH6_HDA_REG_SD6LVI (HDA_STREAM_REG_DEF(LVI, 0) + 60) /* 0x14C */ #define ICH6_HDA_REG_SD7LVI (HDA_STREAM_REG_DEF(LVI, 0) + 70) /* 0x16C */ #define SDLVI(pThis, num) HDA_REG((pThis), SD(LVI, num)) #define ICH6_HDA_REG_SD0FIFOW 37 /* 0x8E */ #define ICH6_HDA_REG_SD1FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 10) /* 0xAE */ #define ICH6_HDA_REG_SD2FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 20) /* 0xCE */ #define ICH6_HDA_REG_SD3FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 30) /* 0xEE */ #define ICH6_HDA_REG_SD4FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 40) /* 0x10E */ #define ICH6_HDA_REG_SD5FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 50) /* 0x12E */ #define ICH6_HDA_REG_SD6FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 60) /* 0x14E */ #define ICH6_HDA_REG_SD7FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 70) /* 0x16E */ /* * ICH6 datasheet defined limits for FIFOW values (18.2.38) */ #define HDA_SDFIFOW_8B (0x2) #define HDA_SDFIFOW_16B (0x3) #define HDA_SDFIFOW_32B (0x4) #define SDFIFOW(pThis, num) HDA_REG((pThis), SD(FIFOW, num)) #define ICH6_HDA_REG_SD0FIFOS 38 /* 0x90 */ #define ICH6_HDA_REG_SD1FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 10) /* 0xB0 */ #define ICH6_HDA_REG_SD2FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 20) /* 0xD0 */ #define ICH6_HDA_REG_SD3FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 30) /* 0xF0 */ #define ICH6_HDA_REG_SD4FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 40) /* 0x110 */ #define ICH6_HDA_REG_SD5FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 50) /* 0x130 */ #define ICH6_HDA_REG_SD6FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 60) /* 0x150 */ #define ICH6_HDA_REG_SD7FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 70) /* 0x170 */ /* * ICH6 datasheet defines limits for FIFOS registers (18.2.39) * formula: size - 1 * Other values not listed are not supported. */ #define HDA_SDONFIFO_16B (0x0F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_32B (0x1F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_64B (0x3F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_128B (0x7F) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_192B (0xBF) /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_256B (0xFF) /* 20-, 24-bit Output Streams */ #define HDA_SDINFIFO_120B (0x77) /* 8-, 16-, 20-, 24-, 32-bit Input Streams */ #define HDA_SDINFIFO_160B (0x9F) /* 20-, 24-bit Input Streams Streams */ #define SDFIFOS(pThis, num) HDA_REG((pThis), SD(FIFOS, num)) #define ICH6_HDA_REG_SD0FMT 39 /* 0x92 */ #define ICH6_HDA_REG_SD1FMT (HDA_STREAM_REG_DEF(FMT, 0) + 10) /* 0xB2 */ #define ICH6_HDA_REG_SD2FMT (HDA_STREAM_REG_DEF(FMT, 0) + 20) /* 0xD2 */ #define ICH6_HDA_REG_SD3FMT (HDA_STREAM_REG_DEF(FMT, 0) + 30) /* 0xF2 */ #define ICH6_HDA_REG_SD4FMT (HDA_STREAM_REG_DEF(FMT, 0) + 40) /* 0x112 */ #define ICH6_HDA_REG_SD5FMT (HDA_STREAM_REG_DEF(FMT, 0) + 50) /* 0x132 */ #define ICH6_HDA_REG_SD6FMT (HDA_STREAM_REG_DEF(FMT, 0) + 60) /* 0x152 */ #define ICH6_HDA_REG_SD7FMT (HDA_STREAM_REG_DEF(FMT, 0) + 70) /* 0x172 */ #define SDFMT(pThis, num) (HDA_REG((pThis), SD(FMT, num))) #define ICH6_HDA_SDFMT_BASE_RATE_SHIFT (14) #define ICH6_HDA_SDFMT_MULT_SHIFT (11) #define ICH6_HDA_SDFMT_MULT_MASK (0x7) #define ICH6_HDA_SDFMT_DIV_SHIFT (8) #define ICH6_HDA_SDFMT_DIV_MASK (0x7) #define ICH6_HDA_SDFMT_BITS_SHIFT (4) #define ICH6_HDA_SDFMT_BITS_MASK (0x7) #define SDFMT_BASE_RATE(pThis, num) ((SDFMT(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDFMT, BASE_RATE)) >> HDA_REG_FIELD_SHIFT(SDFMT, BASE_RATE)) #define SDFMT_MULT(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,MULT)) >> HDA_REG_FIELD_SHIFT(SDFMT, MULT)) #define SDFMT_DIV(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,DIV)) >> HDA_REG_FIELD_SHIFT(SDFMT, DIV)) #define ICH6_HDA_REG_SD0BDPL 40 /* 0x98 */ #define ICH6_HDA_REG_SD1BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 10) /* 0xB8 */ #define ICH6_HDA_REG_SD2BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 20) /* 0xD8 */ #define ICH6_HDA_REG_SD3BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 30) /* 0xF8 */ #define ICH6_HDA_REG_SD4BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 40) /* 0x118 */ #define ICH6_HDA_REG_SD5BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 50) /* 0x138 */ #define ICH6_HDA_REG_SD6BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 60) /* 0x158 */ #define ICH6_HDA_REG_SD7BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 70) /* 0x178 */ #define SDBDPL(pThis, num) HDA_REG((pThis), SD(BDPL, num)) #define ICH6_HDA_REG_SD0BDPU 41 /* 0x9C */ #define ICH6_HDA_REG_SD1BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 10) /* 0xBC */ #define ICH6_HDA_REG_SD2BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 20) /* 0xDC */ #define ICH6_HDA_REG_SD3BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 30) /* 0xFC */ #define ICH6_HDA_REG_SD4BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 40) /* 0x11C */ #define ICH6_HDA_REG_SD5BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 50) /* 0x13C */ #define ICH6_HDA_REG_SD6BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 60) /* 0x15C */ #define ICH6_HDA_REG_SD7BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 70) /* 0x17C */ #define SDBDPU(pThis, num) HDA_REG((pThis), SD(BDPU, num)) /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ typedef struct HDABDLEDESC { uint64_t u64BdleCviAddr; uint32_t u32BdleMaxCvi; uint32_t u32BdleCvi; uint32_t u32BdleCviLen; uint32_t u32BdleCviPos; bool fBdleCviIoc; uint32_t cbUnderFifoW; uint8_t au8HdaBuffer[HDA_SDONFIFO_256B + 1]; } HDABDLEDESC, *PHDABDLEDESC; typedef struct HDASTREAMTRANSFERDESC { uint64_t u64BaseDMA; uint32_t u32Ctl; uint32_t *pu32Sts; uint8_t u8Strm; uint32_t *pu32Lpib; uint32_t u32Cbl; uint32_t u32Fifos; } HDASTREAMTRANSFERDESC, *PHDASTREAMTRANSFERDESC; /** * ICH Intel HD Audio Controller state. */ typedef struct HDASTATE { /** The PCI device structure. */ PCIDevice PciDev; /** R3 Pointer to the device instance. */ PPDMDEVINSR3 pDevInsR3; /** R0 Pointer to the device instance. */ PPDMDEVINSR0 pDevInsR0; /** R0 Pointer to the device instance. */ PPDMDEVINSRC pDevInsRC; uint32_t u32Padding; /** Pointer to the connector of the attached audio driver. */ R3PTRTYPE(PPDMIAUDIOCONNECTOR) pDrv; /** Pointer to the attached audio driver. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** The base interface for LUN\#0. */ PDMIBASE IBase; RTGCPHYS MMIOBaseAddr; uint32_t au32Regs[HDA_NREGS]; HDABDLEDESC StInBdle; HDABDLEDESC StOutBdle; HDABDLEDESC StMicBdle; uint64_t u64CORBBase; uint64_t u64RIRBBase; uint64_t u64DPBase; /** pointer to CORB buf */ R3PTRTYPE(uint32_t *) pu32CorbBuf; /** size in bytes of CORB buf */ uint32_t cbCorbBuf; uint32_t u32Padding2; /** pointer on RIRB buf */ R3PTRTYPE(uint64_t *) pu64RirbBuf; /** size in bytes of RIRB buf */ uint32_t cbRirbBuf; /** indicates if HDA in reset. */ bool fInReset; /** Interrupt on completion */ bool fCviIoc; /** Flag whether the R0 part is enabled. */ bool fR0Enabled; /** Flag whether the RC part is enabled. */ bool fRCEnabled; /** The HDA codec state. */ R3PTRTYPE(PHDACODEC) pCodec; uint64_t u64BaseTS; /** 1.2.3.4.5.6.7. - someone please tell me what I'm counting! - .8.9.10... */ uint8_t u8Counter; uint8_t au8Padding[7]; } HDASTATE; /** Pointer to the ICH Intel HD Audio Controller state. */ typedef HDASTATE *PHDASTATE; #define ISD0FMT_TO_AUDIO_SELECTOR(pThis) \ ( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, In, SDFMT_BASE_RATE(pThis, 0), SDFMT_MULT(pThis, 0), SDFMT_DIV(pThis, 0)) ) #define OSD0FMT_TO_AUDIO_SELECTOR(pThis) \ ( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, Out, SDFMT_BASE_RATE(pThis, 4), SDFMT_MULT(pThis, 4), SDFMT_DIV(pThis, 4)) ) /******************************************************************************* * Internal Functions * *******************************************************************************/ #ifndef VBOX_DEVICE_STRUCT_TESTCASE static FNPDMDEVRESET hdaReset; static int hdaRegReadUnimplemented(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteUnimplemented(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadGCAP(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); #ifdef IN_RING3 DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc); static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc); #ifdef LOG_ENABLED static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA); #endif #endif /******************************************************************************* * Global Variables * *******************************************************************************/ /* see 302349 p 6.2*/ static const struct HDAREGDESC { /** Register offset in the register space. */ uint32_t offset; /** Size in bytes. Registers of size > 4 are in fact tables. */ uint32_t size; /** Readable bits. */ uint32_t readable; /** Writable bits. */ uint32_t writable; /** Read callback. */ int (*pfnRead)(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); /** Write callback. */ int (*pfnWrite)(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); /** Abbreviated name. */ const char *abbrev; /** Full name. */ const char *name; } g_aHdaRegMap[HDA_NREGS] = { /* offset size read mask write mask read callback write callback abbrev full name */ /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/ { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, hdaRegReadGCAP , hdaRegWriteUnimplemented, "GCAP" , "Global Capabilities" }, { 0x00002, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "VMIN" , "Minor Version" }, { 0x00003, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "VMAJ" , "Major Version" }, { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimplemented, "OUTPAY" , "Output Payload Capabilities" }, { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimplemented, "INPAY" , "Input Payload Capabilities" }, { 0x00008, 0x00004, 0x00000103, 0x00000103, hdaRegReadGCTL , hdaRegWriteGCTL , "GCTL" , "Global Control" }, { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, hdaRegReadU16 , hdaRegWriteU16 , "WAKEEN" , "Wake Enable" }, { 0x0000e, 0x00002, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteSTATESTS , "STATESTS" , "State Change Status" }, { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, hdaRegReadUnimplemented, hdaRegWriteUnimplemented, "GSTS" , "Global Status" }, { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, hdaRegReadU32 , hdaRegWriteU32 , "INTCTL" , "Interrupt Control" }, { 0x00024, 0x00004, 0xC00000FF, 0x00000000, hdaRegReadINTSTS , hdaRegWriteUnimplemented, "INTSTS" , "Interrupt Status" }, { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadWALCLK , hdaRegWriteUnimplemented, "WALCLK" , "Wall Clock Counter" }, /// @todo r=michaln: Doesn't the SSYNC register need to actually stop the stream(s)? { 0x00034, 0x00004, 0x000000FF, 0x000000FF, hdaRegReadU32 , hdaRegWriteU32 , "SSYNC" , "Stream Synchronization" }, { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , "CORBLBASE" , "CORB Lower Base Address" }, { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "CORBUBASE" , "CORB Upper Base Address" }, { 0x00048, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteCORBWP , "CORBWP" , "CORB Write Pointer" }, #ifdef OLD_REGISTER_TABLE { 0x0004A, 0x00002, 0x000000FF, 0x000080FF, hdaRegReadU8 , hdaRegWriteCORBRP , "CORBRP" , "CORB Read Pointer" }, #else /** @todo 18.2.17 indicates that the 15th bit can be read as well as and written. hdaRegReadU8 is wrong, a special reader should be used. */ { 0x0004A, 0x00002, 0x000080FF, 0x000080FF, hdaRegReadU16 , hdaRegWriteCORBRP , "CORBRP" , "CORB Read Pointer" }, #endif { 0x0004C, 0x00001, 0x00000003, 0x00000003, hdaRegReadU8 , hdaRegWriteCORBCTL , "CORBCTL" , "CORB Control" }, { 0x0004D, 0x00001, 0x00000001, 0x00000001, hdaRegReadU8 , hdaRegWriteCORBSTS , "CORBSTS" , "CORB Status" }, { 0x0004E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "CORBSIZE" , "CORB Size" }, { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , "RIRBLBASE" , "RIRB Lower Base Address" }, { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "RIRBUBASE" , "RIRB Upper Base Address" }, { 0x00058, 0x00002, 0x000000FF, 0x00008000, hdaRegReadU8 , hdaRegWriteRIRBWP , "RIRBWP" , "RIRB Write Pointer" }, { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteU16 , "RINTCNT" , "Response Interrupt Count" }, { 0x0005C, 0x00001, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteU8 , "RIRBCTL" , "RIRB Control" }, { 0x0005D, 0x00001, 0x00000005, 0x00000005, hdaRegReadU8 , hdaRegWriteRIRBSTS , "RIRBSTS" , "RIRB Status" }, { 0x0005E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimplemented, "RIRBSIZE" , "RIRB Size" }, { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "IC" , "Immediate Command" }, { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteUnimplemented, "IR" , "Immediate Response" }, #ifdef OLD_REGISTER_TABLE { 0x00068, 0x00004, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , "IRS" , "Immediate Command Status" }, #else /* 18.2.30 as well as the table says 16-bit. Linux accesses it as a 16-bit register. */ { 0x00068, 0x00002, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , "IRS" , "Immediate Command Status" }, #endif { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, hdaRegReadU32 , hdaRegWriteBase , "DPLBASE" , "DMA Position Lower Base" }, { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , "DPUBASE" , "DMA Position Upper Base" }, { 0x00080, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD0CTL" , "Input Stream Descriptor 0 (ICD0) Control" }, { 0x00083, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD0STS" , "ISD0 Status" }, { 0x00084, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD0LPIB" , "ISD0 Link Position In Buffer" }, { 0x00088, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD0CBL" , "ISD0 Cyclic Buffer Length" }, { 0x0008C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD0LVI" , "ISD0 Last Valid Index" }, { 0x0008E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD0FIFOW", "ISD0 FIFO Watermark" }, { 0x00090, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD0FIFOS", "ISD0 FIFO Size" }, { 0x00092, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "ISD0FMT" , "ISD0 Format" }, { 0x00098, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD0BDPL" , "ISD0 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x0009C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD0BDPU" , "ISD0 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x000A0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD1CTL" , "Input Stream Descriptor 1 (ISD1) Control" }, { 0x000A3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD1STS" , "ISD1 Status" }, { 0x000A4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD1LPIB" , "ISD1 Link Position In Buffer" }, { 0x000A8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD1CBL" , "ISD1 Cyclic Buffer Length" }, { 0x000AC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD1LVI" , "ISD1 Last Valid Index" }, { 0x000AE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD1FIFOW", "ISD1 FIFO Watermark" }, { 0x000B0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD1FIFOS", "ISD1 FIFO Size" }, { 0x000B2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "ISD1FMT" , "ISD1 Format" }, { 0x000B8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD1BDPL" , "ISD1 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x000BC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD1BDPU" , "ISD1 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x000C0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD2CTL" , "Input Stream Descriptor 2 (ISD2) Control" }, { 0x000C3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD2STS" , "ISD2 Status" }, { 0x000C4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD2LPIB" , "ISD2 Link Position In Buffer" }, { 0x000C8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD2CBL" , "ISD2 Cyclic Buffer Length" }, { 0x000CC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD2LVI" , "ISD2 Last Valid Index" }, { 0x000CE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "ISD2FIFOW", "ISD2 FIFO Watermark" }, { 0x000D0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD2FIFOS", "ISD2 FIFO Size" }, { 0x000D2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "ISD2FMT" , "ISD2 Format" }, { 0x000D8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD2BDPL" , "ISD2 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x000DC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD2BDPU" , "ISD2 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x000E0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "ISD3CTL" , "Input Stream Descriptor 3 (ISD3) Control" }, { 0x000E3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "ISD3STS" , "ISD3 Status" }, { 0x000E4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "ISD3LPIB" , "ISD3 Link Position In Buffer" }, { 0x000E8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "ISD3CBL" , "ISD3 Cyclic Buffer Length" }, { 0x000EC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "ISD3LVI" , "ISD3 Last Valid Index" }, { 0x000EE, 0x00002, 0x00000005, 0x00000005, hdaRegReadU16 , hdaRegWriteU16 , "ISD3FIFOW", "ISD3 FIFO Watermark" }, { 0x000F0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , "ISD3FIFOS", "ISD3 FIFO Size" }, { 0x000F2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "ISD3FMT" , "ISD3 Format" }, { 0x000F8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "ISD3BDPL" , "ISD3 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x000FC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "ISD3BDPU" , "ISD3 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x00100, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadSDCTL , hdaRegWriteSDCTL , "OSD0CTL" , "Input Stream Descriptor 0 (OSD0) Control" }, { 0x00103, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD0STS" , "OSD0 Status" }, { 0x00104, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD0LPIB" , "OSD0 Link Position In Buffer" }, { 0x00108, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD0CBL" , "OSD0 Cyclic Buffer Length" }, { 0x0010C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD0LVI" , "OSD0 Last Valid Index" }, { 0x0010E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD0FIFOW", "OSD0 FIFO Watermark" }, { 0x00110, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD0FIFOS", "OSD0 FIFO Size" }, { 0x00112, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "OSD0FMT" , "OSD0 Format" }, { 0x00118, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD0BDPL" , "OSD0 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x0011C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD0BDPU" , "OSD0 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x00120, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD1CTL" , "Input Stream Descriptor 0 (OSD1) Control" }, { 0x00123, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD1STS" , "OSD1 Status" }, { 0x00124, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD1LPIB" , "OSD1 Link Position In Buffer" }, { 0x00128, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD1CBL" , "OSD1 Cyclic Buffer Length" }, { 0x0012C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD1LVI" , "OSD1 Last Valid Index" }, { 0x0012E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD1FIFOW", "OSD1 FIFO Watermark" }, { 0x00130, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD1FIFOS", "OSD1 FIFO Size" }, { 0x00132, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "OSD1FMT" , "OSD1 Format" }, { 0x00138, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD1BDPL" , "OSD1 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x0013C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD1BDPU" , "OSD1 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x00140, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD2CTL" , "Input Stream Descriptor 0 (OSD2) Control" }, { 0x00143, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD2STS" , "OSD2 Status" }, { 0x00144, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD2LPIB" , "OSD2 Link Position In Buffer" }, { 0x00148, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD2CBL" , "OSD2 Cyclic Buffer Length" }, { 0x0014C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD2LVI" , "OSD2 Last Valid Index" }, { 0x0014E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD2FIFOW", "OSD2 FIFO Watermark" }, { 0x00150, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD2FIFOS", "OSD2 FIFO Size" }, { 0x00152, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "OSD2FMT" , "OSD2 Format" }, { 0x00158, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD2BDPL" , "OSD2 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x0015C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD2BDPU" , "OSD2 Buffer Descriptor List Pointer-Upper Base Address" }, { 0x00160, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , "OSD3CTL" , "Input Stream Descriptor 0 (OSD3) Control" }, { 0x00163, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , "OSD3STS" , "OSD3 Status" }, { 0x00164, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , "OSD3LPIB" , "OSD3 Link Position In Buffer" }, { 0x00168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , "OSD3CBL" , "OSD3 Cyclic Buffer Length" }, { 0x0016C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , "OSD3LVI" , "OSD3 Last Valid Index" }, { 0x0016E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , "OSD3FIFOW", "OSD3 FIFO Watermark" }, { 0x00170, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , "OSD3FIFOS", "OSD3 FIFO Size" }, { 0x00172, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , "OSD3FMT" , "OSD3 Format" }, { 0x00178, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , "OSD3BDPL" , "OSD3 Buffer Descriptor List Pointer-Lower Base Address" }, { 0x0017C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , "OSD3BDPU" , "OSD3 Buffer Descriptor List Pointer-Upper Base Address" }, }; /** * HDA register aliases (HDA spec 3.3.45). * @remarks Sorted by offReg. */ static const struct { /** The alias register offset. */ uint32_t offReg; /** The register index. */ int idxAlias; } g_aHdaRegAliases[] = { { 0x2084, HDA_REG_IND_NAME(SD0LPIB) }, { 0x20a4, HDA_REG_IND_NAME(SD1LPIB) }, { 0x20c4, HDA_REG_IND_NAME(SD2LPIB) }, { 0x20e4, HDA_REG_IND_NAME(SD3LPIB) }, { 0x2104, HDA_REG_IND_NAME(SD4LPIB) }, { 0x2124, HDA_REG_IND_NAME(SD5LPIB) }, { 0x2144, HDA_REG_IND_NAME(SD6LPIB) }, { 0x2164, HDA_REG_IND_NAME(SD7LPIB) }, }; #ifdef IN_RING3 /** HDABDLEDESC field descriptors the v3+ saved state. */ static SSMFIELD const g_aHdaBDLEDescFields[] = { SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos), SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc), SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW), SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer), SSMFIELD_ENTRY_TERM() }; /** HDABDLEDESC field descriptors the v1 and v2 saved state. */ static SSMFIELD const g_aHdaBDLEDescFieldsOld[] = { SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos), SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc), SSMFIELD_ENTRY_PAD_HC_AUTO(3, 3), SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW), SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer), SSMFIELD_ENTRY_TERM() }; #endif /** * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff. */ static uint32_t const g_afMasks[5] = { UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff) }; #ifdef IN_RING3 DECLINLINE(void) hdaUpdatePosBuf(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc) { if (pThis->u64DPBase & DPBASE_ENABLED) PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + pStreamDesc->u8Strm * 8, pStreamDesc->pu32Lpib, sizeof(uint32_t)); } #endif DECLINLINE(uint32_t) hdaFifoWToSz(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc) { #if 0 switch(HDA_STREAM_REG2(pThis, FIFOW, pStreamDesc->u8Strm)) { case HDA_SDFIFOW_8B: return 8; case HDA_SDFIFOW_16B: return 16; case HDA_SDFIFOW_32B: return 32; default: AssertMsgFailed(("hda: unsupported value (%x) in SDFIFOW(,%d)\n", HDA_REG_IND(pThis, pStreamDesc->u8Strm), pStreamDesc->u8Strm)); } #endif return 0; } static int hdaProcessInterrupt(PHDASTATE pThis) { #define IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, num) \ ( INTCTL_SX((pThis), num) \ && (SDSTS(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))) bool fIrq = false; if ( INTCTL_CIE(pThis) && ( RIRBSTS_RINTFL(pThis) || RIRBSTS_RIRBOIS(pThis) || (STATESTS(pThis) & WAKEEN(pThis)))) fIrq = true; if ( IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 0) || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 4)) fIrq = true; if (INTCTL_GIE(pThis)) { Log(("hda: irq %s\n", fIrq ? "asserted" : "deasserted")); PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0 , fIrq); } return VINF_SUCCESS; } /** * Looks up a register at the exact offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param pThis The HDA device state. * @param offReg The register offset. */ static int hdaRegLookup(PHDASTATE pThis, uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) if (offReg == g_aHdaRegAliases[i].offReg) return g_aHdaRegAliases[i].idxAlias; Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg > g_aHdaRegMap[idxMiddle].offset) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } #ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(g_aHdaRegMap[i].offset != offReg); #endif return -1; } /** * Looks up a register covering the offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param pThis The HDA device state. * @param offReg The register offset. */ static int hdaRegLookupWithin(PHDASTATE pThis, uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) { uint32_t off = offReg - g_aHdaRegAliases[i].offReg; if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size) return g_aHdaRegAliases[i].idxAlias; } Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } #ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size); #endif return -1; } #ifdef IN_RING3 static int hdaCmdSync(PHDASTATE pThis, bool fLocal) { int rc = VINF_SUCCESS; if (fLocal) { Assert((HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))); rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); #ifdef DEBUG_CMD_BUFFER uint8_t i = 0; do { Log(("hda: corb%02x: ", i)); uint8_t j = 0; do { const char *prefix; if ((i + j) == CORBRP(pThis)) prefix = "[R]"; else if ((i + j) == CORBWP(pThis)) prefix = "[W]"; else prefix = " "; /* three spaces */ Log(("%s%08x", prefix, pThis->pu32CorbBuf[i + j])); j++; } while (j < 8); Log(("\n")); i += 8; } while(i != 0); #endif } else { Assert((HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA))); rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); #ifdef DEBUG_CMD_BUFFER uint8_t i = 0; do { Log(("hda: rirb%02x: ", i)); uint8_t j = 0; do { const char *prefix; if ((i + j) == RIRBWP(pThis)) prefix = "[W]"; else prefix = " "; Log((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j])); } while (++j < 8); Log(("\n")); i += 8; } while (i != 0); #endif } return rc; } static int hdaCORBCmdProcess(PHDASTATE pThis) { int rc; uint8_t corbRp; uint8_t corbWp; uint8_t rirbWp; PFNHDACODECVERBPROCESSOR pfn = (PFNHDACODECVERBPROCESSOR)NULL; rc = hdaCmdSync(pThis, true); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); corbRp = CORBRP(pThis); corbWp = CORBWP(pThis); rirbWp = RIRBWP(pThis); Assert((corbWp != corbRp)); Log(("hda: CORB(RP:%x, WP:%x) RIRBWP:%x\n", CORBRP(pThis), CORBWP(pThis), RIRBWP(pThis))); while (corbRp != corbWp) { uint32_t cmd; uint64_t resp; pfn = NULL; corbRp++; cmd = pThis->pu32CorbBuf[corbRp]; rc = pThis->pCodec->pfnLookup(pThis->pCodec, cmd, &pfn); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); Assert(pfn); (rirbWp)++; if (RT_LIKELY(pfn)) rc = pfn(pThis->pCodec, cmd, &resp); else rc = VERR_INVALID_FUNCTION; if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); Log(("hda: verb:%08x->%016lx\n", cmd, resp)); if ( (resp & CODEC_RESPONSE_UNSOLICITED) && !HDA_REG_FLAG_VALUE(pThis, GCTL, UR)) { Log(("hda: unexpected unsolicited response.\n")); pThis->au32Regs[ICH6_HDA_REG_CORBRP] = corbRp; return rc; } pThis->pu64RirbBuf[rirbWp] = resp; pThis->u8Counter++; if (pThis->u8Counter == RINTCNT_N(pThis)) break; } pThis->au32Regs[ICH6_HDA_REG_CORBRP] = corbRp; pThis->au32Regs[ICH6_HDA_REG_RIRBWP] = rirbWp; rc = hdaCmdSync(pThis, false); Log(("hda: CORB(RP:%x, WP:%x) RIRBWP:%x\n", CORBRP(pThis), CORBWP(pThis), RIRBWP(pThis))); if (RIRBCTL_RIRB_RIC(pThis)) { RIRBSTS((pThis)) |= HDA_REG_FIELD_FLAG_MASK(RIRBSTS,RINTFL); pThis->u8Counter = 0; rc = hdaProcessInterrupt(pThis); } if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); return rc; } #endif static void hdaStreamReset(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint8_t u8Strm) { Log(("hda: reset of stream (%d) started\n", u8Strm)); Assert(( pThis && pBdle && pStreamDesc && u8Strm <= 7)); memset(pBdle, 0, sizeof(HDABDLEDESC)); *pStreamDesc->pu32Lpib = 0; *pStreamDesc->pu32Sts = 0; /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRCT bit */ HDA_STREAM_REG2(pThis, CTL, u8Strm) = 0x40000 | (HDA_STREAM_REG2(pThis, CTL, u8Strm) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); /* ICH6 defines default values (0x77 for input and 0xBF for output descriptors) of FIFO size. 18.2.39 */ HDA_STREAM_REG2(pThis, FIFOS, u8Strm) = u8Strm < 4 ? HDA_SDINFIFO_120B : HDA_SDONFIFO_192B; HDA_STREAM_REG2(pThis, FIFOW, u8Strm) = u8Strm < 4 ? HDA_SDFIFOW_8B : HDA_SDFIFOW_32B; HDA_STREAM_REG2(pThis, CBL, u8Strm) = 0; HDA_STREAM_REG2(pThis, LVI, u8Strm) = 0; HDA_STREAM_REG2(pThis, FMT, u8Strm) = 0; HDA_STREAM_REG2(pThis, BDPU, u8Strm) = 0; HDA_STREAM_REG2(pThis, BDPL, u8Strm) = 0; Log(("hda: reset of stream (%d) finished\n", u8Strm)); } /* Register access handlers. */ static int hdaRegReadUnimplemented(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { *pu32Value = 0; return VINF_SUCCESS; } static int hdaRegWriteUnimplemented(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { return VINF_SUCCESS; } /* U8 */ static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[iReg] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffffff00) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U16 */ static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[iReg] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffff0000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U24 */ static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[iReg] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xff000000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U32 */ static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { *pu32Value = pThis->au32Regs[iReg] & g_aHdaRegMap[iReg].readable; return VINF_SUCCESS; } static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { pThis->au32Regs[iReg] = (u32Value & g_aHdaRegMap[iReg].writable) | (pThis->au32Regs[iReg] & ~g_aHdaRegMap[iReg].writable); return VINF_SUCCESS; } static int hdaRegReadGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, RST)) { /* exit reset state */ GCTL(pThis) |= HDA_REG_FIELD_FLAG_MASK(GCTL, RST); pThis->fInReset = false; } else { #ifdef IN_RING3 /* enter reset state*/ if ( HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) || HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA)) { Log(("hda: HDA enters in reset with DMA(RIRB:%s, CORB:%s)\n", HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) ? "on" : "off", HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA) ? "on" : "off")); } hdaReset(pThis->CTX_SUFF(pDevIns)); GCTL(pThis) &= ~HDA_REG_FIELD_FLAG_MASK(GCTL, RST); pThis->fInReset = true; #else return VINF_IOM_R3_MMIO_WRITE; #endif } if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, FSH)) { /* Flush: GSTS:1 set, see 6.2.6*/ GSTS(pThis) |= HDA_REG_FIELD_FLAG_MASK(GSTS, FSH); /* set the flush state */ /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6)*/ } return VINF_SUCCESS; } static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t v = pThis->au32Regs[iReg]; uint32_t nv = u32Value & ICH6_HDA_STATES_SCSF; pThis->au32Regs[iReg] &= ~(v & nv); /* write of 1 clears corresponding bit */ return VINF_SUCCESS; } static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { uint32_t v = 0; if ( RIRBSTS_RIRBOIS(pThis) || RIRBSTS_RINTFL(pThis) || HDA_REG_FLAG_VALUE(pThis, CORBSTS, CMEI) || STATESTS(pThis)) v |= RT_BIT(30); #define HDA_IS_STREAM_EVENT(pThis, stream) \ ( (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)) \ || (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)) \ || (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))) #define MARK_STREAM(pThis, stream, v) do { (v) |= HDA_IS_STREAM_EVENT((pThis),stream) ? RT_BIT((stream)) : 0; } while(0) MARK_STREAM(pThis, 0, v); MARK_STREAM(pThis, 1, v); MARK_STREAM(pThis, 2, v); MARK_STREAM(pThis, 3, v); MARK_STREAM(pThis, 4, v); MARK_STREAM(pThis, 5, v); MARK_STREAM(pThis, 6, v); MARK_STREAM(pThis, 7, v); v |= v ? RT_BIT(31) : 0; *pu32Value = v; return VINF_SUCCESS; } static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { /* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */ *pu32Value = (uint32_t)ASMMultU64ByU32DivByU32(PDMDevHlpTMTimeVirtGetNano(pThis->CTX_SUFF(pDevIns)) - pThis->u64BaseTS, 24, 1000); return VINF_SUCCESS; } static int hdaRegReadGCAP(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { return hdaRegReadU16(pThis, iReg, pu32Value); } static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(CORBRP, RST)) CORBRP(pThis) = 0; #ifndef BIRD_THINKS_CORBRP_IS_MOSTLY_RO else return hdaRegWriteU8(pThis, iReg, u32Value); #endif return VINF_SUCCESS; } static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 int rc = hdaRegWriteU8(pThis, iReg, u32Value); AssertRC(rc); if ( CORBWP(pThis) != CORBRP(pThis) && HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) != 0) return hdaCORBCmdProcess(pThis); return rc; #else return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t v = CORBSTS(pThis); CORBSTS(pThis) &= ~(v & u32Value); return VINF_SUCCESS; } static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 int rc; rc = hdaRegWriteU16(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); if (CORBWP(pThis) == CORBRP(pThis)) return VINF_SUCCESS; if (!HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)) return VINF_SUCCESS; rc = hdaCORBCmdProcess(pThis); return rc; #else return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegReadSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { return hdaRegReadU24(pThis, iReg, pu32Value); } static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { bool fRun = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); bool fReset = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); if (fInReset) { /* * Assert!!! Guest is resetting HDA's stream, we're expecting guest will mark stream as exit * from reset */ Assert((!fReset)); Log(("hda: guest initiated exit of stream reset.\n")); } else if (fReset) { #ifdef IN_RING3 /* * Assert!!! ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */ uint8_t u8Strm = 0; PHDABDLEDESC pBdle = NULL; HDASTREAMTRANSFERDESC StreamDesc; Assert((!fInRun && !fRun)); switch (iReg) { case ICH6_HDA_REG_SD0CTL: u8Strm = 0; pBdle = &pThis->StInBdle; break; case ICH6_HDA_REG_SD4CTL: u8Strm = 4; pBdle = &pThis->StOutBdle; break; default: Log(("hda: changing SRST bit on non-attached stream\n")); return hdaRegWriteU24(pThis, iReg, u32Value); } Log(("hda: guest initiated enter to stream reset.\n")); hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm); #else return VINF_IOM_R3_MMIO_WRITE; #endif } else { #ifdef IN_RING3 /* we enter here to change DMA states only */ if ( (fInRun && !fRun) || (fRun && !fInRun)) { Assert((!fReset && !fInReset)); switch (iReg) { case ICH6_HDA_REG_SD0CTL: AUD_set_active_in(pThis->pCodec->SwVoiceIn, fRun); break; case ICH6_HDA_REG_SD4CTL: AUD_set_active_out(pThis->pCodec->SwVoiceOut, fRun); break; default: Log(("hda: changing RUN bit on non-attached stream\n")); break; } } #else return VINF_IOM_R3_MMIO_WRITE; #endif } return hdaRegWriteU24(pThis, iReg, u32Value); } static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t v = HDA_REG_IND(pThis, iReg); v &= ~(u32Value & v); HDA_REG_IND(pThis, iReg) = v; hdaProcessInterrupt(pThis); return VINF_SUCCESS; } static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { switch (u32Value) { case HDA_SDFIFOW_8B: case HDA_SDFIFOW_16B: case HDA_SDFIFOW_32B: return hdaRegWriteU16(pThis, iReg, u32Value); default: Log(("hda: Attempt to store unsupported value(%x) in SDFIFOW\n", u32Value)); return hdaRegWriteU16(pThis, iReg, HDA_SDFIFOW_32B); } return VINF_SUCCESS; } /** * @note This method could be called for changing value on Output Streams * only (ICH6 datasheet 18.2.39) */ static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { switch (iReg) { /* SDInFIFOS is RO, n=0-3 */ case ICH6_HDA_REG_SD0FIFOS: case ICH6_HDA_REG_SD1FIFOS: case ICH6_HDA_REG_SD2FIFOS: case ICH6_HDA_REG_SD3FIFOS: Log(("hda: Guest tries change value of FIFO size of Input Stream\n")); return VINF_SUCCESS; case ICH6_HDA_REG_SD4FIFOS: case ICH6_HDA_REG_SD5FIFOS: case ICH6_HDA_REG_SD6FIFOS: case ICH6_HDA_REG_SD7FIFOS: switch(u32Value) { case HDA_SDONFIFO_16B: case HDA_SDONFIFO_32B: case HDA_SDONFIFO_64B: case HDA_SDONFIFO_128B: case HDA_SDONFIFO_192B: return hdaRegWriteU16(pThis, iReg, u32Value); case HDA_SDONFIFO_256B: Log(("hda: 256-bit is unsupported, HDA is switched into 192-bit mode\n")); default: return hdaRegWriteU16(pThis, iReg, HDA_SDONFIFO_192B); } return VINF_SUCCESS; default: AssertMsgFailed(("Something weird happened with register lookup routine")); } return VINF_SUCCESS; } #ifdef IN_RING3 static void hdaSdFmtToAudSettings(uint32_t u32SdFmt, audsettings_t *pAudSetting) { Assert((pAudSetting)); #define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift)) uint32_t u32Hz = (u32SdFmt & ICH6_HDA_SDFMT_BASE_RATE_SHIFT) ? 44100 : 48000; uint32_t u32HzMult = 1; uint32_t u32HzDiv = 1; switch (EXTRACT_VALUE(u32SdFmt, ICH6_HDA_SDFMT_MULT_MASK, ICH6_HDA_SDFMT_MULT_SHIFT)) { case 0: u32HzMult = 1; break; case 1: u32HzMult = 2; break; case 2: u32HzMult = 3; break; case 3: u32HzMult = 4; break; default: Log(("hda: unsupported multiplier %x\n", u32SdFmt)); } switch (EXTRACT_VALUE(u32SdFmt, ICH6_HDA_SDFMT_DIV_MASK, ICH6_HDA_SDFMT_DIV_SHIFT)) { case 0: u32HzDiv = 1; break; case 1: u32HzDiv = 2; break; case 2: u32HzDiv = 3; break; case 3: u32HzDiv = 4; break; case 4: u32HzDiv = 5; break; case 5: u32HzDiv = 6; break; case 6: u32HzDiv = 7; break; case 7: u32HzDiv = 8; break; } pAudSetting->freq = u32Hz * u32HzMult / u32HzDiv; switch (EXTRACT_VALUE(u32SdFmt, ICH6_HDA_SDFMT_BITS_MASK, ICH6_HDA_SDFMT_BITS_SHIFT)) { case 0: Log(("hda: %s requested 8-bit\n", __FUNCTION__)); pAudSetting->fmt = AUD_FMT_S8; break; case 1: Log(("hda: %s requested 16-bit\n", __FUNCTION__)); pAudSetting->fmt = AUD_FMT_S16; break; case 2: Log(("hda: %s requested 20-bit\n", __FUNCTION__)); break; case 3: Log(("hda: %s requested 24-bit\n", __FUNCTION__)); break; case 4: Log(("hda: %s requested 32-bit\n", __FUNCTION__)); pAudSetting->fmt = AUD_FMT_S32; break; default: AssertMsgFailed(("Unsupported")); } pAudSetting->nchannels = (u32SdFmt & 0xf) + 1; pAudSetting->fmt = AUD_FMT_S16; pAudSetting->endianness = 0; #undef EXTRACT_VALUE } #endif static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 # ifdef VBOX_WITH_HDA_CODEC_EMU /** @todo a bit more investigation is required here. */ int rc = 0; audsettings_t as; /* no reason to reopen voice with same settings */ if (u32Value == HDA_REG_IND(pThis, iReg)) return VINF_SUCCESS; hdaSdFmtToAudSettings(u32Value, &as); switch (iReg) { case ICH6_HDA_REG_SD0FMT: rc = hdaCodecOpenVoice(pThis->pCodec, PI_INDEX, &as); break; case ICH6_HDA_REG_SD4FMT: rc = hdaCodecOpenVoice(pThis->pCodec, PO_INDEX, &as); break; default: Log(("HDA: attempt to change format on %d\n", iReg)); rc = 0; } return hdaRegWriteU16(pThis, iReg, u32Value); # else return hdaRegWriteU16(pThis, iReg, u32Value); # endif #else return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { int rc = VINF_SUCCESS; /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */ if ( CORBWP(pThis) != CORBRP(pThis) || HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)) IRS(pThis) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */ rc = hdaRegReadU32(pThis, iReg, pu32Value); return rc; } static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = VINF_SUCCESS; /* * if guest set the ICB bit of IRS register, HDA should process the verb in IC register, * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register. */ if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, ICB) && !IRS_ICB(pThis)) { #ifdef IN_RING3 PFNHDACODECVERBPROCESSOR pfn = NULL; uint64_t resp; uint32_t cmd = IC(pThis); if (CORBWP(pThis) != CORBRP(pThis)) { /* * 3.4.3 defines behavior of immediate Command status register. */ LogRel(("hda: guest attempted process immediate verb (%x) with active CORB\n", cmd)); return rc; } IRS(pThis) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */ Log(("hda: IC:%x\n", cmd)); rc = pThis->pCodec->pfnLookup(pThis->pCodec, cmd, &pfn); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); rc = pfn(pThis->pCodec, cmd, &resp); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); IR(pThis) = (uint32_t)resp; Log(("hda: IR:%x\n", IR(pThis))); IRS(pThis) = HDA_REG_FIELD_FLAG_MASK(IRS, IRV); /* result is ready */ IRS(pThis) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy is clear */ #else rc = VINF_IOM_R3_MMIO_WRITE; #endif return rc; } /* * Once the guest read the response, it should clean the IRV bit of the IRS register. */ if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, IRV) && IRS_IRV(pThis)) IRS(pThis) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, IRV); return rc; } static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(RIRBWP, RST)) { RIRBWP(pThis) = 0; } /* The remaining bits are O, see 6.2.22 */ return VINF_SUCCESS; } static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); switch(iReg) { case ICH6_HDA_REG_CORBLBASE: pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64CORBBase |= pThis->au32Regs[iReg]; break; case ICH6_HDA_REG_CORBUBASE: pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iReg] << 32); break; case ICH6_HDA_REG_RIRLBASE: pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64RIRBBase |= pThis->au32Regs[iReg]; break; case ICH6_HDA_REG_RIRUBASE: pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iReg] << 32); break; case ICH6_HDA_REG_DPLBASE: /** @todo: first bit has special meaning */ pThis->u64DPBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64DPBase |= pThis->au32Regs[iReg]; break; case ICH6_HDA_REG_DPUBASE: pThis->u64DPBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64DPBase |= ((uint64_t)pThis->au32Regs[iReg] << 32); break; default: AssertMsgFailed(("Invalid index")); } Log(("hda: CORB base:%llx RIRB base: %llx DP base: %llx\n", pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase)); return rc; } static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint8_t v = RIRBSTS(pThis); RIRBSTS(pThis) &= ~(v & u32Value); return hdaProcessInterrupt(pThis); } #ifdef IN_RING3 #ifdef LOG_ENABLED static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA) { #if 0 uint64_t addr; uint32_t len; uint32_t ioc; uint8_t bdle[16]; uint32_t counter; uint32_t i; uint32_t sum = 0; Assert(pBdle && pBdle->u32BdleMaxCvi); for (i = 0; i <= pBdle->u32BdleMaxCvi; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i*16, bdle, 16); addr = *(uint64_t *)bdle; len = *(uint32_t *)&bdle[8]; ioc = *(uint32_t *)&bdle[12]; Log(("hda: %s bdle[%d] a:%llx, len:%d, ioc:%d\n", (i == pBdle->u32BdleCvi? "[C]": " "), i, addr, len, ioc & 0x1)); sum += len; } Log(("hda: sum: %d\n", sum)); for (i = 0; i < 8; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + i*8, &counter, sizeof(&counter)); Log(("hda: %s stream[%d] counter=%x\n", i == SDCTL_NUM(pThis, 4) || i == SDCTL_NUM(pThis, 0)? "[C]": " ", i , counter)); } #endif } #endif static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { uint8_t bdle[16]; Assert(( pStreamDesc->u64BaseDMA && pBdle && pBdle->u32BdleMaxCvi)); PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pStreamDesc->u64BaseDMA + pBdle->u32BdleCvi*16, bdle, 16); pBdle->u64BdleCviAddr = *(uint64_t *)bdle; pBdle->u32BdleCviLen = *(uint32_t *)&bdle[8]; pBdle->fBdleCviIoc = (*(uint32_t *)&bdle[12]) & 0x1; #ifdef LOG_ENABLED dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA); #endif } DECLINLINE(uint32_t) hdaCalculateTransferBufferLength(PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t u32SoundBackendBufferBytesAvail, uint32_t u32CblLimit) { uint32_t cb2Copy; /* * Number of bytes depends on the current position in buffer (u32BdleCviLen-u32BdleCviPos) */ Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos)); /* sanity */ cb2Copy = pBdle->u32BdleCviLen - pBdle->u32BdleCviPos; /* * we may increase the counter in range of [0, FIFOS + 1] */ cb2Copy = RT_MIN(cb2Copy, pStreamDesc->u32Fifos + 1); Assert((u32SoundBackendBufferBytesAvail > 0)); /* sanity check to avoid overriding the backend audio buffer */ cb2Copy = RT_MIN(cb2Copy, u32SoundBackendBufferBytesAvail); cb2Copy = RT_MIN(cb2Copy, u32CblLimit); if (cb2Copy <= pBdle->cbUnderFifoW) return 0; cb2Copy -= pBdle->cbUnderFifoW; /* forcibly reserve the amount of unreported bytes to copy */ return cb2Copy; } DECLINLINE(void) hdaBackendWriteTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity) { Log(("hda:hdaBackendWriteTransferReported: cbArranged2Copy: %d, cbCopied: %d, pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", cbArranged2Copy, cbCopied, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0)); Assert((cbCopied)); Assert((pu32BackendBufferCapacity && *pu32BackendBufferCapacity)); /* Assertion!!! Fewer than cbUnderFifoW bytes were copied. * Probably we need to move the buffer, but it is rather hard to imagine a situation * where it might happen. */ Assert((cbCopied == pBdle->cbUnderFifoW + cbArranged2Copy)); /* we assume that we write the entire buffer including unreported bytes */ if ( pBdle->cbUnderFifoW && pBdle->cbUnderFifoW <= cbCopied) Log(("hda:hdaBackendWriteTransferReported: CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); pBdle->cbUnderFifoW -= RT_MIN(pBdle->cbUnderFifoW, cbCopied); Assert((!pBdle->cbUnderFifoW)); /* Assert!!! Incorrect assumption */ /* We always increment the position of DMA buffer counter because we're always reading into an intermediate buffer */ pBdle->u32BdleCviPos += cbArranged2Copy; Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos && *pu32BackendBufferCapacity >= cbCopied)); /* sanity */ /* We report all bytes (including previously unreported bytes) */ *pu32DMACursor += cbCopied; /* Decrease the backend counter by the number of bytes we copied to the backend */ *pu32BackendBufferCapacity -= cbCopied; Log(("hda:hdaBackendWriteTransferReported: CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, *pu32DMACursor, *pu32BackendBufferCapacity)); } DECLINLINE(void) hdaBackendReadTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity) { Assert((cbCopied, cbArranged2Copy)); *pu32BackendBufferCapacity -= cbCopied; pBdle->u32BdleCviPos += cbCopied; Log(("hda:hdaBackendReadTransferReported: CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); *pu32DMACursor += cbCopied + pBdle->cbUnderFifoW; pBdle->cbUnderFifoW = 0; Log(("hda:hdaBackendReadTransferReported: CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0)); } DECLINLINE(void) hdaBackendTransferUnreported(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbCopied, uint32_t *pu32BackendBufferCapacity) { Log(("hda:hdaBackendTransferUnreported: CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); pBdle->u32BdleCviPos += cbCopied; pBdle->cbUnderFifoW += cbCopied; /* In case of a read transaction we're always copying from the backend buffer */ if (pu32BackendBufferCapacity) *pu32BackendBufferCapacity -= cbCopied; Log(("hda:hdaBackendTransferUnreported: CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); Assert((pBdle->cbUnderFifoW <= hdaFifoWToSz(pThis, pStreamDesc))); } DECLINLINE(bool) hdaIsTransferCountersOverlapped(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { bool fOnBufferEdge = ( *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl || pBdle->u32BdleCviPos == pBdle->u32BdleCviLen); Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl)); if (*pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl) *pStreamDesc->pu32Lpib -= pStreamDesc->u32Cbl; hdaUpdatePosBuf(pThis, pStreamDesc); /* don't touch BdleCvi counter on uninitialized descriptor */ if ( pBdle->u32BdleCviPos && pBdle->u32BdleCviPos == pBdle->u32BdleCviLen) { pBdle->u32BdleCviPos = 0; pBdle->u32BdleCvi++; if (pBdle->u32BdleCvi == pBdle->u32BdleMaxCvi + 1) pBdle->u32BdleCvi = 0; } return fOnBufferEdge; } DECLINLINE(void) hdaStreamCounterUpdate(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbInc) { /* * if we're below the FIFO Watermark, it's expected that HDA doesn't fetch anything. * (ICH6 datasheet 18.2.38) */ if (!pBdle->cbUnderFifoW) { *pStreamDesc->pu32Lpib += cbInc; /* * Assert. The buffer counters should never overlap. */ Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl)); hdaUpdatePosBuf(pThis, pStreamDesc); } } static bool hdaDoNextTransferCycle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { bool fDoNextTransferLoop = true; if ( pBdle->u32BdleCviPos == pBdle->u32BdleCviLen || *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl) { if ( !pBdle->cbUnderFifoW && pBdle->fBdleCviIoc) { /** * @todo - more carefully investigate BCIS flag. * Speech synthesis works fine on Mac Guest if this bit isn't set * but in general sound quality gets worse. */ *pStreamDesc->pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS); /* * we should generate the interrupt if ICE bit of SDCTL register is set. */ if (pStreamDesc->u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)) hdaProcessInterrupt(pThis); } fDoNextTransferLoop = false; } return fDoNextTransferLoop; } /* * hdaReadAudio - copies samples from audio backend to DMA. * Note: this function writes to the DMA buffer immediately, but "reports bytes" when all conditions are met (FIFOW) */ static uint32_t hdaReadAudio(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit) { PHDABDLEDESC pBdle = &pThis->StInBdle; uint32_t cbTransferred = 0; uint32_t cb2Copy = 0; uint32_t cbBackendCopy = 0; Log(("hda:ra: CVI(pos:%d, len:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit); if (!cb2Copy) /* if we enter here we can't report "unreported bits" */ *fStop = true; else { /* * read from backend input line to the last unreported position or at the begining. */ cbBackendCopy = AUD_read(pThis->pCodec->SwVoiceIn, pBdle->au8HdaBuffer, cb2Copy); /* * write the HDA DMA buffer */ PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer, cbBackendCopy); /* Don't see any reason why cb2Copy would differ from cbBackendCopy */ Assert((cbBackendCopy == cb2Copy && (*pu32Avail) >= cb2Copy)); /* sanity */ if (pBdle->cbUnderFifoW + cbBackendCopy > hdaFifoWToSz(pThis, 0)) hdaBackendReadTransferReported(pBdle, cb2Copy, cbBackendCopy, &cbTransferred, pu32Avail); else { hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cbBackendCopy, pu32Avail); *fStop = true; } } Assert((cbTransferred <= (SDFIFOS(pThis, 0) + 1))); Log(("hda:ra: CVI(pos:%d, len:%d) cbTransferred: %d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred)); return cbTransferred; } static uint32_t hdaWriteAudio(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t *pu32Avail, bool *fStop, uint32_t u32CblLimit) { PHDABDLEDESC pBdle = &pThis->StOutBdle; uint32_t cbTransferred = 0; uint32_t cb2Copy = 0; /* local byte counter (on local buffer) */ uint32_t cbBackendCopy = 0; /* local byte counter, how many bytes copied to backend */ Log(("hda:wa: CVI(cvi:%d, pos:%d, len:%d)\n", pBdle->u32BdleCvi, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pu32Avail, u32CblLimit); /* * Copy from DMA to the corresponding hdaBuffer (if there are any bytes from the * previous unreported transfer we write at offset 'pBdle->cbUnderFifoW'). */ if (!cb2Copy) *fStop = true; else { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer + pBdle->cbUnderFifoW, cb2Copy); /* * Write to audio backend. we should ensure that we have enough bytes to copy to the backend. */ if (cb2Copy + pBdle->cbUnderFifoW >= hdaFifoWToSz(pThis, pStreamDesc)) { /* * Feed the newly fetched samples, including unreported ones, to the backend. */ cbBackendCopy = AUD_write (pThis->pCodec->SwVoiceOut, pBdle->au8HdaBuffer, cb2Copy + pBdle->cbUnderFifoW); hdaBackendWriteTransferReported(pBdle, cb2Copy, cbBackendCopy, &cbTransferred, pu32Avail); } else { /* Not enough bytes to be processed and reported, we'll try our luck next time around */ hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cb2Copy, NULL); *fStop = true; } } Assert(cbTransferred <= SDFIFOS(pThis, 4) + 1); Log(("hda:wa: CVI(pos:%d, len:%d, cbTransferred:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred)); return cbTransferred; } /** * @interface_method_impl{HDACODEC,pfnReset} */ DECLCALLBACK(int) hdaCodecReset(PHDACODEC pCodec) { PHDASTATE pThis = (PHDASTATE)pCodec->pvHDAState; NOREF(pThis); return VINF_SUCCESS; } DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc) { Assert(pThis); Assert(pBdle); Assert(pStreamDesc); Assert(u8Strm <= 7); memset(pStreamDesc, 0, sizeof(HDASTREAMTRANSFERDESC)); pStreamDesc->u8Strm = u8Strm; pStreamDesc->u32Ctl = HDA_STREAM_REG2(pThis, CTL, u8Strm); pStreamDesc->u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG2(pThis, BDPL, u8Strm), HDA_STREAM_REG2(pThis, BDPU, u8Strm)); pStreamDesc->pu32Lpib = &HDA_STREAM_REG2(pThis, LPIB, u8Strm); pStreamDesc->pu32Sts = &HDA_STREAM_REG2(pThis, STS, u8Strm); pStreamDesc->u32Cbl = HDA_STREAM_REG2(pThis, CBL, u8Strm); pStreamDesc->u32Fifos = HDA_STREAM_REG2(pThis, FIFOS, u8Strm); pBdle->u32BdleMaxCvi = HDA_STREAM_REG2(pThis, LVI, u8Strm); #ifdef LOG_ENABLED if ( pBdle && pBdle->u32BdleMaxCvi) { Log(("Initialization of transfer descriptor:\n")); dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA); } #endif } /** * @interface_method_impl{HDACODEC,pfnTransfer} */ static DECLCALLBACK(void) hdaTransfer(PHDACODEC pCodec, ENMSOUNDSOURCE src, int avail) { PHDASTATE pThis = (PHDASTATE)pCodec->pvHDAState; uint8_t u8Strm = 0; PHDABDLEDESC pBdle = NULL; switch (src) { case PO_INDEX: { u8Strm = 4; pBdle = &pThis->StOutBdle; break; } case PI_INDEX: { u8Strm = 0; pBdle = &pThis->StInBdle; break; } default: return; } HDASTREAMTRANSFERDESC StreamDesc; hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); bool fStop = false; while (avail && !fStop) { Assert( (StreamDesc.u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)) && avail && StreamDesc.u64BaseDMA); /* Fetch the Buffer Descriptor Entry (BDE). */ if (hdaIsTransferCountersOverlapped(pThis, pBdle, &StreamDesc)) hdaFetchBdle(pThis, pBdle, &StreamDesc); *StreamDesc.pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY); Assert((avail >= 0 && (StreamDesc.u32Cbl >= (*StreamDesc.pu32Lpib)))); /* sanity */ uint32_t u32CblLimit = StreamDesc.u32Cbl - (*StreamDesc.pu32Lpib); Assert((u32CblLimit > hdaFifoWToSz(pThis, &StreamDesc))); Log(("hda: CBL=%d, LPIB=%d\n", StreamDesc.u32Cbl, *StreamDesc.pu32Lpib)); uint32_t cb; switch (src) { case PO_INDEX: cb = hdaWriteAudio(pThis, &StreamDesc, (uint32_t *)&avail, &fStop, u32CblLimit); break; case PI_INDEX: cb = hdaReadAudio(pThis, &StreamDesc, (uint32_t *)&avail, &fStop, u32CblLimit); break; default: cb = 0; fStop = true; AssertMsgFailed(("Unsupported")); } Assert(cb <= StreamDesc.u32Fifos + 1); *StreamDesc.pu32Sts &= ~HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY); /* Process end of buffer condition. */ hdaStreamCounterUpdate(pThis, pBdle, &StreamDesc, cb); fStop = !fStop ? !hdaDoNextTransferCycle(pThis, pBdle, &StreamDesc) : fStop; } } #endif /* MMIO callbacks */ /** * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.} * * @note During implementation, we discovered so-called "forgotten" or "hole" * registers whose description is not listed in the RPM, datasheet, or * spec. */ PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; /* * Look up and log. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxReg = hdaRegLookup(pThis, offReg); #ifdef LOG_ENABLED unsigned const cbLog = cb; uint32_t offRegLog = offReg; #endif Log(("hdaMMIORead: offReg=%#x cb=%#x\n", offReg, cb)); #define NEW_READ_CODE #ifdef NEW_READ_CODE Assert(cb == 4); Assert((offReg & 3) == 0); if (pThis->fInReset && idxReg != ICH6_HDA_REG_GCTL) Log(("hda: access to registers except GCTL is blocked while reset\n")); if (idxReg == -1) LogRel(("hda: Invalid read access @0x%x(of bytes:%d)\n", offReg, cb)); if (idxReg != -1) { /* ASSUMES gapless DWORD at end of map. */ if (g_aHdaRegMap[idxReg].size == 4) { /* * Straight forward DWORD access. */ rc = g_aHdaRegMap[idxReg].pfnRead(pThis, idxReg, (uint32_t *)pv); Log(("hda: read %s => %x (%Rrc)\n", g_aHdaRegMap[idxReg].abbrev, *(uint32_t *)pv, rc)); } else { /* * Multi register read (unless there are trailing gaps). * ASSUMES that only DWORD reads have sideeffects. */ uint32_t u32Value = 0; unsigned cbLeft = 4; do { uint32_t const cbReg = g_aHdaRegMap[idxReg].size; uint32_t u32Tmp = 0; rc = g_aHdaRegMap[idxReg].pfnRead(pThis, idxReg, &u32Tmp); Log(("hda: read %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxReg].abbrev, cbReg, u32Tmp, rc)); if (rc != VINF_SUCCESS) break; u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8); cbLeft -= cbReg; offReg += cbReg; idxReg++; } while (cbLeft > 0 && g_aHdaRegMap[idxReg].offset == offReg); if (rc == VINF_SUCCESS) *(uint32_t *)pv = u32Value; else Assert(!IOM_SUCCESS(rc)); } } else { rc = VINF_IOM_MMIO_UNUSED_FF; Log(("hda: hole at %x is accessed for read\n", offReg)); } #else if (idxReg != -1) { /** @todo r=bird: Accesses crossing register boundraries aren't handled * right from what I can tell? If they are, please explain * what the rules are. */ uint32_t mask = 0; uint32_t shift = (g_aHdaRegMap[idxReg].offset - offReg) % sizeof(uint32_t) * 8; uint32_t u32Value = 0; switch(cb) { case 1: mask = 0x000000ff; break; case 2: mask = 0x0000ffff; break; case 4: /* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */ case 8: mask = 0xffffffff; cb = 4; break; } #if 0 /* Cross-register access. Mac guest hits this assert doing assumption 4 byte access to 3 byte registers e.g. {I,O}SDnCTL */ //Assert((cb <= g_aHdaRegMap[idxReg].size - (offReg - g_aHdaRegMap[idxReg].offset))); if (cb > g_aHdaRegMap[idxReg].size - (offReg - g_aHdaRegMap[idxReg].offset)) { int off = cb - (g_aHdaRegMap[idxReg].size - (offReg - g_aHdaRegMap[idxReg].offset)); rc = hdaMMIORead(pDevIns, pvUser, GCPhysAddr + cb - off, (char *)pv + cb - off, off); if (RT_FAILURE(rc)) AssertRCReturn (rc, rc); } //Assert(((offReg - g_aHdaRegMap[idxReg].offset) == 0)); #endif mask <<= shift; rc = g_aHdaRegMap[idxReg].pfnRead(pThis, idxReg, &u32Value); *(uint32_t *)pv |= (u32Value & mask); Log(("hda: read %s[%x/%x]\n", g_aHdaRegMap[idxReg].abbrev, u32Value, *(uint32_t *)pv)); } else { *(uint32_t *)pv = 0xFF; Log(("hda: hole at %x is accessed for read\n", offReg)); rc = VINF_SUCCESS; } #endif /* * Log the outcome. */ #ifdef LOG_ENABLED if (cbLog == 4) Log(("hdaMMIORead: @%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc)); else if (cbLog == 2) Log(("hdaMMIORead: @%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc)); else if (cbLog == 1) Log(("hdaMMIORead: @%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc)); #endif return rc; } DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxReg, uint32_t u32Value, char const *pszLog) { if (pThis->fInReset && idxReg != ICH6_HDA_REG_GCTL) Log(("hda: access to registers except GCTL is blocked while reset\n")); /** @todo where is this enforced? */ #ifdef LOG_ENABLED uint32_t const u32CurValue = pThis->au32Regs[idxReg]; #endif int rc = g_aHdaRegMap[idxReg].pfnWrite(pThis, idxReg, u32Value); Log(("hda: write %#x -> %s[%db]; %x => %x%s\n", u32Value, g_aHdaRegMap[idxReg].abbrev, g_aHdaRegMap[idxReg].size, u32CurValue, pThis->au32Regs[idxReg], pszLog)); return rc; } /** * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.} */ PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; /* * The behavior of accesses that aren't aligned on natural boundraries is * undefined. Just reject them out right. */ /** @todo IOM could check this, it could also split the 8 byte accesses for us. */ Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8); if (GCPhysAddr & (cb - 1)) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb); /* * Lookup and log the access. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxReg = hdaRegLookup(pThis, offReg); uint64_t u64Value; if (cb == 4) u64Value = *(uint32_t const *)pv; else if (cb == 2) u64Value = *(uint16_t const *)pv; else if (cb == 1) u64Value = *(uint8_t const *)pv; else if (cb == 8) u64Value = *(uint64_t const *)pv; else { u64Value = 0; /* shut up gcc. */ AssertReleaseMsgFailed(("%d\n", cb)); } #ifdef LOG_ENABLED uint32_t const u32LogOldValue = idxReg != -1 ? pThis->au32Regs[idxReg] : UINT32_MAX; uint32_t const offRegLog = offReg; int const idxRegLog = idxReg; if (idxReg == -1) Log(("hdaMMIOWrite: @%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb)); else if (cb == 4) Log(("hdaMMIOWrite: @%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxReg].abbrev)); else if (cb == 2) Log(("hdaMMIOWrite: @%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxReg].abbrev)); else if (cb == 1) Log(("hdaMMIOWrite: @%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxReg].abbrev)); if (idxReg != -1 && g_aHdaRegMap[idxReg].size != cb) Log(("hdaMMIOWrite: size=%d != cb=%d!!\n", g_aHdaRegMap[idxReg].size, cb)); #endif #define NEW_WRITE_CODE #ifdef NEW_WRITE_CODE /* * Try for a direct hit first. */ if (idxReg != -1 && g_aHdaRegMap[idxReg].size == cb) rc = hdaWriteReg(pThis, idxReg, u64Value, ""); /* * Partial or multiple register access, loop thru the requested memory. */ else { /* If it's an access beyond the start of the register, shift the input value and fill in missing bits. Natural alignment rules means we will only see 1 or 2 byte accesses of this kind, so no risk of shifting out input values. */ if (idxReg == -1 && (idxReg = hdaRegLookupWithin(pThis, offReg)) != -1) { uint32_t const cbBefore = offReg - g_aHdaRegMap[idxReg].offset; Assert(cbBefore > 0 && cbBefore < 4); offReg -= cbBefore; u64Value <<= cbBefore * 8; u64Value |= pThis->au32Regs[idxReg] & g_afMasks[cbBefore]; Log(("hdaMMIOWrite: Within register, supplied %u leading bits: %#llx -> %#llx ...\n", cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value)); } /* Loop thru the write area, it may covert multiple registers. */ rc = VINF_SUCCESS; for (;;) { uint32_t cbReg; if (idxReg != -1) { cbReg = g_aHdaRegMap[idxReg].size; if (cb < cbReg) { u64Value |= pThis->au32Regs[idxReg] & g_afMasks[cbReg] & ~g_afMasks[cb]; Log(("hdaMMIOWrite: Supplying missing bits (%#x): %#llx -> %#llx ...\n", g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value)); } rc = hdaWriteReg(pThis, idxReg, u64Value, "*"); } else { LogRel(("hda: Invalid write access @0x%x!\n", offReg)); cbReg = 1; } if (rc != VINF_SUCCESS) break; if (cbReg >= cb) break; /* advance */ offReg += cbReg; cb -= cbReg; u64Value >>= cbReg * 8; if (idxReg == -1) idxReg = hdaRegLookup(pThis, offReg); else { idxReg++; if ( (unsigned)idxReg >= RT_ELEMENTS(g_aHdaRegMap) || g_aHdaRegMap[idxReg].offset != offReg) idxReg = -1; } } } #else if (idxReg != -1) { /** @todo r=bird: This looks like code for handling unaligned register * accesses. If it isn't, then add a comment explaining what you're * trying to do here. OTOH, if it is then it has the following * issues: * -# You're calculating the wrong new value for the register. * -# You're not handling cross register accesses. Imagine a * 4-byte write starting at CORBCTL, or a 8-byte write. * * PS! consider dropping the 'offset' argument to pfnWrite/pfnRead as * nobody seems to be using it and it just adds complexity when reading * the code. * */ uint32_t u32CurValue = pThis->au32Regs[idxReg]; uint32_t u32NewValue; uint32_t mask; switch (cb) { case 1: u32NewValue = *(uint8_t const *)pv; mask = 0xff; break; case 2: u32NewValue = *(uint16_t const *)pv; mask = 0xffff; break; case 4: case 8: /* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */ u32NewValue = *(uint32_t const *)pv; mask = 0xffffffff; cb = 4; break; default: AssertFailedReturn(VERR_INTERNAL_ERROR_4); /* shall not happen. */ } /* cross-register access, see corresponding comment in hdaMMIORead */ uint32_t shift = (g_aHdaRegMap[idxReg].offset - offReg) % sizeof(uint32_t) * 8; mask <<= shift; u32NewValue <<= shift; u32NewValue &= mask; u32NewValue |= (u32CurValue & ~mask); rc = g_aHdaRegMap[idxReg].pfnWrite(pThis, idxReg, u32NewValue); Log(("hda: write %s:(%x) %x => %x\n", g_aHdaRegMap[idxReg].abbrev, u32NewValue, u32CurValue, pThis->au32Regs[idxReg])); } else rc = VINF_SUCCESS; #endif Log(("hdaMMIOWrite: @%#05x %#x -> %#x\n", offRegLog, u32LogOldValue, idxRegLog != -1 ? pThis->au32Regs[idxRegLog] : UINT32_MAX)); return rc; } /* PCI callback. */ #ifdef IN_RING3 /** * @callback_method_impl{FNPCIIOREGIONMAP} */ static DECLCALLBACK(int) hdaPciIoRegionMap(PPCIDEVICE pPciDev, int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType) { PPDMDEVINS pDevIns = pPciDev->pDevIns; PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev); RTIOPORT Port = (RTIOPORT)GCPhysAddress; int rc; /* * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word. * * Let IOM talk DWORDs when reading, saves a lot of complications. On * writing though, we have to do it all ourselves because of sideeffects. */ Assert(enmType == PCI_ADDRESS_SPACE_MEM); rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, #ifdef NEW_READ_CODE IOMMMIO_FLAGS_READ_DWORD | #else IOMMMIO_FLAGS_READ_PASSTHRU | #endif IOMMMIO_FLAGS_WRITE_PASSTHRU, hdaMMIOWrite, hdaMMIORead, "ICH6_HDA"); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; } if (pThis->fRCEnabled) { rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; } pThis->MMIOBaseAddr = GCPhysAddress; return VINF_SUCCESS; } /* Saved state callbacks. */ /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) hdaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); /* Save Codec nodes states */ hdaCodecSaveState(pThis->pCodec, pSSM); /* Save MMIO registers */ AssertCompile(RT_ELEMENTS(pThis->au32Regs) == 112); SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs)); SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); /* Save HDA dma counters */ SSMR3PutStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); SSMR3PutStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); SSMR3PutStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) hdaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Load Codec nodes states. */ int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion); if (RT_FAILURE(rc)) return rc; /* * Load MMIO registers. */ uint32_t cRegs; switch (uVersion) { case HDA_SSM_VERSION_1: /* Starting with r71199, we would save 112 instead of 113 registers due to some code cleanups. This only affected trunk builds in the 4.1 development period. */ cRegs = 113; if (SSMR3HandleRevision(pSSM) >= 71199) { uint32_t uVer = SSMR3HandleVersion(pSSM); if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51) cRegs = 112; } break; case HDA_SSM_VERSION_2: case HDA_SSM_VERSION_3: cRegs = 112; AssertCompile(RT_ELEMENTS(pThis->au32Regs) == 112); break; case HDA_SSM_VERSION: rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(cRegs == RT_ELEMENTS(pThis->au32Regs), ("cRegs is %d, expected %d\n", cRegs, RT_ELEMENTS(pThis->au32Regs)), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); break; default: return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (cRegs >= RT_ELEMENTS(pThis->au32Regs)) { SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs))); } else { RT_ZERO(pThis->au32Regs); SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs); } /* * Load HDA dma counters. */ uint32_t fFlags = uVersion <= HDA_SSM_VERSION_2 ? SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED : 0; PCSSMFIELD paFields = uVersion <= HDA_SSM_VERSION_2 ? g_aHdaBDLEDescFieldsOld : g_aHdaBDLEDescFields; SSMR3GetStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), fFlags, paFields, NULL); SSMR3GetStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), fFlags, paFields, NULL); rc = SSMR3GetStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), fFlags, paFields, NULL); AssertRCReturn(rc, rc); /* * Update stuff after the state changes. */ AUD_set_active_in(pThis->pCodec->SwVoiceIn, SDCTL(pThis, 0) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); AUD_set_active_out(pThis->pCodec->SwVoiceOut, SDCTL(pThis, 4) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); pThis->u64CORBBase = RT_MAKE_U64(CORBLBASE(pThis), CORBUBASE(pThis)); pThis->u64RIRBBase = RT_MAKE_U64(RIRLBASE(pThis), RIRUBASE(pThis)); pThis->u64DPBase = RT_MAKE_U64(DPLBASE(pThis), DPUBASE(pThis)); return VINF_SUCCESS; } /* Debug and log type formatters. */ /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmCtl(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t sdCtl = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDCTL(raw: %#x, strm:%#x, dir:%RTbool, tp:%RTbool strip:%x, deie:%RTbool, ioce:%RTbool, run:%RTbool, srst:%RTbool)", sdCtl, (sdCtl & HDA_REG_FIELD_MASK(SDCTL, NUM)) >> ICH6_HDA_SDCTL_NUM_SHIFT, RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DIR)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, TP)), (sdCtl & HDA_REG_FIELD_MASK(SDCTL, STRIPE)) >> ICH6_HDA_SDCTL_STRIPE_SHIFT, RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DEIE)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST))); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmFifos(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue; uint32_t cb; switch (uSdFifos) { case HDA_SDONFIFO_16B: cb = 16; break; case HDA_SDONFIFO_32B: cb = 32; break; case HDA_SDONFIFO_64B: cb = 64; break; case HDA_SDONFIFO_128B: cb = 128; break; case HDA_SDONFIFO_192B: cb = 192; break; case HDA_SDONFIFO_256B: cb = 256; break; case HDA_SDINFIFO_120B: cb = 120; break; case HDA_SDINFIFO_160B: cb = 160; break; default: cb = 0; break; } return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw: %#x, sdfifos:%u B)", uSdFifos, cb); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmFifow(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue; uint32_t cb; switch (uSdFifos) { case HDA_SDFIFOW_8B: cb = 8; break; case HDA_SDFIFOW_16B: cb = 16; break; case HDA_SDFIFOW_32B: cb = 32; break; default: cb = 0; break; } return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSdFifos, cb); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmSts(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDSTS(raw: %#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)", uSdSts, RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))); } static int hdaLookUpRegisterByName(PHDASTATE pThis, const char *pszArgs) { int iReg = 0; for (; iReg < HDA_NREGS; ++iReg) if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs)) return iReg; return -1; } static void hdaDbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex) { Assert( pThis && iHdaIndex >= 0 && iHdaIndex < HDA_NREGS); pHlp->pfnPrintf(pHlp, "hda: %s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[iHdaIndex]); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaRegisterIndex = hdaLookUpRegisterByName(pThis, pszArgs); if (iHdaRegisterIndex != -1) hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); else for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NREGS; ++iHdaRegisterIndex) hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); } static void hdaDbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaStrmIndex) { Assert( pThis && iHdaStrmIndex >= 0 && iHdaStrmIndex < 7); pHlp->pfnPrintf(pHlp, "Dump of %d HDA Stream:\n", iHdaStrmIndex); pHlp->pfnPrintf(pHlp, "SD%dCTL: %R[sdctl]\n", iHdaStrmIndex, HDA_STREAM_REG2(pThis, CTL, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dCTS: %R[sdsts]\n", iHdaStrmIndex, HDA_STREAM_REG2(pThis, STS, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dFIFOS: %R[sdfifos]\n", iHdaStrmIndex, HDA_STREAM_REG2(pThis, FIFOS, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dFIFOW: %R[sdfifow]\n", iHdaStrmIndex, HDA_STREAM_REG2(pThis, FIFOW, iHdaStrmIndex)); } static int hdaLookUpStreamIndex(PHDASTATE pThis, const char *pszArgs) { /* todo: add args parsing */ return -1; } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaStrmIndex = hdaLookUpStreamIndex(pThis, pszArgs); if (iHdaStrmIndex != -1) hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex); else for(iHdaStrmIndex = 0; iHdaStrmIndex < 7; ++iHdaStrmIndex) hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnCodecDbgListNodes) pThis->pCodec->pfnCodecDbgListNodes(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback.\n"); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnCodecDbgSelector) pThis->pCodec->pfnCodecDbgSelector(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback.\n"); } /* PDMIBASE */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) hdaQueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase); Assert(&pThis->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); return NULL; } /* PDMDEVREG */ /** * Reset notification. * * @returns VBox status. * @param pDevIns The device instance data. * * @remark The original sources didn't install a reset handler, but it seems to * make sense to me so we'll do it. */ static DECLCALLBACK(void) hdaReset(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); GCAP(pThis) = HDA_MAKE_GCAP(4,4,0,0,1); /* see 6.2.1 */ VMIN(pThis) = 0x00; /* see 6.2.2 */ VMAJ(pThis) = 0x01; /* see 6.2.3 */ VMAJ(pThis) = 0x01; /* see 6.2.3 */ OUTPAY(pThis) = 0x003C; /* see 6.2.4 */ INPAY(pThis) = 0x001D; /* see 6.2.5 */ pThis->au32Regs[ICH6_HDA_REG_CORBSIZE] = 0x42; /* see 6.2.1 */ pThis->au32Regs[ICH6_HDA_REG_RIRBSIZE] = 0x42; /* see 6.2.1 */ CORBRP(pThis) = 0x0; RIRBWP(pThis) = 0x0; Log(("hda: inter HDA reset.\n")); pThis->cbCorbBuf = 256 * sizeof(uint32_t); if (pThis->pu32CorbBuf) memset(pThis->pu32CorbBuf, 0, pThis->cbCorbBuf); else pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf); pThis->cbRirbBuf = 256 * sizeof(uint64_t); if (pThis->pu64RirbBuf) memset(pThis->pu64RirbBuf, 0, pThis->cbRirbBuf); else pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf); pThis->u64BaseTS = PDMDevHlpTMTimeVirtGetNano(pDevIns); HDABDLEDESC StEmptyBdle; for (uint8_t u8Strm = 0; u8Strm < 8; ++u8Strm) { HDASTREAMTRANSFERDESC StreamDesc; PHDABDLEDESC pBdle = NULL; if (u8Strm == 0) pBdle = &pThis->StInBdle; else if(u8Strm == 4) pBdle = &pThis->StOutBdle; else { memset(&StEmptyBdle, 0, sizeof(HDABDLEDESC)); pBdle = &StEmptyBdle; } hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); /* hdaStreamReset prevents changing the SRST bit, so we force it to zero here. */ HDA_STREAM_REG2(pThis, CTL, u8Strm) = 0; hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm); } /* emulation of codec "wake up" (HDA spec 5.5.1 and 6.5)*/ STATESTS(pThis) = 0x1; Log(("hda: reset finished\n")); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) hdaDestruct(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec) { int rc = hdaCodecDestruct(pThis->pCodec); AssertRC(rc); RTMemFree(pThis->pCodec); pThis->pCodec = NULL; } RTMemFree(pThis->pu32CorbBuf); pThis->pu32CorbBuf = NULL; RTMemFree(pThis->pu64RirbBuf); pThis->pu64RirbBuf = NULL; return VINF_SUCCESS; } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) hdaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; Assert(iInstance == 0); PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Validations. */ if (!CFGMR3AreValuesValid(pCfgHandle, "R0Enabled\0" "RCEnabled\0")) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_ ("Invalid configuration for the Intel HDA device")); rc = CFGMR3QueryBoolDef(pCfgHandle, "RCEnabled", &pThis->fRCEnabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read RCEnabled as boolean")); rc = CFGMR3QueryBoolDef(pCfgHandle, "R0Enabled", &pThis->fR0Enabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read R0Enabled as boolean")); /* * Initialize data (most of it anyway). */ pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); /* IBase */ pThis->IBase.pfnQueryInterface = hdaQueryInterface; /* PCI Device */ PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */ PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */ PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */ PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */ PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */ PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */ PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */ PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */ PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */ PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */ false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000); PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */ PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */ #if defined(HDA_AS_PCI_EXPRESS) PCIDevSetCapabilityList (&pThis->PciDev, 0x80); #elif defined(VBOX_WITH_MSI_DEVICES) PCIDevSetCapabilityList (&pThis->PciDev, 0x60); #else PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */ #endif /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning /// of these values needs to be properly documented! /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ PCIDevSetByte(&pThis->PciDev, 0x40, 0x01); /* Power Management */ PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM); PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */ PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ ); #ifdef HDA_AS_PCI_EXPRESS /* PCI Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */ /* Device flags */ PCIDevSetWord(&pThis->PciDev, 0x80 + 2, /* version */ 0x1 | /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) | /* MSI */ (100) << 9 ); /* Device capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET); /* Device control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0); /* Device status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0); /* Link caps */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0); /* Link control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0); /* Link status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0); /* Slot capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0); /* Slot control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0); /* Slot status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0); /* Root control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0); /* Root capabilities */ PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0); /* Root status */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0); /* Device capabilities 2 */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0); /* Device control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0); /* Link control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0); /* Slot control 2 */ PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0); #endif /* * Register the PCI device. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaPciIoRegionMap); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = 0x60; MsiReg.iMsiNextOffset = 0x50; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE(rc)) { LogRel(("Chipset cannot do MSI: %Rrc\n", rc)); PCIDevSetCapabilityList(&pThis->PciDev, 0x50); } #endif rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaSaveExec, hdaLoadExec); if (RT_FAILURE(rc)) return rc; /* * Attach driver. */ rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThis->IBase, &pThis->pDrvBase, "Audio Driver Port"); if (rc == VERR_PDM_NO_ATTACHED_DRIVER) Log(("hda: No attached driver!\n")); else if (RT_FAILURE(rc)) { AssertMsgFailed(("Failed to attach Intel HDA LUN #0! rc=%Rrc\n", rc)); return rc; } /* Construct codec state. */ pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC)); if (!pThis->pCodec) return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("HDA: Out of memory allocating codec state")); pThis->pCodec->pvHDAState = pThis; rc = hdaCodecConstruct(pDevIns, pThis->pCodec, pCfgHandle); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for verb F20 should provide device/codec recognition. */ Assert(pThis->pCodec->u16VendorId); Assert(pThis->pCodec->u16DeviceId); PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */ PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */ hdaReset(pDevIns); pThis->pCodec->id = 0; pThis->pCodec->pfnTransfer = hdaTransfer; pThis->pCodec->pfnReset = hdaCodecReset; /* * 18.2.6,7 defines that values of this registers might be cleared on power on/reset * hdaReset shouldn't affects these registers. */ WAKEEN(pThis) = 0x0; STATESTS(pThis) = 0x0; /* * Debug and string formatter types. */ PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaInfo); PDMDevHlpDBGFInfoRegister(pDevIns, "hdastrm", "HDA stream info. (hdastrm [stream number])", hdaInfoStream); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaInfoCodecNodes); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaInfoCodecSelector); rc = RTStrFormatTypeRegister("sdctl", hdaFormatStrmCtl, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdsts", hdaFormatStrmSts, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifos", hdaFormatStrmFifos, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifow", hdaFormatStrmFifow, NULL); AssertRC(rc); #if 0 rc = RTStrFormatTypeRegister("sdfmt", printHdaStrmFmt, NULL); AssertRC(rc); #endif /* * Some debug assertions. */ for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) { struct HDAREGDESC const *pReg = &g_aHdaRegMap[i]; struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL; /* binary search order. */ AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); /* alignment. */ AssertReleaseMsg( pReg->size == 1 || (pReg->size == 2 && (pReg->offset & 1) == 0) || (pReg->size == 3 && (pReg->offset & 3) == 0) || (pReg->size == 4 && (pReg->offset & 3) == 0), ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */ AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg); if (pReg->offset & 3) { struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL; AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pPrevReg) AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size)); } #if 0 if ((pReg->offset + pReg->size) & 3) { AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pNextReg) AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); } #endif /* The final entry is a full dword, no gaps! Allows shortcuts. */ AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); } return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceICH6_HDA = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "hda", /* szRCMod */ "VBoxDDGC.gc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Intel HD Audio Controller", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_AUDIO, /* cMaxInstances */ 1, /* cbInstance */ sizeof(HDASTATE), /* pfnConstruct */ hdaConstruct, /* pfnDestruct */ hdaDestruct, /* pfnRelocate */ NULL, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ hdaReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */