/* $Id: DevIchHda.cpp 57393 2015-08-17 15:02:05Z vboxsync $ */ /** @file * DevIchHda - VBox ICH Intel HD Audio Controller. * * Implemented against the specifications found in "High Definition Audio * Specification", Revision 1.0a June 17, 2010, and "Intel I/O Controller * HUB 6 (ICH6) Family, Datasheet", document number 301473-002. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_HDA #include #include #include #include #include #include #include #ifdef IN_RING3 # include # include # include #endif #include #include "VBoxDD.h" #include "AudioMixer.h" #include "DevIchHdaCodec.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ //#define HDA_AS_PCI_EXPRESS #define VBOX_WITH_INTEL_HDA #if (defined(DEBUG) && defined(DEBUG_andy)) /* Enables experimental support for separate mic-in handling. Do not enable this yet for regular builds, as this needs more testing first! */ # define VBOX_WITH_HDA_MIC_IN #endif #if defined(VBOX_WITH_HP_HDA) /* HP Pavilion dv4t-1300 */ # define HDA_PCI_VENDOR_ID 0x103c # define HDA_PCI_DEVICE_ID 0x30f7 #elif defined(VBOX_WITH_INTEL_HDA) /* Intel HDA controller */ # define HDA_PCI_VENDOR_ID 0x8086 # define HDA_PCI_DEVICE_ID 0x2668 #elif defined(VBOX_WITH_NVIDIA_HDA) /* nVidia HDA controller */ # define HDA_PCI_VENDOR_ID 0x10de # define HDA_PCI_DEVICE_ID 0x0ac0 #else # error "Please specify your HDA device vendor/device IDs" #endif /** @todo r=bird: Looking at what the linux driver (accidentally?) does when * updating CORBWP, I belive that the ICH6 datahsheet is wrong and that CORBRP * is read only except for bit 15 like the HDA spec states. * * Btw. the CORBRPRST implementation is incomplete according to both docs (sw * writes 1, hw sets it to 1 (after completion), sw reads 1, sw writes 0). */ #define BIRD_THINKS_CORBRP_IS_MOSTLY_RO #define HDA_NREGS 114 #define HDA_NREGS_SAVED 112 /** * NB: Register values stored in memory (au32Regs[]) are indexed through * the HDA_RMX_xxx macros (also HDA_MEM_IND_NAME()). On the other hand, the * register descriptors in g_aHdaRegMap[] are indexed through the * HDA_REG_xxx macros (also HDA_REG_IND_NAME()). * * The au32Regs[] layout is kept unchanged for saved state * compatibility. */ /* Registers */ #define HDA_REG_IND_NAME(x) HDA_REG_##x #define HDA_MEM_IND_NAME(x) HDA_RMX_##x #define HDA_REG_FIELD_MASK(reg, x) HDA_##reg##_##x##_MASK #define HDA_REG_FIELD_FLAG_MASK(reg, x) RT_BIT(HDA_##reg##_##x##_SHIFT) #define HDA_REG_FIELD_SHIFT(reg, x) HDA_##reg##_##x##_SHIFT #define HDA_REG_IND(pThis, x) ((pThis)->au32Regs[g_aHdaRegMap[x].mem_idx]) #define HDA_REG(pThis, x) (HDA_REG_IND((pThis), HDA_REG_IND_NAME(x))) #define HDA_REG_FLAG_VALUE(pThis, reg, val) (HDA_REG((pThis),reg) & (((HDA_REG_FIELD_FLAG_MASK(reg, val))))) #define HDA_REG_GCAP 0 /* range 0x00-0x01*/ #define HDA_RMX_GCAP 0 /* GCAP HDASpec 3.3.2 This macro encodes the following information about HDA in a compact manner: * oss (15:12) - number of output streams supported * iss (11:8) - number of input streams supported * bss (7:3) - number of bidirectional streams supported * bds (2:1) - number of serial data out signals supported * b64sup (0) - 64 bit addressing supported. */ #define HDA_MAKE_GCAP(oss, iss, bss, bds, b64sup) \ ( (((oss) & 0xF) << 12) \ | (((iss) & 0xF) << 8) \ | (((bss) & 0x1F) << 3) \ | (((bds) & 0x3) << 2) \ | ((b64sup) & 1)) #define HDA_REG_VMIN 1 /* 0x02 */ #define HDA_RMX_VMIN 1 #define HDA_REG_VMAJ 2 /* 0x03 */ #define HDA_RMX_VMAJ 2 #define HDA_REG_OUTPAY 3 /* 0x04-0x05 */ #define HDA_RMX_OUTPAY 3 #define HDA_REG_INPAY 4 /* 0x06-0x07 */ #define HDA_RMX_INPAY 4 #define HDA_REG_GCTL 5 /* 0x08-0x0B */ #define HDA_RMX_GCTL 5 #define HDA_GCTL_RST_SHIFT 0 #define HDA_GCTL_FSH_SHIFT 1 #define HDA_GCTL_UR_SHIFT 8 #define HDA_REG_WAKEEN 6 /* 0x0C */ #define HDA_RMX_WAKEEN 6 #define HDA_REG_STATESTS 7 /* 0x0E */ #define HDA_RMX_STATESTS 7 #define HDA_STATES_SCSF 0x7 #define HDA_REG_GSTS 8 /* 0x10-0x11*/ #define HDA_RMX_GSTS 8 #define HDA_GSTS_FSH_SHIFT 1 #define HDA_REG_OUTSTRMPAY 9 /* 0x18 */ #define HDA_RMX_OUTSTRMPAY 112 #define HDA_REG_INSTRMPAY 10 /* 0x1a */ #define HDA_RMX_INSTRMPAY 113 #define HDA_REG_INTCTL 11 /* 0x20 */ #define HDA_RMX_INTCTL 9 #define HDA_INTCTL_GIE_SHIFT 31 #define HDA_INTCTL_CIE_SHIFT 30 #define HDA_INTCTL_S0_SHIFT 0 #define HDA_INTCTL_S1_SHIFT 1 #define HDA_INTCTL_S2_SHIFT 2 #define HDA_INTCTL_S3_SHIFT 3 #define HDA_INTCTL_S4_SHIFT 4 #define HDA_INTCTL_S5_SHIFT 5 #define HDA_INTCTL_S6_SHIFT 6 #define HDA_INTCTL_S7_SHIFT 7 #define INTCTL_SX(pThis, X) (HDA_REG_FLAG_VALUE((pThis), INTCTL, S##X)) #define HDA_REG_INTSTS 12 /* 0x24 */ #define HDA_RMX_INTSTS 10 #define HDA_INTSTS_GIS_SHIFT 31 #define HDA_INTSTS_CIS_SHIFT 30 #define HDA_INTSTS_S0_SHIFT 0 #define HDA_INTSTS_S1_SHIFT 1 #define HDA_INTSTS_S2_SHIFT 2 #define HDA_INTSTS_S3_SHIFT 3 #define HDA_INTSTS_S4_SHIFT 4 #define HDA_INTSTS_S5_SHIFT 5 #define HDA_INTSTS_S6_SHIFT 6 #define HDA_INTSTS_S7_SHIFT 7 #define HDA_INTSTS_S_MASK(num) RT_BIT(HDA_REG_FIELD_SHIFT(S##num)) #define HDA_REG_WALCLK 13 /* 0x24 */ #define HDA_RMX_WALCLK /* Not defined! */ /* Note: The HDA specification defines a SSYNC register at offset 0x38. The * ICH6/ICH9 datahseet defines SSYNC at offset 0x34. The Linux HDA driver matches * the datasheet. */ #define HDA_REG_SSYNC 14 /* 0x34 */ #define HDA_RMX_SSYNC 12 #define HDA_REG_CORBLBASE 15 /* 0x40 */ #define HDA_RMX_CORBLBASE 13 #define HDA_REG_CORBUBASE 16 /* 0x44 */ #define HDA_RMX_CORBUBASE 14 #define HDA_REG_CORBWP 17 /* 0x48 */ #define HDA_RMX_CORBWP 15 #define HDA_REG_CORBRP 18 /* 0x4A */ #define HDA_RMX_CORBRP 16 #define HDA_CORBRP_RST_SHIFT 15 #define HDA_CORBRP_WP_SHIFT 0 #define HDA_CORBRP_WP_MASK 0xFF #define HDA_REG_CORBCTL 19 /* 0x4C */ #define HDA_RMX_CORBCTL 17 #define HDA_CORBCTL_DMA_SHIFT 1 #define HDA_CORBCTL_CMEIE_SHIFT 0 #define HDA_REG_CORBSTS 20 /* 0x4D */ #define HDA_RMX_CORBSTS 18 #define HDA_CORBSTS_CMEI_SHIFT 0 #define HDA_REG_CORBSIZE 21 /* 0x4E */ #define HDA_RMX_CORBSIZE 19 #define HDA_CORBSIZE_SZ_CAP 0xF0 #define HDA_CORBSIZE_SZ 0x3 /* till ich 10 sizes of CORB and RIRB are hardcoded to 256 in real hw */ #define HDA_REG_RIRBLBASE 22 /* 0x50 */ #define HDA_RMX_RIRBLBASE 20 #define HDA_REG_RIRBUBASE 23 /* 0x54 */ #define HDA_RMX_RIRBUBASE 21 #define HDA_REG_RIRBWP 24 /* 0x58 */ #define HDA_RMX_RIRBWP 22 #define HDA_RIRBWP_RST_SHIFT 15 #define HDA_RIRBWP_WP_MASK 0xFF #define HDA_REG_RINTCNT 25 /* 0x5A */ #define HDA_RMX_RINTCNT 23 #define RINTCNT_N(pThis) (HDA_REG(pThis, RINTCNT) & 0xff) #define HDA_REG_RIRBCTL 26 /* 0x5C */ #define HDA_RMX_RIRBCTL 24 #define HDA_RIRBCTL_RIC_SHIFT 0 #define HDA_RIRBCTL_DMA_SHIFT 1 #define HDA_ROI_DMA_SHIFT 2 #define HDA_REG_RIRBSTS 27 /* 0x5D */ #define HDA_RMX_RIRBSTS 25 #define HDA_RIRBSTS_RINTFL_SHIFT 0 #define HDA_RIRBSTS_RIRBOIS_SHIFT 2 #define HDA_REG_RIRBSIZE 28 /* 0x5E */ #define HDA_RMX_RIRBSIZE 26 #define HDA_RIRBSIZE_SZ_CAP 0xF0 #define HDA_RIRBSIZE_SZ 0x3 #define RIRBSIZE_SZ(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ) #define RIRBSIZE_SZ_CAP(pThis) (HDA_REG(pThis, HDA_REG_RIRBSIZE) & HDA_RIRBSIZE_SZ_CAP) #define HDA_REG_IC 29 /* 0x60 */ #define HDA_RMX_IC 27 #define HDA_REG_IR 30 /* 0x64 */ #define HDA_RMX_IR 28 #define HDA_REG_IRS 31 /* 0x68 */ #define HDA_RMX_IRS 29 #define HDA_IRS_ICB_SHIFT 0 #define HDA_IRS_IRV_SHIFT 1 #define HDA_REG_DPLBASE 32 /* 0x70 */ #define HDA_RMX_DPLBASE 30 #define DPLBASE(pThis) (HDA_REG((pThis), DPLBASE)) #define HDA_REG_DPUBASE 33 /* 0x74 */ #define HDA_RMX_DPUBASE 31 #define DPUBASE(pThis) (HDA_REG((pThis), DPUBASE)) #define DPBASE_ENABLED 1 #define DPBASE_ADDR_MASK (~(uint64_t)0x7f) #define HDA_STREAM_REG_DEF(name, num) (HDA_REG_SD##num##name) #define HDA_STREAM_RMX_DEF(name, num) (HDA_RMX_SD##num##name) /* Note: sdnum here _MUST_ be stream reg number [0,7]. */ #define HDA_STREAM_REG(pThis, name, sdnum) (HDA_REG_IND((pThis), HDA_REG_SD0##name + (sdnum) * 10)) #define HDA_REG_SD0CTL 34 /* 0x80 */ #define HDA_REG_SD1CTL (HDA_STREAM_REG_DEF(CTL, 0) + 10) /* 0xA0 */ #define HDA_REG_SD2CTL (HDA_STREAM_REG_DEF(CTL, 0) + 20) /* 0xC0 */ #define HDA_REG_SD3CTL (HDA_STREAM_REG_DEF(CTL, 0) + 30) /* 0xE0 */ #define HDA_REG_SD4CTL (HDA_STREAM_REG_DEF(CTL, 0) + 40) /* 0x100 */ #define HDA_REG_SD5CTL (HDA_STREAM_REG_DEF(CTL, 0) + 50) /* 0x120 */ #define HDA_REG_SD6CTL (HDA_STREAM_REG_DEF(CTL, 0) + 60) /* 0x140 */ #define HDA_REG_SD7CTL (HDA_STREAM_REG_DEF(CTL, 0) + 70) /* 0x160 */ #define HDA_RMX_SD0CTL 32 #define HDA_RMX_SD1CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 10) #define HDA_RMX_SD2CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 20) #define HDA_RMX_SD3CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 30) #define HDA_RMX_SD4CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 40) #define HDA_RMX_SD5CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 50) #define HDA_RMX_SD6CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 60) #define HDA_RMX_SD7CTL (HDA_STREAM_RMX_DEF(CTL, 0) + 70) #define SD(func, num) SD##num##func #define SDCTL(pThis, num) HDA_REG((pThis), SD(CTL, num)) #define SDCTL_NUM(pThis, num) ((SDCTL((pThis), num) & HDA_REG_FIELD_MASK(SDCTL,NUM)) >> HDA_REG_FIELD_SHIFT(SDCTL, NUM)) #define HDA_SDCTL_NUM_MASK 0xF #define HDA_SDCTL_NUM_SHIFT 20 #define HDA_SDCTL_DIR_SHIFT 19 #define HDA_SDCTL_TP_SHIFT 18 #define HDA_SDCTL_STRIPE_MASK 0x3 #define HDA_SDCTL_STRIPE_SHIFT 16 #define HDA_SDCTL_DEIE_SHIFT 4 #define HDA_SDCTL_FEIE_SHIFT 3 #define HDA_SDCTL_ICE_SHIFT 2 #define HDA_SDCTL_RUN_SHIFT 1 #define HDA_SDCTL_SRST_SHIFT 0 #define HDA_REG_SD0STS 35 /* 0x83 */ #define HDA_REG_SD1STS (HDA_STREAM_REG_DEF(STS, 0) + 10) /* 0xA3 */ #define HDA_REG_SD2STS (HDA_STREAM_REG_DEF(STS, 0) + 20) /* 0xC3 */ #define HDA_REG_SD3STS (HDA_STREAM_REG_DEF(STS, 0) + 30) /* 0xE3 */ #define HDA_REG_SD4STS (HDA_STREAM_REG_DEF(STS, 0) + 40) /* 0x103 */ #define HDA_REG_SD5STS (HDA_STREAM_REG_DEF(STS, 0) + 50) /* 0x123 */ #define HDA_REG_SD6STS (HDA_STREAM_REG_DEF(STS, 0) + 60) /* 0x143 */ #define HDA_REG_SD7STS (HDA_STREAM_REG_DEF(STS, 0) + 70) /* 0x163 */ #define HDA_RMX_SD0STS 33 #define HDA_RMX_SD1STS (HDA_STREAM_RMX_DEF(STS, 0) + 10) #define HDA_RMX_SD2STS (HDA_STREAM_RMX_DEF(STS, 0) + 20) #define HDA_RMX_SD3STS (HDA_STREAM_RMX_DEF(STS, 0) + 30) #define HDA_RMX_SD4STS (HDA_STREAM_RMX_DEF(STS, 0) + 40) #define HDA_RMX_SD5STS (HDA_STREAM_RMX_DEF(STS, 0) + 50) #define HDA_RMX_SD6STS (HDA_STREAM_RMX_DEF(STS, 0) + 60) #define HDA_RMX_SD7STS (HDA_STREAM_RMX_DEF(STS, 0) + 70) #define SDSTS(pThis, num) HDA_REG((pThis), SD(STS, num)) #define HDA_SDSTS_FIFORDY_SHIFT 5 #define HDA_SDSTS_DE_SHIFT 4 #define HDA_SDSTS_FE_SHIFT 3 #define HDA_SDSTS_BCIS_SHIFT 2 #define HDA_REG_SD0LPIB 36 /* 0x84 */ #define HDA_REG_SD1LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 10) /* 0xA4 */ #define HDA_REG_SD2LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 20) /* 0xC4 */ #define HDA_REG_SD3LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 30) /* 0xE4 */ #define HDA_REG_SD4LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 40) /* 0x104 */ #define HDA_REG_SD5LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 50) /* 0x124 */ #define HDA_REG_SD6LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 60) /* 0x144 */ #define HDA_REG_SD7LPIB (HDA_STREAM_REG_DEF(LPIB, 0) + 70) /* 0x164 */ #define HDA_RMX_SD0LPIB 34 #define HDA_RMX_SD1LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 10) #define HDA_RMX_SD2LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 20) #define HDA_RMX_SD3LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 30) #define HDA_RMX_SD4LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 40) #define HDA_RMX_SD5LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 50) #define HDA_RMX_SD6LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 60) #define HDA_RMX_SD7LPIB (HDA_STREAM_RMX_DEF(LPIB, 0) + 70) #define HDA_REG_SD0CBL 37 /* 0x88 */ #define HDA_REG_SD1CBL (HDA_STREAM_REG_DEF(CBL, 0) + 10) /* 0xA8 */ #define HDA_REG_SD2CBL (HDA_STREAM_REG_DEF(CBL, 0) + 20) /* 0xC8 */ #define HDA_REG_SD3CBL (HDA_STREAM_REG_DEF(CBL, 0) + 30) /* 0xE8 */ #define HDA_REG_SD4CBL (HDA_STREAM_REG_DEF(CBL, 0) + 40) /* 0x108 */ #define HDA_REG_SD5CBL (HDA_STREAM_REG_DEF(CBL, 0) + 50) /* 0x128 */ #define HDA_REG_SD6CBL (HDA_STREAM_REG_DEF(CBL, 0) + 60) /* 0x148 */ #define HDA_REG_SD7CBL (HDA_STREAM_REG_DEF(CBL, 0) + 70) /* 0x168 */ #define HDA_RMX_SD0CBL 35 #define HDA_RMX_SD1CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 10) #define HDA_RMX_SD2CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 20) #define HDA_RMX_SD3CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 30) #define HDA_RMX_SD4CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 40) #define HDA_RMX_SD5CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 50) #define HDA_RMX_SD6CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 60) #define HDA_RMX_SD7CBL (HDA_STREAM_RMX_DEF(CBL, 0) + 70) #define HDA_REG_SD0LVI 38 /* 0x8C */ #define HDA_REG_SD1LVI (HDA_STREAM_REG_DEF(LVI, 0) + 10) /* 0xAC */ #define HDA_REG_SD2LVI (HDA_STREAM_REG_DEF(LVI, 0) + 20) /* 0xCC */ #define HDA_REG_SD3LVI (HDA_STREAM_REG_DEF(LVI, 0) + 30) /* 0xEC */ #define HDA_REG_SD4LVI (HDA_STREAM_REG_DEF(LVI, 0) + 40) /* 0x10C */ #define HDA_REG_SD5LVI (HDA_STREAM_REG_DEF(LVI, 0) + 50) /* 0x12C */ #define HDA_REG_SD6LVI (HDA_STREAM_REG_DEF(LVI, 0) + 60) /* 0x14C */ #define HDA_REG_SD7LVI (HDA_STREAM_REG_DEF(LVI, 0) + 70) /* 0x16C */ #define HDA_RMX_SD0LVI 36 #define HDA_RMX_SD1LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 10) #define HDA_RMX_SD2LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 20) #define HDA_RMX_SD3LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 30) #define HDA_RMX_SD4LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 40) #define HDA_RMX_SD5LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 50) #define HDA_RMX_SD6LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 60) #define HDA_RMX_SD7LVI (HDA_STREAM_RMX_DEF(LVI, 0) + 70) #define HDA_REG_SD0FIFOW 39 /* 0x8E */ #define HDA_REG_SD1FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 10) /* 0xAE */ #define HDA_REG_SD2FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 20) /* 0xCE */ #define HDA_REG_SD3FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 30) /* 0xEE */ #define HDA_REG_SD4FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 40) /* 0x10E */ #define HDA_REG_SD5FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 50) /* 0x12E */ #define HDA_REG_SD6FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 60) /* 0x14E */ #define HDA_REG_SD7FIFOW (HDA_STREAM_REG_DEF(FIFOW, 0) + 70) /* 0x16E */ #define HDA_RMX_SD0FIFOW 37 #define HDA_RMX_SD1FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 10) #define HDA_RMX_SD2FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 20) #define HDA_RMX_SD3FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 30) #define HDA_RMX_SD4FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 40) #define HDA_RMX_SD5FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 50) #define HDA_RMX_SD6FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 60) #define HDA_RMX_SD7FIFOW (HDA_STREAM_RMX_DEF(FIFOW, 0) + 70) /* * ICH6 datasheet defined limits for FIFOW values (18.2.38) */ #define HDA_SDFIFOW_8B 0x2 #define HDA_SDFIFOW_16B 0x3 #define HDA_SDFIFOW_32B 0x4 #define HDA_REG_SD0FIFOS 40 /* 0x90 */ #define HDA_REG_SD1FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 10) /* 0xB0 */ #define HDA_REG_SD2FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 20) /* 0xD0 */ #define HDA_REG_SD3FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 30) /* 0xF0 */ #define HDA_REG_SD4FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 40) /* 0x110 */ #define HDA_REG_SD5FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 50) /* 0x130 */ #define HDA_REG_SD6FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 60) /* 0x150 */ #define HDA_REG_SD7FIFOS (HDA_STREAM_REG_DEF(FIFOS, 0) + 70) /* 0x170 */ #define HDA_RMX_SD0FIFOS 38 #define HDA_RMX_SD1FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 10) #define HDA_RMX_SD2FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 20) #define HDA_RMX_SD3FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 30) #define HDA_RMX_SD4FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 40) #define HDA_RMX_SD5FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 50) #define HDA_RMX_SD6FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 60) #define HDA_RMX_SD7FIFOS (HDA_STREAM_RMX_DEF(FIFOS, 0) + 70) /* * ICH6 datasheet defines limits for FIFOS registers (18.2.39) * formula: size - 1 * Other values not listed are not supported. */ #define HDA_SDONFIFO_16B 0x0F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_32B 0x1F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_64B 0x3F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_128B 0x7F /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_192B 0xBF /* 8-, 16-, 20-, 24-, 32-bit Output Streams */ #define HDA_SDONFIFO_256B 0xFF /* 20-, 24-bit Output Streams */ #define HDA_SDINFIFO_120B 0x77 /* 8-, 16-, 20-, 24-, 32-bit Input Streams */ #define HDA_SDINFIFO_160B 0x9F /* 20-, 24-bit Input Streams Streams */ #define SDFIFOS(pThis, num) HDA_REG((pThis), SD(FIFOS, num)) #define HDA_REG_SD0FMT 41 /* 0x92 */ #define HDA_REG_SD1FMT (HDA_STREAM_REG_DEF(FMT, 0) + 10) /* 0xB2 */ #define HDA_REG_SD2FMT (HDA_STREAM_REG_DEF(FMT, 0) + 20) /* 0xD2 */ #define HDA_REG_SD3FMT (HDA_STREAM_REG_DEF(FMT, 0) + 30) /* 0xF2 */ #define HDA_REG_SD4FMT (HDA_STREAM_REG_DEF(FMT, 0) + 40) /* 0x112 */ #define HDA_REG_SD5FMT (HDA_STREAM_REG_DEF(FMT, 0) + 50) /* 0x132 */ #define HDA_REG_SD6FMT (HDA_STREAM_REG_DEF(FMT, 0) + 60) /* 0x152 */ #define HDA_REG_SD7FMT (HDA_STREAM_REG_DEF(FMT, 0) + 70) /* 0x172 */ #define HDA_RMX_SD0FMT 39 #define HDA_RMX_SD1FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 10) #define HDA_RMX_SD2FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 20) #define HDA_RMX_SD3FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 30) #define HDA_RMX_SD4FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 40) #define HDA_RMX_SD5FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 50) #define HDA_RMX_SD6FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 60) #define HDA_RMX_SD7FMT (HDA_STREAM_RMX_DEF(FMT, 0) + 70) #define SDFMT(pThis, num) (HDA_REG((pThis), SD(FMT, num))) #define HDA_SDFMT_BASE_RATE_SHIFT 14 #define HDA_SDFMT_MULT_SHIFT 11 #define HDA_SDFMT_MULT_MASK 0x7 #define HDA_SDFMT_DIV_SHIFT 8 #define HDA_SDFMT_DIV_MASK 0x7 #define HDA_SDFMT_BITS_SHIFT 4 #define HDA_SDFMT_BITS_MASK 0x7 #define SDFMT_BASE_RATE(pThis, num) ((SDFMT(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDFMT, BASE_RATE)) >> HDA_REG_FIELD_SHIFT(SDFMT, BASE_RATE)) #define SDFMT_MULT(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,MULT)) >> HDA_REG_FIELD_SHIFT(SDFMT, MULT)) #define SDFMT_DIV(pThis, num) ((SDFMT((pThis), num) & HDA_REG_FIELD_MASK(SDFMT,DIV)) >> HDA_REG_FIELD_SHIFT(SDFMT, DIV)) #define HDA_REG_SD0BDPL 42 /* 0x98 */ #define HDA_REG_SD1BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 10) /* 0xB8 */ #define HDA_REG_SD2BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 20) /* 0xD8 */ #define HDA_REG_SD3BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 30) /* 0xF8 */ #define HDA_REG_SD4BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 40) /* 0x118 */ #define HDA_REG_SD5BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 50) /* 0x138 */ #define HDA_REG_SD6BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 60) /* 0x158 */ #define HDA_REG_SD7BDPL (HDA_STREAM_REG_DEF(BDPL, 0) + 70) /* 0x178 */ #define HDA_RMX_SD0BDPL 40 #define HDA_RMX_SD1BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 10) #define HDA_RMX_SD2BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 20) #define HDA_RMX_SD3BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 30) #define HDA_RMX_SD4BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 40) #define HDA_RMX_SD5BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 50) #define HDA_RMX_SD6BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 60) #define HDA_RMX_SD7BDPL (HDA_STREAM_RMX_DEF(BDPL, 0) + 70) #define HDA_REG_SD0BDPU 43 /* 0x9C */ #define HDA_REG_SD1BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 10) /* 0xBC */ #define HDA_REG_SD2BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 20) /* 0xDC */ #define HDA_REG_SD3BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 30) /* 0xFC */ #define HDA_REG_SD4BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 40) /* 0x11C */ #define HDA_REG_SD5BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 50) /* 0x13C */ #define HDA_REG_SD6BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 60) /* 0x15C */ #define HDA_REG_SD7BDPU (HDA_STREAM_REG_DEF(BDPU, 0) + 70) /* 0x17C */ #define HDA_RMX_SD0BDPU 41 #define HDA_RMX_SD1BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 10) #define HDA_RMX_SD2BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 20) #define HDA_RMX_SD3BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 30) #define HDA_RMX_SD4BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 40) #define HDA_RMX_SD5BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 50) #define HDA_RMX_SD6BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 60) #define HDA_RMX_SD7BDPU (HDA_STREAM_RMX_DEF(BDPU, 0) + 70) #define HDA_CODEC_CAD_SHIFT 28 /* Encodes the (required) LUN into a codec command. */ #define HDA_CODEC_CMD(cmd, lun) ((cmd) | (lun << HDA_CODEC_CAD_SHIFT)) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ typedef struct HDABDLEDESC { uint64_t u64BdleCviAddr; uint32_t u32BdleMaxCvi; uint32_t u32BdleCvi; uint32_t u32BdleCviLen; uint32_t u32BdleCviPos; bool fBdleCviIoc; uint32_t cbUnderFifoW; uint8_t au8HdaBuffer[HDA_SDONFIFO_256B + 1]; } HDABDLEDESC, *PHDABDLEDESC; typedef struct HDASTREAMTRANSFERDESC { uint64_t u64BaseDMA; uint32_t u32Ctl; uint32_t *pu32Sts; uint8_t u8Strm; uint32_t *pu32Lpib; uint32_t u32Cbl; uint32_t u32Fifos; } HDASTREAMTRANSFERDESC, *PHDASTREAMTRANSFERDESC; typedef struct HDAINPUTSTREAM { /** PCM line input stream. */ R3PTRTYPE(PPDMAUDIOGSTSTRMIN) pStrmIn; /** Mixer handle for line input stream. */ R3PTRTYPE(PAUDMIXSTREAM) phStrmIn; } HDAINPUTSTREAM, *PHDAINPUTSTREAM; typedef struct HDAOUTPUTSTREAM { /** PCM output stream. */ R3PTRTYPE(PPDMAUDIOGSTSTRMOUT) pStrmOut; /** Mixer handle for line output stream. */ R3PTRTYPE(PAUDMIXSTREAM) phStrmOut; } HDAOUTPUTSTREAM, *PHDAOUTPUTSTREAM; /** * Struct for maintaining a host backend driver. * This driver must be associated to one, and only one, * HDA codec. The HDA controller does the actual multiplexing * of HDA codec data to various host backend drivers then. * * This HDA device uses a timer in order to synchronize all * read/write accesses across all attached LUNs / backends. */ typedef struct HDADRIVER { union { /** Node for storing this driver in our device driver * list of HDASTATE. */ RTLISTNODE Node; struct { R3PTRTYPE(void *) dummy1; R3PTRTYPE(void *) dummy2; } dummy; }; /** Pointer to HDA controller (state). */ R3PTRTYPE(PHDASTATE) pHDAState; /** Driver flags. */ PDMAUDIODRVFLAGS Flags; uint8_t u32Padding0[3]; /** LUN to which this driver has been assigned. */ uint8_t uLUN; /** Audio connector interface to the underlying * host backend. */ R3PTRTYPE(PPDMIAUDIOCONNECTOR) pConnector; /** Stream for line input. */ HDAINPUTSTREAM LineIn; /** Stream for mic input. */ HDAINPUTSTREAM MicIn; /** Stream for output. */ HDAOUTPUTSTREAM Out; } HDADRIVER, *PHDADRIVER; /** * ICH Intel HD Audio Controller state. */ typedef struct HDASTATE { /** The PCI device structure. */ PCIDevice PciDev; /** R3 Pointer to the device instance. */ PPDMDEVINSR3 pDevInsR3; /** R0 Pointer to the device instance. */ PPDMDEVINSR0 pDevInsR0; /** R0 Pointer to the device instance. */ PPDMDEVINSRC pDevInsRC; uint32_t u32Padding; /** Pointer to the attached audio driver. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** The base interface for LUN\#0. */ PDMIBASE IBase; RTGCPHYS MMIOBaseAddr; uint32_t au32Regs[HDA_NREGS]; HDABDLEDESC StInBdle; HDABDLEDESC StOutBdle; HDABDLEDESC StMicBdle; uint64_t u64CORBBase; uint64_t u64RIRBBase; uint64_t u64DPBase; /** Pointer to CORB buffer. */ R3PTRTYPE(uint32_t *) pu32CorbBuf; /** Size in bytes of CORB buffer. */ uint32_t cbCorbBuf; uint32_t u32Padding2; /** Pointer to RIRB buffer. */ R3PTRTYPE(uint64_t *) pu64RirbBuf; /** Size in bytes of RIRB buffer. */ uint32_t cbRirbBuf; /** Indicates if HDA is in reset. */ bool fInReset; /** Interrupt on completion */ bool fCviIoc; /** Flag whether the R0 part is enabled. */ bool fR0Enabled; /** Flag whether the RC part is enabled. */ bool fRCEnabled; /** The emulation timer for handling the attached * LUN drivers. */ PTMTIMERR3 pTimer; /** Timer ticks for handling the LUN drivers. */ uint64_t uTicks; # ifdef VBOX_WITH_STATISTICS STAMPROFILE StatTimer; STAMCOUNTER StatBytesRead; STAMCOUNTER StatBytesWritten; # endif /** Pointer to HDA codec to use. */ R3PTRTYPE(PHDACODEC) pCodec; union { /** List of associated LUN drivers. */ RTLISTANCHOR lstDrv; struct { R3PTRTYPE(void *) dummy1; R3PTRTYPE(void *) dummy2; } dummy; }; /** The device' software mixer. */ R3PTRTYPE(PAUDIOMIXER) pMixer; /** Audio sink for PCM output. */ R3PTRTYPE(PAUDMIXSINK) pSinkOutput; /** Audio mixer sink for line input. */ R3PTRTYPE(PAUDMIXSINK) pSinkLineIn; /** Audio mixer sink for microphone input. */ R3PTRTYPE(PAUDMIXSINK) pSinkMicIn; uint64_t u64BaseTS; /** 1.2.3.4.5.6.7. - someone please tell me what I'm counting! - .8.9.10... */ uint8_t u8Counter; uint8_t au8Padding[7]; } HDASTATE; /** Pointer to the ICH Intel HD Audio Controller state. */ typedef HDASTATE *PHDASTATE; #define ISD0FMT_TO_AUDIO_SELECTOR(pThis) \ ( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, In, SDFMT_BASE_RATE(pThis, 0), SDFMT_MULT(pThis, 0), SDFMT_DIV(pThis, 0)) ) #define OSD0FMT_TO_AUDIO_SELECTOR(pThis) \ ( AUDIO_FORMAT_SELECTOR((pThis)->pCodec, Out, SDFMT_BASE_RATE(pThis, 4), SDFMT_MULT(pThis, 4), SDFMT_DIV(pThis, 4)) ) /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifndef VBOX_DEVICE_STRUCT_TESTCASE static FNPDMDEVRESET hdaReset; static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t pu32Value); static DECLCALLBACK(void) hdaTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser); static int hdaTransfer(PHDASTATE pThis, ENMSOUNDSOURCE enmSrc, uint32_t cbAvail); #ifdef IN_RING3 DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc); static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc); #ifdef LOG_ENABLED static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA); #endif #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /* see 302349 p 6.2*/ static const struct HDAREGDESC { /** Register offset in the register space. */ uint32_t offset; /** Size in bytes. Registers of size > 4 are in fact tables. */ uint32_t size; /** Readable bits. */ uint32_t readable; /** Writable bits. */ uint32_t writable; /** Read callback. */ int (*pfnRead)(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value); /** Write callback. */ int (*pfnWrite)(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value); /** Index into the register storage array. */ uint32_t mem_idx; /** Abbreviated name. */ const char *abbrev; } g_aHdaRegMap[HDA_NREGS] = /* Turn a short register name into an memory index and a stringized name. */ #define RA(abbrev) HDA_MEM_IND_NAME(abbrev), #abbrev /* Same as above for an input stream ('I' prefixed). */ #define IA(abbrev) HDA_MEM_IND_NAME(abbrev), "I"#abbrev /* Same as above for an output stream ('O' prefixed). */ #define OA(abbrev) HDA_MEM_IND_NAME(abbrev), "O"#abbrev /* Same as above for a register *not* stored in memory. */ #define UA(abbrev) 0, #abbrev { /* offset size read mask write mask read callback write callback abbrev */ /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- */ { 0x00000, 0x00002, 0x0000FFFB, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(GCAP) }, /* Global Capabilities */ { 0x00002, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(VMIN) }, /* Minor Version */ { 0x00003, 0x00001, 0x000000FF, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(VMAJ) }, /* Major Version */ { 0x00004, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(OUTPAY) }, /* Output Payload Capabilities */ { 0x00006, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(INPAY) }, /* Input Payload Capabilities */ { 0x00008, 0x00004, 0x00000103, 0x00000103, hdaRegReadU32 , hdaRegWriteGCTL , RA(GCTL) }, /* Global Control */ { 0x0000c, 0x00002, 0x00007FFF, 0x00007FFF, hdaRegReadU16 , hdaRegWriteU16 , RA(WAKEEN) }, /* Wake Enable */ { 0x0000e, 0x00002, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteSTATESTS , RA(STATESTS) }, /* State Change Status */ { 0x00010, 0x00002, 0xFFFFFFFF, 0x00000000, hdaRegReadUnimpl , hdaRegWriteUnimpl , RA(GSTS) }, /* Global Status */ { 0x00018, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(OUTSTRMPAY)}, /* Output Stream Payload Capability */ { 0x0001A, 0x00002, 0x0000FFFF, 0x00000000, hdaRegReadU16 , hdaRegWriteUnimpl , RA(INSTRMPAY) }, /* Input Stream Payload Capability */ { 0x00020, 0x00004, 0xC00000FF, 0xC00000FF, hdaRegReadU32 , hdaRegWriteU32 , RA(INTCTL) }, /* Interrupt Control */ { 0x00024, 0x00004, 0xC00000FF, 0x00000000, hdaRegReadINTSTS , hdaRegWriteUnimpl , RA(INTSTS) }, /* Interrupt Status */ { 0x00030, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadWALCLK , hdaRegWriteUnimpl , UA(WALCLK) }, /* Wall Clock Counter */ /// @todo r=michaln: Doesn't the SSYNC register need to actually stop the stream(s)? { 0x00034, 0x00004, 0x000000FF, 0x000000FF, hdaRegReadU32 , hdaRegWriteU32 , RA(SSYNC) }, /* Stream Synchronization */ { 0x00040, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , RA(CORBLBASE) }, /* CORB Lower Base Address */ { 0x00044, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(CORBUBASE) }, /* CORB Upper Base Address */ { 0x00048, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteCORBWP , RA(CORBWP) }, /* CORB Write Pointer */ { 0x0004A, 0x00002, 0x000080FF, 0x000080FF, hdaRegReadU16 , hdaRegWriteCORBRP , RA(CORBRP) }, /* CORB Read Pointer */ { 0x0004C, 0x00001, 0x00000003, 0x00000003, hdaRegReadU8 , hdaRegWriteCORBCTL , RA(CORBCTL) }, /* CORB Control */ { 0x0004D, 0x00001, 0x00000001, 0x00000001, hdaRegReadU8 , hdaRegWriteCORBSTS , RA(CORBSTS) }, /* CORB Status */ { 0x0004E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(CORBSIZE) }, /* CORB Size */ { 0x00050, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteBase , RA(RIRBLBASE) }, /* RIRB Lower Base Address */ { 0x00054, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(RIRBUBASE) }, /* RIRB Upper Base Address */ { 0x00058, 0x00002, 0x000000FF, 0x00008000, hdaRegReadU8 , hdaRegWriteRIRBWP , RA(RIRBWP) }, /* RIRB Write Pointer */ { 0x0005A, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteU16 , RA(RINTCNT) }, /* Response Interrupt Count */ { 0x0005C, 0x00001, 0x00000007, 0x00000007, hdaRegReadU8 , hdaRegWriteU8 , RA(RIRBCTL) }, /* RIRB Control */ { 0x0005D, 0x00001, 0x00000005, 0x00000005, hdaRegReadU8 , hdaRegWriteRIRBSTS , RA(RIRBSTS) }, /* RIRB Status */ { 0x0005E, 0x00001, 0x000000F3, 0x00000000, hdaRegReadU8 , hdaRegWriteUnimpl , RA(RIRBSIZE) }, /* RIRB Size */ { 0x00060, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , RA(IC) }, /* Immediate Command */ { 0x00064, 0x00004, 0x00000000, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteUnimpl , RA(IR) }, /* Immediate Response */ { 0x00068, 0x00002, 0x00000002, 0x00000002, hdaRegReadIRS , hdaRegWriteIRS , RA(IRS) }, /* Immediate Command Status */ { 0x00070, 0x00004, 0xFFFFFFFF, 0xFFFFFF81, hdaRegReadU32 , hdaRegWriteBase , RA(DPLBASE) }, /* MA Position Lower Base */ { 0x00074, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteBase , RA(DPUBASE) }, /* DMA Position Upper Base */ { 0x00080, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD0CTL) }, /* Input Stream Descriptor 0 (ICD0) Control */ { 0x00083, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD0STS) }, /* ISD0 Status */ { 0x00084, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD0LPIB) }, /* ISD0 Link Position In Buffer */ { 0x00088, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD0CBL) }, /* ISD0 Cyclic Buffer Length */ { 0x0008C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD0LVI) }, /* ISD0 Last Valid Index */ { 0x0008E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD0FIFOW) }, /* ISD0 FIFO Watermark */ { 0x00090, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD0FIFOS) }, /* ISD0 FIFO Size */ { 0x00092, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD0FMT) }, /* ISD0 Format */ { 0x00098, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD0BDPL) }, /* ISD0 Buffer Descriptor List Pointer-Lower Base Address */ { 0x0009C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD0BDPU) }, /* ISD0 Buffer Descriptor List Pointer-Upper Base Address */ { 0x000A0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD1CTL) }, /* Input Stream Descriptor 1 (ISD1) Control */ { 0x000A3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD1STS) }, /* ISD1 Status */ { 0x000A4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD1LPIB) }, /* ISD1 Link Position In Buffer */ { 0x000A8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD1CBL) }, /* ISD1 Cyclic Buffer Length */ { 0x000AC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD1LVI) }, /* ISD1 Last Valid Index */ { 0x000AE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD1FIFOW) }, /* ISD1 FIFO Watermark */ { 0x000B0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD1FIFOS) }, /* ISD1 FIFO Size */ { 0x000B2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD1FMT) }, /* ISD1 Format */ { 0x000B8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD1BDPL) }, /* ISD1 Buffer Descriptor List Pointer-Lower Base Address */ { 0x000BC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD1BDPU) }, /* ISD1 Buffer Descriptor List Pointer-Upper Base Address */ { 0x000C0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD2CTL) }, /* Input Stream Descriptor 2 (ISD2) Control */ { 0x000C3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD2STS) }, /* ISD2 Status */ { 0x000C4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD2LPIB) }, /* ISD2 Link Position In Buffer */ { 0x000C8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD2CBL) }, /* ISD2 Cyclic Buffer Length */ { 0x000CC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD2LVI) }, /* ISD2 Last Valid Index */ { 0x000CE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD2FIFOW) }, /* ISD2 FIFO Watermark */ { 0x000D0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD2FIFOS) }, /* ISD2 FIFO Size */ { 0x000D2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD2FMT) }, /* ISD2 Format */ { 0x000D8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD2BDPL) }, /* ISD2 Buffer Descriptor List Pointer-Lower Base Address */ { 0x000DC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD2BDPU) }, /* ISD2 Buffer Descriptor List Pointer-Upper Base Address */ { 0x000E0, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , IA(SD3CTL) }, /* Input Stream Descriptor 3 (ISD3) Control */ { 0x000E3, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , IA(SD3STS) }, /* ISD3 Status */ { 0x000E4, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , IA(SD3LPIB) }, /* ISD3 Link Position In Buffer */ { 0x000E8, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , IA(SD3CBL) }, /* ISD3 Cyclic Buffer Length */ { 0x000EC, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , IA(SD3LVI) }, /* ISD3 Last Valid Index */ { 0x000EE, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , IA(SD3FIFOW) }, /* ISD3 FIFO Watermark */ { 0x000F0, 0x00002, 0x000000FF, 0x00000000, hdaRegReadU16 , hdaRegWriteU16 , IA(SD3FIFOS) }, /* ISD3 FIFO Size */ { 0x000F2, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , IA(SD3FMT) }, /* ISD3 Format */ { 0x000F8, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , IA(SD3BDPL) }, /* ISD3 Buffer Descriptor List Pointer-Lower Base Address */ { 0x000FC, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , IA(SD3BDPU) }, /* ISD3 Buffer Descriptor List Pointer-Upper Base Address */ { 0x00100, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD4CTL) }, /* Output Stream Descriptor 4 (OSD4) Control */ { 0x00103, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD4STS) }, /* OSD4 Status */ { 0x00104, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD4LPIB) }, /* OSD4 Link Position In Buffer */ { 0x00108, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD4CBL) }, /* OSD4 Cyclic Buffer Length */ { 0x0010C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD4LVI) }, /* OSD4 Last Valid Index */ { 0x0010E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD4FIFOW) }, /* OSD4 FIFO Watermark */ { 0x00110, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD4FIFOS) }, /* OSD4 FIFO Size */ { 0x00112, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD4FMT) }, /* OSD4 Format */ { 0x00118, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD4BDPL) }, /* OSD4 Buffer Descriptor List Pointer-Lower Base Address */ { 0x0011C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD4BDPU) }, /* OSD4 Buffer Descriptor List Pointer-Upper Base Address */ { 0x00120, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD5CTL) }, /* Output Stream Descriptor 5 (OSD5) Control */ { 0x00123, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD5STS) }, /* OSD5 Status */ { 0x00124, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD5LPIB) }, /* OSD5 Link Position In Buffer */ { 0x00128, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD5CBL) }, /* OSD5 Cyclic Buffer Length */ { 0x0012C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD5LVI) }, /* OSD5 Last Valid Index */ { 0x0012E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD5FIFOW) }, /* OSD5 FIFO Watermark */ { 0x00130, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD5FIFOS) }, /* OSD5 FIFO Size */ { 0x00132, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD5FMT) }, /* OSD5 Format */ { 0x00138, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD5BDPL) }, /* OSD5 Buffer Descriptor List Pointer-Lower Base Address */ { 0x0013C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD5BDPU) }, /* OSD5 Buffer Descriptor List Pointer-Upper Base Address */ { 0x00140, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD6CTL) }, /* Output Stream Descriptor 6 (OSD6) Control */ { 0x00143, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD6STS) }, /* OSD6 Status */ { 0x00144, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD6LPIB) }, /* OSD6 Link Position In Buffer */ { 0x00148, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD6CBL) }, /* OSD6 Cyclic Buffer Length */ { 0x0014C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD6LVI) }, /* OSD6 Last Valid Index */ { 0x0014E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD6FIFOW) }, /* OSD6 FIFO Watermark */ { 0x00150, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD6FIFOS) }, /* OSD6 FIFO Size */ { 0x00152, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD6FMT) }, /* OSD6 Format */ { 0x00158, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD6BDPL) }, /* OSD6 Buffer Descriptor List Pointer-Lower Base Address */ { 0x0015C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD6BDPU) }, /* OSD6 Buffer Descriptor List Pointer-Upper Base Address */ { 0x00160, 0x00003, 0x00FF001F, 0x00F0001F, hdaRegReadU24 , hdaRegWriteSDCTL , OA(SD7CTL) }, /* Output Stream Descriptor 7 (OSD7) Control */ { 0x00163, 0x00001, 0x0000001C, 0x0000003C, hdaRegReadU8 , hdaRegWriteSDSTS , OA(SD7STS) }, /* OSD7 Status */ { 0x00164, 0x00004, 0xFFFFFFFF, 0x00000000, hdaRegReadU32 , hdaRegWriteU32 , OA(SD7LPIB) }, /* OSD7 Link Position In Buffer */ { 0x00168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteU32 , OA(SD7CBL) }, /* OSD7 Cyclic Buffer Length */ { 0x0016C, 0x00002, 0x0000FFFF, 0x0000FFFF, hdaRegReadU16 , hdaRegWriteSDLVI , OA(SD7LVI) }, /* OSD7 Last Valid Index */ { 0x0016E, 0x00002, 0x00000007, 0x00000007, hdaRegReadU16 , hdaRegWriteSDFIFOW , OA(SD7FIFOW) }, /* OSD7 FIFO Watermark */ { 0x00170, 0x00002, 0x000000FF, 0x000000FF, hdaRegReadU16 , hdaRegWriteSDFIFOS , OA(SD7FIFOS) }, /* OSD7 FIFO Size */ { 0x00172, 0x00002, 0x00007F7F, 0x00007F7F, hdaRegReadU16 , hdaRegWriteSDFMT , OA(SD7FMT) }, /* OSD7 Format */ { 0x00178, 0x00004, 0xFFFFFF80, 0xFFFFFF80, hdaRegReadU32 , hdaRegWriteSDBDPL , OA(SD7BDPL) }, /* OSD7 Buffer Descriptor List Pointer-Lower Base Address */ { 0x0017C, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, hdaRegReadU32 , hdaRegWriteSDBDPU , OA(SD7BDPU) }, /* OSD7 Buffer Descriptor List Pointer-Upper Base Address */ }; /** * HDA register aliases (HDA spec 3.3.45). * @remarks Sorted by offReg. */ static const struct { /** The alias register offset. */ uint32_t offReg; /** The register index. */ int idxAlias; } g_aHdaRegAliases[] = { { 0x2084, HDA_REG_SD0LPIB }, { 0x20a4, HDA_REG_SD1LPIB }, { 0x20c4, HDA_REG_SD2LPIB }, { 0x20e4, HDA_REG_SD3LPIB }, { 0x2104, HDA_REG_SD4LPIB }, { 0x2124, HDA_REG_SD5LPIB }, { 0x2144, HDA_REG_SD6LPIB }, { 0x2164, HDA_REG_SD7LPIB }, }; #ifdef IN_RING3 /** HDABDLEDESC field descriptors the v3+ saved state. */ static SSMFIELD const g_aHdaBDLEDescFields[] = { SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos), SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc), SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW), SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer), SSMFIELD_ENTRY_TERM() }; /** HDABDLEDESC field descriptors the v1 and v2 saved state. */ static SSMFIELD const g_aHdaBDLEDescFieldsOld[] = { SSMFIELD_ENTRY( HDABDLEDESC, u64BdleCviAddr), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleMaxCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCvi), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviLen), SSMFIELD_ENTRY( HDABDLEDESC, u32BdleCviPos), SSMFIELD_ENTRY( HDABDLEDESC, fBdleCviIoc), SSMFIELD_ENTRY_PAD_HC_AUTO(3, 3), SSMFIELD_ENTRY( HDABDLEDESC, cbUnderFifoW), SSMFIELD_ENTRY( HDABDLEDESC, au8HdaBuffer), SSMFIELD_ENTRY_TERM() }; #endif /** * 32-bit size indexed masks, i.e. g_afMasks[2 bytes] = 0xffff. */ static uint32_t const g_afMasks[5] = { UINT32_C(0), UINT32_C(0x000000ff), UINT32_C(0x0000ffff), UINT32_C(0x00ffffff), UINT32_C(0xffffffff) }; #ifdef IN_RING3 DECLINLINE(void) hdaUpdatePosBuf(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc) { if (pThis->u64DPBase & DPBASE_ENABLED) PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + pStreamDesc->u8Strm * 8, pStreamDesc->pu32Lpib, sizeof(uint32_t)); } #endif DECLINLINE(uint32_t) hdaFifoWToSz(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc) { #if 0 switch(HDA_STREAM_REG(pThis, FIFOW, pStreamDesc->u8Strm)) { case HDA_SDFIFOW_8B: return 8; case HDA_SDFIFOW_16B: return 16; case HDA_SDFIFOW_32B: return 32; default: AssertMsgFailed(("unsupported value (%x) in SDFIFOW(,%d)\n", HDA_REG_IND(pThis, pStreamDesc->u8Strm), pStreamDesc->u8Strm)); } #endif return 0; } static int hdaProcessInterrupt(PHDASTATE pThis) { #define IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, num) \ ( INTCTL_SX((pThis), num) \ && (SDSTS(pThis, num) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))) bool fIrq = false; if ( HDA_REG_FLAG_VALUE(pThis, INTCTL, CIE) && ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL) || HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS) || (HDA_REG(pThis, STATESTS) & HDA_REG(pThis, WAKEEN)))) fIrq = true; if ( IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 0) || IS_INTERRUPT_OCCURED_AND_ENABLED(pThis, 4)) fIrq = true; if (HDA_REG_FLAG_VALUE(pThis, INTCTL, GIE)) { LogFunc(("irq %s\n", fIrq ? "asserted" : "deasserted")); PDMDevHlpPCISetIrq(pThis->CTX_SUFF(pDevIns), 0 , fIrq); } return VINF_SUCCESS; } /** * Looks up a register at the exact offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param pThis The HDA device state. * @param offReg The register offset. */ static int hdaRegLookup(PHDASTATE pThis, uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) if (offReg == g_aHdaRegAliases[i].offReg) return g_aHdaRegAliases[i].idxAlias; Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg > g_aHdaRegMap[idxMiddle].offset) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } #ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(g_aHdaRegMap[i].offset != offReg); #endif return -1; } /** * Looks up a register covering the offset given by @a offReg. * * @returns Register index on success, -1 if not found. * @param pThis The HDA device state. * @param offReg The register offset. */ static int hdaRegLookupWithin(PHDASTATE pThis, uint32_t offReg) { /* * Aliases. */ if (offReg >= g_aHdaRegAliases[0].offReg) { for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegAliases); i++) { uint32_t off = offReg - g_aHdaRegAliases[i].offReg; if (off < 4 && off < g_aHdaRegMap[g_aHdaRegAliases[i].idxAlias].size) return g_aHdaRegAliases[i].idxAlias; } Assert(g_aHdaRegMap[RT_ELEMENTS(g_aHdaRegMap) - 1].offset < offReg); return -1; } /* * Binary search the */ int idxEnd = RT_ELEMENTS(g_aHdaRegMap); int idxLow = 0; for (;;) { int idxMiddle = idxLow + (idxEnd - idxLow) / 2; if (offReg < g_aHdaRegMap[idxMiddle].offset) { if (idxLow == idxMiddle) break; idxEnd = idxMiddle; } else if (offReg >= g_aHdaRegMap[idxMiddle].offset + g_aHdaRegMap[idxMiddle].size) { idxLow = idxMiddle + 1; if (idxLow >= idxEnd) break; } else return idxMiddle; } #ifdef RT_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) Assert(offReg - g_aHdaRegMap[i].offset >= g_aHdaRegMap[i].size); #endif return -1; } #ifdef IN_RING3 static int hdaCmdSync(PHDASTATE pThis, bool fLocal) { int rc = VINF_SUCCESS; if (fLocal) { Assert((HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA))); rc = PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pThis->u64CORBBase, pThis->pu32CorbBuf, pThis->cbCorbBuf); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); #ifdef DEBUG_CMD_BUFFER uint8_t i = 0; do { LogFunc(("corb%02x: ", i)); uint8_t j = 0; do { const char *prefix; if ((i + j) == HDA_REG(pThis, CORBRP)); prefix = "[R]"; else if ((i + j) == HDA_REG(pThis, CORBWP)); prefix = "[W]"; else prefix = " "; /* three spaces */ LogFunc(("%s%08x", prefix, pThis->pu32CorbBuf[i + j])); j++; } while (j < 8); LogFunc(("\n")); i += 8; } while(i != 0); #endif } else { Assert((HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA))); rc = PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pThis->u64RIRBBase, pThis->pu64RirbBuf, pThis->cbRirbBuf); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); #ifdef DEBUG_CMD_BUFFER uint8_t i = 0; do { LogFunc(("rirb%02x: ", i)); uint8_t j = 0; do { const char *prefix; if ((i + j) == HDA_REG(pThis, RIRBWP)) prefix = "[W]"; else prefix = " "; LogFunc((" %s%016lx", prefix, pThis->pu64RirbBuf[i + j])); } while (++j < 8); LogFunc(("\n")); i += 8; } while (i != 0); #endif } return rc; } static int hdaCORBCmdProcess(PHDASTATE pThis) { int rc; uint8_t corbRp; uint8_t corbWp; uint8_t rirbWp; PFNHDACODECVERBPROCESSOR pfn = (PFNHDACODECVERBPROCESSOR)NULL; rc = hdaCmdSync(pThis, true); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); corbRp = HDA_REG(pThis, CORBRP); corbWp = HDA_REG(pThis, CORBWP); rirbWp = HDA_REG(pThis, RIRBWP); Assert((corbWp != corbRp)); LogFlowFunc(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP), HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP))); while (corbRp != corbWp) { uint32_t cmd; uint64_t resp; pfn = NULL; corbRp++; cmd = pThis->pu32CorbBuf[corbRp]; rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(cmd, 0 /* Codec index */), &pfn); if (RT_SUCCESS(rc)) { rc = pfn(pThis->pCodec, HDA_CODEC_CMD(cmd, 0 /* LUN */), &resp); } if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); Assert(pfn); (rirbWp)++; LogFunc(("verb:%08x->%016lx\n", cmd, resp)); if ( (resp & CODEC_RESPONSE_UNSOLICITED) && !HDA_REG_FLAG_VALUE(pThis, GCTL, UR)) { LogFunc(("unexpected unsolicited response.\n")); HDA_REG(pThis, CORBRP) = corbRp; return rc; } pThis->pu64RirbBuf[rirbWp] = resp; pThis->u8Counter++; if (pThis->u8Counter == RINTCNT_N(pThis)) break; } HDA_REG(pThis, CORBRP) = corbRp; HDA_REG(pThis, RIRBWP) = rirbWp; rc = hdaCmdSync(pThis, false); LogFunc(("CORB(RP:%x, WP:%x) RIRBWP:%x\n", HDA_REG(pThis, CORBRP), HDA_REG(pThis, CORBWP), HDA_REG(pThis, RIRBWP))); if (HDA_REG_FLAG_VALUE(pThis, RIRBCTL, RIC)) { HDA_REG(pThis, RIRBSTS) |= HDA_REG_FIELD_FLAG_MASK(RIRBSTS,RINTFL); pThis->u8Counter = 0; rc = hdaProcessInterrupt(pThis); } if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); return rc; } #endif static void hdaStreamReset(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint8_t u8Strm) { LogFunc(("reset of stream (%d) started\n", u8Strm)); Assert(( pThis && pBdle && pStreamDesc && u8Strm <= 7)); RT_BZERO(pBdle, sizeof(HDABDLEDESC)); *pStreamDesc->pu32Lpib = 0; *pStreamDesc->pu32Sts = 0; /* According to the ICH6 datasheet, 0x40000 is the default value for stream descriptor register 23:20 * bits are reserved for stream number 18.2.33, resets SDnCTL except SRCT bit */ HDA_STREAM_REG(pThis, CTL, u8Strm) = 0x40000 | (HDA_STREAM_REG(pThis, CTL, u8Strm) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); /* ICH6 defines default values (0x77 for input and 0xBF for output descriptors) of FIFO size. 18.2.39 */ HDA_STREAM_REG(pThis, FIFOS, u8Strm) = u8Strm < 4 ? HDA_SDINFIFO_120B : HDA_SDONFIFO_192B; HDA_STREAM_REG(pThis, FIFOW, u8Strm) = u8Strm < 4 ? HDA_SDFIFOW_8B : HDA_SDFIFOW_32B; HDA_STREAM_REG(pThis, CBL, u8Strm) = 0; HDA_STREAM_REG(pThis, LVI, u8Strm) = 0; HDA_STREAM_REG(pThis, FMT, u8Strm) = 0; HDA_STREAM_REG(pThis, BDPU, u8Strm) = 0; HDA_STREAM_REG(pThis, BDPL, u8Strm) = 0; LogFunc(("reset of stream (%d) finished\n", u8Strm)); } /* Register access handlers. */ static int hdaRegReadUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { *pu32Value = 0; return VINF_SUCCESS; } static int hdaRegWriteUnimpl(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { return VINF_SUCCESS; } /* U8 */ static int hdaRegReadU8(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffffff00) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU8(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffffff00) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U16 */ static int hdaRegReadU16(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xffff0000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU16(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xffff0000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U24 */ static int hdaRegReadU24(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { Assert(((pThis->au32Regs[g_aHdaRegMap[iReg].mem_idx] & g_aHdaRegMap[iReg].readable) & 0xff000000) == 0); return hdaRegReadU32(pThis, iReg, pu32Value); } static int hdaRegWriteU24(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { Assert((u32Value & 0xff000000) == 0); return hdaRegWriteU32(pThis, iReg, u32Value); } /* U32 */ static int hdaRegReadU32(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; *pu32Value = pThis->au32Regs[iRegMem] & g_aHdaRegMap[iReg].readable; return VINF_SUCCESS; } static int hdaRegWriteU32(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; pThis->au32Regs[iRegMem] = (u32Value & g_aHdaRegMap[iReg].writable) | (pThis->au32Regs[iRegMem] & ~g_aHdaRegMap[iReg].writable); return VINF_SUCCESS; } static int hdaRegWriteGCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, RST)) { /* exit reset state */ HDA_REG(pThis, GCTL) |= HDA_REG_FIELD_FLAG_MASK(GCTL, RST); pThis->fInReset = false; } else { #ifdef IN_RING3 /* enter reset state*/ if ( HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) || HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA)) { LogFunc(("HDA enters in reset with DMA(RIRB:%s, CORB:%s)\n", HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) ? "on" : "off", HDA_REG_FLAG_VALUE(pThis, RIRBCTL, DMA) ? "on" : "off")); } hdaReset(pThis->CTX_SUFF(pDevIns)); HDA_REG(pThis, GCTL) &= ~HDA_REG_FIELD_FLAG_MASK(GCTL, RST); pThis->fInReset = true; #else return VINF_IOM_R3_MMIO_WRITE; #endif } if (u32Value & HDA_REG_FIELD_FLAG_MASK(GCTL, FSH)) { /* Flush: GSTS:1 set, see 6.2.6*/ HDA_REG(pThis, GSTS) |= HDA_REG_FIELD_FLAG_MASK(GSTS, FSH); /* set the flush state */ /* DPLBASE and DPUBASE should be initialized with initial value (see 6.2.6)*/ } return VINF_SUCCESS; } static int hdaRegWriteSTATESTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; uint32_t v = pThis->au32Regs[iRegMem]; uint32_t nv = u32Value & HDA_STATES_SCSF; pThis->au32Regs[iRegMem] &= ~(v & nv); /* write of 1 clears corresponding bit */ return VINF_SUCCESS; } static int hdaRegReadINTSTS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { uint32_t v = 0; if ( HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RIRBOIS) || HDA_REG_FLAG_VALUE(pThis, RIRBSTS, RINTFL) || HDA_REG_FLAG_VALUE(pThis, CORBSTS, CMEI) || HDA_REG(pThis, STATESTS)) v |= RT_BIT(30); #define HDA_IS_STREAM_EVENT(pThis, stream) \ ( (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)) \ || (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)) \ || (SDSTS((pThis),stream) & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))) #define MARK_STREAM(pThis, stream, v) do { (v) |= HDA_IS_STREAM_EVENT((pThis),stream) ? RT_BIT((stream)) : 0; } while(0) MARK_STREAM(pThis, 0, v); MARK_STREAM(pThis, 1, v); MARK_STREAM(pThis, 2, v); MARK_STREAM(pThis, 3, v); MARK_STREAM(pThis, 4, v); MARK_STREAM(pThis, 5, v); MARK_STREAM(pThis, 6, v); MARK_STREAM(pThis, 7, v); v |= v ? RT_BIT(31) : 0; *pu32Value = v; return VINF_SUCCESS; } static int hdaRegReadWALCLK(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { /* HDA spec (1a): 3.3.16 WALCLK counter ticks with 24Mhz bitclock rate. */ *pu32Value = (uint32_t)ASMMultU64ByU32DivByU32(PDMDevHlpTMTimeVirtGetNano(pThis->CTX_SUFF(pDevIns)) - pThis->u64BaseTS, 24, 1000); return VINF_SUCCESS; } static int hdaRegWriteCORBRP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(CORBRP, RST)) HDA_REG(pThis, CORBRP) = 0; #ifndef BIRD_THINKS_CORBRP_IS_MOSTLY_RO else return hdaRegWriteU8(pThis, iReg, u32Value); #endif return VINF_SUCCESS; } static int hdaRegWriteCORBCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 int rc = hdaRegWriteU8(pThis, iReg, u32Value); AssertRC(rc); if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP) && HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA) != 0) return hdaCORBCmdProcess(pThis); return rc; #else return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteCORBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t v = HDA_REG(pThis, CORBSTS); HDA_REG(pThis, CORBSTS) &= ~(v & u32Value); return VINF_SUCCESS; } static int hdaRegWriteCORBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 int rc; rc = hdaRegWriteU16(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); if (HDA_REG(pThis, CORBWP) == HDA_REG(pThis, CORBRP)) return VINF_SUCCESS; if (!HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)) return VINF_SUCCESS; rc = hdaCORBCmdProcess(pThis); return rc; #else return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteSDCTL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { bool fRun = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); bool fInRun = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); bool fReset = RT_BOOL(u32Value & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); bool fInReset = RT_BOOL(HDA_REG_IND(pThis, iReg) & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST)); if (fInReset) { /* * Assert!!! Guest is resetting HDA's stream, we're expecting guest will mark stream as exit * from reset */ Assert((!fReset)); LogFunc(("guest initiated exit of stream reset.\n")); } else if (fReset) { #ifdef IN_RING3 /* * Assert!!! ICH6 datasheet 18.2.33 says that RUN bit should be cleared before initiation of reset. */ uint8_t u8Strm = 0; PHDABDLEDESC pBdle = NULL; HDASTREAMTRANSFERDESC StreamDesc; Assert((!fInRun && !fRun)); switch (iReg) { case HDA_REG_SD0CTL: u8Strm = 0; pBdle = &pThis->StInBdle; break; #ifdef VBOX_WITH_HDA_MIC_IN case HDA_REG_SD2CTL: u8Strm = 2; pBdle = &pThis->StMicBdle; break; #endif case HDA_REG_SD4CTL: u8Strm = 4; pBdle = &pThis->StOutBdle; break; default: LogFunc(("changing SRST bit on non-attached stream\n")); return hdaRegWriteU24(pThis, iReg, u32Value); } LogFunc(("guest initiated enter to stream reset.\n")); hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm); #else return VINF_IOM_R3_MMIO_WRITE; #endif } else { #ifdef IN_RING3 /* we enter here to change DMA states only */ if ( (fInRun && !fRun) || (fRun && !fInRun)) { Assert((!fReset && !fInReset)); PHDADRIVER pDrv; switch (iReg) { case HDA_REG_SD0CTL: { RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->LineIn.pStrmIn, fRun); break; } # ifdef VBOX_WITH_HDA_MIC_IN case HDA_REG_SD2CTL: { RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->MicIn.pStrmIn, fRun); break; } # endif case HDA_REG_SD4CTL: { RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) pDrv->pConnector->pfnEnableOut(pDrv->pConnector, pDrv->Out.pStrmOut, fRun); break; } default: AssertMsgFailed(("Changing RUN bit on non-attached stream, register %RU32\n", iReg)); break; } } #else /* !IN_RING3 */ return VINF_IOM_R3_MMIO_WRITE; #endif /* IN_RING3 */ } return hdaRegWriteU24(pThis, iReg, u32Value); } static int hdaRegWriteSDSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t v = HDA_REG_IND(pThis, iReg); v &= ~(u32Value & v); HDA_REG_IND(pThis, iReg) = v; hdaProcessInterrupt(pThis); return VINF_SUCCESS; } static int hdaRegWriteSDLVI(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegWriteSDFIFOW(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { switch (u32Value) { case HDA_SDFIFOW_8B: case HDA_SDFIFOW_16B: case HDA_SDFIFOW_32B: return hdaRegWriteU16(pThis, iReg, u32Value); default: LogFunc(("Attempt to store unsupported value(%x) in SDFIFOW\n", u32Value)); return hdaRegWriteU16(pThis, iReg, HDA_SDFIFOW_32B); } return VINF_SUCCESS; } /** * @note This method could be called for changing value on Output Streams * only (ICH6 datasheet 18.2.39) */ static int hdaRegWriteSDFIFOS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { switch (iReg) { /* SDInFIFOS is RO, n=0-3 */ case HDA_REG_SD0FIFOS: case HDA_REG_SD1FIFOS: case HDA_REG_SD2FIFOS: case HDA_REG_SD3FIFOS: LogFunc(("Guest tries change value of FIFO size of input stream\n")); break; case HDA_REG_SD4FIFOS: case HDA_REG_SD5FIFOS: case HDA_REG_SD6FIFOS: case HDA_REG_SD7FIFOS: switch(u32Value) { case HDA_SDONFIFO_16B: case HDA_SDONFIFO_32B: case HDA_SDONFIFO_64B: case HDA_SDONFIFO_128B: case HDA_SDONFIFO_192B: return hdaRegWriteU16(pThis, iReg, u32Value); case HDA_SDONFIFO_256B: LogFunc(("256-bit is unsupported, HDA is switched into 192-bit mode\n")); default: return hdaRegWriteU16(pThis, iReg, HDA_SDONFIFO_192B); } break; default: AssertMsgFailed(("Something weird happened with register lookup routine\n")); } return VINF_SUCCESS; } #ifdef IN_RING3 static int hdaSdFmtToAudSettings(uint32_t u32SdFmt, PPDMAUDIOSTREAMCFG pCfg) { AssertPtrReturn(pCfg, VERR_INVALID_POINTER); # define EXTRACT_VALUE(v, mask, shift) ((v & ((mask) << (shift))) >> (shift)) int rc = VINF_SUCCESS; uint32_t u32Hz = (u32SdFmt & HDA_SDFMT_BASE_RATE_SHIFT) ? 44100 : 48000; uint32_t u32HzMult = 1; uint32_t u32HzDiv = 1; switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT)) { case 0: u32HzMult = 1; break; case 1: u32HzMult = 2; break; case 2: u32HzMult = 3; break; case 3: u32HzMult = 4; break; default: LogFunc(("Unsupported multiplier %x\n", EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_MULT_MASK, HDA_SDFMT_MULT_SHIFT))); rc = VERR_NOT_SUPPORTED; break; } switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT)) { case 0: u32HzDiv = 1; break; case 1: u32HzDiv = 2; break; case 2: u32HzDiv = 3; break; case 3: u32HzDiv = 4; break; case 4: u32HzDiv = 5; break; case 5: u32HzDiv = 6; break; case 6: u32HzDiv = 7; break; case 7: u32HzDiv = 8; break; default: LogFunc(("Unsupported divisor %x\n", EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_DIV_MASK, HDA_SDFMT_DIV_SHIFT))); rc = VERR_NOT_SUPPORTED; break; } PDMAUDIOFMT enmFmt = AUD_FMT_S16; /* Default to 16-bit signed. */ switch (EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT)) { case 0: LogFunc(("Requested 8-bit\n")); enmFmt = AUD_FMT_S8; break; case 1: LogFunc(("Requested 16-bit\n")); enmFmt = AUD_FMT_S16; break; case 2: LogFunc(("Requested 20-bit\n")); break; case 3: LogFunc(("Requested 24-bit\n")); break; case 4: LogFunc(("Requested 32-bit\n")); enmFmt = AUD_FMT_S32; break; default: AssertMsgFailed(("Unsupported bits shift %x\n", EXTRACT_VALUE(u32SdFmt, HDA_SDFMT_BITS_MASK, HDA_SDFMT_BITS_SHIFT))); rc = VERR_NOT_SUPPORTED; break; } if (RT_SUCCESS(rc)) { pCfg->uHz = u32Hz * u32HzMult / u32HzDiv; pCfg->cChannels = (u32SdFmt & 0xf) + 1; pCfg->enmFormat = enmFmt; pCfg->enmEndianness = PDMAUDIOHOSTENDIANNESS; } # undef EXTRACT_VALUE return rc; } #endif static int hdaRegWriteSDFMT(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { #ifdef IN_RING3 # ifdef VBOX_WITH_HDA_CODEC_EMU /* No reason to reopen voice with same settings. */ if (u32Value == HDA_REG_IND(pThis, iReg)) return VINF_SUCCESS; PDMAUDIOSTREAMCFG as; int rc = hdaSdFmtToAudSettings(u32Value, &as); if (RT_FAILURE(rc)) return rc; PHDADRIVER pDrv; switch (iReg) { case HDA_REG_SD0FMT: RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) rc = hdaCodecOpenStream(pThis->pCodec, PI_INDEX, &as); break; # ifdef VBOX_WITH_HDA_MIC_IN case HDA_REG_SD2FMT: RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) rc = hdaCodecOpenStream(pThis->pCodec, MC_INDEX, &as); break; # endif default: LogFunc(("Warning: Attempt to change format on register %d\n", iReg)); break; } /** @todo r=andy rc gets lost; needs fixing. */ return hdaRegWriteU16(pThis, iReg, u32Value); # else /* !VBOX_WITH_HDA_CODEC_EMU */ return hdaRegWriteU16(pThis, iReg, u32Value); # endif #else /* !IN_RING3 */ return VINF_IOM_R3_MMIO_WRITE; #endif } static int hdaRegWriteSDBDPL(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegWriteSDBDPU(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, VINF_SUCCESS); return rc; } static int hdaRegReadIRS(PHDASTATE pThis, uint32_t iReg, uint32_t *pu32Value) { int rc = VINF_SUCCESS; /* regarding 3.4.3 we should mark IRS as busy in case CORB is active */ if ( HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP) || HDA_REG_FLAG_VALUE(pThis, CORBCTL, DMA)) HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */ rc = hdaRegReadU32(pThis, iReg, pu32Value); return rc; } static int hdaRegWriteIRS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { int rc = VINF_SUCCESS; /* * If the guest set the ICB bit of IRS register, HDA should process the verb in IC register, * write the response to IR register, and set the IRV (valid in case of success) bit of IRS register. */ if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, ICB) && !HDA_REG_FLAG_VALUE(pThis, IRS, ICB)) { #ifdef IN_RING3 PFNHDACODECVERBPROCESSOR pfn = NULL; uint64_t resp; uint32_t cmd = HDA_REG(pThis, IC); if (HDA_REG(pThis, CORBWP) != HDA_REG(pThis, CORBRP)) { /* * 3.4.3 defines behavior of immediate Command status register. */ LogRel(("guest attempted process immediate verb (%x) with active CORB\n", cmd)); return rc; } HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy */ LogFunc(("IC:%x\n", cmd)); rc = pThis->pCodec->pfnLookup(pThis->pCodec, HDA_CODEC_CMD(cmd, 0 /* LUN */), &pfn); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); rc = pfn(pThis->pCodec, HDA_CODEC_CMD(cmd, 0 /* LUN */), &resp); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); HDA_REG(pThis, IR) = (uint32_t)resp; LogFunc(("IR:%x\n", HDA_REG(pThis, IR))); HDA_REG(pThis, IRS) = HDA_REG_FIELD_FLAG_MASK(IRS, IRV); /* result is ready */ HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, ICB); /* busy is clear */ #else /* !IN_RING3 */ rc = VINF_IOM_R3_MMIO_WRITE; #endif return rc; } /* * Once the guest read the response, it should clean the IRV bit of the IRS register. */ if ( u32Value & HDA_REG_FIELD_FLAG_MASK(IRS, IRV) && HDA_REG_FLAG_VALUE(pThis, IRS, IRV)) HDA_REG(pThis, IRS) &= ~HDA_REG_FIELD_FLAG_MASK(IRS, IRV); return rc; } static int hdaRegWriteRIRBWP(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { if (u32Value & HDA_REG_FIELD_FLAG_MASK(RIRBWP, RST)) { HDA_REG(pThis, RIRBWP) = 0; } /* The remaining bits are O, see 6.2.22 */ return VINF_SUCCESS; } static int hdaRegWriteBase(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint32_t iRegMem = g_aHdaRegMap[iReg].mem_idx; int rc = hdaRegWriteU32(pThis, iReg, u32Value); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); switch(iReg) { case HDA_REG_CORBLBASE: pThis->u64CORBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64CORBBase |= pThis->au32Regs[iRegMem]; break; case HDA_REG_CORBUBASE: pThis->u64CORBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64CORBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32); break; case HDA_REG_RIRBLBASE: pThis->u64RIRBBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64RIRBBase |= pThis->au32Regs[iRegMem]; break; case HDA_REG_RIRBUBASE: pThis->u64RIRBBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64RIRBBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32); break; case HDA_REG_DPLBASE: /** @todo: first bit has special meaning */ pThis->u64DPBase &= UINT64_C(0xFFFFFFFF00000000); pThis->u64DPBase |= pThis->au32Regs[iRegMem]; break; case HDA_REG_DPUBASE: pThis->u64DPBase &= UINT64_C(0x00000000FFFFFFFF); pThis->u64DPBase |= ((uint64_t)pThis->au32Regs[iRegMem] << 32); break; default: AssertMsgFailed(("Invalid index")); break; } LogFunc(("CORB base:%llx RIRB base: %llx DP base: %llx\n", pThis->u64CORBBase, pThis->u64RIRBBase, pThis->u64DPBase)); return rc; } static int hdaRegWriteRIRBSTS(PHDASTATE pThis, uint32_t iReg, uint32_t u32Value) { uint8_t v = HDA_REG(pThis, RIRBSTS); HDA_REG(pThis, RIRBSTS) &= ~(v & u32Value); return hdaProcessInterrupt(pThis); } #ifdef IN_RING3 #ifdef LOG_ENABLED static void dump_bd(PHDASTATE pThis, PHDABDLEDESC pBdle, uint64_t u64BaseDMA) { #if 0 uint64_t addr; uint32_t len; uint32_t ioc; uint8_t bdle[16]; uint32_t counter; uint32_t i; uint32_t sum = 0; Assert(pBdle && pBdle->u32BdleMaxCvi); for (i = 0; i <= pBdle->u32BdleMaxCvi; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), u64BaseDMA + i*16, bdle, 16); addr = *(uint64_t *)bdle; len = *(uint32_t *)&bdle[8]; ioc = *(uint32_t *)&bdle[12]; LogFunc(("%s bdle[%d] a:%llx, len:%d, ioc:%d\n", (i == pBdle->u32BdleCvi? "[C]": " "), i, addr, len, ioc & 0x1)); sum += len; } LogFunc(("sum: %d\n", sum)); for (i = 0; i < 8; ++i) { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), (pThis->u64DPBase & DPBASE_ADDR_MASK) + i*8, &counter, sizeof(&counter)); LogFunc(("%s stream[%d] counter=%x\n", i == SDCTL_NUM(pThis, 4) || i == SDCTL_NUM(pThis, 0)? "[C]": " ", i , counter)); } #endif } #endif static void hdaFetchBdle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { uint8_t bdle[16]; Assert(( pStreamDesc->u64BaseDMA && pBdle && pBdle->u32BdleMaxCvi)); PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pStreamDesc->u64BaseDMA + pBdle->u32BdleCvi*16, bdle, 16); pBdle->u64BdleCviAddr = *(uint64_t *)bdle; pBdle->u32BdleCviLen = *(uint32_t *)&bdle[8]; pBdle->fBdleCviIoc = (*(uint32_t *)&bdle[12]) & 0x1; #ifdef LOG_ENABLED dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA); #endif } DECLINLINE(uint32_t) hdaCalculateTransferBufferLength(PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t u32SoundBackendBufferBytesAvail, uint32_t u32CblLimit) { /* * Number of bytes depends on the current position in buffer (u32BdleCviLen-u32BdleCviPos) */ Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos)); /* sanity */ uint32_t cb2Copy = pBdle->u32BdleCviLen - pBdle->u32BdleCviPos; /* * we may increase the counter in range of [0, FIFOS + 1] */ cb2Copy = RT_MIN(cb2Copy, pStreamDesc->u32Fifos + 1); Assert((u32SoundBackendBufferBytesAvail > 0)); /* sanity check to avoid overriding the backend audio buffer */ cb2Copy = RT_MIN(cb2Copy, u32SoundBackendBufferBytesAvail); cb2Copy = RT_MIN(cb2Copy, u32CblLimit); if (cb2Copy <= pBdle->cbUnderFifoW) return 0; cb2Copy -= pBdle->cbUnderFifoW; /* forcibly reserve the amount of unreported bytes to copy */ return cb2Copy; } DECLINLINE(void) hdaBackendWriteTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity) { LogFunc(("cbArranged2Copy: %d, cbCopied: %d, pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", cbArranged2Copy, cbCopied, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0)); Assert((cbCopied)); AssertPtr(pu32DMACursor); Assert((pu32BackendBufferCapacity && *pu32BackendBufferCapacity)); /* Assertion!!! Fewer than cbUnderFifoW bytes were copied. * Probably we need to move the buffer, but it is rather hard to imagine a situation * where it might happen. */ AssertMsg((cbCopied == pBdle->cbUnderFifoW + cbArranged2Copy), /* we assume that we write the entire buffer including unreported bytes */ ("cbCopied=%RU32 != pBdle->cbUnderFifoW=%RU32 + cbArranged2Copy=%RU32\n", cbCopied, pBdle->cbUnderFifoW, cbArranged2Copy)); if ( pBdle->cbUnderFifoW && pBdle->cbUnderFifoW <= cbCopied) { LogFunc(("CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); } pBdle->cbUnderFifoW -= RT_MIN(pBdle->cbUnderFifoW, cbCopied); Assert((!pBdle->cbUnderFifoW)); /* Assert!!! Incorrect assumption */ /* We always increment the position of DMA buffer counter because we're always reading into an intermediate buffer */ pBdle->u32BdleCviPos += cbArranged2Copy; Assert((pBdle->u32BdleCviLen >= pBdle->u32BdleCviPos && *pu32BackendBufferCapacity >= cbCopied)); /* sanity */ /* We report all bytes (including previously unreported bytes) */ *pu32DMACursor += cbCopied; /* Decrease the backend counter by the number of bytes we copied to the backend */ *pu32BackendBufferCapacity -= cbCopied; LogFunc(("CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, *pu32DMACursor, *pu32BackendBufferCapacity)); } DECLINLINE(void) hdaBackendReadTransferReported(PHDABDLEDESC pBdle, uint32_t cbArranged2Copy, uint32_t cbCopied, uint32_t *pu32DMACursor, uint32_t *pu32BackendBufferCapacity) { Assert((cbCopied, cbArranged2Copy)); *pu32BackendBufferCapacity -= cbCopied; pBdle->u32BdleCviPos += cbCopied; LogFunc(("CVI resetting cbUnderFifoW:%d(pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); *pu32DMACursor += cbCopied + pBdle->cbUnderFifoW; pBdle->cbUnderFifoW = 0; LogFunc(("CVI(pos:%d, len:%d), pu32DMACursor: %d, pu32BackendBufferCapacity:%d\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, pu32DMACursor ? *pu32DMACursor : 0, pu32BackendBufferCapacity ? *pu32BackendBufferCapacity : 0)); } DECLINLINE(void) hdaBackendTransferUnreported(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbCopied, uint32_t *pu32BackendBufferCapacity) { LogFunc(("CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); pBdle->u32BdleCviPos += cbCopied; pBdle->cbUnderFifoW += cbCopied; /* In case of a read transaction we're always copying from the backend buffer */ if (pu32BackendBufferCapacity) *pu32BackendBufferCapacity -= cbCopied; LogFunc(("CVI (cbUnderFifoW:%d, pos:%d, len:%d)\n", pBdle->cbUnderFifoW, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); Assert((pBdle->cbUnderFifoW <= hdaFifoWToSz(pThis, pStreamDesc))); } DECLINLINE(bool) hdaIsTransferCountersOverlapped(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { bool fOnBufferEdge = ( *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl || pBdle->u32BdleCviPos == pBdle->u32BdleCviLen); Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl)); if (*pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl) *pStreamDesc->pu32Lpib -= pStreamDesc->u32Cbl; hdaUpdatePosBuf(pThis, pStreamDesc); /* don't touch BdleCvi counter on uninitialized descriptor */ if ( pBdle->u32BdleCviPos && pBdle->u32BdleCviPos == pBdle->u32BdleCviLen) { pBdle->u32BdleCviPos = 0; pBdle->u32BdleCvi++; if (pBdle->u32BdleCvi == pBdle->u32BdleMaxCvi + 1) pBdle->u32BdleCvi = 0; } return fOnBufferEdge; } DECLINLINE(void) hdaStreamCounterUpdate(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t cbInc) { /* * if we're below the FIFO Watermark, it's expected that HDA doesn't fetch anything. * (ICH6 datasheet 18.2.38) */ if (!pBdle->cbUnderFifoW) { *pStreamDesc->pu32Lpib += cbInc; /* * Assert. The buffer counters should never overlap. */ Assert((*pStreamDesc->pu32Lpib <= pStreamDesc->u32Cbl)); hdaUpdatePosBuf(pThis, pStreamDesc); } } static bool hdaDoNextTransferCycle(PHDASTATE pThis, PHDABDLEDESC pBdle, PHDASTREAMTRANSFERDESC pStreamDesc) { bool fDoNextTransferLoop = true; if ( pBdle->u32BdleCviPos == pBdle->u32BdleCviLen || *pStreamDesc->pu32Lpib == pStreamDesc->u32Cbl) { if ( !pBdle->cbUnderFifoW && pBdle->fBdleCviIoc) { /** * @todo - more carefully investigate BCIS flag. * Speech synthesis works fine on Mac Guest if this bit isn't set * but in general sound quality gets worse. */ *pStreamDesc->pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS); /* * we should generate the interrupt if ICE bit of SDCTL register is set. */ if (pStreamDesc->u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)) hdaProcessInterrupt(pThis); } fDoNextTransferLoop = false; } return fDoNextTransferLoop; } /** * hdaReadAudio - copies samples from audio backend to DMA. * Note: This function writes to the DMA buffer immediately, * but "reports bytes" when all conditions are met (FIFOW). */ static int hdaReadAudio(PHDASTATE pThis, PAUDMIXSINK pSink, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t u32CblLimit, uint32_t *pcbAvail, uint32_t *pcbRead) { PHDABDLEDESC pBdle = &pThis->StInBdle; /** @todo Add support for mic in. */ int rc; uint32_t cbTransferred = 0; LogFlowFunc(("CVI(pos:%d, len:%d)\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); uint32_t cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pcbAvail, u32CblLimit); if (!cb2Copy) { /* If we enter here we can't report "unreported bits". */ rc = VERR_NO_DATA; } else { uint32_t cbRead = 0; rc = AudioMixerProcessSinkIn(pSink, AUDMIXOP_BLEND, pBdle->au8HdaBuffer, cb2Copy, &cbRead); if (RT_SUCCESS(rc)) { Assert(cbRead); /* * Write the HDA DMA buffer. */ PDMDevHlpPCIPhysWrite(pThis->CTX_SUFF(pDevIns), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer, cbRead); /* Don't see any reason why cb2Copy would differ from cbRead. */ Assert((cbRead == cb2Copy && (*pcbAvail) >= cb2Copy)); /* sanity */ if (pBdle->cbUnderFifoW + cbRead > hdaFifoWToSz(pThis, 0)) hdaBackendReadTransferReported(pBdle, cb2Copy, cbRead, &cbTransferred, pcbAvail); else { hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cbRead, pcbAvail); rc = VERR_NO_DATA; } } } Assert((cbTransferred <= (SDFIFOS(pThis, 0) + 1))); LogFunc(("CVI(pos:%RU32, len:%RU32), cbTransferred=%RU32, rc=%Rrc\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred, rc)); if (RT_SUCCESS(rc)) *pcbRead = cbTransferred; return rc; } static int hdaWriteAudio(PHDASTATE pThis, PHDASTREAMTRANSFERDESC pStreamDesc, uint32_t u32CblLimit, uint32_t *pcbAvail, uint32_t *pcbWritten) { PHDABDLEDESC pBdle = &pThis->StOutBdle; int rc = VINF_SUCCESS; uint32_t cbTransferred = 0; uint32_t cbWrittenMin = 0; /* local byte counter, how many bytes copied to backend */ LogFunc(("CVI(cvi:%RU32, pos:%RU32, len:%RU32)\n", pBdle->u32BdleCvi, pBdle->u32BdleCviPos, pBdle->u32BdleCviLen)); /* Local byte counter (on local buffer). */ uint32_t cb2Copy = hdaCalculateTransferBufferLength(pBdle, pStreamDesc, *pcbAvail, u32CblLimit); /* * Copy from DMA to the corresponding hdaBuffer (if there are any bytes from the * previous unreported transfer we write at offset 'pBdle->cbUnderFifoW'). */ if (!cb2Copy) { rc = VINF_EOF; } else { PDMDevHlpPhysRead(pThis->CTX_SUFF(pDevIns), pBdle->u64BdleCviAddr + pBdle->u32BdleCviPos, pBdle->au8HdaBuffer + pBdle->cbUnderFifoW, cb2Copy); #ifdef VBOX_WITH_STATISTICS STAM_COUNTER_ADD(&pThis->StatBytesRead, cb2Copy); #endif /* * Write to audio backend. We should ensure that we have enough bytes to copy to the backend. */ if (cb2Copy + pBdle->cbUnderFifoW >= hdaFifoWToSz(pThis, pStreamDesc)) { uint32_t cbWritten; cbWrittenMin = UINT32_MAX; PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { if (pDrv->pConnector->pfnIsActiveOut(pDrv->pConnector, pDrv->Out.pStrmOut)) { int rc2 = pDrv->pConnector->pfnWrite(pDrv->pConnector, pDrv->Out.pStrmOut, pBdle->au8HdaBuffer, cb2Copy + pBdle->cbUnderFifoW, &cbWritten); if (RT_FAILURE(rc2)) continue; } else /* Stream disabled, just assume all was copied. */ cbWritten = cb2Copy; cbWrittenMin = RT_MIN(cbWrittenMin, cbWritten); LogFlowFunc(("\tLUN#%RU8: cbWritten=%RU32, cWrittenMin=%RU32\n", pDrv->uLUN, cbWritten, cbWrittenMin)); } if (cbWrittenMin == UINT32_MAX) cbWrittenMin = 0; hdaBackendWriteTransferReported(pBdle, cb2Copy, cbWrittenMin, &cbTransferred, pcbAvail); } else { /* Not enough bytes to be processed and reported, we'll try our luck next time around. */ hdaBackendTransferUnreported(pThis, pBdle, pStreamDesc, cb2Copy, NULL); rc = VINF_EOF; } } Assert(cbTransferred <= SDFIFOS(pThis, 4) + 1); LogFunc(("CVI(pos:%RU32, len:%RU32, cbTransferred:%RU32), rc=%Rrc\n", pBdle->u32BdleCviPos, pBdle->u32BdleCviLen, cbTransferred, rc)); if (RT_SUCCESS(rc)) *pcbWritten = cbTransferred; return rc; } /** * @interface_method_impl{HDACODEC,pfnReset} */ DECLCALLBACK(int) hdaCodecReset(PHDACODEC pCodec) { PHDASTATE pThis = pCodec->pHDAState; NOREF(pThis); return VINF_SUCCESS; } DECLINLINE(void) hdaInitTransferDescriptor(PHDASTATE pThis, PHDABDLEDESC pBdle, uint8_t u8Strm, PHDASTREAMTRANSFERDESC pStreamDesc) { Assert(pThis); Assert(pBdle); Assert(pStreamDesc); Assert(u8Strm <= 7); RT_BZERO(pStreamDesc, sizeof(HDASTREAMTRANSFERDESC)); pStreamDesc->u8Strm = u8Strm; pStreamDesc->u32Ctl = HDA_STREAM_REG(pThis, CTL, u8Strm); pStreamDesc->u64BaseDMA = RT_MAKE_U64(HDA_STREAM_REG(pThis, BDPL, u8Strm), HDA_STREAM_REG(pThis, BDPU, u8Strm)); pStreamDesc->pu32Lpib = &HDA_STREAM_REG(pThis, LPIB, u8Strm); pStreamDesc->pu32Sts = &HDA_STREAM_REG(pThis, STS, u8Strm); pStreamDesc->u32Cbl = HDA_STREAM_REG(pThis, CBL, u8Strm); pStreamDesc->u32Fifos = HDA_STREAM_REG(pThis, FIFOS, u8Strm); pBdle->u32BdleMaxCvi = HDA_STREAM_REG(pThis, LVI, u8Strm); #ifdef LOG_ENABLED if ( pBdle && pBdle->u32BdleMaxCvi) { LogFunc(("Initialization of transfer descriptor:\n")); dump_bd(pThis, pBdle, pStreamDesc->u64BaseDMA); } #endif } static DECLCALLBACK(void) hdaCloseIn(PHDASTATE pThis, PDMAUDIORECSOURCE enmRecSource) { NOREF(pThis); NOREF(enmRecSource); LogFlowFuncEnter(); } static DECLCALLBACK(void) hdaCloseOut(PHDASTATE pThis) { NOREF(pThis); LogFlowFuncEnter(); } static DECLCALLBACK(int) hdaOpenIn(PHDASTATE pThis, const char *pszName, PDMAUDIORECSOURCE enmRecSource, PPDMAUDIOSTREAMCFG pCfg) { PAUDMIXSINK pSink; switch (enmRecSource) { # ifdef VBOX_WITH_HDA_MIC_IN case PDMAUDIORECSOURCE_MIC: pSink = pThis->pSinkMicIn; break; # endif case PDMAUDIORECSOURCE_LINE_IN: pSink = pThis->pSinkLineIn; break; default: AssertMsgFailed(("Audio source %ld not supported\n", enmRecSource)); return VERR_NOT_SUPPORTED; } int rc = VINF_SUCCESS; char *pszDesc; PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { if (RTStrAPrintf(&pszDesc, "[LUN#%RU8] %s", pDrv->uLUN, pszName) <= 0) { rc = VERR_NO_MEMORY; break; } rc = pDrv->pConnector->pfnOpenIn(pDrv->pConnector, pszDesc, enmRecSource, pCfg, &pDrv->LineIn.pStrmIn); LogFlowFunc(("LUN#%RU8: Opened input \"%s\", with rc=%Rrc\n", pDrv->uLUN, pszDesc, rc)); if (rc == VINF_SUCCESS) /* Note: Could return VWRN_ALREADY_EXISTS. */ { AudioMixerRemoveStream(pSink, pDrv->LineIn.phStrmIn); rc = AudioMixerAddStreamIn(pSink, pDrv->pConnector, pDrv->LineIn.pStrmIn, 0 /* uFlags */, &pDrv->LineIn.phStrmIn); } RTStrFree(pszDesc); } LogFlowFuncLeaveRC(rc); return rc; } static DECLCALLBACK(int) hdaOpenOut(PHDASTATE pThis, const char *pszName, PPDMAUDIOSTREAMCFG pCfg) { int rc = VINF_SUCCESS; char *pszDesc; PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { if (RTStrAPrintf(&pszDesc, "[LUN#%RU8] %s", pDrv->uLUN, pszName) <= 0) { rc = VERR_NO_MEMORY; break; } rc = pDrv->pConnector->pfnOpenOut(pDrv->pConnector, pszDesc, pCfg, &pDrv->Out.pStrmOut); LogFlowFunc(("LUN#%RU8: Opened output \"%s\", with rc=%Rrc\n", pDrv->uLUN, pszDesc, rc)); if (rc == VINF_SUCCESS) /* Note: Could return VWRN_ALREADY_EXISTS. */ { AudioMixerRemoveStream(pThis->pSinkOutput, pDrv->Out.phStrmOut); rc = AudioMixerAddStreamOut(pThis->pSinkOutput, pDrv->pConnector, pDrv->Out.pStrmOut, 0 /* uFlags */, &pDrv->Out.phStrmOut); } RTStrFree(pszDesc); } LogFlowFuncLeaveRC(rc); return rc; } static DECLCALLBACK(int) hdaSetVolume(PHDASTATE pThis, ENMSOUNDSOURCE enmSource, bool fMute, uint8_t uVolLeft, uint8_t uVolRight) { int rc = VINF_SUCCESS; PDMAUDIOVOLUME vol = { fMute, uVolLeft, uVolRight }; PAUDMIXSINK pSink; /* Convert the audio source to corresponding sink. */ switch (enmSource) { case PO_INDEX: pSink = pThis->pSinkOutput; break; case PI_INDEX: pSink = pThis->pSinkLineIn; break; case MC_INDEX: pSink = pThis->pSinkMicIn; break; default: AssertFailedReturn(VERR_INVALID_PARAMETER); } /* Set the volume. Codec already converted it to the correct range. */ AudioMixerSetSinkVolume(pSink, &vol); LogFlowFuncLeaveRC(rc); return rc; } static DECLCALLBACK(void) hdaTimer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); AssertPtr(pThis); STAM_PROFILE_START(&pThis->StatTimer, a); int rc = VINF_SUCCESS; uint32_t cbInMax = 0; uint32_t cbOutMin = UINT32_MAX; PHDADRIVER pDrv; uint32_t cbIn, cbOut, cSamplesLive; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { rc = pDrv->pConnector->pfnQueryStatus(pDrv->pConnector, &cbIn, &cbOut, &cSamplesLive); if (RT_SUCCESS(rc)) { #ifdef DEBUG_TIMER LogFlowFunc(("\tLUN#%RU8: [1] cbIn=%RU32, cbOut=%RU32\n", pDrv->uLUN, cbIn, cbOut)); #endif if (cSamplesLive) { uint32_t cSamplesPlayed; int rc2 = pDrv->pConnector->pfnPlayOut(pDrv->pConnector, &cSamplesPlayed); if (RT_SUCCESS(rc2)) LogFlowFunc(("LUN#%RU8: cSamplesLive=%RU32, cSamplesPlayed=%RU32\n", pDrv->uLUN, cSamplesLive, cSamplesPlayed)); rc = pDrv->pConnector->pfnQueryStatus(pDrv->pConnector, &cbIn, &cbOut, &cSamplesLive); #ifdef DEBUG_TIMER if (RT_SUCCESS(rc)) LogFlowFunc(("\tLUN#%RU8: [2] cbIn=%RU32, cbOut=%RU32\n", pDrv->uLUN, cbIn, cbOut)); #endif } cbInMax = RT_MAX(cbInMax, cbIn); cbOutMin = RT_MIN(cbOutMin, cbOut); } } #ifdef DEBUG_TIMER LogFlowFunc(("cbInMax=%RU32, cbOutMin=%RU32\n", cbInMax, cbOutMin)); #endif if (cbOutMin == UINT32_MAX) cbOutMin = 0; /* * Playback. */ if (cbOutMin) { Assert(cbOutMin != UINT32_MAX); hdaTransfer(pThis, PO_INDEX, cbOutMin); /** @todo Add rc! */ } /* * Recording. */ if (cbInMax) hdaTransfer(pThis, PI_INDEX, cbInMax); /** @todo Add rc! */ TMTimerSet(pThis->pTimer, TMTimerGet(pThis->pTimer) + pThis->uTicks); STAM_PROFILE_STOP(&pThis->StatTimer, a); } static int hdaTransfer(PHDASTATE pThis, ENMSOUNDSOURCE enmSrc, uint32_t cbAvail) { AssertPtrReturn(pThis, VERR_INVALID_POINTER); LogFlowFunc(("pThis=%p, cbAvail=%RU32\n", pThis, cbAvail)); uint8_t u8Strm; PHDABDLEDESC pBdle; switch (enmSrc) { case PI_INDEX: { u8Strm = 0; pBdle = &pThis->StInBdle; break; } #ifdef VBOX_WITH_HDA_MIC_IN case MC_INDEX: { u8Strm = 2; pBdle = &pThis->StMicBdle; break; } #endif case PO_INDEX: { u8Strm = 4; pBdle = &pThis->StOutBdle; break; } default: AssertMsgFailed(("Unknown source index %ld\n", enmSrc)); return VERR_NOT_SUPPORTED; } HDASTREAMTRANSFERDESC StreamDesc; hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); int rc = VINF_EOF; while (cbAvail) { Assert( (StreamDesc.u32Ctl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)) && cbAvail && StreamDesc.u64BaseDMA); /* Fetch the Buffer Descriptor Entry (BDE). */ if (hdaIsTransferCountersOverlapped(pThis, pBdle, &StreamDesc)) hdaFetchBdle(pThis, pBdle, &StreamDesc); *StreamDesc.pu32Sts |= HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY); Assert((StreamDesc.u32Cbl >= (*StreamDesc.pu32Lpib))); /* sanity */ uint32_t u32CblLimit = StreamDesc.u32Cbl - (*StreamDesc.pu32Lpib); Assert((u32CblLimit > hdaFifoWToSz(pThis, &StreamDesc))); LogFunc(("CBL=%RU32, LPIB=%RU32\n", StreamDesc.u32Cbl, *StreamDesc.pu32Lpib)); PAUDMIXSINK pSink; uint32_t cbWritten = 0; switch (enmSrc) { case PI_INDEX: pSink = pThis->pSinkLineIn; rc = hdaReadAudio(pThis, pSink, &StreamDesc, u32CblLimit, &cbAvail, &cbWritten); break; case PO_INDEX: rc = hdaWriteAudio(pThis, &StreamDesc, u32CblLimit, &cbAvail, &cbWritten); break; #ifdef VBOX_WITH_HDA_MIC_IN case MC_INDEX: pSink = pThis->pSinkMicIn; rc = hdaReadAudio(pThis, pSink, &StreamDesc, u32CblLimit, &cbAvail, &cbWritten); break; #endif default: AssertMsgFailed(("Unsupported source index %ld\n", enmSrc)); rc = VERR_NOT_SUPPORTED; break; } Assert(cbWritten <= StreamDesc.u32Fifos + 1); *StreamDesc.pu32Sts &= ~HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY); /* Process end of buffer condition. */ hdaStreamCounterUpdate(pThis, pBdle, &StreamDesc, cbWritten); if (!hdaDoNextTransferCycle(pThis, pBdle, &StreamDesc)) break; if ( RT_FAILURE(rc) || rc == VINF_EOF) /* All data processed? */ { break; } } return rc; } #endif /* IN_RING3 */ /* MMIO callbacks */ /** * @callback_method_impl{FNIOMMMIOREAD, Looks up and calls the appropriate handler.} * * @note During implementation, we discovered so-called "forgotten" or "hole" * registers whose description is not listed in the RPM, datasheet, or * spec. */ PDMBOTHCBDECL(int) hdaMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; /* * Look up and log. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxRegDsc = hdaRegLookup(pThis, offReg); /* Register descriptor index. */ #ifdef LOG_ENABLED unsigned const cbLog = cb; uint32_t offRegLog = offReg; #endif LogFunc(("offReg=%#x cb=%#x\n", offReg, cb)); #define NEW_READ_CODE #ifdef NEW_READ_CODE Assert(cb == 4); Assert((offReg & 3) == 0); if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL) LogFunc(("access to registers except GCTL is blocked while reset\n")); if (idxRegDsc == -1) LogRel(("Invalid read access @0x%x(of bytes:%d)\n", offReg, cb)); if (idxRegDsc != -1) { /* ASSUMES gapless DWORD at end of map. */ if (g_aHdaRegMap[idxRegDsc].size == 4) { /* * Straight forward DWORD access. */ rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, (uint32_t *)pv); LogFunc(("read %s => %x (%Rrc)\n", g_aHdaRegMap[idxRegDsc].abbrev, *(uint32_t *)pv, rc)); } else { /* * Multi register read (unless there are trailing gaps). * ASSUMES that only DWORD reads have sideeffects. */ uint32_t u32Value = 0; unsigned cbLeft = 4; do { uint32_t const cbReg = g_aHdaRegMap[idxRegDsc].size; uint32_t u32Tmp = 0; rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Tmp); LogFunc(("read %s[%db] => %x (%Rrc)*\n", g_aHdaRegMap[idxRegDsc].abbrev, cbReg, u32Tmp, rc)); if (rc != VINF_SUCCESS) break; u32Value |= (u32Tmp & g_afMasks[cbReg]) << ((4 - cbLeft) * 8); cbLeft -= cbReg; offReg += cbReg; idxRegDsc++; } while (cbLeft > 0 && g_aHdaRegMap[idxRegDsc].offset == offReg); if (rc == VINF_SUCCESS) *(uint32_t *)pv = u32Value; else Assert(!IOM_SUCCESS(rc)); } } else { rc = VINF_IOM_MMIO_UNUSED_FF; LogFunc(("hole at %x is accessed for read\n", offReg)); } #else if (idxRegDsc != -1) { /** @todo r=bird: Accesses crossing register boundraries aren't handled * right from what I can tell? If they are, please explain * what the rules are. */ uint32_t mask = 0; uint32_t shift = (g_aHdaRegMap[idxRegDsc].offset - offReg) % sizeof(uint32_t) * 8; uint32_t u32Value = 0; switch(cb) { case 1: mask = 0x000000ff; break; case 2: mask = 0x0000ffff; break; case 4: /* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */ case 8: mask = 0xffffffff; cb = 4; break; } #if 0 /* Cross-register access. Mac guest hits this assert doing assumption 4 byte access to 3 byte registers e.g. {I,O}SDnCTL */ //Assert((cb <= g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset))); if (cb > g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset)) { int off = cb - (g_aHdaRegMap[idxRegDsc].size - (offReg - g_aHdaRegMap[idxRegDsc].offset)); rc = hdaMMIORead(pDevIns, pvUser, GCPhysAddr + cb - off, (char *)pv + cb - off, off); if (RT_FAILURE(rc)) AssertRCReturn (rc, rc); } //Assert(((offReg - g_aHdaRegMap[idxRegDsc].offset) == 0)); #endif mask <<= shift; rc = g_aHdaRegMap[idxRegDsc].pfnRead(pThis, idxRegDsc, &u32Value); *(uint32_t *)pv |= (u32Value & mask); LogFunc(("read %s[%x/%x]\n", g_aHdaRegMap[idxRegDsc].abbrev, u32Value, *(uint32_t *)pv)); } else { *(uint32_t *)pv = 0xFF; LogFunc(("hole at %x is accessed for read\n", offReg)); rc = VINF_SUCCESS; } #endif /* * Log the outcome. */ #ifdef LOG_ENABLED if (cbLog == 4) LogFunc(("@%#05x -> %#010x %Rrc\n", offRegLog, *(uint32_t *)pv, rc)); else if (cbLog == 2) LogFunc(("@%#05x -> %#06x %Rrc\n", offRegLog, *(uint16_t *)pv, rc)); else if (cbLog == 1) LogFunc(("@%#05x -> %#04x %Rrc\n", offRegLog, *(uint8_t *)pv, rc)); #endif return rc; } DECLINLINE(int) hdaWriteReg(PHDASTATE pThis, int idxRegDsc, uint32_t u32Value, char const *pszLog) { if (pThis->fInReset && idxRegDsc != HDA_REG_GCTL) LogFunc(("access to registers except GCTL is blocked while reset\n")); /** @todo where is this enforced? */ uint32_t idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; #ifdef LOG_ENABLED uint32_t const u32CurValue = pThis->au32Regs[idxRegMem]; #endif int rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32Value); LogFunc(("write %#x -> %s[%db]; %x => %x%s\n", u32Value, g_aHdaRegMap[idxRegDsc].abbrev, g_aHdaRegMap[idxRegDsc].size, u32CurValue, pThis->au32Regs[idxRegMem], pszLog)); return rc; } /** * @callback_method_impl{FNIOMMMIOWRITE, Looks up and calls the appropriate handler.} */ PDMBOTHCBDECL(int) hdaMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int rc; /* * The behavior of accesses that aren't aligned on natural boundraries is * undefined. Just reject them outright. */ /** @todo IOM could check this, it could also split the 8 byte accesses for us. */ Assert(cb == 1 || cb == 2 || cb == 4 || cb == 8); if (GCPhysAddr & (cb - 1)) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "misaligned write access: GCPhysAddr=%RGp cb=%u\n", GCPhysAddr, cb); /* * Look up and log the access. */ uint32_t offReg = GCPhysAddr - pThis->MMIOBaseAddr; int idxRegDsc = hdaRegLookup(pThis, offReg); uint32_t idxRegMem = idxRegDsc != -1 ? g_aHdaRegMap[idxRegDsc].mem_idx : UINT32_MAX; uint64_t u64Value; if (cb == 4) u64Value = *(uint32_t const *)pv; else if (cb == 2) u64Value = *(uint16_t const *)pv; else if (cb == 1) u64Value = *(uint8_t const *)pv; else if (cb == 8) u64Value = *(uint64_t const *)pv; else { u64Value = 0; /* shut up gcc. */ AssertReleaseMsgFailed(("%d\n", cb)); } #ifdef LOG_ENABLED uint32_t const u32LogOldValue = idxRegDsc >= 0 ? pThis->au32Regs[idxRegMem] : UINT32_MAX; uint32_t const offRegLog = offReg; int const idxRegLog = idxRegMem; if (idxRegDsc == -1) LogFunc(("@%#05x u32=%#010x cb=%d\n", offReg, *(uint32_t const *)pv, cb)); else if (cb == 4) LogFunc(("@%#05x u32=%#010x %s\n", offReg, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); else if (cb == 2) LogFunc(("@%#05x u16=%#06x (%#010x) %s\n", offReg, *(uint16_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); else if (cb == 1) LogFunc(("@%#05x u8=%#04x (%#010x) %s\n", offReg, *(uint8_t *)pv, *(uint32_t *)pv, g_aHdaRegMap[idxRegDsc].abbrev)); if (idxRegDsc >= 0 && g_aHdaRegMap[idxRegDsc].size != cb) LogFunc(("size=%d != cb=%d!!\n", g_aHdaRegMap[idxRegDsc].size, cb)); #endif #define NEW_WRITE_CODE #ifdef NEW_WRITE_CODE /* * Try for a direct hit first. */ if (idxRegDsc != -1 && g_aHdaRegMap[idxRegDsc].size == cb) { rc = hdaWriteReg(pThis, idxRegDsc, u64Value, ""); LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldValue, idxRegLog != -1 ? pThis->au32Regs[idxRegLog] : UINT32_MAX)); } /* * Partial or multiple register access, loop thru the requested memory. */ else { /* If it's an access beyond the start of the register, shift the input value and fill in missing bits. Natural alignment rules means we will only see 1 or 2 byte accesses of this kind, so no risk of shifting out input values. */ if (idxRegDsc == -1 && (idxRegDsc = hdaRegLookupWithin(pThis, offReg)) != -1) { uint32_t const cbBefore = offReg - g_aHdaRegMap[idxRegDsc].offset; Assert(cbBefore > 0 && cbBefore < 4); offReg -= cbBefore; idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; u64Value <<= cbBefore * 8; u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbBefore]; LogFunc(("Within register, supplied %u leading bits: %#llx -> %#llx ...\n", cbBefore * 8, ~g_afMasks[cbBefore] & u64Value, u64Value)); } /* Loop thru the write area, it may cover multiple registers. */ rc = VINF_SUCCESS; for (;;) { uint32_t cbReg; if (idxRegDsc != -1) { idxRegMem = g_aHdaRegMap[idxRegDsc].mem_idx; cbReg = g_aHdaRegMap[idxRegDsc].size; if (cb < cbReg) { u64Value |= pThis->au32Regs[idxRegMem] & g_afMasks[cbReg] & ~g_afMasks[cb]; LogFunc(("Supplying missing bits (%#x): %#llx -> %#llx ...\n", g_afMasks[cbReg] & ~g_afMasks[cb], u64Value & g_afMasks[cb], u64Value)); } uint32_t u32LogOldVal = pThis->au32Regs[idxRegMem]; rc = hdaWriteReg(pThis, idxRegDsc, u64Value, "*"); LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldVal, pThis->au32Regs[idxRegMem])); } else { LogRel(("HDA: Invalid write access @0x%x!\n", offReg)); cbReg = 1; } if (rc != VINF_SUCCESS) break; if (cbReg >= cb) break; /* advance */ offReg += cbReg; cb -= cbReg; u64Value >>= cbReg * 8; if (idxRegDsc == -1) idxRegDsc = hdaRegLookup(pThis, offReg); else { idxRegDsc++; if ( (unsigned)idxRegDsc >= RT_ELEMENTS(g_aHdaRegMap) || g_aHdaRegMap[idxRegDsc].offset != offReg) idxRegDsc = -1; } } } #else if (idxRegDsc != -1) { /** @todo r=bird: This looks like code for handling unaligned register * accesses. If it isn't, then add a comment explaining what you're * trying to do here. OTOH, if it is then it has the following * issues: * -# You're calculating the wrong new value for the register. * -# You're not handling cross register accesses. Imagine a * 4-byte write starting at CORBCTL, or a 8-byte write. * * PS! consider dropping the 'offset' argument to pfnWrite/pfnRead as * nobody seems to be using it and it just adds complexity when reading * the code. * */ uint32_t u32CurValue = pThis->au32Regs[idxRegMem]; uint32_t u32NewValue; uint32_t mask; switch (cb) { case 1: u32NewValue = *(uint8_t const *)pv; mask = 0xff; break; case 2: u32NewValue = *(uint16_t const *)pv; mask = 0xffff; break; case 4: case 8: /* 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word */ u32NewValue = *(uint32_t const *)pv; mask = 0xffffffff; cb = 4; break; default: AssertFailedReturn(VERR_INTERNAL_ERROR_4); /* shall not happen. */ } /* cross-register access, see corresponding comment in hdaMMIORead */ uint32_t shift = (g_aHdaRegMap[idxRegDsc].offset - offReg) % sizeof(uint32_t) * 8; mask <<= shift; u32NewValue <<= shift; u32NewValue &= mask; u32NewValue |= (u32CurValue & ~mask); rc = g_aHdaRegMap[idxRegDsc].pfnWrite(pThis, idxRegDsc, u32NewValue); LogFunc(("write %s:(%x) %x => %x\n", g_aHdaRegMap[idxRegDsc].abbrev, u32NewValue, u32CurValue, pThis->au32Regs[idxRegMem])); } else rc = VINF_SUCCESS; LogFunc(("@%#05x %#x -> %#x\n", offRegLog, u32LogOldValue, idxRegLog != -1 ? pThis->au32Regs[idxRegLog] : UINT32_MAX)); #endif return rc; } /* PCI callback. */ #ifdef IN_RING3 /** * @callback_method_impl{FNPCIIOREGIONMAP} */ static DECLCALLBACK(int) hdaPciIoRegionMap(PPCIDEVICE pPciDev, int iRegion, RTGCPHYS GCPhysAddress, uint32_t cb, PCIADDRESSSPACE enmType) { PPDMDEVINS pDevIns = pPciDev->pDevIns; PHDASTATE pThis = RT_FROM_MEMBER(pPciDev, HDASTATE, PciDev); RTIOPORT Port = (RTIOPORT)GCPhysAddress; int rc; /* * 18.2 of the ICH6 datasheet defines the valid access widths as byte, word, and double word. * * Let IOM talk DWORDs when reading, saves a lot of complications. On * writing though, we have to do it all ourselves because of sideeffects. */ Assert(enmType == PCI_ADDRESS_SPACE_MEM); rc = PDMDevHlpMMIORegister(pDevIns, GCPhysAddress, cb, NULL /*pvUser*/, #ifdef NEW_READ_CODE IOMMMIO_FLAGS_READ_DWORD | #else IOMMMIO_FLAGS_READ_PASSTHRU | #endif IOMMMIO_FLAGS_WRITE_PASSTHRU, hdaMMIOWrite, hdaMMIORead, "HDA"); if (RT_FAILURE(rc)) return rc; if (pThis->fR0Enabled) { rc = PDMDevHlpMMIORegisterR0(pDevIns, GCPhysAddress, cb, NIL_RTR0PTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; } if (pThis->fRCEnabled) { rc = PDMDevHlpMMIORegisterRC(pDevIns, GCPhysAddress, cb, NIL_RTRCPTR /*pvUser*/, "hdaMMIOWrite", "hdaMMIORead"); if (RT_FAILURE(rc)) return rc; } pThis->MMIOBaseAddr = GCPhysAddress; return VINF_SUCCESS; } /* Saved state callbacks. */ /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) hdaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); /* Save Codec nodes states */ hdaCodecSaveState(pThis->pCodec, pSSM); /* Save MMIO registers */ AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= HDA_NREGS_SAVED); SSMR3PutU32(pSSM, RT_ELEMENTS(pThis->au32Regs)); SSMR3PutMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); /* Save HDA dma counters */ SSMR3PutStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); SSMR3PutStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); SSMR3PutStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), 0 /*fFlags*/, g_aHdaBDLEDescFields, NULL); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) hdaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Load Codec nodes states. */ int rc = hdaCodecLoadState(pThis->pCodec, pSSM, uVersion); if (RT_FAILURE(rc)) return rc; /* * Load MMIO registers. */ uint32_t cRegs; switch (uVersion) { case HDA_SSM_VERSION_1: /* Starting with r71199, we would save 112 instead of 113 registers due to some code cleanups. This only affected trunk builds in the 4.1 development period. */ cRegs = 113; if (SSMR3HandleRevision(pSSM) >= 71199) { uint32_t uVer = SSMR3HandleVersion(pSSM); if ( VBOX_FULL_VERSION_GET_MAJOR(uVer) == 4 && VBOX_FULL_VERSION_GET_MINOR(uVer) == 0 && VBOX_FULL_VERSION_GET_BUILD(uVer) >= 51) cRegs = 112; } break; case HDA_SSM_VERSION_2: case HDA_SSM_VERSION_3: cRegs = 112; AssertCompile(RT_ELEMENTS(pThis->au32Regs) >= HDA_NREGS_SAVED); break; case HDA_SSM_VERSION: rc = SSMR3GetU32(pSSM, &cRegs); AssertRCReturn(rc, rc); if (cRegs != RT_ELEMENTS(pThis->au32Regs)) LogRel(("HDA: SSM version cRegs is %RU32, expected %RU32\n", cRegs, RT_ELEMENTS(pThis->au32Regs))); break; default: return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (cRegs >= RT_ELEMENTS(pThis->au32Regs)) { SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(pThis->au32Regs)); SSMR3Skip(pSSM, sizeof(uint32_t) * (cRegs - RT_ELEMENTS(pThis->au32Regs))); } else SSMR3GetMem(pSSM, pThis->au32Regs, sizeof(uint32_t) * cRegs); /* * Load HDA DMA counters. */ uint32_t fFlags = uVersion <= HDA_SSM_VERSION_2 ? SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED : 0; PCSSMFIELD paFields = uVersion <= HDA_SSM_VERSION_2 ? g_aHdaBDLEDescFieldsOld : g_aHdaBDLEDescFields; rc = SSMR3GetStructEx(pSSM, &pThis->StOutBdle, sizeof(pThis->StOutBdle), fFlags, paFields, NULL); AssertRCReturn(rc, rc); rc = SSMR3GetStructEx(pSSM, &pThis->StMicBdle, sizeof(pThis->StMicBdle), fFlags, paFields, NULL); AssertRCReturn(rc, rc); rc = SSMR3GetStructEx(pSSM, &pThis->StInBdle, sizeof(pThis->StInBdle), fFlags, paFields, NULL); AssertRCReturn(rc, rc); /* * Update stuff after the state changes. */ bool fEnableIn = RT_BOOL(SDCTL(pThis, 0) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); #ifdef VBOX_WITH_HDA_MIC_IN bool fEnableMicIn = RT_BOOL(SDCTL(pThis, 2) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); #else bool fEnableMicIn = fEnableIn; /* Mic In == Line In */ #endif bool fEnableOut = RT_BOOL(SDCTL(pThis, 4) & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)); PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { rc = pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->LineIn.pStrmIn, fEnableIn); if (RT_FAILURE(rc)) break; rc = pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->MicIn.pStrmIn, fEnableMicIn); if (RT_FAILURE(rc)) break; rc = pDrv->pConnector->pfnEnableOut(pDrv->pConnector, pDrv->Out.pStrmOut, fEnableOut); if (RT_FAILURE(rc)) break; } if (RT_SUCCESS(rc)) { pThis->u64CORBBase = RT_MAKE_U64(HDA_REG(pThis, CORBLBASE), HDA_REG(pThis, CORBUBASE)); pThis->u64RIRBBase = RT_MAKE_U64(HDA_REG(pThis, RIRBLBASE), HDA_REG(pThis, RIRBUBASE)); pThis->u64DPBase = RT_MAKE_U64(HDA_REG(pThis, DPLBASE), HDA_REG(pThis, DPUBASE)); } LogFlowFuncLeaveRC(rc); return rc; } /* Debug and log type formatters. */ /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmCtl(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t sdCtl = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDCTL(raw: %#x, strm:%#x, dir:%RTbool, tp:%RTbool strip:%x, deie:%RTbool, ioce:%RTbool, run:%RTbool, srst:%RTbool)", sdCtl, (sdCtl & HDA_REG_FIELD_MASK(SDCTL, NUM)) >> HDA_SDCTL_NUM_SHIFT, RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DIR)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, TP)), (sdCtl & HDA_REG_FIELD_MASK(SDCTL, STRIPE)) >> HDA_SDCTL_STRIPE_SHIFT, RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, DEIE)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, ICE)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, RUN)), RT_BOOL(sdCtl & HDA_REG_FIELD_FLAG_MASK(SDCTL, SRST))); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmFifos(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue; uint32_t cb; switch (uSdFifos) { case HDA_SDONFIFO_16B: cb = 16; break; case HDA_SDONFIFO_32B: cb = 32; break; case HDA_SDONFIFO_64B: cb = 64; break; case HDA_SDONFIFO_128B: cb = 128; break; case HDA_SDONFIFO_192B: cb = 192; break; case HDA_SDONFIFO_256B: cb = 256; break; case HDA_SDINFIFO_120B: cb = 120; break; case HDA_SDINFIFO_160B: cb = 160; break; default: cb = 0; break; } return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOS(raw: %#x, sdfifos:%u B)", uSdFifos, cb); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmFifow(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdFifos = (uint32_t)(uintptr_t)pvValue; uint32_t cb; switch (uSdFifos) { case HDA_SDFIFOW_8B: cb = 8; break; case HDA_SDFIFOW_16B: cb = 16; break; case HDA_SDFIFOW_32B: cb = 32; break; default: cb = 0; break; } return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDFIFOW(raw: %#0x, sdfifow:%d B)", uSdFifos, cb); } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) hdaFormatStrmSts(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { uint32_t uSdSts = (uint32_t)(uintptr_t)pvValue; return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "SDSTS(raw: %#0x, fifordy:%RTbool, dese:%RTbool, fifoe:%RTbool, bcis:%RTbool)", uSdSts, RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FIFORDY)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, DE)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, FE)), RT_BOOL(uSdSts & HDA_REG_FIELD_FLAG_MASK(SDSTS, BCIS))); } static int hdaLookUpRegisterByName(PHDASTATE pThis, const char *pszArgs) { int iReg = 0; for (; iReg < HDA_NREGS; ++iReg) if (!RTStrICmp(g_aHdaRegMap[iReg].abbrev, pszArgs)) return iReg; return -1; } static void hdaDbgPrintRegister(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaIndex) { Assert( pThis && iHdaIndex >= 0 && iHdaIndex < HDA_NREGS); pHlp->pfnPrintf(pHlp, "%s: 0x%x\n", g_aHdaRegMap[iHdaIndex].abbrev, pThis->au32Regs[g_aHdaRegMap[iHdaIndex].mem_idx]); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaRegisterIndex = hdaLookUpRegisterByName(pThis, pszArgs); if (iHdaRegisterIndex != -1) hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); else for(iHdaRegisterIndex = 0; (unsigned int)iHdaRegisterIndex < HDA_NREGS; ++iHdaRegisterIndex) hdaDbgPrintRegister(pThis, pHlp, iHdaRegisterIndex); } static void hdaDbgPrintStream(PHDASTATE pThis, PCDBGFINFOHLP pHlp, int iHdaStrmIndex) { Assert( pThis && iHdaStrmIndex >= 0 && iHdaStrmIndex < 7); pHlp->pfnPrintf(pHlp, "Dump of %d HDA Stream:\n", iHdaStrmIndex); pHlp->pfnPrintf(pHlp, "SD%dCTL: %R[sdctl]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, CTL, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dCTS: %R[sdsts]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, STS, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dFIFOS: %R[sdfifos]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, FIFOS, iHdaStrmIndex)); pHlp->pfnPrintf(pHlp, "SD%dFIFOW: %R[sdfifow]\n", iHdaStrmIndex, HDA_STREAM_REG(pThis, FIFOW, iHdaStrmIndex)); } static int hdaLookUpStreamIndex(PHDASTATE pThis, const char *pszArgs) { /* todo: add args parsing */ return -1; } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoStream(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); int iHdaStrmIndex = hdaLookUpStreamIndex(pThis, pszArgs); if (iHdaStrmIndex != -1) hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex); else for(iHdaStrmIndex = 0; iHdaStrmIndex < 7; ++iHdaStrmIndex) hdaDbgPrintStream(pThis, pHlp, iHdaStrmIndex); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoCodecNodes(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnDbgListNodes) pThis->pCodec->pfnDbgListNodes(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n"); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoCodecSelector(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pCodec->pfnDbgSelector) pThis->pCodec->pfnDbgSelector(pThis->pCodec, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Codec implementation doesn't provide corresponding callback\n"); } /** * @callback_method_impl{FNDBGFHANDLERDEV} */ static DECLCALLBACK(void) hdaInfoMixer(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); if (pThis->pMixer) AudioMixerDebug(pThis->pMixer, pHlp, pszArgs); else pHlp->pfnPrintf(pHlp, "Mixer not available\n"); } /* PDMIBASE */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) hdaQueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { PHDASTATE pThis = RT_FROM_MEMBER(pInterface, HDASTATE, IBase); Assert(&pThis->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); return NULL; } /* PDMDEVREG */ /** * Reset notification. * * @returns VBox status. * @param pDevIns The device instance data. * * @remark The original sources didn't install a reset handler, but it seems to * make sense to me so we'll do it. */ static DECLCALLBACK(void) hdaReset(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); HDA_REG(pThis, GCAP) = HDA_MAKE_GCAP(4,4,0,0,1); /* see 6.2.1 */ HDA_REG(pThis, VMIN) = 0x00; /* see 6.2.2 */ HDA_REG(pThis, VMAJ) = 0x01; /* see 6.2.3 */ HDA_REG(pThis, OUTPAY) = 0x003C; /* see 6.2.4 */ HDA_REG(pThis, INPAY) = 0x001D; /* see 6.2.5 */ HDA_REG(pThis, CORBSIZE) = 0x42; /* see 6.2.1 */ HDA_REG(pThis, RIRBSIZE) = 0x42; /* see 6.2.1 */ HDA_REG(pThis, CORBRP) = 0x0; HDA_REG(pThis, RIRBWP) = 0x0; LogFunc(("Resetting ...\n")); /* Stop any audio currently playing. */ PHDADRIVER pDrv; RTListForEach(&pThis->lstDrv, pDrv, HDADRIVER, Node) { pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->LineIn.pStrmIn, false /* Disable */); /* Ignore rc. */ pDrv->pConnector->pfnEnableIn(pDrv->pConnector, pDrv->MicIn.pStrmIn, false /* Disable */); /* Ditto. */ pDrv->pConnector->pfnEnableOut(pDrv->pConnector, pDrv->Out.pStrmOut, false /* Disable */); /* Ditto. */ } pThis->cbCorbBuf = 256 * sizeof(uint32_t); if (pThis->pu32CorbBuf) RT_BZERO(pThis->pu32CorbBuf, pThis->cbCorbBuf); else pThis->pu32CorbBuf = (uint32_t *)RTMemAllocZ(pThis->cbCorbBuf); pThis->cbRirbBuf = 256 * sizeof(uint64_t); if (pThis->pu64RirbBuf) RT_BZERO(pThis->pu64RirbBuf, pThis->cbRirbBuf); else pThis->pu64RirbBuf = (uint64_t *)RTMemAllocZ(pThis->cbRirbBuf); pThis->u64BaseTS = PDMDevHlpTMTimeVirtGetNano(pDevIns); HDABDLEDESC StEmptyBdle; for (uint8_t u8Strm = 0; u8Strm < 8; ++u8Strm) { HDASTREAMTRANSFERDESC StreamDesc; PHDABDLEDESC pBdle = NULL; if (u8Strm == 0) pBdle = &pThis->StInBdle; # ifdef VBOX_WITH_HDA_MIC_IN else if (u8Strm == 2) pBdle = &pThis->StMicBdle; # endif else if(u8Strm == 4) pBdle = &pThis->StOutBdle; else { RT_ZERO(StEmptyBdle); pBdle = &StEmptyBdle; } hdaInitTransferDescriptor(pThis, pBdle, u8Strm, &StreamDesc); /* hdaStreamReset prevents changing the SRST bit, so we force it to zero here. */ HDA_STREAM_REG(pThis, CTL, u8Strm) = 0; hdaStreamReset(pThis, pBdle, &StreamDesc, u8Strm); } /* Emulation of codec "wake up" (HDA spec 5.5.1 and 6.5). */ HDA_REG(pThis, STATESTS) = 0x1; LogRel(("HDA: Reset\n")); } /** * @interface_method_impl{PDMDEVREG,pfnDestruct} */ static DECLCALLBACK(int) hdaDestruct(PPDMDEVINS pDevIns) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); PHDADRIVER pDrv; while (!RTListIsEmpty(&pThis->lstDrv)) { pDrv = RTListGetFirst(&pThis->lstDrv, HDADRIVER, Node); RTListNodeRemove(&pDrv->Node); RTMemFree(pDrv); } if (pThis->pMixer) { AudioMixerDestroy(pThis->pMixer); pThis->pMixer = NULL; } if (pThis->pCodec) { int rc = hdaCodecDestruct(pThis->pCodec); AssertRC(rc); RTMemFree(pThis->pCodec); pThis->pCodec = NULL; } RTMemFree(pThis->pu32CorbBuf); pThis->pu32CorbBuf = NULL; RTMemFree(pThis->pu64RirbBuf); pThis->pu64RirbBuf = NULL; return VINF_SUCCESS; } /** * Attach command. * * This is called to let the device attach to a driver for a specified LUN * during runtime. This is not called during VM construction, the device * constructor have to attach to all the available drivers. * * @returns VBox status code. * @param pDevIns The device instance. * @param uLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static DECLCALLBACK(int) hdaAttach(PPDMDEVINS pDevIns, unsigned uLUN, uint32_t fFlags) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("HDA device does not support hotplugging\n"), VERR_INVALID_PARAMETER); /* * Attach driver. */ char *pszDesc = NULL; if (RTStrAPrintf(&pszDesc, "Audio driver port (HDA) for LUN#%u", uLUN) <= 0) AssertMsgReturn(pszDesc, ("Not enough memory for HDA driver port description of LUN #%u\n", uLUN), VERR_NO_MEMORY); int rc = PDMDevHlpDriverAttach(pDevIns, uLUN, &pThis->IBase, &pThis->pDrvBase, pszDesc); if (RT_SUCCESS(rc)) { PHDADRIVER pDrv = (PHDADRIVER)RTMemAllocZ(sizeof(HDADRIVER)); if (pDrv) { pDrv->pConnector = PDMIBASE_QUERY_INTERFACE(pThis->pDrvBase, PDMIAUDIOCONNECTOR); AssertMsg(pDrv->pConnector != NULL, ("Configuration error: LUN#%u has no host audio interface, rc=%Rrc\n", uLUN, rc)); pDrv->pHDAState = pThis; pDrv->uLUN = uLUN; /* * For now we always set the driver at LUN 0 as our primary * host backend. This might change in the future. */ if (pDrv->uLUN == 0) pDrv->Flags |= PDMAUDIODRVFLAG_PRIMARY; LogFunc(("LUN#%u: pCon=%p, drvFlags=0x%x\n", uLUN, pDrv->pConnector, pDrv->Flags)); /* Attach to driver list. */ RTListAppend(&pThis->lstDrv, &pDrv->Node); } else rc = VERR_NO_MEMORY; } else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME) { LogFunc(("No attached driver for LUN #%u\n", uLUN)); } else if (RT_FAILURE(rc)) AssertMsgFailed(("Failed to attach HDA LUN #%u (\"%s\"), rc=%Rrc\n", uLUN, pszDesc, rc)); RTStrFree(pszDesc); LogFunc(("uLUN=%u, fFlags=0x%x, rc=%Rrc\n", uLUN, fFlags, rc)); return rc; } static DECLCALLBACK(void) hdaDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { NOREF(pDevIns); NOREF(iLUN); NOREF(fFlags); LogFlowFuncEnter(); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) hdaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfgHandle) { PHDASTATE pThis = PDMINS_2_DATA(pDevIns, PHDASTATE); Assert(iInstance == 0); PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); /* * Validations. */ if (!CFGMR3AreValuesValid(pCfgHandle, "R0Enabled\0" "RCEnabled\0")) return PDMDEV_SET_ERROR(pDevIns, VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES, N_ ("Invalid configuration for the Intel HDA device")); int rc = CFGMR3QueryBoolDef(pCfgHandle, "RCEnabled", &pThis->fRCEnabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read RCEnabled as boolean")); rc = CFGMR3QueryBoolDef(pCfgHandle, "R0Enabled", &pThis->fR0Enabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("HDA configuration error: failed to read R0Enabled as boolean")); /* * Initialize data (most of it anyway). */ pThis->pDevInsR3 = pDevIns; pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); /* IBase */ pThis->IBase.pfnQueryInterface = hdaQueryInterface; /* PCI Device */ PCIDevSetVendorId (&pThis->PciDev, HDA_PCI_VENDOR_ID); /* nVidia */ PCIDevSetDeviceId (&pThis->PciDev, HDA_PCI_DEVICE_ID); /* HDA */ PCIDevSetCommand (&pThis->PciDev, 0x0000); /* 04 rw,ro - pcicmd. */ PCIDevSetStatus (&pThis->PciDev, VBOX_PCI_STATUS_CAP_LIST); /* 06 rwc?,ro? - pcists. */ PCIDevSetRevisionId (&pThis->PciDev, 0x01); /* 08 ro - rid. */ PCIDevSetClassProg (&pThis->PciDev, 0x00); /* 09 ro - pi. */ PCIDevSetClassSub (&pThis->PciDev, 0x03); /* 0a ro - scc; 03 == HDA. */ PCIDevSetClassBase (&pThis->PciDev, 0x04); /* 0b ro - bcc; 04 == multimedia. */ PCIDevSetHeaderType (&pThis->PciDev, 0x00); /* 0e ro - headtyp. */ PCIDevSetBaseAddress (&pThis->PciDev, 0, /* 10 rw - MMIO */ false /* fIoSpace */, false /* fPrefetchable */, true /* f64Bit */, 0x00000000); PCIDevSetInterruptLine (&pThis->PciDev, 0x00); /* 3c rw. */ PCIDevSetInterruptPin (&pThis->PciDev, 0x01); /* 3d ro - INTA#. */ #if defined(HDA_AS_PCI_EXPRESS) PCIDevSetCapabilityList (&pThis->PciDev, 0x80); #elif defined(VBOX_WITH_MSI_DEVICES) PCIDevSetCapabilityList (&pThis->PciDev, 0x60); #else PCIDevSetCapabilityList (&pThis->PciDev, 0x50); /* ICH6 datasheet 18.1.16 */ #endif /// @todo r=michaln: If there are really no PCIDevSetXx for these, the meaning /// of these values needs to be properly documented! /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ PCIDevSetByte(&pThis->PciDev, 0x40, 0x01); /* Power Management */ PCIDevSetByte(&pThis->PciDev, 0x50 + 0, VBOX_PCI_CAP_ID_PM); PCIDevSetByte(&pThis->PciDev, 0x50 + 1, 0x0); /* next */ PCIDevSetWord(&pThis->PciDev, 0x50 + 2, VBOX_PCI_PM_CAP_DSI | 0x02 /* version, PM1.1 */ ); #ifdef HDA_AS_PCI_EXPRESS /* PCI Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 0, VBOX_PCI_CAP_ID_EXP); /* PCI_Express */ PCIDevSetByte(&pThis->PciDev, 0x80 + 1, 0x60); /* next */ /* Device flags */ PCIDevSetWord(&pThis->PciDev, 0x80 + 2, /* version */ 0x1 | /* Root Complex Integrated Endpoint */ (VBOX_PCI_EXP_TYPE_ROOT_INT_EP << 4) | /* MSI */ (100) << 9 ); /* Device capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 4, VBOX_PCI_EXP_DEVCAP_FLRESET); /* Device control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 8, 0); /* Device status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 10, 0); /* Link caps */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 12, 0); /* Link control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 16, 0); /* Link status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 18, 0); /* Slot capabilities */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 20, 0); /* Slot control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 24, 0); /* Slot status */ PCIDevSetWord( &pThis->PciDev, 0x80 + 26, 0); /* Root control */ PCIDevSetWord( &pThis->PciDev, 0x80 + 28, 0); /* Root capabilities */ PCIDevSetWord( &pThis->PciDev, 0x80 + 30, 0); /* Root status */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 32, 0); /* Device capabilities 2 */ PCIDevSetDWord(&pThis->PciDev, 0x80 + 36, 0); /* Device control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 40, 0); /* Link control 2 */ PCIDevSetQWord(&pThis->PciDev, 0x80 + 48, 0); /* Slot control 2 */ PCIDevSetWord( &pThis->PciDev, 0x80 + 56, 0); #endif /* * Register the PCI device. */ rc = PDMDevHlpPCIRegister(pDevIns, &pThis->PciDev); if (RT_FAILURE(rc)) return rc; rc = PDMDevHlpPCIIORegionRegister(pDevIns, 0, 0x4000, PCI_ADDRESS_SPACE_MEM, hdaPciIoRegionMap); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_MSI_DEVICES PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = 0x60; MsiReg.iMsiNextOffset = 0x50; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); if (RT_FAILURE(rc)) { /* That's OK, we can work without MSI */ PCIDevSetCapabilityList(&pThis->PciDev, 0x50); } #endif rc = PDMDevHlpSSMRegister(pDevIns, HDA_SSM_VERSION, sizeof(*pThis), hdaSaveExec, hdaLoadExec); if (RT_FAILURE(rc)) return rc; RTListInit(&pThis->lstDrv); uint8_t uLUN; for (uLUN = 0; uLUN < UINT8_MAX; uLUN) { LogFunc(("Trying to attach driver for LUN #%RU32 ...\n", uLUN)); rc = hdaAttach(pDevIns, uLUN, PDM_TACH_FLAGS_NOT_HOT_PLUG); if (RT_FAILURE(rc)) { if (rc == VERR_PDM_NO_ATTACHED_DRIVER) rc = VINF_SUCCESS; break; } uLUN++; } LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc)); if (RT_SUCCESS(rc)) { rc = AudioMixerCreate("HDA Mixer", 0 /* uFlags */, &pThis->pMixer); if (RT_SUCCESS(rc)) { /* Set a default audio format for our mixer. */ PDMAUDIOSTREAMCFG streamCfg; streamCfg.uHz = 44100; streamCfg.cChannels = 2; streamCfg.enmFormat = AUD_FMT_S16; streamCfg.enmEndianness = PDMAUDIOHOSTENDIANNESS; rc = AudioMixerSetDeviceFormat(pThis->pMixer, &streamCfg); AssertRC(rc); /* Add all required audio sinks. */ rc = AudioMixerAddSink(pThis->pMixer, "[Playback] PCM Output", AUDMIXSINKDIR_OUTPUT, &pThis->pSinkOutput); AssertRC(rc); rc = AudioMixerAddSink(pThis->pMixer, "[Recording] Line In", AUDMIXSINKDIR_INPUT, &pThis->pSinkLineIn); AssertRC(rc); rc = AudioMixerAddSink(pThis->pMixer, "[Recording] Microphone In", AUDMIXSINKDIR_INPUT, &pThis->pSinkMicIn); AssertRC(rc); /* There is no master volume control. Set the master to max. */ PDMAUDIOVOLUME vol = { false, 255, 255 }; rc = AudioMixerSetMasterVolume(pThis->pMixer, &vol); AssertRC(rc); } } LogFunc(("cLUNs=%RU8, rc=%Rrc\n", uLUN, rc)); if (RT_SUCCESS(rc)) { /* Construct codec. */ pThis->pCodec = (PHDACODEC)RTMemAllocZ(sizeof(HDACODEC)); if (!pThis->pCodec) return PDMDEV_SET_ERROR(pDevIns, VERR_NO_MEMORY, N_("Out of memory allocating HDA codec state")); /* Audio driver callbacks for multiplexing. */ pThis->pCodec->pfnCloseIn = hdaCloseIn; pThis->pCodec->pfnCloseOut = hdaCloseOut; pThis->pCodec->pfnOpenIn = hdaOpenIn; pThis->pCodec->pfnOpenOut = hdaOpenOut; pThis->pCodec->pfnReset = hdaCodecReset; pThis->pCodec->pfnSetVolume = hdaSetVolume; pThis->pCodec->pHDAState = pThis; /* Assign HDA controller state to codec. */ /* Construct the codec. */ rc = hdaCodecConstruct(pDevIns, pThis->pCodec, 0 /* Codec index */, pCfgHandle); if (RT_FAILURE(rc)) AssertRCReturn(rc, rc); /* ICH6 datasheet defines 0 values for SVID and SID (18.1.14-15), which together with values returned for verb F20 should provide device/codec recognition. */ Assert(pThis->pCodec->u16VendorId); Assert(pThis->pCodec->u16DeviceId); PCIDevSetSubSystemVendorId(&pThis->PciDev, pThis->pCodec->u16VendorId); /* 2c ro - intel.) */ PCIDevSetSubSystemId( &pThis->PciDev, pThis->pCodec->u16DeviceId); /* 2e ro. */ } if (RT_SUCCESS(rc)) { hdaReset(pDevIns); /* * 18.2.6,7 defines that values of this registers might be cleared on power on/reset * hdaReset shouldn't affects these registers. */ HDA_REG(pThis, WAKEEN) = 0x0; HDA_REG(pThis, STATESTS) = 0x0; /* * Debug and string formatter types. */ PDMDevHlpDBGFInfoRegister(pDevIns, "hda", "HDA info. (hda [register case-insensitive])", hdaInfo); PDMDevHlpDBGFInfoRegister(pDevIns, "hdastrm", "HDA stream info. (hdastrm [stream number])", hdaInfoStream); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcnodes", "HDA codec nodes.", hdaInfoCodecNodes); PDMDevHlpDBGFInfoRegister(pDevIns, "hdcselector", "HDA codec's selector states [node number].", hdaInfoCodecSelector); PDMDevHlpDBGFInfoRegister(pDevIns, "hdamixer", "HDA mixer state.", hdaInfoMixer); rc = RTStrFormatTypeRegister("sdctl", hdaFormatStrmCtl, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdsts", hdaFormatStrmSts, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifos", hdaFormatStrmFifos, NULL); AssertRC(rc); rc = RTStrFormatTypeRegister("sdfifow", hdaFormatStrmFifow, NULL); AssertRC(rc); #if 0 rc = RTStrFormatTypeRegister("sdfmt", printHdaStrmFmt, NULL); AssertRC(rc); #endif /* * Some debug assertions. */ for (unsigned i = 0; i < RT_ELEMENTS(g_aHdaRegMap); i++) { struct HDAREGDESC const *pReg = &g_aHdaRegMap[i]; struct HDAREGDESC const *pNextReg = i + 1 < RT_ELEMENTS(g_aHdaRegMap) ? &g_aHdaRegMap[i + 1] : NULL; /* binary search order. */ AssertReleaseMsg(!pNextReg || pReg->offset + pReg->size <= pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); /* alignment. */ AssertReleaseMsg( pReg->size == 1 || (pReg->size == 2 && (pReg->offset & 1) == 0) || (pReg->size == 3 && (pReg->offset & 3) == 0) || (pReg->size == 4 && (pReg->offset & 3) == 0), ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); /* registers are packed into dwords - with 3 exceptions with gaps at the end of the dword. */ AssertRelease(((pReg->offset + pReg->size) & 3) == 0 || pNextReg); if (pReg->offset & 3) { struct HDAREGDESC const *pPrevReg = i > 0 ? &g_aHdaRegMap[i - 1] : NULL; AssertReleaseMsg(pPrevReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pPrevReg) AssertReleaseMsg(pPrevReg->offset + pPrevReg->size == pReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i - 1, pPrevReg->offset, pPrevReg->size, i + 1, pReg->offset, pReg->size)); } #if 0 if ((pReg->offset + pReg->size) & 3) { AssertReleaseMsg(pNextReg, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); if (pNextReg) AssertReleaseMsg(pReg->offset + pReg->size == pNextReg->offset, ("[%#x] = {%#x LB %#x} vs. [%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size, i + 1, pNextReg->offset, pNextReg->size)); } #endif /* The final entry is a full DWORD, no gaps! Allows shortcuts. */ AssertReleaseMsg(pNextReg || ((pReg->offset + pReg->size) & 3) == 0, ("[%#x] = {%#x LB %#x}\n", i, pReg->offset, pReg->size)); } } if (RT_SUCCESS(rc)) { /* Start the emulation timer. */ rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL, hdaTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT, "DevIchHda", &pThis->pTimer); AssertRCReturn(rc, rc); if (RT_SUCCESS(rc)) { /** @todo Investigate why sounds is getting corrupted if the "ticks" value is too * low, e.g. "PDMDevHlpTMTimeVirtGetFreq / 200". */ pThis->uTicks = PDMDevHlpTMTimeVirtGetFreq(pDevIns) / 500; /** @todo Make this configurable! */ if (pThis->uTicks < 100) pThis->uTicks = 100; LogFunc(("Timer ticks=%RU64\n", pThis->uTicks)); /* Fire off timer. */ TMTimerSet(pThis->pTimer, TMTimerGet(pThis->pTimer) + pThis->uTicks); } } # ifdef VBOX_WITH_STATISTICS if (RT_SUCCESS(rc)) { /* * Register statistics. */ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTimer, STAMTYPE_PROFILE, "/Devices/HDA/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling hdaTimer."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesRead, STAMTYPE_COUNTER, "/Devices/HDA/BytesRead" , STAMUNIT_BYTES, "Bytes read from HDA emulation."); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatBytesWritten, STAMTYPE_COUNTER, "/Devices/HDA/BytesWritten", STAMUNIT_BYTES, "Bytes written to HDA emulation."); } # endif LogFlowFuncLeaveRC(rc); return rc; } /** * The device registration structure. */ const PDMDEVREG g_DeviceICH6_HDA = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "hda", /* szRCMod */ "VBoxDDRC.rc", /* szR0Mod */ "VBoxDDR0.r0", /* pszDescription */ "Intel HD Audio Controller", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0, /* fClass */ PDM_DEVREG_CLASS_AUDIO, /* cMaxInstances */ 1, /* cbInstance */ sizeof(HDASTATE), /* pfnConstruct */ hdaConstruct, /* pfnDestruct */ hdaDestruct, /* pfnRelocate */ NULL, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ hdaReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION }; #endif /* IN_RING3 */ #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */