1 | /* $NetBSD: dtoa.c,v 1.3.4.1.4.1 2008/04/08 21:10:55 jdc Exp $ */
|
---|
2 |
|
---|
3 | /****************************************************************
|
---|
4 |
|
---|
5 | The author of this software is David M. Gay.
|
---|
6 |
|
---|
7 | Copyright (C) 1998, 1999 by Lucent Technologies
|
---|
8 | All Rights Reserved
|
---|
9 |
|
---|
10 | Permission to use, copy, modify, and distribute this software and
|
---|
11 | its documentation for any purpose and without fee is hereby
|
---|
12 | granted, provided that the above copyright notice appear in all
|
---|
13 | copies and that both that the copyright notice and this
|
---|
14 | permission notice and warranty disclaimer appear in supporting
|
---|
15 | documentation, and that the name of Lucent or any of its entities
|
---|
16 | not be used in advertising or publicity pertaining to
|
---|
17 | distribution of the software without specific, written prior
|
---|
18 | permission.
|
---|
19 |
|
---|
20 | LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
---|
21 | INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
|
---|
22 | IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
|
---|
23 | SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
---|
24 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
|
---|
25 | IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
|
---|
26 | ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
---|
27 | THIS SOFTWARE.
|
---|
28 |
|
---|
29 | ****************************************************************/
|
---|
30 |
|
---|
31 | /* Please send bug reports to David M. Gay (dmg at acm dot org,
|
---|
32 | * with " at " changed at "@" and " dot " changed to "."). */
|
---|
33 | #include <LibConfig.h>
|
---|
34 |
|
---|
35 | #include "gdtoaimp.h"
|
---|
36 |
|
---|
37 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
---|
38 | *
|
---|
39 | * Inspired by "How to Print Floating-Point Numbers Accurately" by
|
---|
40 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
|
---|
41 | *
|
---|
42 | * Modifications:
|
---|
43 | * 1. Rather than iterating, we use a simple numeric overestimate
|
---|
44 | * to determine k = floor(log10(d)). We scale relevant
|
---|
45 | * quantities using O(log2(k)) rather than O(k) multiplications.
|
---|
46 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
---|
47 | * try to generate digits strictly left to right. Instead, we
|
---|
48 | * compute with fewer bits and propagate the carry if necessary
|
---|
49 | * when rounding the final digit up. This is often faster.
|
---|
50 | * 3. Under the assumption that input will be rounded nearest,
|
---|
51 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
---|
52 | * That is, we allow equality in stopping tests when the
|
---|
53 | * round-nearest rule will give the same floating-point value
|
---|
54 | * as would satisfaction of the stopping test with strict
|
---|
55 | * inequality.
|
---|
56 | * 4. We remove common factors of powers of 2 from relevant
|
---|
57 | * quantities.
|
---|
58 | * 5. When converting floating-point integers less than 1e16,
|
---|
59 | * we use floating-point arithmetic rather than resorting
|
---|
60 | * to multiple-precision integers.
|
---|
61 | * 6. When asked to produce fewer than 15 digits, we first try
|
---|
62 | * to get by with floating-point arithmetic; we resort to
|
---|
63 | * multiple-precision integer arithmetic only if we cannot
|
---|
64 | * guarantee that the floating-point calculation has given
|
---|
65 | * the correctly rounded result. For k requested digits and
|
---|
66 | * "uniformly" distributed input, the probability is
|
---|
67 | * something like 10^(k-15) that we must resort to the Long
|
---|
68 | * calculation.
|
---|
69 | */
|
---|
70 |
|
---|
71 | #ifdef Honor_FLT_ROUNDS
|
---|
72 | #define Rounding rounding
|
---|
73 | #undef Check_FLT_ROUNDS
|
---|
74 | #define Check_FLT_ROUNDS
|
---|
75 | #else
|
---|
76 | #define Rounding Flt_Rounds
|
---|
77 | #endif
|
---|
78 |
|
---|
79 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */
|
---|
80 | // Disable: warning C4700: uninitialized local variable 'xx' used
|
---|
81 | #pragma warning ( disable : 4700 )
|
---|
82 | #endif /* defined(_MSC_VER) */
|
---|
83 |
|
---|
84 | char *
|
---|
85 | dtoa
|
---|
86 | #ifdef KR_headers
|
---|
87 | (d, mode, ndigits, decpt, sign, rve)
|
---|
88 | double d; int mode, ndigits, *decpt, *sign; char **rve;
|
---|
89 | #else
|
---|
90 | (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
|
---|
91 | #endif
|
---|
92 | {
|
---|
93 | /* Arguments ndigits, decpt, sign are similar to those
|
---|
94 | of ecvt and fcvt; trailing zeros are suppressed from
|
---|
95 | the returned string. If not null, *rve is set to point
|
---|
96 | to the end of the return value. If d is +-Infinity or NaN,
|
---|
97 | then *decpt is set to 9999.
|
---|
98 |
|
---|
99 | mode:
|
---|
100 | 0 ==> shortest string that yields d when read in
|
---|
101 | and rounded to nearest.
|
---|
102 | 1 ==> like 0, but with Steele & White stopping rule;
|
---|
103 | e.g. with IEEE P754 arithmetic , mode 0 gives
|
---|
104 | 1e23 whereas mode 1 gives 9.999999999999999e22.
|
---|
105 | 2 ==> max(1,ndigits) significant digits. This gives a
|
---|
106 | return value similar to that of ecvt, except
|
---|
107 | that trailing zeros are suppressed.
|
---|
108 | 3 ==> through ndigits past the decimal point. This
|
---|
109 | gives a return value similar to that from fcvt,
|
---|
110 | except that trailing zeros are suppressed, and
|
---|
111 | ndigits can be negative.
|
---|
112 | 4,5 ==> similar to 2 and 3, respectively, but (in
|
---|
113 | round-nearest mode) with the tests of mode 0 to
|
---|
114 | possibly return a shorter string that rounds to d.
|
---|
115 | With IEEE arithmetic and compilation with
|
---|
116 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
|
---|
117 | as modes 2 and 3 when FLT_ROUNDS != 1.
|
---|
118 | 6-9 ==> Debugging modes similar to mode - 4: don't try
|
---|
119 | fast floating-point estimate (if applicable).
|
---|
120 |
|
---|
121 | Values of mode other than 0-9 are treated as mode 0.
|
---|
122 |
|
---|
123 | Sufficient space is allocated to the return value
|
---|
124 | to hold the suppressed trailing zeros.
|
---|
125 | */
|
---|
126 |
|
---|
127 | int bbits, b2, b5, be, dig, i, ieps, ilim0,
|
---|
128 | j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
---|
129 | spec_case, try_quick;
|
---|
130 | int ilim = 0, ilim1 = 0; /* pacify gcc */
|
---|
131 | Long L;
|
---|
132 | #ifndef Sudden_Underflow
|
---|
133 | int denorm;
|
---|
134 | ULong x;
|
---|
135 | #endif
|
---|
136 | Bigint *b, *b1, *delta, *mhi, *S;
|
---|
137 | Bigint *mlo = NULL; /* pacify gcc */
|
---|
138 | double d2, ds, eps;
|
---|
139 | char *s, *s0;
|
---|
140 | #ifdef Honor_FLT_ROUNDS
|
---|
141 | int rounding;
|
---|
142 | #endif
|
---|
143 | #ifdef SET_INEXACT
|
---|
144 | int inexact, oldinexact;
|
---|
145 | #endif
|
---|
146 |
|
---|
147 | #ifndef MULTIPLE_THREADS
|
---|
148 | if (dtoa_result) {
|
---|
149 | freedtoa(dtoa_result);
|
---|
150 | dtoa_result = 0;
|
---|
151 | }
|
---|
152 | #endif
|
---|
153 |
|
---|
154 | if (word0(d) & Sign_bit) {
|
---|
155 | /* set sign for everything, including 0's and NaNs */
|
---|
156 | *sign = 1;
|
---|
157 | word0(d) &= ~Sign_bit; /* clear sign bit */
|
---|
158 | }
|
---|
159 | else
|
---|
160 | *sign = 0;
|
---|
161 |
|
---|
162 | #if defined(IEEE_Arith) + defined(VAX)
|
---|
163 | #ifdef IEEE_Arith
|
---|
164 | if ((word0(d) & Exp_mask) == Exp_mask)
|
---|
165 | #else
|
---|
166 | if (word0(d) == 0x8000)
|
---|
167 | #endif
|
---|
168 | {
|
---|
169 | /* Infinity or NaN */
|
---|
170 | *decpt = 9999;
|
---|
171 | #ifdef IEEE_Arith
|
---|
172 | if (!word1(d) && !(word0(d) & 0xfffff))
|
---|
173 | return nrv_alloc("Infinity", rve, 8);
|
---|
174 | #endif
|
---|
175 | return nrv_alloc("NaN", rve, 3);
|
---|
176 | }
|
---|
177 | #endif
|
---|
178 | #ifdef IBM
|
---|
179 | dval(d) += 0; /* normalize */
|
---|
180 | #endif
|
---|
181 | if (!dval(d)) {
|
---|
182 | *decpt = 1;
|
---|
183 | return nrv_alloc("0", rve, 1);
|
---|
184 | }
|
---|
185 |
|
---|
186 | #ifdef SET_INEXACT
|
---|
187 | try_quick = oldinexact = get_inexact();
|
---|
188 | inexact = 1;
|
---|
189 | #endif
|
---|
190 | #ifdef Honor_FLT_ROUNDS
|
---|
191 | if ((rounding = Flt_Rounds) >= 2) {
|
---|
192 | if (*sign)
|
---|
193 | rounding = rounding == 2 ? 0 : 2;
|
---|
194 | else
|
---|
195 | if (rounding != 2)
|
---|
196 | rounding = 0;
|
---|
197 | }
|
---|
198 | #endif
|
---|
199 |
|
---|
200 | b = d2b(dval(d), &be, &bbits);
|
---|
201 | if (b == NULL)
|
---|
202 | return NULL;
|
---|
203 | #ifdef Sudden_Underflow
|
---|
204 | i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
---|
205 | #else
|
---|
206 | if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
|
---|
207 | #endif
|
---|
208 | dval(d2) = dval(d);
|
---|
209 | word0(d2) &= Frac_mask1;
|
---|
210 | word0(d2) |= Exp_11;
|
---|
211 | #ifdef IBM
|
---|
212 | if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
|
---|
213 | dval(d2) /= 1 << j;
|
---|
214 | #endif
|
---|
215 |
|
---|
216 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
---|
217 | * log10(x) = log(x) / log(10)
|
---|
218 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
---|
219 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
---|
220 | *
|
---|
221 | * This suggests computing an approximation k to log10(d) by
|
---|
222 | *
|
---|
223 | * k = (i - Bias)*0.301029995663981
|
---|
224 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
---|
225 | *
|
---|
226 | * We want k to be too large rather than too small.
|
---|
227 | * The error in the first-order Taylor series approximation
|
---|
228 | * is in our favor, so we just round up the constant enough
|
---|
229 | * to compensate for any error in the multiplication of
|
---|
230 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
---|
231 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
---|
232 | * adding 1e-13 to the constant term more than suffices.
|
---|
233 | * Hence we adjust the constant term to 0.1760912590558.
|
---|
234 | * (We could get a more accurate k by invoking log10,
|
---|
235 | * but this is probably not worthwhile.)
|
---|
236 | */
|
---|
237 |
|
---|
238 | i -= Bias;
|
---|
239 | #ifdef IBM
|
---|
240 | i <<= 2;
|
---|
241 | i += j;
|
---|
242 | #endif
|
---|
243 | #ifndef Sudden_Underflow
|
---|
244 | denorm = 0;
|
---|
245 | }
|
---|
246 | else {
|
---|
247 | /* d is denormalized */
|
---|
248 |
|
---|
249 | i = bbits + be + (Bias + (P-1) - 1);
|
---|
250 | x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
|
---|
251 | : word1(d) << (32 - i);
|
---|
252 | dval(d2) = (double)x;
|
---|
253 | word0(d2) -= 31*Exp_msk1; /* adjust exponent */
|
---|
254 | i -= (Bias + (P-1) - 1) + 1;
|
---|
255 | denorm = 1;
|
---|
256 | }
|
---|
257 | #endif
|
---|
258 | ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
---|
259 | k = (int)ds;
|
---|
260 | if (ds < 0. && ds != k)
|
---|
261 | k--; /* want k = floor(ds) */
|
---|
262 | k_check = 1;
|
---|
263 | if (k >= 0 && k <= Ten_pmax) {
|
---|
264 | if (dval(d) < tens[k])
|
---|
265 | k--;
|
---|
266 | k_check = 0;
|
---|
267 | }
|
---|
268 | j = bbits - i - 1;
|
---|
269 | if (j >= 0) {
|
---|
270 | b2 = 0;
|
---|
271 | s2 = j;
|
---|
272 | }
|
---|
273 | else {
|
---|
274 | b2 = -j;
|
---|
275 | s2 = 0;
|
---|
276 | }
|
---|
277 | if (k >= 0) {
|
---|
278 | b5 = 0;
|
---|
279 | s5 = k;
|
---|
280 | s2 += k;
|
---|
281 | }
|
---|
282 | else {
|
---|
283 | b2 -= k;
|
---|
284 | b5 = -k;
|
---|
285 | s5 = 0;
|
---|
286 | }
|
---|
287 | if (mode < 0 || mode > 9)
|
---|
288 | mode = 0;
|
---|
289 |
|
---|
290 | #ifndef SET_INEXACT
|
---|
291 | #ifdef Check_FLT_ROUNDS
|
---|
292 | try_quick = Rounding == 1;
|
---|
293 | #else
|
---|
294 | try_quick = 1;
|
---|
295 | #endif
|
---|
296 | #endif /*SET_INEXACT*/
|
---|
297 |
|
---|
298 | if (mode > 5) {
|
---|
299 | mode -= 4;
|
---|
300 | try_quick = 0;
|
---|
301 | }
|
---|
302 | leftright = 1;
|
---|
303 | switch(mode) {
|
---|
304 | case 0:
|
---|
305 | case 1:
|
---|
306 | ilim = ilim1 = -1;
|
---|
307 | i = 18;
|
---|
308 | ndigits = 0;
|
---|
309 | break;
|
---|
310 | case 2:
|
---|
311 | leftright = 0;
|
---|
312 | /* FALLTHROUGH */
|
---|
313 | case 4:
|
---|
314 | if (ndigits <= 0)
|
---|
315 | ndigits = 1;
|
---|
316 | ilim = ilim1 = i = ndigits;
|
---|
317 | break;
|
---|
318 | case 3:
|
---|
319 | leftright = 0;
|
---|
320 | /* FALLTHROUGH */
|
---|
321 | case 5:
|
---|
322 | i = ndigits + k + 1;
|
---|
323 | ilim = i;
|
---|
324 | ilim1 = i - 1;
|
---|
325 | if (i <= 0)
|
---|
326 | i = 1;
|
---|
327 | }
|
---|
328 | s = s0 = rv_alloc((size_t)i);
|
---|
329 | if (s == NULL)
|
---|
330 | return NULL;
|
---|
331 |
|
---|
332 | #ifdef Honor_FLT_ROUNDS
|
---|
333 | if (mode > 1 && rounding != 1)
|
---|
334 | leftright = 0;
|
---|
335 | #endif
|
---|
336 |
|
---|
337 | if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
---|
338 |
|
---|
339 | /* Try to get by with floating-point arithmetic. */
|
---|
340 |
|
---|
341 | i = 0;
|
---|
342 | dval(d2) = dval(d);
|
---|
343 | k0 = k;
|
---|
344 | ilim0 = ilim;
|
---|
345 | ieps = 2; /* conservative */
|
---|
346 | if (k > 0) {
|
---|
347 | ds = tens[k&0xf];
|
---|
348 | j = (unsigned int)k >> 4;
|
---|
349 | if (j & Bletch) {
|
---|
350 | /* prevent overflows */
|
---|
351 | j &= Bletch - 1;
|
---|
352 | dval(d) /= bigtens[n_bigtens-1];
|
---|
353 | ieps++;
|
---|
354 | }
|
---|
355 | for(; j; j = (unsigned int)j >> 1, i++)
|
---|
356 | if (j & 1) {
|
---|
357 | ieps++;
|
---|
358 | ds *= bigtens[i];
|
---|
359 | }
|
---|
360 | dval(d) /= ds;
|
---|
361 | }
|
---|
362 | else if (( jj1 = -k )!=0) {
|
---|
363 | dval(d) *= tens[jj1 & 0xf];
|
---|
364 | for(j = jj1 >> 4; j; j >>= 1, i++)
|
---|
365 | if (j & 1) {
|
---|
366 | ieps++;
|
---|
367 | dval(d) *= bigtens[i];
|
---|
368 | }
|
---|
369 | }
|
---|
370 | if (k_check && dval(d) < 1. && ilim > 0) {
|
---|
371 | if (ilim1 <= 0)
|
---|
372 | goto fast_failed;
|
---|
373 | ilim = ilim1;
|
---|
374 | k--;
|
---|
375 | dval(d) *= 10.;
|
---|
376 | ieps++;
|
---|
377 | }
|
---|
378 | dval(eps) = ieps*dval(d) + 7.;
|
---|
379 | word0(eps) -= (P-1)*Exp_msk1;
|
---|
380 | if (ilim == 0) {
|
---|
381 | S = mhi = 0;
|
---|
382 | dval(d) -= 5.;
|
---|
383 | if (dval(d) > dval(eps))
|
---|
384 | goto one_digit;
|
---|
385 | if (dval(d) < -dval(eps))
|
---|
386 | goto no_digits;
|
---|
387 | goto fast_failed;
|
---|
388 | }
|
---|
389 | #ifndef No_leftright
|
---|
390 | if (leftright) {
|
---|
391 | /* Use Steele & White method of only
|
---|
392 | * generating digits needed.
|
---|
393 | */
|
---|
394 | dval(eps) = 0.5/tens[ilim-1] - dval(eps);
|
---|
395 | for(i = 0;;) {
|
---|
396 | L = (INT32)dval(d);
|
---|
397 | dval(d) -= L;
|
---|
398 | *s++ = (char)('0' + (int)L);
|
---|
399 | if (dval(d) < dval(eps))
|
---|
400 | goto ret1;
|
---|
401 | if (1. - dval(d) < dval(eps))
|
---|
402 | goto bump_up;
|
---|
403 | if (++i >= ilim)
|
---|
404 | break;
|
---|
405 | dval(eps) *= 10.;
|
---|
406 | dval(d) *= 10.;
|
---|
407 | }
|
---|
408 | }
|
---|
409 | else {
|
---|
410 | #endif
|
---|
411 | /* Generate ilim digits, then fix them up. */
|
---|
412 | dval(eps) *= tens[ilim-1];
|
---|
413 | for(i = 1;; i++, dval(d) *= 10.) {
|
---|
414 | L = (Long)(dval(d));
|
---|
415 | if (!(dval(d) -= L))
|
---|
416 | ilim = i;
|
---|
417 | *s++ = (char)('0' + (int)L);
|
---|
418 | if (i == ilim) {
|
---|
419 | if (dval(d) > 0.5 + dval(eps))
|
---|
420 | goto bump_up;
|
---|
421 | else if (dval(d) < 0.5 - dval(eps)) {
|
---|
422 | while(*--s == '0');
|
---|
423 | s++;
|
---|
424 | goto ret1;
|
---|
425 | }
|
---|
426 | break;
|
---|
427 | }
|
---|
428 | }
|
---|
429 | #ifndef No_leftright
|
---|
430 | }
|
---|
431 | #endif
|
---|
432 | fast_failed:
|
---|
433 | s = s0;
|
---|
434 | dval(d) = dval(d2);
|
---|
435 | k = k0;
|
---|
436 | ilim = ilim0;
|
---|
437 | }
|
---|
438 |
|
---|
439 | /* Do we have a "small" integer? */
|
---|
440 |
|
---|
441 | if (be >= 0 && k <= Int_max) {
|
---|
442 | /* Yes. */
|
---|
443 | ds = tens[k];
|
---|
444 | if (ndigits < 0 && ilim <= 0) {
|
---|
445 | S = mhi = 0;
|
---|
446 | if (ilim < 0 || dval(d) <= 5*ds)
|
---|
447 | goto no_digits;
|
---|
448 | goto one_digit;
|
---|
449 | }
|
---|
450 | for(i = 1;; i++, dval(d) *= 10.) {
|
---|
451 | L = (Long)(dval(d) / ds);
|
---|
452 | dval(d) -= L*ds;
|
---|
453 | #ifdef Check_FLT_ROUNDS
|
---|
454 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
---|
455 | if (dval(d) < 0) {
|
---|
456 | L--;
|
---|
457 | dval(d) += ds;
|
---|
458 | }
|
---|
459 | #endif
|
---|
460 | *s++ = (char)('0' + (int)L);
|
---|
461 | if (!dval(d)) {
|
---|
462 | #ifdef SET_INEXACT
|
---|
463 | inexact = 0;
|
---|
464 | #endif
|
---|
465 | break;
|
---|
466 | }
|
---|
467 | if (i == ilim) {
|
---|
468 | #ifdef Honor_FLT_ROUNDS
|
---|
469 | if (mode > 1)
|
---|
470 | switch(rounding) {
|
---|
471 | case 0: goto ret1;
|
---|
472 | case 2: goto bump_up;
|
---|
473 | }
|
---|
474 | #endif
|
---|
475 | dval(d) += dval(d);
|
---|
476 | if (dval(d) > ds || (dval(d) == ds && L & 1)) {
|
---|
477 | bump_up:
|
---|
478 | while(*--s == '9')
|
---|
479 | if (s == s0) {
|
---|
480 | k++;
|
---|
481 | *s = '0';
|
---|
482 | break;
|
---|
483 | }
|
---|
484 | ++*s++;
|
---|
485 | }
|
---|
486 | break;
|
---|
487 | }
|
---|
488 | }
|
---|
489 | goto ret1;
|
---|
490 | }
|
---|
491 |
|
---|
492 | m2 = b2;
|
---|
493 | m5 = b5;
|
---|
494 | mhi = mlo = 0;
|
---|
495 | if (leftright) {
|
---|
496 | i =
|
---|
497 | #ifndef Sudden_Underflow
|
---|
498 | denorm ? be + (Bias + (P-1) - 1 + 1) :
|
---|
499 | #endif
|
---|
500 | #ifdef IBM
|
---|
501 | 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
|
---|
502 | #else
|
---|
503 | 1 + P - bbits;
|
---|
504 | #endif
|
---|
505 | b2 += i;
|
---|
506 | s2 += i;
|
---|
507 | mhi = i2b(1);
|
---|
508 | if (mhi == NULL)
|
---|
509 | return NULL;
|
---|
510 | }
|
---|
511 | if (m2 > 0 && s2 > 0) {
|
---|
512 | i = m2 < s2 ? m2 : s2;
|
---|
513 | b2 -= i;
|
---|
514 | m2 -= i;
|
---|
515 | s2 -= i;
|
---|
516 | }
|
---|
517 | if (b5 > 0) {
|
---|
518 | if (leftright) {
|
---|
519 | if (m5 > 0) {
|
---|
520 | mhi = pow5mult(mhi, m5);
|
---|
521 | if (mhi == NULL)
|
---|
522 | return NULL;
|
---|
523 | b1 = mult(mhi, b);
|
---|
524 | if (b1 == NULL)
|
---|
525 | return NULL;
|
---|
526 | Bfree(b);
|
---|
527 | b = b1;
|
---|
528 | }
|
---|
529 | if (( j = b5 - m5 )!=0)
|
---|
530 | b = pow5mult(b, j);
|
---|
531 | if (b == NULL)
|
---|
532 | return NULL;
|
---|
533 | }
|
---|
534 | else
|
---|
535 | b = pow5mult(b, b5);
|
---|
536 | if (b == NULL)
|
---|
537 | return NULL;
|
---|
538 | }
|
---|
539 | S = i2b(1);
|
---|
540 | if (S == NULL)
|
---|
541 | return NULL;
|
---|
542 | if (s5 > 0) {
|
---|
543 | S = pow5mult(S, s5);
|
---|
544 | if (S == NULL)
|
---|
545 | return NULL;
|
---|
546 | }
|
---|
547 |
|
---|
548 | /* Check for special case that d is a normalized power of 2. */
|
---|
549 |
|
---|
550 | spec_case = 0;
|
---|
551 | if ((mode < 2 || leftright)
|
---|
552 | #ifdef Honor_FLT_ROUNDS
|
---|
553 | && rounding == 1
|
---|
554 | #endif
|
---|
555 | ) {
|
---|
556 | if (!word1(d) && !(word0(d) & Bndry_mask)
|
---|
557 | #ifndef Sudden_Underflow
|
---|
558 | && word0(d) & (Exp_mask & ~Exp_msk1)
|
---|
559 | #endif
|
---|
560 | ) {
|
---|
561 | /* The special case */
|
---|
562 | b2 += Log2P;
|
---|
563 | s2 += Log2P;
|
---|
564 | spec_case = 1;
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 | /* Arrange for convenient computation of quotients:
|
---|
569 | * shift left if necessary so divisor has 4 leading 0 bits.
|
---|
570 | *
|
---|
571 | * Perhaps we should just compute leading 28 bits of S once
|
---|
572 | * and for all and pass them and a shift to quorem, so it
|
---|
573 | * can do shifts and ors to compute the numerator for q.
|
---|
574 | */
|
---|
575 | #ifdef Pack_32
|
---|
576 | if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
|
---|
577 | i = 32 - i;
|
---|
578 | #else
|
---|
579 | if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
|
---|
580 | i = 16 - i;
|
---|
581 | #endif
|
---|
582 | if (i > 4) {
|
---|
583 | i -= 4;
|
---|
584 | b2 += i;
|
---|
585 | m2 += i;
|
---|
586 | s2 += i;
|
---|
587 | }
|
---|
588 | else if (i < 4) {
|
---|
589 | i += 28;
|
---|
590 | b2 += i;
|
---|
591 | m2 += i;
|
---|
592 | s2 += i;
|
---|
593 | }
|
---|
594 | if (b2 > 0) {
|
---|
595 | b = lshift(b, b2);
|
---|
596 | if (b == NULL)
|
---|
597 | return NULL;
|
---|
598 | }
|
---|
599 | if (s2 > 0) {
|
---|
600 | S = lshift(S, s2);
|
---|
601 | if (S == NULL)
|
---|
602 | return NULL;
|
---|
603 | }
|
---|
604 | if (k_check) {
|
---|
605 | if (cmp(b,S) < 0) {
|
---|
606 | k--;
|
---|
607 | b = multadd(b, 10, 0); /* we botched the k estimate */
|
---|
608 | if (b == NULL)
|
---|
609 | return NULL;
|
---|
610 | if (leftright) {
|
---|
611 | mhi = multadd(mhi, 10, 0);
|
---|
612 | if (mhi == NULL)
|
---|
613 | return NULL;
|
---|
614 | }
|
---|
615 | ilim = ilim1;
|
---|
616 | }
|
---|
617 | }
|
---|
618 | if (ilim <= 0 && (mode == 3 || mode == 5)) {
|
---|
619 | if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
|
---|
620 | /* no digits, fcvt style */
|
---|
621 | no_digits:
|
---|
622 | k = -1 - ndigits;
|
---|
623 | goto ret;
|
---|
624 | }
|
---|
625 | one_digit:
|
---|
626 | *s++ = '1';
|
---|
627 | k++;
|
---|
628 | goto ret;
|
---|
629 | }
|
---|
630 | if (leftright) {
|
---|
631 | if (m2 > 0) {
|
---|
632 | mhi = lshift(mhi, m2);
|
---|
633 | if (mhi == NULL)
|
---|
634 | return NULL;
|
---|
635 | }
|
---|
636 |
|
---|
637 | /* Compute mlo -- check for special case
|
---|
638 | * that d is a normalized power of 2.
|
---|
639 | */
|
---|
640 |
|
---|
641 | mlo = mhi;
|
---|
642 | if (spec_case) {
|
---|
643 | mhi = Balloc(mhi->k);
|
---|
644 | if (mhi == NULL)
|
---|
645 | return NULL;
|
---|
646 | Bcopy(mhi, mlo);
|
---|
647 | mhi = lshift(mhi, Log2P);
|
---|
648 | if (mhi == NULL)
|
---|
649 | return NULL;
|
---|
650 | }
|
---|
651 |
|
---|
652 | for(i = 1;;i++) {
|
---|
653 | dig = quorem(b,S) + '0';
|
---|
654 | /* Do we yet have the shortest decimal string
|
---|
655 | * that will round to d?
|
---|
656 | */
|
---|
657 | j = cmp(b, mlo);
|
---|
658 | delta = diff(S, mhi);
|
---|
659 | if (delta == NULL)
|
---|
660 | return NULL;
|
---|
661 | jj1 = delta->sign ? 1 : cmp(b, delta);
|
---|
662 | Bfree(delta);
|
---|
663 | #ifndef ROUND_BIASED
|
---|
664 | if (jj1 == 0 && mode != 1 && !(word1(d) & 1)
|
---|
665 | #ifdef Honor_FLT_ROUNDS
|
---|
666 | && rounding >= 1
|
---|
667 | #endif
|
---|
668 | ) {
|
---|
669 | if (dig == '9')
|
---|
670 | goto round_9_up;
|
---|
671 | if (j > 0)
|
---|
672 | dig++;
|
---|
673 | #ifdef SET_INEXACT
|
---|
674 | else if (!b->x[0] && b->wds <= 1)
|
---|
675 | inexact = 0;
|
---|
676 | #endif
|
---|
677 | *s++ = (char)dig;
|
---|
678 | goto ret;
|
---|
679 | }
|
---|
680 | #endif
|
---|
681 | if (j < 0 || (j == 0 && mode != 1
|
---|
682 | #ifndef ROUND_BIASED
|
---|
683 | && !(word1(d) & 1)
|
---|
684 | #endif
|
---|
685 | )) {
|
---|
686 | if (!b->x[0] && b->wds <= 1) {
|
---|
687 | #ifdef SET_INEXACT
|
---|
688 | inexact = 0;
|
---|
689 | #endif
|
---|
690 | goto accept_dig;
|
---|
691 | }
|
---|
692 | #ifdef Honor_FLT_ROUNDS
|
---|
693 | if (mode > 1)
|
---|
694 | switch(rounding) {
|
---|
695 | case 0: goto accept_dig;
|
---|
696 | case 2: goto keep_dig;
|
---|
697 | }
|
---|
698 | #endif /*Honor_FLT_ROUNDS*/
|
---|
699 | if (jj1 > 0) {
|
---|
700 | b = lshift(b, 1);
|
---|
701 | if (b == NULL)
|
---|
702 | return NULL;
|
---|
703 | jj1 = cmp(b, S);
|
---|
704 | if ((jj1 > 0 || (jj1 == 0 && dig & 1))
|
---|
705 | && dig++ == '9')
|
---|
706 | goto round_9_up;
|
---|
707 | }
|
---|
708 | accept_dig:
|
---|
709 | *s++ = (char)dig;
|
---|
710 | goto ret;
|
---|
711 | }
|
---|
712 | if (jj1 > 0) {
|
---|
713 | #ifdef Honor_FLT_ROUNDS
|
---|
714 | if (!rounding)
|
---|
715 | goto accept_dig;
|
---|
716 | #endif
|
---|
717 | if (dig == '9') { /* possible if i == 1 */
|
---|
718 | round_9_up:
|
---|
719 | *s++ = '9';
|
---|
720 | goto roundoff;
|
---|
721 | }
|
---|
722 | *s++ = (char)(dig + 1);
|
---|
723 | goto ret;
|
---|
724 | }
|
---|
725 | #ifdef Honor_FLT_ROUNDS
|
---|
726 | keep_dig:
|
---|
727 | #endif
|
---|
728 | *s++ = (char)dig;
|
---|
729 | if (i == ilim)
|
---|
730 | break;
|
---|
731 | b = multadd(b, 10, 0);
|
---|
732 | if (b == NULL)
|
---|
733 | return NULL;
|
---|
734 | if (mlo == mhi) {
|
---|
735 | mlo = mhi = multadd(mhi, 10, 0);
|
---|
736 | if (mlo == NULL)
|
---|
737 | return NULL;
|
---|
738 | }
|
---|
739 | else {
|
---|
740 | mlo = multadd(mlo, 10, 0);
|
---|
741 | if (mlo == NULL)
|
---|
742 | return NULL;
|
---|
743 | mhi = multadd(mhi, 10, 0);
|
---|
744 | if (mhi == NULL)
|
---|
745 | return NULL;
|
---|
746 | }
|
---|
747 | }
|
---|
748 | }
|
---|
749 | else
|
---|
750 | for(i = 1;; i++) {
|
---|
751 | *s++ = (char)(dig = (int)(quorem(b,S) + '0'));
|
---|
752 | if (!b->x[0] && b->wds <= 1) {
|
---|
753 | #ifdef SET_INEXACT
|
---|
754 | inexact = 0;
|
---|
755 | #endif
|
---|
756 | goto ret;
|
---|
757 | }
|
---|
758 | if (i >= ilim)
|
---|
759 | break;
|
---|
760 | b = multadd(b, 10, 0);
|
---|
761 | if (b == NULL)
|
---|
762 | return NULL;
|
---|
763 | }
|
---|
764 |
|
---|
765 | /* Round off last digit */
|
---|
766 |
|
---|
767 | #ifdef Honor_FLT_ROUNDS
|
---|
768 | switch(rounding) {
|
---|
769 | case 0: goto trimzeros;
|
---|
770 | case 2: goto roundoff;
|
---|
771 | }
|
---|
772 | #endif
|
---|
773 | b = lshift(b, 1);
|
---|
774 | j = cmp(b, S);
|
---|
775 | if (j > 0 || (j == 0 && dig & 1)) {
|
---|
776 | roundoff:
|
---|
777 | while(*--s == '9')
|
---|
778 | if (s == s0) {
|
---|
779 | k++;
|
---|
780 | *s++ = '1';
|
---|
781 | goto ret;
|
---|
782 | }
|
---|
783 | ++*s++;
|
---|
784 | }
|
---|
785 | else {
|
---|
786 | #ifdef Honor_FLT_ROUNDS
|
---|
787 | trimzeros:
|
---|
788 | #endif
|
---|
789 | while(*--s == '0');
|
---|
790 | s++;
|
---|
791 | }
|
---|
792 | ret:
|
---|
793 | Bfree(S);
|
---|
794 | if (mhi) {
|
---|
795 | if (mlo && mlo != mhi)
|
---|
796 | Bfree(mlo);
|
---|
797 | Bfree(mhi);
|
---|
798 | }
|
---|
799 | ret1:
|
---|
800 | #ifdef SET_INEXACT
|
---|
801 | if (inexact) {
|
---|
802 | if (!oldinexact) {
|
---|
803 | word0(d) = Exp_1 + (70 << Exp_shift);
|
---|
804 | word1(d) = 0;
|
---|
805 | dval(d) += 1.;
|
---|
806 | }
|
---|
807 | }
|
---|
808 | else if (!oldinexact)
|
---|
809 | clear_inexact();
|
---|
810 | #endif
|
---|
811 | Bfree(b);
|
---|
812 | if (s == s0) { /* don't return empty string */
|
---|
813 | *s++ = '0';
|
---|
814 | k = 0;
|
---|
815 | }
|
---|
816 | *s = 0;
|
---|
817 | *decpt = k + 1;
|
---|
818 | if (rve)
|
---|
819 | *rve = s;
|
---|
820 | return s0;
|
---|
821 | }
|
---|