/* $Id: DevE1000.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * DevE1000 - Intel 82540EM Ethernet Controller Emulation. * * Implemented in accordance with the specification: * * PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer's Manual * 82540EP/EM, 82541xx, 82544GC/EI, 82545GM/EM, 82546GB/EB, and 82547xx * * 317453-002 Revision 3.5 * * @todo IPv6 checksum offloading support * @todo Flexible Filter / Wakeup (optional?) */ /* * Copyright (C) 2007-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_E1000 #include #include #include #include #include #include #include #include #include #include #include #include "VBoxDD.h" #include "DevEEPROM.h" #include "DevE1000Phy.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @name E1000 Build Options * @{ */ /** @def E1K_INIT_RA0 * E1K_INIT_RA0 forces E1000 to set the first entry in Receive Address filter * table to MAC address obtained from CFGM. Most guests read MAC address from * EEPROM and write it to RA[0] explicitly, but Mac OS X seems to depend on it * being already set (see @bugref{4657}). */ #define E1K_INIT_RA0 /** @def E1K_LSC_ON_RESET * E1K_LSC_ON_RESET causes e1000 to generate Link Status Change * interrupt after hard reset. This makes the E1K_LSC_ON_SLU option unnecessary. * With unplugged cable, LSC is triggerred for 82543GC only. */ #define E1K_LSC_ON_RESET /** @def E1K_LSC_ON_SLU * E1K_LSC_ON_SLU causes E1000 to generate Link Status Change interrupt when * the guest driver brings up the link via STATUS.LU bit. Again the only guest * that requires it is Mac OS X (see @bugref{4657}). */ //#define E1K_LSC_ON_SLU /** @def E1K_INIT_LINKUP_DELAY * E1K_INIT_LINKUP_DELAY prevents the link going up while the driver is still * in init (see @bugref{8624}). */ #define E1K_INIT_LINKUP_DELAY_US (2000 * 1000) /** @def E1K_IMS_INT_DELAY_NS * E1K_IMS_INT_DELAY_NS prevents interrupt storms in Windows guests on enabling * interrupts (see @bugref{8624}). */ #define E1K_IMS_INT_DELAY_NS 100 /** @def E1K_TX_DELAY * E1K_TX_DELAY aims to improve guest-host transfer rate for TCP streams by * preventing packets to be sent immediately. It allows to send several * packets in a batch reducing the number of acknowledgments. Note that it * effectively disables R0 TX path, forcing sending in R3. */ //#define E1K_TX_DELAY 150 /** @def E1K_USE_TX_TIMERS * E1K_USE_TX_TIMERS aims to reduce the number of generated TX interrupts if a * guest driver set the delays via the Transmit Interrupt Delay Value (TIDV) * register. Enabling it showed no positive effects on existing guests so it * stays disabled. See sections 3.2.7.1 and 3.4.3.1 in "8254x Family of Gigabit * Ethernet Controllers Software Developer’s Manual" for more detailed * explanation. */ //#define E1K_USE_TX_TIMERS /** @def E1K_NO_TAD * E1K_NO_TAD disables one of two timers enabled by E1K_USE_TX_TIMERS, the * Transmit Absolute Delay time. This timer sets the maximum time interval * during which TX interrupts can be postponed (delayed). It has no effect * if E1K_USE_TX_TIMERS is not defined. */ //#define E1K_NO_TAD /** @def E1K_REL_DEBUG * E1K_REL_DEBUG enables debug logging of l1, l2, l3 in release build. */ //#define E1K_REL_DEBUG /** @def E1K_INT_STATS * E1K_INT_STATS enables collection of internal statistics used for * debugging of delayed interrupts, etc. */ #define E1K_INT_STATS /** @def E1K_WITH_MSI * E1K_WITH_MSI enables rudimentary MSI support. Not implemented. */ //#define E1K_WITH_MSI /** @def E1K_WITH_TX_CS * E1K_WITH_TX_CS protects e1kXmitPending with a critical section. */ #define E1K_WITH_TX_CS /** @def E1K_WITH_TXD_CACHE * E1K_WITH_TXD_CACHE causes E1000 to fetch multiple TX descriptors in a * single physical memory read (or two if it wraps around the end of TX * descriptor ring). It is required for proper functioning of bandwidth * resource control as it allows to compute exact sizes of packets prior * to allocating their buffers (see @bugref{5582}). */ #define E1K_WITH_TXD_CACHE /** @def E1K_WITH_RXD_CACHE * E1K_WITH_RXD_CACHE causes E1000 to fetch multiple RX descriptors in a * single physical memory read (or two if it wraps around the end of RX * descriptor ring). Intel's packet driver for DOS needs this option in * order to work properly (see @bugref{6217}). */ #define E1K_WITH_RXD_CACHE /** @def E1K_WITH_PREREG_MMIO * E1K_WITH_PREREG_MMIO enables a new style MMIO registration and is * currently only done for testing the relateted PDM, IOM and PGM code. */ //#define E1K_WITH_PREREG_MMIO /* @} */ /* End of Options ************************************************************/ #ifdef E1K_WITH_TXD_CACHE /** * E1K_TXD_CACHE_SIZE specifies the maximum number of TX descriptors stored * in the state structure. It limits the amount of descriptors loaded in one * batch read. For example, Linux guest may use up to 20 descriptors per * TSE packet. The largest TSE packet seen (Windows guest) was 45 descriptors. */ # define E1K_TXD_CACHE_SIZE 64u #endif /* E1K_WITH_TXD_CACHE */ #ifdef E1K_WITH_RXD_CACHE /** * E1K_RXD_CACHE_SIZE specifies the maximum number of RX descriptors stored * in the state structure. It limits the amount of descriptors loaded in one * batch read. For example, XP guest adds 15 RX descriptors at a time. */ # define E1K_RXD_CACHE_SIZE 16u #endif /* E1K_WITH_RXD_CACHE */ /* Little helpers ************************************************************/ #undef htons #undef ntohs #undef htonl #undef ntohl #define htons(x) ((((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8)) #define ntohs(x) htons(x) #define htonl(x) ASMByteSwapU32(x) #define ntohl(x) htonl(x) #ifndef DEBUG # ifdef E1K_REL_DEBUG # define DEBUG # define E1kLog(a) LogRel(a) # define E1kLog2(a) LogRel(a) # define E1kLog3(a) LogRel(a) # define E1kLogX(x, a) LogRel(a) //# define E1kLog3(a) do {} while (0) # else # define E1kLog(a) do {} while (0) # define E1kLog2(a) do {} while (0) # define E1kLog3(a) do {} while (0) # define E1kLogX(x, a) do {} while (0) # endif #else # define E1kLog(a) Log(a) # define E1kLog2(a) Log2(a) # define E1kLog3(a) Log3(a) # define E1kLogX(x, a) LogIt(x, LOG_GROUP, a) //# define E1kLog(a) do {} while (0) //# define E1kLog2(a) do {} while (0) //# define E1kLog3(a) do {} while (0) #endif #if 0 # define LOG_ENABLED # define E1kLogRel(a) LogRel(a) # undef Log6 # define Log6(a) LogRel(a) #else # define E1kLogRel(a) do { } while (0) #endif //#undef DEBUG #define E1K_RELOCATE(p, o) *(RTHCUINTPTR *)&p += o #define E1K_INC_CNT32(cnt) \ do { \ if (cnt < UINT32_MAX) \ cnt++; \ } while (0) #define E1K_ADD_CNT64(cntLo, cntHi, val) \ do { \ uint64_t u64Cnt = RT_MAKE_U64(cntLo, cntHi); \ uint64_t tmp = u64Cnt; \ u64Cnt += val; \ if (tmp > u64Cnt ) \ u64Cnt = UINT64_MAX; \ cntLo = (uint32_t)u64Cnt; \ cntHi = (uint32_t)(u64Cnt >> 32); \ } while (0) #ifdef E1K_INT_STATS # define E1K_INC_ISTAT_CNT(cnt) do { ++cnt; } while (0) #else /* E1K_INT_STATS */ # define E1K_INC_ISTAT_CNT(cnt) do { } while (0) #endif /* E1K_INT_STATS */ /*****************************************************************************/ typedef uint32_t E1KCHIP; #define E1K_CHIP_82540EM 0 #define E1K_CHIP_82543GC 1 #define E1K_CHIP_82545EM 2 #ifdef IN_RING3 /** Different E1000 chips. */ static const struct E1kChips { uint16_t uPCIVendorId; uint16_t uPCIDeviceId; uint16_t uPCISubsystemVendorId; uint16_t uPCISubsystemId; const char *pcszName; } g_aChips[] = { /* Vendor Device SSVendor SubSys Name */ { 0x8086, /* Temporary code, as MSI-aware driver dislike 0x100E. How to do that right? */ # ifdef E1K_WITH_MSI 0x105E, # else 0x100E, # endif 0x8086, 0x001E, "82540EM" }, /* Intel 82540EM-A in Intel PRO/1000 MT Desktop */ { 0x8086, 0x1004, 0x8086, 0x1004, "82543GC" }, /* Intel 82543GC in Intel PRO/1000 T Server */ { 0x8086, 0x100F, 0x15AD, 0x0750, "82545EM" } /* Intel 82545EM-A in VMWare Network Adapter */ }; #endif /* IN_RING3 */ /* The size of register area mapped to I/O space */ #define E1K_IOPORT_SIZE 0x8 /* The size of memory-mapped register area */ #define E1K_MM_SIZE 0x20000 #define E1K_MAX_TX_PKT_SIZE 16288 #define E1K_MAX_RX_PKT_SIZE 16384 /*****************************************************************************/ #ifndef VBOX_DEVICE_STRUCT_TESTCASE /** Gets the specfieid bits from the register. */ #define GET_BITS(reg, bits) ((reg & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT) #define GET_BITS_V(val, reg, bits) ((val & reg##_##bits##_MASK) >> reg##_##bits##_SHIFT) #define BITS(reg, bits, bitval) (bitval << reg##_##bits##_SHIFT) #define SET_BITS(reg, bits, bitval) do { reg = (reg & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0) #define SET_BITS_V(val, reg, bits, bitval) do { val = (val & ~reg##_##bits##_MASK) | (bitval << reg##_##bits##_SHIFT); } while (0) #define CTRL_SLU UINT32_C(0x00000040) #define CTRL_MDIO UINT32_C(0x00100000) #define CTRL_MDC UINT32_C(0x00200000) #define CTRL_MDIO_DIR UINT32_C(0x01000000) #define CTRL_MDC_DIR UINT32_C(0x02000000) #define CTRL_RESET UINT32_C(0x04000000) #define CTRL_VME UINT32_C(0x40000000) #define STATUS_LU UINT32_C(0x00000002) #define STATUS_TXOFF UINT32_C(0x00000010) #define EECD_EE_WIRES UINT32_C(0x0F) #define EECD_EE_REQ UINT32_C(0x40) #define EECD_EE_GNT UINT32_C(0x80) #define EERD_START UINT32_C(0x00000001) #define EERD_DONE UINT32_C(0x00000010) #define EERD_DATA_MASK UINT32_C(0xFFFF0000) #define EERD_DATA_SHIFT 16 #define EERD_ADDR_MASK UINT32_C(0x0000FF00) #define EERD_ADDR_SHIFT 8 #define MDIC_DATA_MASK UINT32_C(0x0000FFFF) #define MDIC_DATA_SHIFT 0 #define MDIC_REG_MASK UINT32_C(0x001F0000) #define MDIC_REG_SHIFT 16 #define MDIC_PHY_MASK UINT32_C(0x03E00000) #define MDIC_PHY_SHIFT 21 #define MDIC_OP_WRITE UINT32_C(0x04000000) #define MDIC_OP_READ UINT32_C(0x08000000) #define MDIC_READY UINT32_C(0x10000000) #define MDIC_INT_EN UINT32_C(0x20000000) #define MDIC_ERROR UINT32_C(0x40000000) #define TCTL_EN UINT32_C(0x00000002) #define TCTL_PSP UINT32_C(0x00000008) #define RCTL_EN UINT32_C(0x00000002) #define RCTL_UPE UINT32_C(0x00000008) #define RCTL_MPE UINT32_C(0x00000010) #define RCTL_LPE UINT32_C(0x00000020) #define RCTL_LBM_MASK UINT32_C(0x000000C0) #define RCTL_LBM_SHIFT 6 #define RCTL_RDMTS_MASK UINT32_C(0x00000300) #define RCTL_RDMTS_SHIFT 8 #define RCTL_LBM_TCVR UINT32_C(3) /**< PHY or external SerDes loopback. */ #define RCTL_MO_MASK UINT32_C(0x00003000) #define RCTL_MO_SHIFT 12 #define RCTL_BAM UINT32_C(0x00008000) #define RCTL_BSIZE_MASK UINT32_C(0x00030000) #define RCTL_BSIZE_SHIFT 16 #define RCTL_VFE UINT32_C(0x00040000) #define RCTL_CFIEN UINT32_C(0x00080000) #define RCTL_CFI UINT32_C(0x00100000) #define RCTL_BSEX UINT32_C(0x02000000) #define RCTL_SECRC UINT32_C(0x04000000) #define ICR_TXDW UINT32_C(0x00000001) #define ICR_TXQE UINT32_C(0x00000002) #define ICR_LSC UINT32_C(0x00000004) #define ICR_RXDMT0 UINT32_C(0x00000010) #define ICR_RXT0 UINT32_C(0x00000080) #define ICR_TXD_LOW UINT32_C(0x00008000) #define RDTR_FPD UINT32_C(0x80000000) #define PBA_st ((PBAST*)(pThis->auRegs + PBA_IDX)) typedef struct { unsigned rxa : 7; unsigned rxa_r : 9; unsigned txa : 16; } PBAST; AssertCompileSize(PBAST, 4); #define TXDCTL_WTHRESH_MASK 0x003F0000 #define TXDCTL_WTHRESH_SHIFT 16 #define TXDCTL_LWTHRESH_MASK 0xFE000000 #define TXDCTL_LWTHRESH_SHIFT 25 #define RXCSUM_PCSS_MASK UINT32_C(0x000000FF) #define RXCSUM_PCSS_SHIFT 0 /** @name Register access macros * @remarks These ASSUME alocal variable @a pThis of type PE1KSTATE. * @{ */ #define CTRL pThis->auRegs[CTRL_IDX] #define STATUS pThis->auRegs[STATUS_IDX] #define EECD pThis->auRegs[EECD_IDX] #define EERD pThis->auRegs[EERD_IDX] #define CTRL_EXT pThis->auRegs[CTRL_EXT_IDX] #define FLA pThis->auRegs[FLA_IDX] #define MDIC pThis->auRegs[MDIC_IDX] #define FCAL pThis->auRegs[FCAL_IDX] #define FCAH pThis->auRegs[FCAH_IDX] #define FCT pThis->auRegs[FCT_IDX] #define VET pThis->auRegs[VET_IDX] #define ICR pThis->auRegs[ICR_IDX] #define ITR pThis->auRegs[ITR_IDX] #define ICS pThis->auRegs[ICS_IDX] #define IMS pThis->auRegs[IMS_IDX] #define IMC pThis->auRegs[IMC_IDX] #define RCTL pThis->auRegs[RCTL_IDX] #define FCTTV pThis->auRegs[FCTTV_IDX] #define TXCW pThis->auRegs[TXCW_IDX] #define RXCW pThis->auRegs[RXCW_IDX] #define TCTL pThis->auRegs[TCTL_IDX] #define TIPG pThis->auRegs[TIPG_IDX] #define AIFS pThis->auRegs[AIFS_IDX] #define LEDCTL pThis->auRegs[LEDCTL_IDX] #define PBA pThis->auRegs[PBA_IDX] #define FCRTL pThis->auRegs[FCRTL_IDX] #define FCRTH pThis->auRegs[FCRTH_IDX] #define RDFH pThis->auRegs[RDFH_IDX] #define RDFT pThis->auRegs[RDFT_IDX] #define RDFHS pThis->auRegs[RDFHS_IDX] #define RDFTS pThis->auRegs[RDFTS_IDX] #define RDFPC pThis->auRegs[RDFPC_IDX] #define RDBAL pThis->auRegs[RDBAL_IDX] #define RDBAH pThis->auRegs[RDBAH_IDX] #define RDLEN pThis->auRegs[RDLEN_IDX] #define RDH pThis->auRegs[RDH_IDX] #define RDT pThis->auRegs[RDT_IDX] #define RDTR pThis->auRegs[RDTR_IDX] #define RXDCTL pThis->auRegs[RXDCTL_IDX] #define RADV pThis->auRegs[RADV_IDX] #define RSRPD pThis->auRegs[RSRPD_IDX] #define TXDMAC pThis->auRegs[TXDMAC_IDX] #define TDFH pThis->auRegs[TDFH_IDX] #define TDFT pThis->auRegs[TDFT_IDX] #define TDFHS pThis->auRegs[TDFHS_IDX] #define TDFTS pThis->auRegs[TDFTS_IDX] #define TDFPC pThis->auRegs[TDFPC_IDX] #define TDBAL pThis->auRegs[TDBAL_IDX] #define TDBAH pThis->auRegs[TDBAH_IDX] #define TDLEN pThis->auRegs[TDLEN_IDX] #define TDH pThis->auRegs[TDH_IDX] #define TDT pThis->auRegs[TDT_IDX] #define TIDV pThis->auRegs[TIDV_IDX] #define TXDCTL pThis->auRegs[TXDCTL_IDX] #define TADV pThis->auRegs[TADV_IDX] #define TSPMT pThis->auRegs[TSPMT_IDX] #define CRCERRS pThis->auRegs[CRCERRS_IDX] #define ALGNERRC pThis->auRegs[ALGNERRC_IDX] #define SYMERRS pThis->auRegs[SYMERRS_IDX] #define RXERRC pThis->auRegs[RXERRC_IDX] #define MPC pThis->auRegs[MPC_IDX] #define SCC pThis->auRegs[SCC_IDX] #define ECOL pThis->auRegs[ECOL_IDX] #define MCC pThis->auRegs[MCC_IDX] #define LATECOL pThis->auRegs[LATECOL_IDX] #define COLC pThis->auRegs[COLC_IDX] #define DC pThis->auRegs[DC_IDX] #define TNCRS pThis->auRegs[TNCRS_IDX] /* #define SEC pThis->auRegs[SEC_IDX] Conflict with sys/time.h */ #define CEXTERR pThis->auRegs[CEXTERR_IDX] #define RLEC pThis->auRegs[RLEC_IDX] #define XONRXC pThis->auRegs[XONRXC_IDX] #define XONTXC pThis->auRegs[XONTXC_IDX] #define XOFFRXC pThis->auRegs[XOFFRXC_IDX] #define XOFFTXC pThis->auRegs[XOFFTXC_IDX] #define FCRUC pThis->auRegs[FCRUC_IDX] #define PRC64 pThis->auRegs[PRC64_IDX] #define PRC127 pThis->auRegs[PRC127_IDX] #define PRC255 pThis->auRegs[PRC255_IDX] #define PRC511 pThis->auRegs[PRC511_IDX] #define PRC1023 pThis->auRegs[PRC1023_IDX] #define PRC1522 pThis->auRegs[PRC1522_IDX] #define GPRC pThis->auRegs[GPRC_IDX] #define BPRC pThis->auRegs[BPRC_IDX] #define MPRC pThis->auRegs[MPRC_IDX] #define GPTC pThis->auRegs[GPTC_IDX] #define GORCL pThis->auRegs[GORCL_IDX] #define GORCH pThis->auRegs[GORCH_IDX] #define GOTCL pThis->auRegs[GOTCL_IDX] #define GOTCH pThis->auRegs[GOTCH_IDX] #define RNBC pThis->auRegs[RNBC_IDX] #define RUC pThis->auRegs[RUC_IDX] #define RFC pThis->auRegs[RFC_IDX] #define ROC pThis->auRegs[ROC_IDX] #define RJC pThis->auRegs[RJC_IDX] #define MGTPRC pThis->auRegs[MGTPRC_IDX] #define MGTPDC pThis->auRegs[MGTPDC_IDX] #define MGTPTC pThis->auRegs[MGTPTC_IDX] #define TORL pThis->auRegs[TORL_IDX] #define TORH pThis->auRegs[TORH_IDX] #define TOTL pThis->auRegs[TOTL_IDX] #define TOTH pThis->auRegs[TOTH_IDX] #define TPR pThis->auRegs[TPR_IDX] #define TPT pThis->auRegs[TPT_IDX] #define PTC64 pThis->auRegs[PTC64_IDX] #define PTC127 pThis->auRegs[PTC127_IDX] #define PTC255 pThis->auRegs[PTC255_IDX] #define PTC511 pThis->auRegs[PTC511_IDX] #define PTC1023 pThis->auRegs[PTC1023_IDX] #define PTC1522 pThis->auRegs[PTC1522_IDX] #define MPTC pThis->auRegs[MPTC_IDX] #define BPTC pThis->auRegs[BPTC_IDX] #define TSCTC pThis->auRegs[TSCTC_IDX] #define TSCTFC pThis->auRegs[TSCTFC_IDX] #define RXCSUM pThis->auRegs[RXCSUM_IDX] #define WUC pThis->auRegs[WUC_IDX] #define WUFC pThis->auRegs[WUFC_IDX] #define WUS pThis->auRegs[WUS_IDX] #define MANC pThis->auRegs[MANC_IDX] #define IPAV pThis->auRegs[IPAV_IDX] #define WUPL pThis->auRegs[WUPL_IDX] /** @} */ #endif /* VBOX_DEVICE_STRUCT_TESTCASE */ /** * Indices of memory-mapped registers in register table. */ typedef enum { CTRL_IDX, STATUS_IDX, EECD_IDX, EERD_IDX, CTRL_EXT_IDX, FLA_IDX, MDIC_IDX, FCAL_IDX, FCAH_IDX, FCT_IDX, VET_IDX, ICR_IDX, ITR_IDX, ICS_IDX, IMS_IDX, IMC_IDX, RCTL_IDX, FCTTV_IDX, TXCW_IDX, RXCW_IDX, TCTL_IDX, TIPG_IDX, AIFS_IDX, LEDCTL_IDX, PBA_IDX, FCRTL_IDX, FCRTH_IDX, RDFH_IDX, RDFT_IDX, RDFHS_IDX, RDFTS_IDX, RDFPC_IDX, RDBAL_IDX, RDBAH_IDX, RDLEN_IDX, RDH_IDX, RDT_IDX, RDTR_IDX, RXDCTL_IDX, RADV_IDX, RSRPD_IDX, TXDMAC_IDX, TDFH_IDX, TDFT_IDX, TDFHS_IDX, TDFTS_IDX, TDFPC_IDX, TDBAL_IDX, TDBAH_IDX, TDLEN_IDX, TDH_IDX, TDT_IDX, TIDV_IDX, TXDCTL_IDX, TADV_IDX, TSPMT_IDX, CRCERRS_IDX, ALGNERRC_IDX, SYMERRS_IDX, RXERRC_IDX, MPC_IDX, SCC_IDX, ECOL_IDX, MCC_IDX, LATECOL_IDX, COLC_IDX, DC_IDX, TNCRS_IDX, SEC_IDX, CEXTERR_IDX, RLEC_IDX, XONRXC_IDX, XONTXC_IDX, XOFFRXC_IDX, XOFFTXC_IDX, FCRUC_IDX, PRC64_IDX, PRC127_IDX, PRC255_IDX, PRC511_IDX, PRC1023_IDX, PRC1522_IDX, GPRC_IDX, BPRC_IDX, MPRC_IDX, GPTC_IDX, GORCL_IDX, GORCH_IDX, GOTCL_IDX, GOTCH_IDX, RNBC_IDX, RUC_IDX, RFC_IDX, ROC_IDX, RJC_IDX, MGTPRC_IDX, MGTPDC_IDX, MGTPTC_IDX, TORL_IDX, TORH_IDX, TOTL_IDX, TOTH_IDX, TPR_IDX, TPT_IDX, PTC64_IDX, PTC127_IDX, PTC255_IDX, PTC511_IDX, PTC1023_IDX, PTC1522_IDX, MPTC_IDX, BPTC_IDX, TSCTC_IDX, TSCTFC_IDX, RXCSUM_IDX, WUC_IDX, WUFC_IDX, WUS_IDX, MANC_IDX, IPAV_IDX, WUPL_IDX, MTA_IDX, RA_IDX, VFTA_IDX, IP4AT_IDX, IP6AT_IDX, WUPM_IDX, FFLT_IDX, FFMT_IDX, FFVT_IDX, PBM_IDX, RA_82542_IDX, MTA_82542_IDX, VFTA_82542_IDX, E1K_NUM_OF_REGS } E1kRegIndex; #define E1K_NUM_OF_32BIT_REGS MTA_IDX /** The number of registers with strictly increasing offset. */ #define E1K_NUM_OF_BINARY_SEARCHABLE (WUPL_IDX + 1) /** * Define E1000-specific EEPROM layout. */ struct E1kEEPROM { public: EEPROM93C46 eeprom; #ifdef IN_RING3 /** * Initialize EEPROM content. * * @param macAddr MAC address of E1000. */ void init(RTMAC &macAddr) { eeprom.init(); memcpy(eeprom.m_au16Data, macAddr.au16, sizeof(macAddr.au16)); eeprom.m_au16Data[0x04] = 0xFFFF; /* * bit 3 - full support for power management * bit 10 - full duplex */ eeprom.m_au16Data[0x0A] = 0x4408; eeprom.m_au16Data[0x0B] = 0x001E; eeprom.m_au16Data[0x0C] = 0x8086; eeprom.m_au16Data[0x0D] = 0x100E; eeprom.m_au16Data[0x0E] = 0x8086; eeprom.m_au16Data[0x0F] = 0x3040; eeprom.m_au16Data[0x21] = 0x7061; eeprom.m_au16Data[0x22] = 0x280C; eeprom.m_au16Data[0x23] = 0x00C8; eeprom.m_au16Data[0x24] = 0x00C8; eeprom.m_au16Data[0x2F] = 0x0602; updateChecksum(); }; /** * Compute the checksum as required by E1000 and store it * in the last word. */ void updateChecksum() { uint16_t u16Checksum = 0; for (int i = 0; i < eeprom.SIZE-1; i++) u16Checksum += eeprom.m_au16Data[i]; eeprom.m_au16Data[eeprom.SIZE-1] = 0xBABA - u16Checksum; }; /** * First 6 bytes of EEPROM contain MAC address. * * @returns MAC address of E1000. */ void getMac(PRTMAC pMac) { memcpy(pMac->au16, eeprom.m_au16Data, sizeof(pMac->au16)); }; uint32_t read() { return eeprom.read(); } void write(uint32_t u32Wires) { eeprom.write(u32Wires); } bool readWord(uint32_t u32Addr, uint16_t *pu16Value) { return eeprom.readWord(u32Addr, pu16Value); } int load(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM) { return eeprom.load(pHlp, pSSM); } void save(PCPDMDEVHLPR3 pHlp, PSSMHANDLE pSSM) { eeprom.save(pHlp, pSSM); } #endif /* IN_RING3 */ }; #define E1K_SPEC_VLAN(s) (s & 0xFFF) #define E1K_SPEC_CFI(s) (!!((s>>12) & 0x1)) #define E1K_SPEC_PRI(s) ((s>>13) & 0x7) struct E1kRxDStatus { /** @name Descriptor Status field (3.2.3.1) * @{ */ unsigned fDD : 1; /**< Descriptor Done. */ unsigned fEOP : 1; /**< End of packet. */ unsigned fIXSM : 1; /**< Ignore checksum indication. */ unsigned fVP : 1; /**< VLAN, matches VET. */ unsigned : 1; unsigned fTCPCS : 1; /**< RCP Checksum calculated on the packet. */ unsigned fIPCS : 1; /**< IP Checksum calculated on the packet. */ unsigned fPIF : 1; /**< Passed in-exact filter */ /** @} */ /** @name Descriptor Errors field (3.2.3.2) * (Only valid when fEOP and fDD are set.) * @{ */ unsigned fCE : 1; /**< CRC or alignment error. */ unsigned : 4; /**< Reserved, varies with different models... */ unsigned fTCPE : 1; /**< TCP/UDP checksum error. */ unsigned fIPE : 1; /**< IP Checksum error. */ unsigned fRXE : 1; /**< RX Data error. */ /** @} */ /** @name Descriptor Special field (3.2.3.3) * @{ */ unsigned u16Special : 16; /**< VLAN: Id, Canonical form, Priority. */ /** @} */ }; typedef struct E1kRxDStatus E1KRXDST; struct E1kRxDesc_st { uint64_t u64BufAddr; /**< Address of data buffer */ uint16_t u16Length; /**< Length of data in buffer */ uint16_t u16Checksum; /**< Packet checksum */ E1KRXDST status; }; typedef struct E1kRxDesc_st E1KRXDESC; AssertCompileSize(E1KRXDESC, 16); #define E1K_DTYP_LEGACY -1 #define E1K_DTYP_CONTEXT 0 #define E1K_DTYP_DATA 1 #define E1K_DTYP_INVALID 2 struct E1kTDLegacy { uint64_t u64BufAddr; /**< Address of data buffer */ struct TDLCmd_st { unsigned u16Length : 16; unsigned u8CSO : 8; /* CMD field : 8 */ unsigned fEOP : 1; unsigned fIFCS : 1; unsigned fIC : 1; unsigned fRS : 1; unsigned fRPS : 1; unsigned fDEXT : 1; unsigned fVLE : 1; unsigned fIDE : 1; } cmd; struct TDLDw3_st { /* STA field */ unsigned fDD : 1; unsigned fEC : 1; unsigned fLC : 1; unsigned fTURSV : 1; /* RSV field */ unsigned u4RSV : 4; /* CSS field */ unsigned u8CSS : 8; /* Special field*/ unsigned u16Special: 16; } dw3; }; /** * TCP/IP Context Transmit Descriptor, section 3.3.6. */ struct E1kTDContext { struct CheckSum_st { /** TSE: Header start. !TSE: Checksum start. */ unsigned u8CSS : 8; /** Checksum offset - where to store it. */ unsigned u8CSO : 8; /** Checksum ending (inclusive) offset, 0 = end of packet. */ unsigned u16CSE : 16; } ip; struct CheckSum_st tu; struct TDCDw2_st { /** TSE: The total number of payload bytes for this context. Sans header. */ unsigned u20PAYLEN : 20; /** The descriptor type - E1K_DTYP_CONTEXT (0). */ unsigned u4DTYP : 4; /** TUCMD field, 8 bits * @{ */ /** TSE: TCP (set) or UDP (clear). */ unsigned fTCP : 1; /** TSE: IPv4 (set) or IPv6 (clear) - for finding the payload length field in * the IP header. Does not affect the checksumming. * @remarks 82544GC/EI interprets a cleared field differently. */ unsigned fIP : 1; /** TSE: TCP segmentation enable. When clear the context describes */ unsigned fTSE : 1; /** Report status (only applies to dw3.fDD for here). */ unsigned fRS : 1; /** Reserved, MBZ. */ unsigned fRSV1 : 1; /** Descriptor extension, must be set for this descriptor type. */ unsigned fDEXT : 1; /** Reserved, MBZ. */ unsigned fRSV2 : 1; /** Interrupt delay enable. */ unsigned fIDE : 1; /** @} */ } dw2; struct TDCDw3_st { /** Descriptor Done. */ unsigned fDD : 1; /** Reserved, MBZ. */ unsigned u7RSV : 7; /** TSO: The header (prototype) length (Ethernet[, VLAN tag], IP, TCP/UDP. */ unsigned u8HDRLEN : 8; /** TSO: Maximum segment size. */ unsigned u16MSS : 16; } dw3; }; typedef struct E1kTDContext E1KTXCTX; /** * TCP/IP Data Transmit Descriptor, section 3.3.7. */ struct E1kTDData { uint64_t u64BufAddr; /**< Address of data buffer */ struct TDDCmd_st { /** The total length of data pointed to by this descriptor. */ unsigned u20DTALEN : 20; /** The descriptor type - E1K_DTYP_DATA (1). */ unsigned u4DTYP : 4; /** @name DCMD field, 8 bits (3.3.7.1). * @{ */ /** End of packet. Note TSCTFC update. */ unsigned fEOP : 1; /** Insert Ethernet FCS/CRC (requires fEOP to be set). */ unsigned fIFCS : 1; /** Use the TSE context when set and the normal when clear. */ unsigned fTSE : 1; /** Report status (dw3.STA). */ unsigned fRS : 1; /** Reserved. 82544GC/EI defines this report packet set (RPS). */ unsigned fRPS : 1; /** Descriptor extension, must be set for this descriptor type. */ unsigned fDEXT : 1; /** VLAN enable, requires CTRL.VME, auto enables FCS/CRC. * Insert dw3.SPECIAL after ethernet header. */ unsigned fVLE : 1; /** Interrupt delay enable. */ unsigned fIDE : 1; /** @} */ } cmd; struct TDDDw3_st { /** @name STA field (3.3.7.2) * @{ */ unsigned fDD : 1; /**< Descriptor done. */ unsigned fEC : 1; /**< Excess collision. */ unsigned fLC : 1; /**< Late collision. */ /** Reserved, except for the usual oddball (82544GC/EI) where it's called TU. */ unsigned fTURSV : 1; /** @} */ unsigned u4RSV : 4; /**< Reserved field, MBZ. */ /** @name POPTS (Packet Option) field (3.3.7.3) * @{ */ unsigned fIXSM : 1; /**< Insert IP checksum. */ unsigned fTXSM : 1; /**< Insert TCP/UDP checksum. */ unsigned u6RSV : 6; /**< Reserved, MBZ. */ /** @} */ /** @name SPECIAL field - VLAN tag to be inserted after ethernet header. * Requires fEOP, fVLE and CTRL.VME to be set. * @{ */ unsigned u16Special: 16; /**< VLAN: Id, Canonical form, Priority. */ /** @} */ } dw3; }; typedef struct E1kTDData E1KTXDAT; union E1kTxDesc { struct E1kTDLegacy legacy; struct E1kTDContext context; struct E1kTDData data; }; typedef union E1kTxDesc E1KTXDESC; AssertCompileSize(E1KTXDESC, 16); #define RA_CTL_AS 0x0003 #define RA_CTL_AV 0x8000 union E1kRecAddr { uint32_t au32[32]; struct RAArray { uint8_t addr[6]; uint16_t ctl; } array[16]; }; typedef struct E1kRecAddr::RAArray E1KRAELEM; typedef union E1kRecAddr E1KRA; AssertCompileSize(E1KRA, 8*16); #define E1K_IP_RF UINT16_C(0x8000) /**< reserved fragment flag */ #define E1K_IP_DF UINT16_C(0x4000) /**< dont fragment flag */ #define E1K_IP_MF UINT16_C(0x2000) /**< more fragments flag */ #define E1K_IP_OFFMASK UINT16_C(0x1fff) /**< mask for fragmenting bits */ /** @todo use+extend RTNETIPV4 */ struct E1kIpHeader { /* type of service / version / header length */ uint16_t tos_ver_hl; /* total length */ uint16_t total_len; /* identification */ uint16_t ident; /* fragment offset field */ uint16_t offset; /* time to live / protocol*/ uint16_t ttl_proto; /* checksum */ uint16_t chksum; /* source IP address */ uint32_t src; /* destination IP address */ uint32_t dest; }; AssertCompileSize(struct E1kIpHeader, 20); #define E1K_TCP_FIN UINT16_C(0x01) #define E1K_TCP_SYN UINT16_C(0x02) #define E1K_TCP_RST UINT16_C(0x04) #define E1K_TCP_PSH UINT16_C(0x08) #define E1K_TCP_ACK UINT16_C(0x10) #define E1K_TCP_URG UINT16_C(0x20) #define E1K_TCP_ECE UINT16_C(0x40) #define E1K_TCP_CWR UINT16_C(0x80) #define E1K_TCP_FLAGS UINT16_C(0x3f) /** @todo use+extend RTNETTCP */ struct E1kTcpHeader { uint16_t src; uint16_t dest; uint32_t seqno; uint32_t ackno; uint16_t hdrlen_flags; uint16_t wnd; uint16_t chksum; uint16_t urgp; }; AssertCompileSize(struct E1kTcpHeader, 20); #ifdef E1K_WITH_TXD_CACHE /** The current Saved state version. */ # define E1K_SAVEDSTATE_VERSION 4 /** Saved state version for VirtualBox 4.2 with VLAN tag fields. */ # define E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG 3 #else /* !E1K_WITH_TXD_CACHE */ /** The current Saved state version. */ # define E1K_SAVEDSTATE_VERSION 3 #endif /* !E1K_WITH_TXD_CACHE */ /** Saved state version for VirtualBox 4.1 and earlier. * These did not include VLAN tag fields. */ #define E1K_SAVEDSTATE_VERSION_VBOX_41 2 /** Saved state version for VirtualBox 3.0 and earlier. * This did not include the configuration part nor the E1kEEPROM. */ #define E1K_SAVEDSTATE_VERSION_VBOX_30 1 /** * E1000 shared device state. * * This is shared between ring-0 and ring-3. */ typedef struct E1KSTATE { char szPrf[8]; /**< Log prefix, e.g. E1000#1. */ /** Handle to PCI region \#0, the MMIO region. */ IOMIOPORTHANDLE hMmioRegion; /** Handle to PCI region \#2, the I/O ports. */ IOMIOPORTHANDLE hIoPorts; /** Receive Interrupt Delay Timer. */ TMTIMERHANDLE hRIDTimer; /** Receive Absolute Delay Timer. */ TMTIMERHANDLE hRADTimer; /** Transmit Interrupt Delay Timer. */ TMTIMERHANDLE hTIDTimer; /** Transmit Absolute Delay Timer. */ TMTIMERHANDLE hTADTimer; /** Transmit Delay Timer. */ TMTIMERHANDLE hTXDTimer; /** Late Interrupt Timer. */ TMTIMERHANDLE hIntTimer; /** Link Up(/Restore) Timer. */ TMTIMERHANDLE hLUTimer; /** Transmit task. */ PDMTASKHANDLE hTxTask; /** Critical section - what is it protecting? */ PDMCRITSECT cs; /** RX Critical section. */ PDMCRITSECT csRx; #ifdef E1K_WITH_TX_CS /** TX Critical section. */ PDMCRITSECT csTx; #endif /* E1K_WITH_TX_CS */ /** MAC address obtained from the configuration. */ RTMAC macConfigured; uint16_t u16Padding0; /** EMT: Last time the interrupt was acknowledged. */ uint64_t u64AckedAt; /** All: Used for eliminating spurious interrupts. */ bool fIntRaised; /** EMT: false if the cable is disconnected by the GUI. */ bool fCableConnected; /** true if the device is attached to a driver. */ bool fIsAttached; /** EMT: Compute Ethernet CRC for RX packets. */ bool fEthernetCRC; /** All: throttle interrupts. */ bool fItrEnabled; /** All: throttle RX interrupts. */ bool fItrRxEnabled; /** All: Delay TX interrupts using TIDV/TADV. */ bool fTidEnabled; bool afPadding[2]; /** Link up delay (in milliseconds). */ uint32_t cMsLinkUpDelay; /** All: Device register storage. */ uint32_t auRegs[E1K_NUM_OF_32BIT_REGS]; /** TX/RX: Status LED. */ PDMLED led; /** TX/RX: Number of packet being sent/received to show in debug log. */ uint32_t u32PktNo; /** EMT: Offset of the register to be read via IO. */ uint32_t uSelectedReg; /** EMT: Multicast Table Array. */ uint32_t auMTA[128]; /** EMT: Receive Address registers. */ E1KRA aRecAddr; /** EMT: VLAN filter table array. */ uint32_t auVFTA[128]; /** EMT: Receive buffer size. */ uint16_t u16RxBSize; /** EMT: Locked state -- no state alteration possible. */ bool fLocked; /** EMT: */ bool fDelayInts; /** All: */ bool fIntMaskUsed; /** N/A: */ bool volatile fMaybeOutOfSpace; /** EMT: Gets signalled when more RX descriptors become available. */ SUPSEMEVENT hEventMoreRxDescAvail; #ifdef E1K_WITH_RXD_CACHE /** RX: Fetched RX descriptors. */ E1KRXDESC aRxDescriptors[E1K_RXD_CACHE_SIZE]; //uint64_t aRxDescAddr[E1K_RXD_CACHE_SIZE]; /** RX: Actual number of fetched RX descriptors. */ uint32_t nRxDFetched; /** RX: Index in cache of RX descriptor being processed. */ uint32_t iRxDCurrent; #endif /* E1K_WITH_RXD_CACHE */ /** TX: Context used for TCP segmentation packets. */ E1KTXCTX contextTSE; /** TX: Context used for ordinary packets. */ E1KTXCTX contextNormal; #ifdef E1K_WITH_TXD_CACHE /** TX: Fetched TX descriptors. */ E1KTXDESC aTxDescriptors[E1K_TXD_CACHE_SIZE]; /** TX: Validity of TX descriptors. Set by e1kLocateTxPacket, used by e1kXmitPacket. */ bool afTxDValid[E1K_TXD_CACHE_SIZE]; /** TX: Actual number of fetched TX descriptors. */ uint8_t nTxDFetched; /** TX: Index in cache of TX descriptor being processed. */ uint8_t iTxDCurrent; /** TX: Will this frame be sent as GSO. */ bool fGSO; /** Alignment padding. */ bool fReserved; /** TX: Number of bytes in next packet. */ uint32_t cbTxAlloc; #endif /* E1K_WITH_TXD_CACHE */ /** GSO context. u8Type is set to PDMNETWORKGSOTYPE_INVALID when not * applicable to the current TSE mode. */ PDMNETWORKGSO GsoCtx; /** Scratch space for holding the loopback / fallback scatter / gather * descriptor. */ union { PDMSCATTERGATHER Sg; uint8_t padding[8 * sizeof(RTUINTPTR)]; } uTxFallback; /** TX: Transmit packet buffer use for TSE fallback and loopback. */ uint8_t aTxPacketFallback[E1K_MAX_TX_PKT_SIZE]; /** TX: Number of bytes assembled in TX packet buffer. */ uint16_t u16TxPktLen; /** TX: False will force segmentation in e1000 instead of sending frames as GSO. */ bool fGSOEnabled; /** TX: IP checksum has to be inserted if true. */ bool fIPcsum; /** TX: TCP/UDP checksum has to be inserted if true. */ bool fTCPcsum; /** TX: VLAN tag has to be inserted if true. */ bool fVTag; /** TX: TCI part of VLAN tag to be inserted. */ uint16_t u16VTagTCI; /** TX TSE fallback: Number of payload bytes remaining in TSE context. */ uint32_t u32PayRemain; /** TX TSE fallback: Number of header bytes remaining in TSE context. */ uint16_t u16HdrRemain; /** TX TSE fallback: Flags from template header. */ uint16_t u16SavedFlags; /** TX TSE fallback: Partial checksum from template header. */ uint32_t u32SavedCsum; /** ?: Emulated controller type. */ E1KCHIP eChip; /** EMT: Physical interface emulation. */ PHY phy; #if 0 /** Alignment padding. */ uint8_t Alignment[HC_ARCH_BITS == 64 ? 8 : 4]; #endif STAMCOUNTER StatReceiveBytes; STAMCOUNTER StatTransmitBytes; #if defined(VBOX_WITH_STATISTICS) STAMPROFILEADV StatMMIOReadRZ; STAMPROFILEADV StatMMIOReadR3; STAMPROFILEADV StatMMIOWriteRZ; STAMPROFILEADV StatMMIOWriteR3; STAMPROFILEADV StatEEPROMRead; STAMPROFILEADV StatEEPROMWrite; STAMPROFILEADV StatIOReadRZ; STAMPROFILEADV StatIOReadR3; STAMPROFILEADV StatIOWriteRZ; STAMPROFILEADV StatIOWriteR3; STAMPROFILEADV StatLateIntTimer; STAMCOUNTER StatLateInts; STAMCOUNTER StatIntsRaised; STAMCOUNTER StatIntsPrevented; STAMPROFILEADV StatReceive; STAMPROFILEADV StatReceiveCRC; STAMPROFILEADV StatReceiveFilter; STAMPROFILEADV StatReceiveStore; STAMPROFILEADV StatTransmitRZ; STAMPROFILEADV StatTransmitR3; STAMPROFILE StatTransmitSendRZ; STAMPROFILE StatTransmitSendR3; STAMPROFILE StatRxOverflow; STAMCOUNTER StatRxOverflowWakeupRZ; STAMCOUNTER StatRxOverflowWakeupR3; STAMCOUNTER StatTxDescCtxNormal; STAMCOUNTER StatTxDescCtxTSE; STAMCOUNTER StatTxDescLegacy; STAMCOUNTER StatTxDescData; STAMCOUNTER StatTxDescTSEData; STAMCOUNTER StatTxPathFallback; STAMCOUNTER StatTxPathGSO; STAMCOUNTER StatTxPathRegular; STAMCOUNTER StatPHYAccesses; STAMCOUNTER aStatRegWrites[E1K_NUM_OF_REGS]; STAMCOUNTER aStatRegReads[E1K_NUM_OF_REGS]; #endif /* VBOX_WITH_STATISTICS */ #ifdef E1K_INT_STATS /* Internal stats */ uint64_t u64ArmedAt; uint64_t uStatMaxTxDelay; uint32_t uStatInt; uint32_t uStatIntTry; uint32_t uStatIntLower; uint32_t uStatNoIntICR; int32_t iStatIntLost; int32_t iStatIntLostOne; uint32_t uStatIntIMS; uint32_t uStatIntSkip; uint32_t uStatIntLate; uint32_t uStatIntMasked; uint32_t uStatIntEarly; uint32_t uStatIntRx; uint32_t uStatIntTx; uint32_t uStatIntICS; uint32_t uStatIntRDTR; uint32_t uStatIntRXDMT0; uint32_t uStatIntTXQE; uint32_t uStatTxNoRS; uint32_t uStatTxIDE; uint32_t uStatTxDelayed; uint32_t uStatTxDelayExp; uint32_t uStatTAD; uint32_t uStatTID; uint32_t uStatRAD; uint32_t uStatRID; uint32_t uStatRxFrm; uint32_t uStatTxFrm; uint32_t uStatDescCtx; uint32_t uStatDescDat; uint32_t uStatDescLeg; uint32_t uStatTx1514; uint32_t uStatTx2962; uint32_t uStatTx4410; uint32_t uStatTx5858; uint32_t uStatTx7306; uint32_t uStatTx8754; uint32_t uStatTx16384; uint32_t uStatTx32768; uint32_t uStatTxLarge; uint32_t uStatAlign; #endif /* E1K_INT_STATS */ } E1KSTATE; /** Pointer to the E1000 device state. */ typedef E1KSTATE *PE1KSTATE; /** * E1000 ring-3 device state * * @implements PDMINETWORKDOWN * @implements PDMINETWORKCONFIG * @implements PDMILEDPORTS */ typedef struct E1KSTATER3 { PDMIBASE IBase; PDMINETWORKDOWN INetworkDown; PDMINETWORKCONFIG INetworkConfig; /** LED interface */ PDMILEDPORTS ILeds; /** Attached network driver. */ R3PTRTYPE(PPDMIBASE) pDrvBase; R3PTRTYPE(PPDMILEDCONNECTORS) pLedsConnector; /** Pointer to the shared state. */ R3PTRTYPE(PE1KSTATE) pShared; /** Device instance. */ PPDMDEVINSR3 pDevInsR3; /** Attached network driver. */ PPDMINETWORKUPR3 pDrvR3; /** The scatter / gather buffer used for the current outgoing packet. */ R3PTRTYPE(PPDMSCATTERGATHER) pTxSgR3; /** EMT: EEPROM emulation */ E1kEEPROM eeprom; } E1KSTATER3; /** Pointer to the E1000 ring-3 device state. */ typedef E1KSTATER3 *PE1KSTATER3; /** * E1000 ring-0 device state */ typedef struct E1KSTATER0 { /** Device instance. */ PPDMDEVINSR0 pDevInsR0; /** Attached network driver. */ PPDMINETWORKUPR0 pDrvR0; /** The scatter / gather buffer used for the current outgoing packet - R0. */ R0PTRTYPE(PPDMSCATTERGATHER) pTxSgR0; } E1KSTATER0; /** Pointer to the E1000 ring-0 device state. */ typedef E1KSTATER0 *PE1KSTATER0; /** * E1000 raw-mode device state */ typedef struct E1KSTATERC { /** Device instance. */ PPDMDEVINSRC pDevInsRC; /** Attached network driver. */ PPDMINETWORKUPRC pDrvRC; /** The scatter / gather buffer used for the current outgoing packet. */ RCPTRTYPE(PPDMSCATTERGATHER) pTxSgRC; } E1KSTATERC; /** Pointer to the E1000 raw-mode device state. */ typedef E1KSTATERC *PE1KSTATERC; /** @def PE1KSTATECC * Pointer to the instance data for the current context. */ #ifdef IN_RING3 typedef E1KSTATER3 E1KSTATECC; typedef PE1KSTATER3 PE1KSTATECC; #elif defined(IN_RING0) typedef E1KSTATER0 E1KSTATECC; typedef PE1KSTATER0 PE1KSTATECC; #elif defined(IN_RC) typedef E1KSTATERC E1KSTATECC; typedef PE1KSTATERC PE1KSTATECC; #else # error "Not IN_RING3, IN_RING0 or IN_RC" #endif #ifndef VBOX_DEVICE_STRUCT_TESTCASE /* Forward declarations ******************************************************/ static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread); /** * E1000 register read handler. */ typedef int (FNE1KREGREAD)(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value); /** * E1000 register write handler. */ typedef int (FNE1KREGWRITE)(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t u32Value); static FNE1KREGREAD e1kRegReadUnimplemented; static FNE1KREGWRITE e1kRegWriteUnimplemented; static FNE1KREGREAD e1kRegReadAutoClear; static FNE1KREGREAD e1kRegReadDefault; static FNE1KREGWRITE e1kRegWriteDefault; #if 0 /* unused */ static FNE1KREGREAD e1kRegReadCTRL; #endif static FNE1KREGWRITE e1kRegWriteCTRL; static FNE1KREGREAD e1kRegReadEECD; static FNE1KREGWRITE e1kRegWriteEECD; static FNE1KREGWRITE e1kRegWriteEERD; static FNE1KREGWRITE e1kRegWriteMDIC; static FNE1KREGREAD e1kRegReadICR; static FNE1KREGWRITE e1kRegWriteICR; static FNE1KREGREAD e1kRegReadICS; static FNE1KREGWRITE e1kRegWriteICS; static FNE1KREGWRITE e1kRegWriteIMS; static FNE1KREGWRITE e1kRegWriteIMC; static FNE1KREGWRITE e1kRegWriteRCTL; static FNE1KREGWRITE e1kRegWritePBA; static FNE1KREGWRITE e1kRegWriteRDT; static FNE1KREGWRITE e1kRegWriteRDTR; static FNE1KREGWRITE e1kRegWriteTDT; static FNE1KREGREAD e1kRegReadMTA; static FNE1KREGWRITE e1kRegWriteMTA; static FNE1KREGREAD e1kRegReadRA; static FNE1KREGWRITE e1kRegWriteRA; static FNE1KREGREAD e1kRegReadVFTA; static FNE1KREGWRITE e1kRegWriteVFTA; /** * Register map table. * * Override pfnRead and pfnWrite to get register-specific behavior. */ static const struct E1kRegMap_st { /** Register offset in the register space. */ uint32_t offset; /** Size in bytes. Registers of size > 4 are in fact tables. */ uint32_t size; /** Readable bits. */ uint32_t readable; /** Writable bits. */ uint32_t writable; /** Read callback. */ FNE1KREGREAD *pfnRead; /** Write callback. */ FNE1KREGWRITE *pfnWrite; /** Abbreviated name. */ const char *abbrev; /** Full name. */ const char *name; } g_aE1kRegMap[E1K_NUM_OF_REGS] = { /* offset size read mask write mask read callback write callback abbrev full name */ /*------- ------- ---------- ---------- ----------------------- ------------------------ ---------- ------------------------------*/ { 0x00000, 0x00004, 0xDBF31BE9, 0xDBF31BE9, e1kRegReadDefault , e1kRegWriteCTRL , "CTRL" , "Device Control" }, { 0x00008, 0x00004, 0x0000FDFF, 0x00000000, e1kRegReadDefault , e1kRegWriteUnimplemented, "STATUS" , "Device Status" }, { 0x00010, 0x00004, 0x000027F0, 0x00000070, e1kRegReadEECD , e1kRegWriteEECD , "EECD" , "EEPROM/Flash Control/Data" }, { 0x00014, 0x00004, 0xFFFFFF10, 0xFFFFFF00, e1kRegReadDefault , e1kRegWriteEERD , "EERD" , "EEPROM Read" }, { 0x00018, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CTRL_EXT", "Extended Device Control" }, { 0x0001c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FLA" , "Flash Access (N/A)" }, { 0x00020, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteMDIC , "MDIC" , "MDI Control" }, { 0x00028, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAL" , "Flow Control Address Low" }, { 0x0002c, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCAH" , "Flow Control Address High" }, { 0x00030, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCT" , "Flow Control Type" }, { 0x00038, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "VET" , "VLAN EtherType" }, { 0x000c0, 0x00004, 0x0001F6DF, 0x0001F6DF, e1kRegReadICR , e1kRegWriteICR , "ICR" , "Interrupt Cause Read" }, { 0x000c4, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "ITR" , "Interrupt Throttling" }, { 0x000c8, 0x00004, 0x0001F6DF, 0xFFFFFFFF, e1kRegReadICS , e1kRegWriteICS , "ICS" , "Interrupt Cause Set" }, { 0x000d0, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteIMS , "IMS" , "Interrupt Mask Set/Read" }, { 0x000d8, 0x00004, 0x00000000, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteIMC , "IMC" , "Interrupt Mask Clear" }, { 0x00100, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteRCTL , "RCTL" , "Receive Control" }, { 0x00170, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCTTV" , "Flow Control Transmit Timer Value" }, { 0x00178, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXCW" , "Transmit Configuration Word (N/A)" }, { 0x00180, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXCW" , "Receive Configuration Word (N/A)" }, { 0x00400, 0x00004, 0x017FFFFA, 0x017FFFFA, e1kRegReadDefault , e1kRegWriteDefault , "TCTL" , "Transmit Control" }, { 0x00410, 0x00004, 0x3FFFFFFF, 0x3FFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIPG" , "Transmit IPG" }, { 0x00458, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "AIFS" , "Adaptive IFS Throttle - AIT" }, { 0x00e00, 0x00004, 0xCFCFCFCF, 0xCFCFCFCF, e1kRegReadDefault , e1kRegWriteDefault , "LEDCTL" , "LED Control" }, { 0x01000, 0x00004, 0xFFFF007F, 0x0000007F, e1kRegReadDefault , e1kRegWritePBA , "PBA" , "Packet Buffer Allocation" }, { 0x02160, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTL" , "Flow Control Receive Threshold Low" }, { 0x02168, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRTH" , "Flow Control Receive Threshold High" }, { 0x02410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFH" , "Receive Data FIFO Head" }, { 0x02418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFT" , "Receive Data FIFO Tail" }, { 0x02420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFHS" , "Receive Data FIFO Head Saved Register" }, { 0x02428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFTS" , "Receive Data FIFO Tail Saved Register" }, { 0x02430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RDFPC" , "Receive Data FIFO Packet Count" }, { 0x02800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAL" , "Receive Descriptor Base Low" }, { 0x02804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDBAH" , "Receive Descriptor Base High" }, { 0x02808, 0x00004, 0x000FFF80, 0x000FFF80, e1kRegReadDefault , e1kRegWriteDefault , "RDLEN" , "Receive Descriptor Length" }, { 0x02810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RDH" , "Receive Descriptor Head" }, { 0x02818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDT , "RDT" , "Receive Descriptor Tail" }, { 0x02820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteRDTR , "RDTR" , "Receive Delay Timer" }, { 0x02828, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXDCTL" , "Receive Descriptor Control" }, { 0x0282c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "RADV" , "Receive Interrupt Absolute Delay Timer" }, { 0x02c00, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RSRPD" , "Receive Small Packet Detect Interrupt" }, { 0x03000, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TXDMAC" , "TX DMA Control (N/A)" }, { 0x03410, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFH" , "Transmit Data FIFO Head" }, { 0x03418, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFT" , "Transmit Data FIFO Tail" }, { 0x03420, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFHS" , "Transmit Data FIFO Head Saved Register" }, { 0x03428, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFTS" , "Transmit Data FIFO Tail Saved Register" }, { 0x03430, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TDFPC" , "Transmit Data FIFO Packet Count" }, { 0x03800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAL" , "Transmit Descriptor Base Low" }, { 0x03804, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDBAH" , "Transmit Descriptor Base High" }, { 0x03808, 0x00004, 0x000FFF80, 0x000FFF80, e1kRegReadDefault , e1kRegWriteDefault , "TDLEN" , "Transmit Descriptor Length" }, { 0x03810, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TDH" , "Transmit Descriptor Head" }, { 0x03818, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteTDT , "TDT" , "Transmit Descriptor Tail" }, { 0x03820, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TIDV" , "Transmit Interrupt Delay Value" }, { 0x03828, 0x00004, 0xFF3F3F3F, 0xFF3F3F3F, e1kRegReadDefault , e1kRegWriteDefault , "TXDCTL" , "Transmit Descriptor Control" }, { 0x0382c, 0x00004, 0x0000FFFF, 0x0000FFFF, e1kRegReadDefault , e1kRegWriteDefault , "TADV" , "Transmit Absolute Interrupt Delay Timer" }, { 0x03830, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "TSPMT" , "TCP Segmentation Pad and Threshold" }, { 0x04000, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CRCERRS" , "CRC Error Count" }, { 0x04004, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ALGNERRC", "Alignment Error Count" }, { 0x04008, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SYMERRS" , "Symbol Error Count" }, { 0x0400c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RXERRC" , "RX Error Count" }, { 0x04010, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MPC" , "Missed Packets Count" }, { 0x04014, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SCC" , "Single Collision Count" }, { 0x04018, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "ECOL" , "Excessive Collisions Count" }, { 0x0401c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MCC" , "Multiple Collision Count" }, { 0x04020, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "LATECOL" , "Late Collisions Count" }, { 0x04028, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "COLC" , "Collision Count" }, { 0x04030, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "DC" , "Defer Count" }, { 0x04034, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "TNCRS" , "Transmit - No CRS" }, { 0x04038, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "SEC" , "Sequence Error Count" }, { 0x0403c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "CEXTERR" , "Carrier Extension Error Count" }, { 0x04040, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RLEC" , "Receive Length Error Count" }, { 0x04048, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONRXC" , "XON Received Count" }, { 0x0404c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XONTXC" , "XON Transmitted Count" }, { 0x04050, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFRXC" , "XOFF Received Count" }, { 0x04054, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "XOFFTXC" , "XOFF Transmitted Count" }, { 0x04058, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FCRUC" , "FC Received Unsupported Count" }, { 0x0405c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC64" , "Packets Received (64 Bytes) Count" }, { 0x04060, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC127" , "Packets Received (65-127 Bytes) Count" }, { 0x04064, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC255" , "Packets Received (128-255 Bytes) Count" }, { 0x04068, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC511" , "Packets Received (256-511 Bytes) Count" }, { 0x0406c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1023" , "Packets Received (512-1023 Bytes) Count" }, { 0x04070, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PRC1522" , "Packets Received (1024-Max Bytes)" }, { 0x04074, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPRC" , "Good Packets Received Count" }, { 0x04078, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPRC" , "Broadcast Packets Received Count" }, { 0x0407c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPRC" , "Multicast Packets Received Count" }, { 0x04080, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GPTC" , "Good Packets Transmitted Count" }, { 0x04088, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCL" , "Good Octets Received Count (Low)" }, { 0x0408c, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GORCH" , "Good Octets Received Count (Hi)" }, { 0x04090, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCL" , "Good Octets Transmitted Count (Low)" }, { 0x04094, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "GOTCH" , "Good Octets Transmitted Count (Hi)" }, { 0x040a0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RNBC" , "Receive No Buffers Count" }, { 0x040a4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RUC" , "Receive Undersize Count" }, { 0x040a8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RFC" , "Receive Fragment Count" }, { 0x040ac, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "ROC" , "Receive Oversize Count" }, { 0x040b0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "RJC" , "Receive Jabber Count" }, { 0x040b4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPRC" , "Management Packets Received Count" }, { 0x040b8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPDC" , "Management Packets Dropped Count" }, { 0x040bc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "MGTPTC" , "Management Pkts Transmitted Count" }, { 0x040c0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORL" , "Total Octets Received (Lo)" }, { 0x040c4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TORH" , "Total Octets Received (Hi)" }, { 0x040c8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTL" , "Total Octets Transmitted (Lo)" }, { 0x040cc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TOTH" , "Total Octets Transmitted (Hi)" }, { 0x040d0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPR" , "Total Packets Received" }, { 0x040d4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TPT" , "Total Packets Transmitted" }, { 0x040d8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC64" , "Packets Transmitted (64 Bytes) Count" }, { 0x040dc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC127" , "Packets Transmitted (65-127 Bytes) Count" }, { 0x040e0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC255" , "Packets Transmitted (128-255 Bytes) Count" }, { 0x040e4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC511" , "Packets Transmitted (256-511 Bytes) Count" }, { 0x040e8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1023" , "Packets Transmitted (512-1023 Bytes) Count" }, { 0x040ec, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "PTC1522" , "Packets Transmitted (1024 Bytes or Greater) Count" }, { 0x040f0, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "MPTC" , "Multicast Packets Transmitted Count" }, { 0x040f4, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "BPTC" , "Broadcast Packets Transmitted Count" }, { 0x040f8, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTC" , "TCP Segmentation Context Transmitted Count" }, { 0x040fc, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadAutoClear , e1kRegWriteUnimplemented, "TSCTFC" , "TCP Segmentation Context Tx Fail Count" }, { 0x05000, 0x00004, 0x000007FF, 0x000007FF, e1kRegReadDefault , e1kRegWriteDefault , "RXCSUM" , "Receive Checksum Control" }, { 0x05800, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUC" , "Wakeup Control" }, { 0x05808, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUFC" , "Wakeup Filter Control" }, { 0x05810, 0x00004, 0xFFFFFFFF, 0x00000000, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUS" , "Wakeup Status" }, { 0x05820, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadDefault , e1kRegWriteDefault , "MANC" , "Management Control" }, { 0x05838, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IPAV" , "IP Address Valid" }, { 0x05900, 0x00004, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPL" , "Wakeup Packet Length" }, { 0x05200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA" , "Multicast Table Array (n)" }, { 0x05400, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA" , "Receive Address (64-bit) (n)" }, { 0x05600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA" , "VLAN Filter Table Array (n)" }, { 0x05840, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP4AT" , "IPv4 Address Table" }, { 0x05880, 0x00010, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "IP6AT" , "IPv6 Address Table" }, { 0x05a00, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "WUPM" , "Wakeup Packet Memory" }, { 0x05f00, 0x0001c, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFLT" , "Flexible Filter Length Table" }, { 0x09000, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFMT" , "Flexible Filter Mask Table" }, { 0x09800, 0x003fc, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "FFVT" , "Flexible Filter Value Table" }, { 0x10000, 0x10000, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadUnimplemented, e1kRegWriteUnimplemented, "PBM" , "Packet Buffer Memory (n)" }, { 0x00040, 0x00080, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadRA , e1kRegWriteRA , "RA82542" , "Receive Address (64-bit) (n) (82542)" }, { 0x00200, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadMTA , e1kRegWriteMTA , "MTA82542", "Multicast Table Array (n) (82542)" }, { 0x00600, 0x00200, 0xFFFFFFFF, 0xFFFFFFFF, e1kRegReadVFTA , e1kRegWriteVFTA , "VFTA82542", "VLAN Filter Table Array (n) (82542)" } }; #ifdef LOG_ENABLED /** * Convert U32 value to hex string. Masked bytes are replaced with dots. * * @remarks The mask has half-byte byte (not bit) granularity (e.g. 0000000F). * * @returns The buffer. * * @param u32 The word to convert into string. * @param mask Selects which bytes to convert. * @param buf Where to put the result. */ static char *e1kU32toHex(uint32_t u32, uint32_t mask, char *buf) { for (char *ptr = buf + 7; ptr >= buf; --ptr, u32 >>=4, mask >>=4) { if (mask & 0xF) *ptr = (u32 & 0xF) + ((u32 & 0xF) > 9 ? '7' : '0'); else *ptr = '.'; } buf[8] = 0; return buf; } /** * Returns timer name for debug purposes. * * @returns The timer name. * * @param pThis The device state structure. * @param hTimer The timer to name. */ DECLINLINE(const char *) e1kGetTimerName(PE1KSTATE pThis, TMTIMERHANDLE hTimer) { if (hTimer == pThis->hTIDTimer) return "TID"; if (hTimer == pThis->hTADTimer) return "TAD"; if (hTimer == pThis->hRIDTimer) return "RID"; if (hTimer == pThis->hRADTimer) return "RAD"; if (hTimer == pThis->hIntTimer) return "Int"; if (hTimer == pThis->hTXDTimer) return "TXD"; if (hTimer == pThis->hLUTimer) return "LinkUp"; return "unknown"; } #endif /* LOG_ENABLED */ /** * Arm a timer. * * @param pDevIns The device instance. * @param pThis Pointer to the device state structure. * @param hTimer The timer to arm. * @param uExpireIn Expiration interval in microseconds. */ DECLINLINE(void) e1kArmTimer(PPDMDEVINS pDevIns, PE1KSTATE pThis, TMTIMERHANDLE hTimer, uint32_t uExpireIn) { if (pThis->fLocked) return; E1kLog2(("%s Arming %s timer to fire in %d usec...\n", pThis->szPrf, e1kGetTimerName(pThis, hTimer), uExpireIn)); int rc = PDMDevHlpTimerSetMicro(pDevIns, hTimer, uExpireIn); AssertRC(rc); } #ifdef IN_RING3 /** * Cancel a timer. * * @param pDevIns The device instance. * @param pThis Pointer to the device state structure. * @param pTimer Pointer to the timer. */ DECLINLINE(void) e1kCancelTimer(PPDMDEVINS pDevIns, PE1KSTATE pThis, TMTIMERHANDLE hTimer) { E1kLog2(("%s Stopping %s timer...\n", pThis->szPrf, e1kGetTimerName(pThis, hTimer))); int rc = PDMDevHlpTimerStop(pDevIns, hTimer); if (RT_FAILURE(rc)) E1kLog2(("%s e1kCancelTimer: TMTimerStop(%s) failed with %Rrc\n", pThis->szPrf, e1kGetTimerName(pThis, hTimer), rc)); RT_NOREF_PV(pThis); } #endif /* IN_RING3 */ #define e1kCsEnter(ps, rcBusy) PDMDevHlpCritSectEnter(pDevIns, &(ps)->cs, (rcBusy)) #define e1kCsEnterReturn(ps, rcBusy) do { \ int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &(ps)->cs, (rcBusy)); \ if (rcLock == VINF_SUCCESS) { /* likely */ } \ else return rcLock; \ } while (0) #define e1kR3CsEnterAsserted(ps) do { \ int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &(ps)->cs, VERR_SEM_BUSY); \ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &(ps)->cs, rcLock); \ } while (0) #define e1kCsLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &(ps)->cs) #define e1kCsRxEnter(ps, rcBusy) PDMDevHlpCritSectEnter(pDevIns, &(ps)->csRx, (rcBusy)) #define e1kCsRxEnterReturn(ps) do { \ int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &(ps)->csRx, VERR_SEM_BUSY); \ AssertRCReturn(rcLock, rcLock); \ } while (0) #define e1kR3CsRxEnterAsserted(ps) do { \ int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &(ps)->csRx, VERR_SEM_BUSY); \ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &(ps)->csRx, rcLock); \ } while (0) #define e1kCsRxLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &(ps)->csRx) #define e1kCsRxIsOwner(ps) PDMDevHlpCritSectIsOwner(pDevIns, &(ps)->csRx) #ifndef E1K_WITH_TX_CS # define e1kCsTxEnter(ps, rcBusy) VINF_SUCCESS # define e1kR3CsTxEnterAsserted(ps) do { } while (0) # define e1kCsTxLeave(ps) do { } while (0) #else /* E1K_WITH_TX_CS */ # define e1kCsTxEnter(ps, rcBusy) PDMDevHlpCritSectEnter(pDevIns, &(ps)->csTx, (rcBusy)) # define e1kR3CsTxEnterAsserted(ps) do { \ int const rcLock = PDMDevHlpCritSectEnter(pDevIns, &(ps)->csTx, VERR_SEM_BUSY); \ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &(ps)->csTx, rcLock); \ } while (0) # define e1kCsTxLeave(ps) PDMDevHlpCritSectLeave(pDevIns, &(ps)->csTx) # define e1kCsTxIsOwner(ps) PDMDevHlpCritSectIsOwner(pDevIns, &(ps)->csTx) #endif /* E1K_WITH_TX_CS */ #ifdef E1K_WITH_TXD_CACHE /* * Transmit Descriptor Register Context */ struct E1kTxDContext { uint32_t tdlen; uint32_t tdh; uint32_t tdt; uint8_t nextPacket; }; typedef struct E1kTxDContext E1KTXDC, *PE1KTXDC; DECLINLINE(bool) e1kUpdateTxDContext(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pContext) { Assert(e1kCsTxIsOwner(pThis)); if (!e1kCsTxIsOwner(pThis)) { memset(pContext, 0, sizeof(E1KTXDC)); return false; } pContext->tdlen = TDLEN; pContext->tdh = TDH; pContext->tdt = TDT; uint32_t cTxRingSize = pContext->tdlen / sizeof(E1KTXDESC); #ifdef DEBUG if (pContext->tdh >= cTxRingSize) { Log(("%s e1kUpdateTxDContext: will return false because TDH too big (%u >= %u)\n", pThis->szPrf, pContext->tdh, cTxRingSize)); return VINF_SUCCESS; } if (pContext->tdt >= cTxRingSize) { Log(("%s e1kUpdateTxDContext: will return false because TDT too big (%u >= %u)\n", pThis->szPrf, pContext->tdt, cTxRingSize)); return VINF_SUCCESS; } #endif /* DEBUG */ return pContext->tdh < cTxRingSize && pContext->tdt < cTxRingSize; } #endif /* E1K_WITH_TXD_CACHE */ #ifdef E1K_WITH_RXD_CACHE /* * Receive Descriptor Register Context */ struct E1kRxDContext { uint32_t rdlen; uint32_t rdh; uint32_t rdt; }; typedef struct E1kRxDContext E1KRXDC, *PE1KRXDC; DECLINLINE(bool) e1kUpdateRxDContext(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pContext, const char *pcszCallee) { Assert(e1kCsRxIsOwner(pThis)); if (!e1kCsRxIsOwner(pThis)) return false; pContext->rdlen = RDLEN; pContext->rdh = RDH; pContext->rdt = RDT; uint32_t cRxRingSize = pContext->rdlen / sizeof(E1KRXDESC); /* * Note that the checks for RDT are a bit different. Some guests, OS/2 for * example, intend to use all descriptors in RX ring, so they point RDT * right beyond the last descriptor in the ring. While this is not * acceptable for other registers, it works out fine for RDT. */ #ifdef DEBUG if (pContext->rdh >= cRxRingSize) { Log(("%s e1kUpdateRxDContext: called from %s, will return false because RDH too big (%u >= %u)\n", pThis->szPrf, pcszCallee, pContext->rdh, cRxRingSize)); return VINF_SUCCESS; } if (pContext->rdt > cRxRingSize) { Log(("%s e1kUpdateRxDContext: called from %s, will return false because RDT too big (%u > %u)\n", pThis->szPrf, pcszCallee, pContext->rdt, cRxRingSize)); return VINF_SUCCESS; } #else /* !DEBUG */ RT_NOREF(pcszCallee); #endif /* !DEBUG */ return pContext->rdh < cRxRingSize && pContext->rdt <= cRxRingSize; // && (RCTL & RCTL_EN); } #endif /* E1K_WITH_RXD_CACHE */ /** * Wakeup the RX thread. */ static void e1kWakeupReceive(PPDMDEVINS pDevIns, PE1KSTATE pThis) { if ( pThis->fMaybeOutOfSpace && pThis->hEventMoreRxDescAvail != NIL_SUPSEMEVENT) { STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatRxOverflowWakeup)); E1kLog(("%s Waking up Out-of-RX-space semaphore\n", pThis->szPrf)); int rc = PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEventMoreRxDescAvail); AssertRC(rc); } } #ifdef IN_RING3 /** * Hardware reset. Revert all registers to initial values. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. */ static void e1kR3HardReset(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC) { E1kLog(("%s Hard reset triggered\n", pThis->szPrf)); /* No interrupts should survive device reset, see @bugref(9556). */ if (pThis->fIntRaised) { /* Lower(0) INTA(0) */ PDMDevHlpPCISetIrq(pDevIns, 0, 0); pThis->fIntRaised = false; E1kLog(("%s e1kR3HardReset: Lowered IRQ: ICR=%08x\n", pThis->szPrf, ICR)); } memset(pThis->auRegs, 0, sizeof(pThis->auRegs)); memset(pThis->aRecAddr.au32, 0, sizeof(pThis->aRecAddr.au32)); # ifdef E1K_INIT_RA0 memcpy(pThis->aRecAddr.au32, pThis->macConfigured.au8, sizeof(pThis->macConfigured.au8)); pThis->aRecAddr.array[0].ctl |= RA_CTL_AV; # endif /* E1K_INIT_RA0 */ STATUS = 0x0081; /* SPEED=10b (1000 Mb/s), FD=1b (Full Duplex) */ EECD = 0x0100; /* EE_PRES=1b (EEPROM present) */ CTRL = 0x0a09; /* FRCSPD=1b SPEED=10b LRST=1b FD=1b */ TSPMT = 0x01000400;/* TSMT=0400h TSPBP=0100h */ Assert(GET_BITS(RCTL, BSIZE) == 0); pThis->u16RxBSize = 2048; uint16_t u16LedCtl = 0x0602; /* LED0/LINK_UP#, LED2/LINK100# */ pThisCC->eeprom.readWord(0x2F, &u16LedCtl); /* Read LEDCTL defaults from EEPROM */ LEDCTL = 0x07008300 | (((uint32_t)u16LedCtl & 0xCF00) << 8) | (u16LedCtl & 0xCF); /* Only LED0 and LED2 defaults come from EEPROM */ /* Reset promiscuous mode */ if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, false); # ifdef E1K_WITH_TXD_CACHE e1kR3CsTxEnterAsserted(pThis); pThis->nTxDFetched = 0; pThis->iTxDCurrent = 0; pThis->fGSO = false; pThis->cbTxAlloc = 0; e1kCsTxLeave(pThis); # endif /* E1K_WITH_TXD_CACHE */ # ifdef E1K_WITH_RXD_CACHE e1kR3CsRxEnterAsserted(pThis); pThis->iRxDCurrent = pThis->nRxDFetched = 0; e1kCsRxLeave(pThis); # endif /* E1K_WITH_RXD_CACHE */ # ifdef E1K_LSC_ON_RESET E1kLog(("%s Will trigger LSC in %d seconds...\n", pThis->szPrf, pThis->cMsLinkUpDelay / 1000)); e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, pThis->cMsLinkUpDelay * 1000); # endif /* E1K_LSC_ON_RESET */ } #endif /* IN_RING3 */ /** * Compute Internet checksum. * * @remarks Refer to http://www.netfor2.com/checksum.html for short intro. * * @param pThis The device state structure. * @param cpPacket The packet. * @param cb The size of the packet. * @param pszText A string denoting direction of packet transfer. * * @return The 1's complement of the 1's complement sum. * * @thread E1000_TX */ static uint16_t e1kCSum16(const void *pvBuf, size_t cb) { uint32_t csum = 0; uint16_t *pu16 = (uint16_t *)pvBuf; while (cb > 1) { csum += *pu16++; cb -= 2; } if (cb) csum += *(uint8_t*)pu16; while (csum >> 16) csum = (csum >> 16) + (csum & 0xFFFF); Assert(csum < 65536); return (uint16_t)~csum; } /** * Dump a packet to debug log. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param cpPacket The packet. * @param cb The size of the packet. * @param pszText A string denoting direction of packet transfer. * @thread E1000_TX */ DECLINLINE(void) e1kPacketDump(PPDMDEVINS pDevIns, PE1KSTATE pThis, const uint8_t *cpPacket, size_t cb, const char *pszText) { #ifdef DEBUG if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS)) { Log4(("%s --- %s packet #%d: %RTmac => %RTmac (%d bytes) ---\n", pThis->szPrf, pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cb)); if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD) { Log4(("%s --- IPv6: %RTnaipv6 => %RTnaipv6\n", pThis->szPrf, cpPacket+14+8, cpPacket+14+24)); if (*(cpPacket+14+6) == 0x6) Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf, ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8)))); } else if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x800) { Log4(("%s --- IPv4: %RTnaipv4 => %RTnaipv4\n", pThis->szPrf, *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16))); if (*(cpPacket+14+6) == 0x6) Log4(("%s --- TCP: seq=%x ack=%x\n", pThis->szPrf, ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8)))); } E1kLog3(("%.*Rhxd\n", cb, cpPacket)); e1kCsLeave(pThis); } #else if (RT_LIKELY(e1kCsEnter(pThis, VERR_SEM_BUSY) == VINF_SUCCESS)) { if (ntohs(*(uint16_t*)(cpPacket+12)) == 0x86DD) E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv6 => %RTnaipv6, seq=%x ack=%x\n", pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, cpPacket+14+8, cpPacket+14+24, ntohl(*(uint32_t*)(cpPacket+14+40+4)), ntohl(*(uint32_t*)(cpPacket+14+40+8)))); else E1kLogRel(("E1000: %s packet #%d, %RTmac => %RTmac, %RTnaipv4 => %RTnaipv4, seq=%x ack=%x\n", pszText, ++pThis->u32PktNo, cpPacket+6, cpPacket, *(uint32_t*)(cpPacket+14+12), *(uint32_t*)(cpPacket+14+16), ntohl(*(uint32_t*)(cpPacket+14+20+4)), ntohl(*(uint32_t*)(cpPacket+14+20+8)))); e1kCsLeave(pThis); } RT_NOREF2(cb, pszText); #endif } /** * Determine the type of transmit descriptor. * * @returns Descriptor type. See E1K_DTYP_XXX defines. * * @param pDesc Pointer to descriptor union. * @thread E1000_TX */ DECLINLINE(int) e1kGetDescType(E1KTXDESC *pDesc) { if (pDesc->legacy.cmd.fDEXT) return pDesc->context.dw2.u4DTYP; return E1K_DTYP_LEGACY; } #ifdef E1K_WITH_RXD_CACHE /** * Return the number of RX descriptor that belong to the hardware. * * @returns the number of available descriptors in RX ring. * @param pRxdc The receive descriptor register context. * @thread ??? */ DECLINLINE(uint32_t) e1kGetRxLen(PE1KRXDC pRxdc) { /** * Make sure RDT won't change during computation. EMT may modify RDT at * any moment. */ uint32_t rdt = pRxdc->rdt; return (pRxdc->rdh > rdt ? pRxdc->rdlen/sizeof(E1KRXDESC) : 0) + rdt - pRxdc->rdh; } DECLINLINE(unsigned) e1kRxDInCache(PE1KSTATE pThis) { return pThis->nRxDFetched > pThis->iRxDCurrent ? pThis->nRxDFetched - pThis->iRxDCurrent : 0; } DECLINLINE(unsigned) e1kRxDIsCacheEmpty(PE1KSTATE pThis) { return pThis->iRxDCurrent >= pThis->nRxDFetched; } /** * Load receive descriptors from guest memory. The caller needs to be in Rx * critical section. * * We need two physical reads in case the tail wrapped around the end of RX * descriptor ring. * * @returns the actual number of descriptors fetched. * @param pDevIns The device instance. * @param pThis The device state structure. * @thread EMT, RX */ DECLINLINE(unsigned) e1kRxDPrefetch(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc) { E1kLog3(("%s e1kRxDPrefetch: RDH=%x RDT=%x RDLEN=%x " "iRxDCurrent=%x nRxDFetched=%x\n", pThis->szPrf, pRxdc->rdh, pRxdc->rdt, pRxdc->rdlen, pThis->iRxDCurrent, pThis->nRxDFetched)); /* We've already loaded pThis->nRxDFetched descriptors past RDH. */ unsigned nDescsAvailable = e1kGetRxLen(pRxdc) - e1kRxDInCache(pThis); unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_RXD_CACHE_SIZE - pThis->nRxDFetched); unsigned nDescsTotal = pRxdc->rdlen / sizeof(E1KRXDESC); Assert(nDescsTotal != 0); if (nDescsTotal == 0) return 0; unsigned nFirstNotLoaded = (pRxdc->rdh + e1kRxDInCache(pThis)) % nDescsTotal; unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded); E1kLog3(("%s e1kRxDPrefetch: nDescsAvailable=%u nDescsToFetch=%u " "nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n", pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal, nFirstNotLoaded, nDescsInSingleRead)); if (nDescsToFetch == 0) return 0; E1KRXDESC* pFirstEmptyDesc = &pThis->aRxDescriptors[pThis->nRxDFetched]; PDMDevHlpPCIPhysRead(pDevIns, ((uint64_t)RDBAH << 32) + RDBAL + nFirstNotLoaded * sizeof(E1KRXDESC), pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KRXDESC)); // uint64_t addrBase = ((uint64_t)RDBAH << 32) + RDBAL; // unsigned i, j; // for (i = pThis->nRxDFetched; i < pThis->nRxDFetched + nDescsInSingleRead; ++i) // { // pThis->aRxDescAddr[i] = addrBase + (nFirstNotLoaded + i - pThis->nRxDFetched) * sizeof(E1KRXDESC); // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i])); // } E1kLog3(("%s Fetched %u RX descriptors at %08x%08x(0x%x), RDLEN=%08x, RDH=%08x, RDT=%08x\n", pThis->szPrf, nDescsInSingleRead, RDBAH, RDBAL + pRxdc->rdh * sizeof(E1KRXDESC), nFirstNotLoaded, pRxdc->rdlen, pRxdc->rdh, pRxdc->rdt)); if (nDescsToFetch > nDescsInSingleRead) { PDMDevHlpPCIPhysRead(pDevIns, ((uint64_t)RDBAH << 32) + RDBAL, pFirstEmptyDesc + nDescsInSingleRead, (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KRXDESC)); // Assert(i == pThis->nRxDFetched + nDescsInSingleRead); // for (j = 0; i < pThis->nRxDFetched + nDescsToFetch; ++i, ++j) // { // pThis->aRxDescAddr[i] = addrBase + j * sizeof(E1KRXDESC); // E1kLog3(("%s aRxDescAddr[%d] = %p\n", pThis->szPrf, i, pThis->aRxDescAddr[i])); // } E1kLog3(("%s Fetched %u RX descriptors at %08x%08x\n", pThis->szPrf, nDescsToFetch - nDescsInSingleRead, RDBAH, RDBAL)); } pThis->nRxDFetched += nDescsToFetch; return nDescsToFetch; } # ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */ /** * Dump receive descriptor to debug log. * * @param pThis The device state structure. * @param pDesc Pointer to the descriptor. * @thread E1000_RX */ static void e1kPrintRDesc(PE1KSTATE pThis, E1KRXDESC *pDesc) { RT_NOREF2(pThis, pDesc); E1kLog2(("%s <-- Receive Descriptor (%d bytes):\n", pThis->szPrf, pDesc->u16Length)); E1kLog2((" Address=%16LX Length=%04X Csum=%04X\n", pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum)); E1kLog2((" STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x\n", pDesc->status.fPIF ? "PIF" : "pif", pDesc->status.fIPCS ? "IPCS" : "ipcs", pDesc->status.fTCPCS ? "TCPCS" : "tcpcs", pDesc->status.fVP ? "VP" : "vp", pDesc->status.fIXSM ? "IXSM" : "ixsm", pDesc->status.fEOP ? "EOP" : "eop", pDesc->status.fDD ? "DD" : "dd", pDesc->status.fRXE ? "RXE" : "rxe", pDesc->status.fIPE ? "IPE" : "ipe", pDesc->status.fTCPE ? "TCPE" : "tcpe", pDesc->status.fCE ? "CE" : "ce", E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->status.u16Special), E1K_SPEC_PRI(pDesc->status.u16Special))); } # endif /* IN_RING3 */ #endif /* E1K_WITH_RXD_CACHE */ /** * Dump transmit descriptor to debug log. * * @param pThis The device state structure. * @param pDesc Pointer to descriptor union. * @param pszDir A string denoting direction of descriptor transfer * @thread E1000_TX */ static void e1kPrintTDesc(PE1KSTATE pThis, E1KTXDESC *pDesc, const char *pszDir, unsigned uLevel = RTLOGGRPFLAGS_LEVEL_2) { RT_NOREF4(pThis, pDesc, pszDir, uLevel); /* * Unfortunately we cannot use our format handler here, we want R0 logging * as well. */ switch (e1kGetDescType(pDesc)) { case E1K_DTYP_CONTEXT: E1kLogX(uLevel, ("%s %s Context Transmit Descriptor %s\n", pThis->szPrf, pszDir, pszDir)); E1kLogX(uLevel, (" IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n", pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE, pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE)); E1kLogX(uLevel, (" TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s\n", pDesc->context.dw2.fIDE ? " IDE":"", pDesc->context.dw2.fRS ? " RS" :"", pDesc->context.dw2.fTSE ? " TSE":"", pDesc->context.dw2.fIP ? "IPv4":"IPv6", pDesc->context.dw2.fTCP ? "TCP":"UDP", pDesc->context.dw2.u20PAYLEN, pDesc->context.dw3.u8HDRLEN, pDesc->context.dw3.u16MSS, pDesc->context.dw3.fDD?"DD":"")); break; case E1K_DTYP_DATA: E1kLogX(uLevel, ("%s %s Data Transmit Descriptor (%d bytes) %s\n", pThis->szPrf, pszDir, pDesc->data.cmd.u20DTALEN, pszDir)); E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n", pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN)); E1kLogX(uLevel, (" DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x\n", pDesc->data.cmd.fIDE ? " IDE" :"", pDesc->data.cmd.fVLE ? " VLE" :"", pDesc->data.cmd.fRPS ? " RPS" :"", pDesc->data.cmd.fRS ? " RS" :"", pDesc->data.cmd.fTSE ? " TSE" :"", pDesc->data.cmd.fIFCS? " IFCS":"", pDesc->data.cmd.fEOP ? " EOP" :"", pDesc->data.dw3.fDD ? " DD" :"", pDesc->data.dw3.fEC ? " EC" :"", pDesc->data.dw3.fLC ? " LC" :"", pDesc->data.dw3.fTXSM? " TXSM":"", pDesc->data.dw3.fIXSM? " IXSM":"", E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->data.dw3.u16Special), E1K_SPEC_PRI(pDesc->data.dw3.u16Special))); break; case E1K_DTYP_LEGACY: E1kLogX(uLevel, ("%s %s Legacy Transmit Descriptor (%d bytes) %s\n", pThis->szPrf, pszDir, pDesc->legacy.cmd.u16Length, pszDir)); E1kLogX(uLevel, (" Address=%16LX DTALEN=%05X\n", pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length)); E1kLogX(uLevel, (" CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x\n", pDesc->legacy.cmd.fIDE ? " IDE" :"", pDesc->legacy.cmd.fVLE ? " VLE" :"", pDesc->legacy.cmd.fRPS ? " RPS" :"", pDesc->legacy.cmd.fRS ? " RS" :"", pDesc->legacy.cmd.fIC ? " IC" :"", pDesc->legacy.cmd.fIFCS? " IFCS":"", pDesc->legacy.cmd.fEOP ? " EOP" :"", pDesc->legacy.dw3.fDD ? " DD" :"", pDesc->legacy.dw3.fEC ? " EC" :"", pDesc->legacy.dw3.fLC ? " LC" :"", pDesc->legacy.cmd.u8CSO, pDesc->legacy.dw3.u8CSS, E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special), E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special))); break; default: E1kLog(("%s %s Invalid Transmit Descriptor %s\n", pThis->szPrf, pszDir, pszDir)); break; } } /** * Raise an interrupt later. * * @param pThis The device state structure. */ DECLINLINE(void) e1kPostponeInterrupt(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint64_t nsDeadline) { if (!PDMDevHlpTimerIsActive(pDevIns, pThis->hIntTimer)) PDMDevHlpTimerSetNano(pDevIns, pThis->hIntTimer, nsDeadline); } /** * Raise interrupt if not masked. * * @param pThis The device state structure. */ static int e1kRaiseInterrupt(PPDMDEVINS pDevIns, PE1KSTATE pThis, int rcBusy, uint32_t u32IntCause) { /* Do NOT use e1kCsEnterReturn here as most callers doesn't check the status code. They'll pass a negative rcBusy. */ int rc = e1kCsEnter(pThis, rcBusy); if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } else { PDM_CRITSECT_RELEASE_ASSERT_RC_DEV(pDevIns, &pThis->cs, rc); return rc; } E1K_INC_ISTAT_CNT(pThis->uStatIntTry); ICR |= u32IntCause; if (ICR & IMS) { if (pThis->fIntRaised) { E1K_INC_ISTAT_CNT(pThis->uStatIntSkip); E1kLog2(("%s e1kRaiseInterrupt: Already raised, skipped. ICR&IMS=%08x\n", pThis->szPrf, ICR & IMS)); } else { uint64_t tsNow = PDMDevHlpTimerGet(pDevIns, pThis->hIntTimer); if (!!ITR && tsNow - pThis->u64AckedAt < ITR * 256 && pThis->fItrEnabled && (pThis->fItrRxEnabled || !(ICR & ICR_RXT0))) { E1K_INC_ISTAT_CNT(pThis->uStatIntEarly); E1kLog2(("%s e1kRaiseInterrupt: Too early to raise again: %d ns < %d ns.\n", pThis->szPrf, (uint32_t)(tsNow - pThis->u64AckedAt), ITR * 256)); e1kPostponeInterrupt(pDevIns, pThis, ITR * 256); } else { /* Since we are delivering the interrupt now * there is no need to do it later -- stop the timer. */ PDMDevHlpTimerStop(pDevIns, pThis->hIntTimer); E1K_INC_ISTAT_CNT(pThis->uStatInt); STAM_COUNTER_INC(&pThis->StatIntsRaised); /* Got at least one unmasked interrupt cause */ pThis->fIntRaised = true; /* Raise(1) INTA(0) */ E1kLogRel(("E1000: irq RAISED icr&mask=0x%x, icr=0x%x\n", ICR & IMS, ICR)); PDMDevHlpPCISetIrq(pDevIns, 0, 1); E1kLog(("%s e1kRaiseInterrupt: Raised. ICR&IMS=%08x\n", pThis->szPrf, ICR & IMS)); } } } else { E1K_INC_ISTAT_CNT(pThis->uStatIntMasked); E1kLog2(("%s e1kRaiseInterrupt: Not raising, ICR=%08x, IMS=%08x\n", pThis->szPrf, ICR, IMS)); } e1kCsLeave(pThis); return VINF_SUCCESS; } /** * Compute the physical address of the descriptor. * * @returns the physical address of the descriptor. * * @param baseHigh High-order 32 bits of descriptor table address. * @param baseLow Low-order 32 bits of descriptor table address. * @param idxDesc The descriptor index in the table. */ DECLINLINE(RTGCPHYS) e1kDescAddr(uint32_t baseHigh, uint32_t baseLow, uint32_t idxDesc) { AssertCompile(sizeof(E1KRXDESC) == sizeof(E1KTXDESC)); return ((uint64_t)baseHigh << 32) + baseLow + idxDesc * sizeof(E1KRXDESC); } #ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */ /** * Advance the head pointer of the receive descriptor queue. * * @remarks RDH always points to the next available RX descriptor. * * @param pDevIns The device instance. * @param pThis The device state structure. */ DECLINLINE(void) e1kAdvanceRDH(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc) { Assert(e1kCsRxIsOwner(pThis)); //e1kR3CsEnterAsserted(pThis); if (++pRxdc->rdh * sizeof(E1KRXDESC) >= pRxdc->rdlen) pRxdc->rdh = 0; RDH = pRxdc->rdh; /* Sync the actual register and RXDC */ #ifdef E1K_WITH_RXD_CACHE /* * We need to fetch descriptors now as the guest may advance RDT all the way * to RDH as soon as we generate RXDMT0 interrupt. This is mostly to provide * compatibility with Phar Lap ETS, see @bugref(7346). Note that we do not * check if the receiver is enabled. It must be, otherwise we won't get here * in the first place. * * Note that we should have moved both RDH and iRxDCurrent by now. */ if (e1kRxDIsCacheEmpty(pThis)) { /* Cache is empty, reset it and check if we can fetch more. */ pThis->iRxDCurrent = pThis->nRxDFetched = 0; E1kLog3(("%s e1kAdvanceRDH: Rx cache is empty, RDH=%x RDT=%x " "iRxDCurrent=%x nRxDFetched=%x\n", pThis->szPrf, pRxdc->rdh, pRxdc->rdt, pThis->iRxDCurrent, pThis->nRxDFetched)); e1kRxDPrefetch(pDevIns, pThis, pRxdc); } #endif /* E1K_WITH_RXD_CACHE */ /* * Compute current receive queue length and fire RXDMT0 interrupt * if we are low on receive buffers */ uint32_t uRQueueLen = pRxdc->rdh>pRxdc->rdt ? pRxdc->rdlen/sizeof(E1KRXDESC)-pRxdc->rdh+pRxdc->rdt : pRxdc->rdt-pRxdc->rdh; /* * The minimum threshold is controlled by RDMTS bits of RCTL: * 00 = 1/2 of RDLEN * 01 = 1/4 of RDLEN * 10 = 1/8 of RDLEN * 11 = reserved */ uint32_t uMinRQThreshold = pRxdc->rdlen / sizeof(E1KRXDESC) / (2 << GET_BITS(RCTL, RDMTS)); if (uRQueueLen <= uMinRQThreshold) { E1kLogRel(("E1000: low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x\n", pRxdc->rdh, pRxdc->rdt, uRQueueLen, uMinRQThreshold)); E1kLog2(("%s Low on RX descriptors, RDH=%x RDT=%x len=%x threshold=%x, raise an interrupt\n", pThis->szPrf, pRxdc->rdh, pRxdc->rdt, uRQueueLen, uMinRQThreshold)); E1K_INC_ISTAT_CNT(pThis->uStatIntRXDMT0); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXDMT0); } E1kLog2(("%s e1kAdvanceRDH: at exit RDH=%x RDT=%x len=%x\n", pThis->szPrf, pRxdc->rdh, pRxdc->rdt, uRQueueLen)); //e1kCsLeave(pThis); } #endif /* IN_RING3 */ #ifdef E1K_WITH_RXD_CACHE # ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */ /** * Obtain the next RX descriptor from RXD cache, fetching descriptors from the * RX ring if the cache is empty. * * Note that we cannot advance the cache pointer (iRxDCurrent) yet as it will * go out of sync with RDH which will cause trouble when EMT checks if the * cache is empty to do pre-fetch @bugref(6217). * * @param pDevIns The device instance. * @param pThis The device state structure. * @thread RX */ DECLINLINE(E1KRXDESC *) e1kRxDGet(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KRXDC pRxdc) { Assert(e1kCsRxIsOwner(pThis)); /* Check the cache first. */ if (pThis->iRxDCurrent < pThis->nRxDFetched) return &pThis->aRxDescriptors[pThis->iRxDCurrent]; /* Cache is empty, reset it and check if we can fetch more. */ pThis->iRxDCurrent = pThis->nRxDFetched = 0; if (e1kRxDPrefetch(pDevIns, pThis, pRxdc)) return &pThis->aRxDescriptors[pThis->iRxDCurrent]; /* Out of Rx descriptors. */ return NULL; } /** * Return the RX descriptor obtained with e1kRxDGet() and advance the cache * pointer. The descriptor gets written back to the RXD ring. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc The descriptor being "returned" to the RX ring. * @thread RX */ DECLINLINE(void) e1kRxDPut(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC* pDesc, PE1KRXDC pRxdc) { Assert(e1kCsRxIsOwner(pThis)); pThis->iRxDCurrent++; // Assert(pDesc >= pThis->aRxDescriptors); // Assert(pDesc < pThis->aRxDescriptors + E1K_RXD_CACHE_SIZE); // uint64_t addr = e1kDescAddr(RDBAH, RDBAL, RDH); // uint32_t rdh = RDH; // Assert(pThis->aRxDescAddr[pDesc - pThis->aRxDescriptors] == addr); PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, pRxdc->rdh), pDesc, sizeof(E1KRXDESC)); /* * We need to print the descriptor before advancing RDH as it may fetch new * descriptors into the cache. */ e1kPrintRDesc(pThis, pDesc); e1kAdvanceRDH(pDevIns, pThis, pRxdc); } /** * Store a fragment of received packet at the specifed address. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc The next available RX descriptor. * @param pvBuf The fragment. * @param cb The size of the fragment. */ static void e1kStoreRxFragment(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb) { STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a); E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP)); PDMDevHlpPCIPhysWrite(pDevIns, pDesc->u64BufAddr, pvBuf, cb); pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb); STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a); RT_NOREF(pThis); } # endif /* IN_RING3 */ #else /* !E1K_WITH_RXD_CACHE */ /** * Store a fragment of received packet that fits into the next available RX * buffer. * * @remarks Trigger the RXT0 interrupt if it is the last fragment of the packet. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc The next available RX descriptor. * @param pvBuf The fragment. * @param cb The size of the fragment. */ static void e1kStoreRxFragment(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KRXDESC *pDesc, const void *pvBuf, size_t cb) { STAM_PROFILE_ADV_START(&pThis->StatReceiveStore, a); E1kLog2(("%s e1kStoreRxFragment: store fragment of %04X at %016LX, EOP=%d\n", pThis->szPrf, cb, pDesc->u64BufAddr, pDesc->status.fEOP)); PDMDevHlpPCIPhysWrite(pDevIns, pDesc->u64BufAddr, pvBuf, cb); pDesc->u16Length = (uint16_t)cb; Assert(pDesc->u16Length == cb); /* Write back the descriptor */ PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC)); e1kPrintRDesc(pThis, pDesc); E1kLogRel(("E1000: Wrote back RX desc, RDH=%x\n", RDH)); /* Advance head */ e1kAdvanceRDH(pDevIns, pThis); //E1kLog2(("%s e1kStoreRxFragment: EOP=%d RDTR=%08X RADV=%08X\n", pThis->szPrf, pDesc->fEOP, RDTR, RADV)); if (pDesc->status.fEOP) { /* Complete packet has been stored -- it is time to let the guest know. */ #ifdef E1K_USE_RX_TIMERS if (RDTR) { /* Arm the timer to fire in RDTR usec (discard .024) */ e1kArmTimer(pDevIns, pThis, pThis->hRIDTimer, RDTR); /* If absolute timer delay is enabled and the timer is not running yet, arm it. */ if (RADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->CTX_SUFF(pRADTimer))) e1kArmTimer(pThis, pThis->hRADTimer, RADV); } else { #endif /* 0 delay means immediate interrupt */ E1K_INC_ISTAT_CNT(pThis->uStatIntRx); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXT0); #ifdef E1K_USE_RX_TIMERS } #endif } STAM_PROFILE_ADV_STOP(&pThis->StatReceiveStore, a); } #endif /* !E1K_WITH_RXD_CACHE */ /** * Returns true if it is a broadcast packet. * * @returns true if destination address indicates broadcast. * @param pvBuf The ethernet packet. */ DECLINLINE(bool) e1kIsBroadcast(const void *pvBuf) { static const uint8_t s_abBcastAddr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; return memcmp(pvBuf, s_abBcastAddr, sizeof(s_abBcastAddr)) == 0; } /** * Returns true if it is a multicast packet. * * @remarks returns true for broadcast packets as well. * @returns true if destination address indicates multicast. * @param pvBuf The ethernet packet. */ DECLINLINE(bool) e1kIsMulticast(const void *pvBuf) { return (*(char*)pvBuf) & 1; } #ifdef IN_RING3 /* currently only used in ring-3 due to stack space requirements of the caller */ /** * Set IXSM, IPCS and TCPCS flags according to the packet type. * * @remarks We emulate checksum offloading for major packets types only. * * @returns VBox status code. * @param pThis The device state structure. * @param pFrame The available data. * @param cb Number of bytes available in the buffer. * @param status Bit fields containing status info. */ static int e1kRxChecksumOffload(PE1KSTATE pThis, const uint8_t *pFrame, size_t cb, E1KRXDST *pStatus) { /** @todo * It is not safe to bypass checksum verification for packets coming * from real wire. We currently unable to tell where packets are * coming from so we tell the driver to ignore our checksum flags * and do verification in software. */ # if 0 uint16_t uEtherType = ntohs(*(uint16_t*)(pFrame + 12)); E1kLog2(("%s e1kRxChecksumOffload: EtherType=%x\n", pThis->szPrf, uEtherType)); switch (uEtherType) { case 0x800: /* IPv4 */ { pStatus->fIXSM = false; pStatus->fIPCS = true; PRTNETIPV4 pIpHdr4 = (PRTNETIPV4)(pFrame + 14); /* TCP/UDP checksum offloading works with TCP and UDP only */ pStatus->fTCPCS = pIpHdr4->ip_p == 6 || pIpHdr4->ip_p == 17; break; } case 0x86DD: /* IPv6 */ pStatus->fIXSM = false; pStatus->fIPCS = false; pStatus->fTCPCS = true; break; default: /* ARP, VLAN, etc. */ pStatus->fIXSM = true; break; } # else pStatus->fIXSM = true; RT_NOREF_PV(pThis); RT_NOREF_PV(pFrame); RT_NOREF_PV(cb); # endif return VINF_SUCCESS; } #endif /* IN_RING3 */ /** * Pad and store received packet. * * @remarks Make sure that the packet appears to upper layer as one coming * from real Ethernet: pad it and insert FCS. * * @returns VBox status code. * @param pDevIns The device instance. * @param pThis The device state structure. * @param pvBuf The available data. * @param cb Number of bytes available in the buffer. * @param status Bit fields containing status info. */ static int e1kHandleRxPacket(PPDMDEVINS pDevIns, PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST status) { #if defined(IN_RING3) /** @todo Remove this extra copying, it's gonna make us run out of kernel / hypervisor stack! */ uint8_t rxPacket[E1K_MAX_RX_PKT_SIZE]; uint8_t *ptr = rxPacket; # ifdef E1K_WITH_RXD_CACHE E1KRXDC rxdc; # endif /* E1K_WITH_RXD_CACHE */ e1kCsRxEnterReturn(pThis); # ifdef E1K_WITH_RXD_CACHE if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket"))) { e1kCsRxLeave(pThis); E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf)); return VINF_SUCCESS; } # endif /* E1K_WITH_RXD_CACHE */ if (cb > 70) /* unqualified guess */ pThis->led.Asserted.s.fReading = pThis->led.Actual.s.fReading = 1; Assert(cb <= E1K_MAX_RX_PKT_SIZE); Assert(cb > 16); size_t cbMax = ((RCTL & RCTL_LPE) ? E1K_MAX_RX_PKT_SIZE - 4 : 1518) - (status.fVP ? 0 : 4); E1kLog3(("%s Max RX packet size is %u\n", pThis->szPrf, cbMax)); if (status.fVP) { /* VLAN packet -- strip VLAN tag in VLAN mode */ if ((CTRL & CTRL_VME) && cb > 16) { uint16_t *u16Ptr = (uint16_t*)pvBuf; memcpy(rxPacket, pvBuf, 12); /* Copy src and dst addresses */ status.u16Special = RT_BE2H_U16(u16Ptr[7]); /* Extract VLAN tag */ memcpy(rxPacket + 12, (uint8_t*)pvBuf + 16, cb - 16); /* Copy the rest of the packet */ cb -= 4; E1kLog3(("%s Stripped tag for VLAN %u (cb=%u)\n", pThis->szPrf, status.u16Special, cb)); } else { status.fVP = false; /* Set VP only if we stripped the tag */ memcpy(rxPacket, pvBuf, cb); } } else memcpy(rxPacket, pvBuf, cb); /* Pad short packets */ if (cb < 60) { memset(rxPacket + cb, 0, 60 - cb); cb = 60; } if (!(RCTL & RCTL_SECRC) && cb <= cbMax) { STAM_PROFILE_ADV_START(&pThis->StatReceiveCRC, a); /* * Add FCS if CRC stripping is not enabled. Since the value of CRC * is ignored by most of drivers we may as well save us the trouble * of calculating it (see EthernetCRC CFGM parameter). */ if (pThis->fEthernetCRC) *(uint32_t*)(rxPacket + cb) = RTCrc32(rxPacket, cb); cb += sizeof(uint32_t); STAM_PROFILE_ADV_STOP(&pThis->StatReceiveCRC, a); E1kLog3(("%s Added FCS (cb=%u)\n", pThis->szPrf, cb)); } /* Compute checksum of complete packet */ size_t cbCSumStart = RT_MIN(GET_BITS(RXCSUM, PCSS), cb); uint16_t checksum = e1kCSum16(rxPacket + cbCSumStart, cb - cbCSumStart); e1kRxChecksumOffload(pThis, rxPacket, cb, &status); /* Update stats */ E1K_INC_CNT32(GPRC); if (e1kIsBroadcast(pvBuf)) E1K_INC_CNT32(BPRC); else if (e1kIsMulticast(pvBuf)) E1K_INC_CNT32(MPRC); /* Update octet receive counter */ E1K_ADD_CNT64(GORCL, GORCH, cb); STAM_REL_COUNTER_ADD(&pThis->StatReceiveBytes, cb); if (cb == 64) E1K_INC_CNT32(PRC64); else if (cb < 128) E1K_INC_CNT32(PRC127); else if (cb < 256) E1K_INC_CNT32(PRC255); else if (cb < 512) E1K_INC_CNT32(PRC511); else if (cb < 1024) E1K_INC_CNT32(PRC1023); else E1K_INC_CNT32(PRC1522); E1K_INC_ISTAT_CNT(pThis->uStatRxFrm); # ifdef E1K_WITH_RXD_CACHE while (cb > 0) { E1KRXDESC *pDesc = e1kRxDGet(pDevIns, pThis, &rxdc); if (pDesc == NULL) { E1kLog(("%s Out of receive buffers, dropping the packet " "(cb=%u, in_cache=%u, RDH=%x RDT=%x)\n", pThis->szPrf, cb, e1kRxDInCache(pThis), rxdc.rdh, rxdc.rdt)); break; } # else /* !E1K_WITH_RXD_CACHE */ if (RDH == RDT) { E1kLog(("%s Out of receive buffers, dropping the packet\n", pThis->szPrf)); } /* Store the packet to receive buffers */ while (RDH != RDT) { /* Load the descriptor pointed by head */ E1KRXDESC desc, *pDesc = &desc; PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), &desc, sizeof(desc)); # endif /* !E1K_WITH_RXD_CACHE */ if (pDesc->u64BufAddr) { uint16_t u16RxBufferSize = pThis->u16RxBSize; /* see @bugref{9427} */ /* Update descriptor */ pDesc->status = status; pDesc->u16Checksum = checksum; pDesc->status.fDD = true; /* * We need to leave Rx critical section here or we risk deadlocking * with EMT in e1kRegWriteRDT when the write is to an unallocated * page or has an access handler associated with it. * Note that it is safe to leave the critical section here since * e1kRegWriteRDT() never modifies RDH. It never touches already * fetched RxD cache entries either. */ if (cb > u16RxBufferSize) { pDesc->status.fEOP = false; e1kCsRxLeave(pThis); e1kStoreRxFragment(pDevIns, pThis, pDesc, ptr, u16RxBufferSize); e1kCsRxEnterReturn(pThis); # ifdef E1K_WITH_RXD_CACHE if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket"))) { e1kCsRxLeave(pThis); E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf)); return VINF_SUCCESS; } # endif /* E1K_WITH_RXD_CACHE */ ptr += u16RxBufferSize; cb -= u16RxBufferSize; } else { pDesc->status.fEOP = true; e1kCsRxLeave(pThis); e1kStoreRxFragment(pDevIns, pThis, pDesc, ptr, cb); # ifdef E1K_WITH_RXD_CACHE e1kCsRxEnterReturn(pThis); if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kHandleRxPacket"))) { e1kCsRxLeave(pThis); E1kLog(("%s e1kHandleRxPacket: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf)); return VINF_SUCCESS; } cb = 0; # else /* !E1K_WITH_RXD_CACHE */ pThis->led.Actual.s.fReading = 0; return VINF_SUCCESS; # endif /* !E1K_WITH_RXD_CACHE */ } /* * Note: RDH is advanced by e1kStoreRxFragment if E1K_WITH_RXD_CACHE * is not defined. */ } # ifdef E1K_WITH_RXD_CACHE /* Write back the descriptor. */ pDesc->status.fDD = true; e1kRxDPut(pDevIns, pThis, pDesc, &rxdc); # else /* !E1K_WITH_RXD_CACHE */ else { /* Write back the descriptor. */ pDesc->status.fDD = true; PDMDevHlpPCIPhysWrite(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), pDesc, sizeof(E1KRXDESC)); e1kAdvanceRDH(pDevIns, pThis); } # endif /* !E1K_WITH_RXD_CACHE */ } if (cb > 0) E1kLog(("%s Out of receive buffers, dropping %u bytes", pThis->szPrf, cb)); pThis->led.Actual.s.fReading = 0; e1kCsRxLeave(pThis); # ifdef E1K_WITH_RXD_CACHE /* Complete packet has been stored -- it is time to let the guest know. */ # ifdef E1K_USE_RX_TIMERS if (RDTR) { /* Arm the timer to fire in RDTR usec (discard .024) */ e1kArmTimer(pThis, pThis->hRIDTimer, RDTR); /* If absolute timer delay is enabled and the timer is not running yet, arm it. */ if (RADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->hRADTimer)) e1kArmTimer(pThis, pThis->hRADTimer, RADV); } else { # endif /* E1K_USE_RX_TIMERS */ /* 0 delay means immediate interrupt */ E1K_INC_ISTAT_CNT(pThis->uStatIntRx); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_RXT0); # ifdef E1K_USE_RX_TIMERS } # endif /* E1K_USE_RX_TIMERS */ # endif /* E1K_WITH_RXD_CACHE */ return VINF_SUCCESS; #else /* !IN_RING3 */ RT_NOREF(pDevIns, pThis, pvBuf, cb, status); return VERR_INTERNAL_ERROR_2; #endif /* !IN_RING3 */ } #ifdef IN_RING3 /** * Bring the link up after the configured delay, 5 seconds by default. * * @param pDevIns The device instance. * @param pThis The device state structure. * @thread any */ DECLINLINE(void) e1kBringLinkUpDelayed(PPDMDEVINS pDevIns, PE1KSTATE pThis) { E1kLog(("%s Will bring up the link in %d seconds...\n", pThis->szPrf, pThis->cMsLinkUpDelay / 1000)); e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, pThis->cMsLinkUpDelay * 1000); } /** * Bring up the link immediately. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. */ DECLINLINE(void) e1kR3LinkUp(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC) { E1kLog(("%s Link is up\n", pThis->szPrf)); STATUS |= STATUS_LU; Phy::setLinkStatus(&pThis->phy, true); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC); if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_UP); /* Trigger processing of pending TX descriptors (see @bugref{8942}). */ PDMDevHlpTaskTrigger(pDevIns, pThis->hTxTask); } /** * Bring down the link immediately. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. */ DECLINLINE(void) e1kR3LinkDown(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC) { E1kLog(("%s Link is down\n", pThis->szPrf)); STATUS &= ~STATUS_LU; #ifdef E1K_LSC_ON_RESET Phy::setLinkStatus(&pThis->phy, false); #endif /* E1K_LSC_ON_RESET */ e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC); if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_DOWN); } /** * Bring down the link temporarily. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. */ DECLINLINE(void) e1kR3LinkDownTemp(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC) { E1kLog(("%s Link is down temporarily\n", pThis->szPrf)); STATUS &= ~STATUS_LU; Phy::setLinkStatus(&pThis->phy, false); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_LSC); /* * Notifying the associated driver that the link went down (even temporarily) * seems to be the right thing, but it was not done before. This may cause * a regression if the driver does not expect the link to go down as a result * of sending PDMNETWORKLINKSTATE_DOWN_RESUME to this device. Earlier versions * of code notified the driver that the link was up! See @bugref{7057}. */ if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnNotifyLinkChanged(pThisCC->pDrvR3, PDMNETWORKLINKSTATE_DOWN); e1kBringLinkUpDelayed(pDevIns, pThis); } #endif /* IN_RING3 */ #if 0 /* unused */ /** * Read handler for Device Status register. * * Get the link status from PHY. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param mask Used to implement partial reads (8 and 16-bit). */ static int e1kRegReadCTRL(PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { E1kLog(("%s e1kRegReadCTRL: mdio dir=%s mdc dir=%s mdc=%d\n", pThis->szPrf, (CTRL & CTRL_MDIO_DIR)?"OUT":"IN ", (CTRL & CTRL_MDC_DIR)?"OUT":"IN ", !!(CTRL & CTRL_MDC))); if ((CTRL & CTRL_MDIO_DIR) == 0 && (CTRL & CTRL_MDC)) { /* MDC is high and MDIO pin is used for input, read MDIO pin from PHY */ if (Phy::readMDIO(&pThis->phy)) *pu32Value = CTRL | CTRL_MDIO; else *pu32Value = CTRL & ~CTRL_MDIO; E1kLog(("%s e1kRegReadCTRL: Phy::readMDIO(%d)\n", pThis->szPrf, !!(*pu32Value & CTRL_MDIO))); } else { /* MDIO pin is used for output, ignore it */ *pu32Value = CTRL; } return VINF_SUCCESS; } #endif /* unused */ /** * A helper function to detect the link state to the other side of "the wire". * * When deciding to bring up the link we need to take into account both if the * cable is connected and if our device is actually connected to the outside * world. If no driver is attached we won't be able to allocate TX buffers, * which will prevent us from TX descriptor processing, which will result in * "TX unit hang" in the guest. * * @returns true if the device is connected to something. * * @param pDevIns The device instance. */ DECLINLINE(bool) e1kIsConnected(PPDMDEVINS pDevIns) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); return pThis->fCableConnected && pThis->fIsAttached; } /** * A callback used by PHY to indicate that the link needs to be updated due to * reset of PHY. * * @param pDevIns The device instance. * @thread any */ void e1kPhyLinkResetCallback(PPDMDEVINS pDevIns) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); /* Make sure we have cable connected and MAC can talk to PHY */ if (e1kIsConnected(pDevIns) && (CTRL & CTRL_SLU)) e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, E1K_INIT_LINKUP_DELAY_US); else Log(("%s PHY link reset callback ignored (cable %sconnected, driver %stached, CTRL_SLU=%u)\n", pThis->szPrf, pThis->fCableConnected ? "" : "dis", pThis->fIsAttached ? "at" : "de", CTRL & CTRL_SLU ? 1 : 0)); } /** * Write handler for Device Control register. * * Handles reset. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteCTRL(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { int rc = VINF_SUCCESS; if (value & CTRL_RESET) { /* RST */ #ifndef IN_RING3 return VINF_IOM_R3_MMIO_WRITE; #else e1kR3HardReset(pDevIns, pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC)); #endif } else { #ifdef E1K_LSC_ON_SLU /* * When the guest changes 'Set Link Up' bit from 0 to 1 we check if * the link is down and the cable is connected, and if they are we * bring the link up, see @bugref{8624}. */ if ( (value & CTRL_SLU) && !(CTRL & CTRL_SLU) && pThis->fCableConnected && !(STATUS & STATUS_LU)) { /* It should take about 2 seconds for the link to come up */ e1kArmTimer(pDevIns, pThis, pThis->hLUTimer, E1K_INIT_LINKUP_DELAY_US); } #else /* !E1K_LSC_ON_SLU */ if ( (value & CTRL_SLU) && !(CTRL & CTRL_SLU) && e1kIsConnected(pDevIns) && !PDMDevHlpTimerIsActive(pDevIns, pThis->hLUTimer)) { /* PXE does not use LSC interrupts, see @bugref{9113}. */ STATUS |= STATUS_LU; } #endif /* !E1K_LSC_ON_SLU */ if ((value & CTRL_VME) != (CTRL & CTRL_VME)) { E1kLog(("%s VLAN Mode %s\n", pThis->szPrf, (value & CTRL_VME) ? "Enabled" : "Disabled")); } Log7(("%s e1kRegWriteCTRL: mdio dir=%s mdc dir=%s mdc=%s mdio=%d\n", pThis->szPrf, (value & CTRL_MDIO_DIR)?"OUT":"IN ", (value & CTRL_MDC_DIR)?"OUT":"IN ", (value & CTRL_MDC)?"HIGH":"LOW ", !!(value & CTRL_MDIO))); if (value & CTRL_MDC) { if (value & CTRL_MDIO_DIR) { Log7(("%s e1kRegWriteCTRL: Phy::writeMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO))); /* MDIO direction pin is set to output and MDC is high, write MDIO pin value to PHY */ Phy::writeMDIO(&pThis->phy, !!(value & CTRL_MDIO), pDevIns); } else { if (Phy::readMDIO(&pThis->phy)) value |= CTRL_MDIO; else value &= ~CTRL_MDIO; Log7(("%s e1kRegWriteCTRL: Phy::readMDIO(%d)\n", pThis->szPrf, !!(value & CTRL_MDIO))); } } rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value); } return rc; } /** * Write handler for EEPROM/Flash Control/Data register. * * Handles EEPROM access requests; forwards writes to EEPROM device if access has been granted. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteEECD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF(pDevIns, offset, index); #ifdef IN_RING3 /* So far we are concerned with lower byte only */ if ((EECD & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC) { /* Access to EEPROM granted -- forward 4-wire bits to EEPROM device */ /* Note: 82543GC does not need to request EEPROM access */ STAM_PROFILE_ADV_START(&pThis->StatEEPROMWrite, a); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); pThisCC->eeprom.write(value & EECD_EE_WIRES); STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMWrite, a); } if (value & EECD_EE_REQ) EECD |= EECD_EE_REQ|EECD_EE_GNT; else EECD &= ~EECD_EE_GNT; //e1kRegWriteDefault(pThis, offset, index, value ); return VINF_SUCCESS; #else /* !IN_RING3 */ RT_NOREF(pThis, value); return VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } /** * Read handler for EEPROM/Flash Control/Data register. * * Lower 4 bits come from EEPROM device if EEPROM access has been granted. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param mask Used to implement partial reads (8 and 16-bit). * @thread EMT */ static int e1kRegReadEECD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { #ifdef IN_RING3 uint32_t value = 0; /* Get rid of false positive in parfait. */ int rc = e1kRegReadDefault(pDevIns, pThis, offset, index, &value); if (RT_SUCCESS(rc)) { if ((value & EECD_EE_GNT) || pThis->eChip == E1K_CHIP_82543GC) { /* Note: 82543GC does not need to request EEPROM access */ /* Access to EEPROM granted -- get 4-wire bits to EEPROM device */ STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); value |= pThisCC->eeprom.read(); STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a); } *pu32Value = value; } return rc; #else /* !IN_RING3 */ RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(pu32Value); return VINF_IOM_R3_MMIO_READ; #endif /* !IN_RING3 */ } /** * Write handler for EEPROM Read register. * * Handles EEPROM word access requests, reads EEPROM and stores the result * into DATA field. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteEERD(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { #ifdef IN_RING3 /* Make use of 'writable' and 'readable' masks. */ e1kRegWriteDefault(pDevIns, pThis, offset, index, value); /* DONE and DATA are set only if read was triggered by START. */ if (value & EERD_START) { STAM_PROFILE_ADV_START(&pThis->StatEEPROMRead, a); uint16_t tmp; PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); if (pThisCC->eeprom.readWord(GET_BITS_V(value, EERD, ADDR), &tmp)) SET_BITS(EERD, DATA, tmp); EERD |= EERD_DONE; STAM_PROFILE_ADV_STOP(&pThis->StatEEPROMRead, a); } return VINF_SUCCESS; #else /* !IN_RING3 */ RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value); return VINF_IOM_R3_MMIO_WRITE; #endif /* !IN_RING3 */ } /** * Write handler for MDI Control register. * * Handles PHY read/write requests; forwards requests to internal PHY device. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteMDIC(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { if (value & MDIC_INT_EN) { E1kLog(("%s ERROR! Interrupt at the end of an MDI cycle is not supported yet.\n", pThis->szPrf)); } else if (value & MDIC_READY) { E1kLog(("%s ERROR! Ready bit is not reset by software during write operation.\n", pThis->szPrf)); } else if (GET_BITS_V(value, MDIC, PHY) != 1) { E1kLog(("%s WARNING! Access to invalid PHY detected, phy=%d.\n", pThis->szPrf, GET_BITS_V(value, MDIC, PHY))); /* * Some drivers scan the MDIO bus for a PHY. We can work with these * drivers if we set MDIC_READY and MDIC_ERROR when there isn't a PHY * at the requested address, see @bugref{7346}. */ MDIC = MDIC_READY | MDIC_ERROR; } else { /* Store the value */ e1kRegWriteDefault(pDevIns, pThis, offset, index, value); STAM_COUNTER_INC(&pThis->StatPHYAccesses); /* Forward op to PHY */ if (value & MDIC_OP_READ) SET_BITS(MDIC, DATA, Phy::readRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG), pDevIns)); else Phy::writeRegister(&pThis->phy, GET_BITS_V(value, MDIC, REG), value & MDIC_DATA_MASK, pDevIns); /* Let software know that we are done */ MDIC |= MDIC_READY; } return VINF_SUCCESS; } /** * Write handler for Interrupt Cause Read register. * * Bits corresponding to 1s in 'value' will be cleared in ICR register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteICR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { ICR &= ~value; RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); return VINF_SUCCESS; } /** * Read handler for Interrupt Cause Read register. * * Reading this register acknowledges all interrupts. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param mask Not used. * @thread EMT */ static int e1kRegReadICR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { e1kCsEnterReturn(pThis, VINF_IOM_R3_MMIO_READ); uint32_t value = 0; int rc = e1kRegReadDefault(pDevIns, pThis, offset, index, &value); if (RT_SUCCESS(rc)) { if (value) { if (!pThis->fIntRaised) E1K_INC_ISTAT_CNT(pThis->uStatNoIntICR); /* * Not clearing ICR causes QNX to hang as it reads ICR in a loop * with disabled interrupts. */ //if (IMS) if (1) { /* * Interrupts were enabled -- we are supposedly at the very * beginning of interrupt handler */ E1kLogRel(("E1000: irq lowered, icr=0x%x\n", ICR)); E1kLog(("%s e1kRegReadICR: Lowered IRQ (%08x)\n", pThis->szPrf, ICR)); /* Clear all pending interrupts */ ICR = 0; pThis->fIntRaised = false; /* Lower(0) INTA(0) */ PDMDevHlpPCISetIrq(pDevIns, 0, 0); pThis->u64AckedAt = PDMDevHlpTimerGet(pDevIns, pThis->hIntTimer); if (pThis->fIntMaskUsed) pThis->fDelayInts = true; } else { /* * Interrupts are disabled -- in windows guests ICR read is done * just before re-enabling interrupts */ E1kLog(("%s e1kRegReadICR: Suppressing auto-clear due to disabled interrupts (%08x)\n", pThis->szPrf, ICR)); } } *pu32Value = value; } e1kCsLeave(pThis); return rc; } /** * Read handler for Interrupt Cause Set register. * * VxWorks driver uses this undocumented feature of real H/W to read ICR without acknowledging interrupts. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param pu32Value Where to store the value of the register. * @thread EMT */ static int e1kRegReadICS(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF_PV(index); return e1kRegReadDefault(pDevIns, pThis, offset, ICR_IDX, pu32Value); } /** * Write handler for Interrupt Cause Set register. * * Bits corresponding to 1s in 'value' will be set in ICR register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteICS(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(offset); RT_NOREF_PV(index); E1K_INC_ISTAT_CNT(pThis->uStatIntICS); return e1kRaiseInterrupt(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE, value & g_aE1kRegMap[ICS_IDX].writable); } /** * Write handler for Interrupt Mask Set register. * * Will trigger pending interrupts. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteIMS(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(offset); RT_NOREF_PV(index); IMS |= value; E1kLogRel(("E1000: irq enabled, RDH=%x RDT=%x TDH=%x TDT=%x\n", RDH, RDT, TDH, TDT)); E1kLog(("%s e1kRegWriteIMS: IRQ enabled\n", pThis->szPrf)); /* * We cannot raise an interrupt here as it will occasionally cause an interrupt storm * in Windows guests (see @bugref{8624}, @bugref{5023}). */ if ((ICR & IMS) && !pThis->fLocked) { E1K_INC_ISTAT_CNT(pThis->uStatIntIMS); e1kPostponeInterrupt(pDevIns, pThis, E1K_IMS_INT_DELAY_NS); } return VINF_SUCCESS; } /** * Write handler for Interrupt Mask Clear register. * * Bits corresponding to 1s in 'value' will be cleared in IMS register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteIMC(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(offset); RT_NOREF_PV(index); e1kCsEnterReturn(pThis, VINF_IOM_R3_MMIO_WRITE); if (pThis->fIntRaised) { /* * Technically we should reset fIntRaised in ICR read handler, but it will cause * Windows to freeze since it may receive an interrupt while still in the very beginning * of interrupt handler. */ E1K_INC_ISTAT_CNT(pThis->uStatIntLower); STAM_COUNTER_INC(&pThis->StatIntsPrevented); E1kLogRel(("E1000: irq lowered (IMC), icr=0x%x\n", ICR)); /* Lower(0) INTA(0) */ PDMDevHlpPCISetIrq(pDevIns, 0, 0); pThis->fIntRaised = false; E1kLog(("%s e1kRegWriteIMC: Lowered IRQ: ICR=%08x\n", pThis->szPrf, ICR)); } IMS &= ~value; E1kLog(("%s e1kRegWriteIMC: IRQ disabled\n", pThis->szPrf)); e1kCsLeave(pThis); return VINF_SUCCESS; } /** * Write handler for Receive Control register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteRCTL(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { /* Update promiscuous mode */ bool fBecomePromiscous = !!(value & (RCTL_UPE | RCTL_MPE)); if (fBecomePromiscous != !!( RCTL & (RCTL_UPE | RCTL_MPE))) { /* Promiscuity has changed, pass the knowledge on. */ #ifndef IN_RING3 return VINF_IOM_R3_MMIO_WRITE; #else PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, fBecomePromiscous); #endif } /* Adjust receive buffer size */ unsigned cbRxBuf = 2048 >> GET_BITS_V(value, RCTL, BSIZE); if (value & RCTL_BSEX) cbRxBuf *= 16; if (cbRxBuf > E1K_MAX_RX_PKT_SIZE) cbRxBuf = E1K_MAX_RX_PKT_SIZE; if (cbRxBuf != pThis->u16RxBSize) E1kLog2(("%s e1kRegWriteRCTL: Setting receive buffer size to %d (old %d)\n", pThis->szPrf, cbRxBuf, pThis->u16RxBSize)); Assert(cbRxBuf < 65536); pThis->u16RxBSize = (uint16_t)cbRxBuf; /* Update the register */ return e1kRegWriteDefault(pDevIns, pThis, offset, index, value); } /** * Write handler for Packet Buffer Allocation register. * * TXA = 64 - RXA. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWritePBA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { e1kRegWriteDefault(pDevIns, pThis, offset, index, value); PBA_st->txa = 64 - PBA_st->rxa; return VINF_SUCCESS; } /** * Write handler for Receive Descriptor Tail register. * * @remarks Write into RDT forces switch to HC and signal to * e1kR3NetworkDown_WaitReceiveAvail(). * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteRDT(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { #ifndef IN_RING3 /* XXX */ // return VINF_IOM_R3_MMIO_WRITE; #endif int rc = e1kCsRxEnter(pThis, VINF_IOM_R3_MMIO_WRITE); if (RT_LIKELY(rc == VINF_SUCCESS)) { E1kLog(("%s e1kRegWriteRDT\n", pThis->szPrf)); #ifndef E1K_WITH_RXD_CACHE /* * Some drivers advance RDT too far, so that it equals RDH. This * somehow manages to work with real hardware but not with this * emulated device. We can work with these drivers if we just * write 1 less when we see a driver writing RDT equal to RDH, * see @bugref{7346}. */ if (value == RDH) { if (RDH == 0) value = (RDLEN / sizeof(E1KRXDESC)) - 1; else value = RDH - 1; } #endif /* !E1K_WITH_RXD_CACHE */ rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value); #ifdef E1K_WITH_RXD_CACHE E1KRXDC rxdc; if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kRegWriteRDT"))) { e1kCsRxLeave(pThis); E1kLog(("%s e1kRegWriteRDT: failed to update Rx context, returning VINF_SUCCESS\n", pThis->szPrf)); return VINF_SUCCESS; } /* * We need to fetch descriptors now as RDT may go whole circle * before we attempt to store a received packet. For example, * Intel's DOS drivers use 2 (!) RX descriptors with the total ring * size being only 8 descriptors! Note that we fetch descriptors * only when the cache is empty to reduce the number of memory reads * in case of frequent RDT writes. Don't fetch anything when the * receiver is disabled either as RDH, RDT, RDLEN can be in some * messed up state. * Note that despite the cache may seem empty, meaning that there are * no more available descriptors in it, it may still be used by RX * thread which has not yet written the last descriptor back but has * temporarily released the RX lock in order to write the packet body * to descriptor's buffer. At this point we still going to do prefetch * but it won't actually fetch anything if there are no unused slots in * our "empty" cache (nRxDFetched==E1K_RXD_CACHE_SIZE). We must not * reset the cache here even if it appears empty. It will be reset at * a later point in e1kRxDGet(). */ if (e1kRxDIsCacheEmpty(pThis) && (RCTL & RCTL_EN)) e1kRxDPrefetch(pDevIns, pThis, &rxdc); #endif /* E1K_WITH_RXD_CACHE */ e1kCsRxLeave(pThis); if (RT_SUCCESS(rc)) { /* Signal that we have more receive descriptors available. */ e1kWakeupReceive(pDevIns, pThis); } } return rc; } /** * Write handler for Receive Delay Timer register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteRDTR(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { e1kRegWriteDefault(pDevIns, pThis, offset, index, value); if (value & RDTR_FPD) { /* Flush requested, cancel both timers and raise interrupt */ #ifdef E1K_USE_RX_TIMERS e1kCancelTimer(pDevIns, pThis, pThis->hRIDTimer); e1kCancelTimer(pDevIns, pThis, pThis->hRADTimer); #endif E1K_INC_ISTAT_CNT(pThis->uStatIntRDTR); return e1kRaiseInterrupt(pDevIns, pThis, VINF_IOM_R3_MMIO_WRITE, ICR_RXT0); } return VINF_SUCCESS; } DECLINLINE(uint32_t) e1kGetTxLen(PE1KTXDC pTxdc) { /** * Make sure TDT won't change during computation. EMT may modify TDT at * any moment. */ uint32_t tdt = pTxdc->tdt; return (pTxdc->tdh > tdt ? pTxdc->tdlen/sizeof(E1KTXDESC) : 0) + tdt - pTxdc->tdh; } #ifdef IN_RING3 # ifdef E1K_TX_DELAY /** * @callback_method_impl{FNTMTIMERDEV, Transmit Delay Timer handler.} */ static DECLCALLBACK(void) e1kR3TxDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(PDMDevHlpCritSectIsOwner(pDevIns, &pThis->csTx)); RT_NOREF(hTimer); E1K_INC_ISTAT_CNT(pThis->uStatTxDelayExp); # ifdef E1K_INT_STATS uint64_t u64Elapsed = RTTimeNanoTS() - pThis->u64ArmedAt; if (u64Elapsed > pThis->uStatMaxTxDelay) pThis->uStatMaxTxDelay = u64Elapsed; # endif int rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/); AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN, ("%Rrc\n", rc)); } # endif /* E1K_TX_DELAY */ //# ifdef E1K_USE_TX_TIMERS /** * @callback_method_impl{FNTMTIMERDEV, Transmit Interrupt Delay Timer handler.} */ static DECLCALLBACK(void) e1kR3TxIntDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(hTimer == pThis->hTIDTimer); RT_NOREF(hTimer); E1K_INC_ISTAT_CNT(pThis->uStatTID); /* Cancel absolute delay timer as we have already got attention */ # ifndef E1K_NO_TAD e1kCancelTimer(pDevIns, pThis, pThis->hTADTimer); # endif e1kRaiseInterrupt(pDevIns, pThis, VERR_IGNORED, ICR_TXDW); } /** * @callback_method_impl{FNTMTIMERDEV, Transmit Absolute Delay Timer handler.} */ static DECLCALLBACK(void) e1kR3TxAbsDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(hTimer == pThis->hTADTimer); RT_NOREF(hTimer); E1K_INC_ISTAT_CNT(pThis->uStatTAD); /* Cancel interrupt delay timer as we have already got attention */ e1kCancelTimer(pDevIns, pThis, pThis->hTIDTimer); e1kRaiseInterrupt(pDevIns, pThis, VERR_IGNORED, ICR_TXDW); } //# endif /* E1K_USE_TX_TIMERS */ # ifdef E1K_USE_RX_TIMERS /** * @callback_method_impl{FNTMTIMERDEV, Receive Interrupt Delay Timer handler.} */ static DECLCALLBACK(void) e1kR3RxIntDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(hTimer == pThis->hRIDTimer); RT_NOREF(hTimer); E1K_INC_ISTAT_CNT(pThis->uStatRID); /* Cancel absolute delay timer as we have already got attention */ e1kCancelTimer(pDevIns, pThis, pThis->hRADTimer); e1kRaiseInterrupt(pDevIns, pThis, VERR_IGNORED, ICR_RXT0); } /** * @callback_method_impl{FNTMTIMERDEV, Receive Absolute Delay Timer handler.} */ static DECLCALLBACK(void) e1kR3RxAbsDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(hTimer == pThis->hRADTimer); RT_NOREF(hTimer); E1K_INC_ISTAT_CNT(pThis->uStatRAD); /* Cancel interrupt delay timer as we have already got attention */ e1kCancelTimer(pDevIns, pThis, pThis->hRIDTimer); e1kRaiseInterrupt(pDevIns, pThis, VERR_IGNORED, ICR_RXT0); } # endif /* E1K_USE_RX_TIMERS */ /** * @callback_method_impl{FNTMTIMERDEV, Late Interrupt Timer handler.} */ static DECLCALLBACK(void) e1kR3LateIntTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; Assert(hTimer == pThis->hIntTimer); RT_NOREF(hTimer); RT_NOREF(hTimer); STAM_PROFILE_ADV_START(&pThis->StatLateIntTimer, a); STAM_COUNTER_INC(&pThis->StatLateInts); E1K_INC_ISTAT_CNT(pThis->uStatIntLate); # if 0 if (pThis->iStatIntLost > -100) pThis->iStatIntLost--; # endif e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, 0); STAM_PROFILE_ADV_STOP(&pThis->StatLateIntTimer, a); } /** * @callback_method_impl{FNTMTIMERDEV, Link Up Timer handler.} */ static DECLCALLBACK(void) e1kR3LinkUpTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { PE1KSTATE pThis = (PE1KSTATE)pvUser; PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); Assert(hTimer == pThis->hLUTimer); RT_NOREF(hTimer); /* * This can happen if we set the link status to down when the Link up timer was * already armed (shortly after e1kR3LoadDone() or when the cable was disconnected * and connect+disconnect the cable very quick. Moreover, 82543GC triggers LSC * on reset even if the cable is unplugged (see @bugref{8942}). */ if (e1kIsConnected(pDevIns)) { /* 82543GC does not have an internal PHY */ if (pThis->eChip == E1K_CHIP_82543GC || (CTRL & CTRL_SLU)) e1kR3LinkUp(pDevIns, pThis, pThisCC); } # ifdef E1K_LSC_ON_RESET else if (pThis->eChip == E1K_CHIP_82543GC) e1kR3LinkDown(pDevIns, pThis, pThisCC); # endif /* E1K_LSC_ON_RESET */ } #endif /* IN_RING3 */ /** * Sets up the GSO context according to the TSE new context descriptor. * * @param pGso The GSO context to setup. * @param pCtx The context descriptor. */ DECLINLINE(bool) e1kSetupGsoCtx(PPDMNETWORKGSO pGso, E1KTXCTX const *pCtx) { pGso->u8Type = PDMNETWORKGSOTYPE_INVALID; /* * See if the context descriptor describes something that could be TCP or * UDP over IPv[46]. */ /* Check the header ordering and spacing: 1. Ethernet, 2. IP, 3. TCP/UDP. */ if (RT_UNLIKELY( pCtx->ip.u8CSS < sizeof(RTNETETHERHDR) )) { E1kLog(("e1kSetupGsoCtx: IPCSS=%#x\n", pCtx->ip.u8CSS)); return false; } if (RT_UNLIKELY( pCtx->tu.u8CSS < (size_t)pCtx->ip.u8CSS + (pCtx->dw2.fIP ? RTNETIPV4_MIN_LEN : RTNETIPV6_MIN_LEN) )) { E1kLog(("e1kSetupGsoCtx: TUCSS=%#x\n", pCtx->tu.u8CSS)); return false; } if (RT_UNLIKELY( pCtx->dw2.fTCP ? pCtx->dw3.u8HDRLEN < (size_t)pCtx->tu.u8CSS + RTNETTCP_MIN_LEN : pCtx->dw3.u8HDRLEN != (size_t)pCtx->tu.u8CSS + RTNETUDP_MIN_LEN )) { E1kLog(("e1kSetupGsoCtx: HDRLEN=%#x TCP=%d\n", pCtx->dw3.u8HDRLEN, pCtx->dw2.fTCP)); return false; } /* The end of the TCP/UDP checksum should stop at the end of the packet or at least after the headers. */ if (RT_UNLIKELY( pCtx->tu.u16CSE > 0 && pCtx->tu.u16CSE <= pCtx->dw3.u8HDRLEN )) { E1kLog(("e1kSetupGsoCtx: TUCSE=%#x HDRLEN=%#x\n", pCtx->tu.u16CSE, pCtx->dw3.u8HDRLEN)); return false; } /* IPv4 checksum offset. */ if (RT_UNLIKELY( pCtx->dw2.fIP && (size_t)pCtx->ip.u8CSO - pCtx->ip.u8CSS != RT_UOFFSETOF(RTNETIPV4, ip_sum) )) { E1kLog(("e1kSetupGsoCtx: IPCSO=%#x IPCSS=%#x\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS)); return false; } /* TCP/UDP checksum offsets. */ if (RT_UNLIKELY( (size_t)pCtx->tu.u8CSO - pCtx->tu.u8CSS != ( pCtx->dw2.fTCP ? RT_UOFFSETOF(RTNETTCP, th_sum) : RT_UOFFSETOF(RTNETUDP, uh_sum) ) )) { E1kLog(("e1kSetupGsoCtx: TUCSO=%#x TUCSS=%#x TCP=%d\n", pCtx->ip.u8CSO, pCtx->ip.u8CSS, pCtx->dw2.fTCP)); return false; } /* * Because of internal networking using a 16-bit size field for GSO context * plus frame, we have to make sure we don't exceed this. */ if (RT_UNLIKELY( pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN > VBOX_MAX_GSO_SIZE )) { E1kLog(("e1kSetupGsoCtx: HDRLEN(=%#x) + PAYLEN(=%#x) = %#x, max is %#x\n", pCtx->dw3.u8HDRLEN, pCtx->dw2.u20PAYLEN, pCtx->dw3.u8HDRLEN + pCtx->dw2.u20PAYLEN, VBOX_MAX_GSO_SIZE)); return false; } /* * We're good for now - we'll do more checks when seeing the data. * So, figure the type of offloading and setup the context. */ if (pCtx->dw2.fIP) { if (pCtx->dw2.fTCP) { pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_TCP; pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN; } else { pGso->u8Type = PDMNETWORKGSOTYPE_IPV4_UDP; pGso->cbHdrsSeg = pCtx->tu.u8CSS; /* IP header only */ } /** @todo Detect IPv4-IPv6 tunneling (need test setup since linux doesn't do * this yet it seems)... */ } else { pGso->cbHdrsSeg = pCtx->dw3.u8HDRLEN; /** @todo IPv6 UFO */ if (pCtx->dw2.fTCP) pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_TCP; else pGso->u8Type = PDMNETWORKGSOTYPE_IPV6_UDP; } pGso->offHdr1 = pCtx->ip.u8CSS; pGso->offHdr2 = pCtx->tu.u8CSS; pGso->cbHdrsTotal = pCtx->dw3.u8HDRLEN; pGso->cbMaxSeg = pCtx->dw3.u16MSS + (pGso->u8Type == PDMNETWORKGSOTYPE_IPV4_UDP ? pGso->offHdr2 : 0); Assert(PDMNetGsoIsValid(pGso, sizeof(*pGso), pGso->cbMaxSeg * 5)); E1kLog2(("e1kSetupGsoCtx: mss=%#x hdr=%#x hdrseg=%#x hdr1=%#x hdr2=%#x %s\n", pGso->cbMaxSeg, pGso->cbHdrsTotal, pGso->cbHdrsSeg, pGso->offHdr1, pGso->offHdr2, PDMNetGsoTypeName((PDMNETWORKGSOTYPE)pGso->u8Type) )); return PDMNetGsoIsValid(pGso, sizeof(*pGso), pGso->cbMaxSeg * 5); } /** * Checks if we can use GSO processing for the current TSE frame. * * @param pThis The device state structure. * @param pGso The GSO context. * @param pData The first data descriptor of the frame. * @param pCtx The TSO context descriptor. */ DECLINLINE(bool) e1kCanDoGso(PE1KSTATE pThis, PCPDMNETWORKGSO pGso, E1KTXDAT const *pData, E1KTXCTX const *pCtx) { if (!pData->cmd.fTSE) { E1kLog2(("e1kCanDoGso: !TSE\n")); return false; } if (pData->cmd.fVLE) /** @todo VLAN tagging. */ { E1kLog(("e1kCanDoGso: VLE\n")); return false; } if (RT_UNLIKELY(!pThis->fGSOEnabled)) { E1kLog3(("e1kCanDoGso: GSO disabled via CFGM\n")); return false; } switch ((PDMNETWORKGSOTYPE)pGso->u8Type) { case PDMNETWORKGSOTYPE_IPV4_TCP: case PDMNETWORKGSOTYPE_IPV4_UDP: if (!pData->dw3.fIXSM) { E1kLog(("e1kCanDoGso: !IXSM (IPv4)\n")); return false; } if (!pData->dw3.fTXSM) { E1kLog(("e1kCanDoGso: !TXSM (IPv4)\n")); return false; } /** @todo what more check should we perform here? Ethernet frame type? */ E1kLog2(("e1kCanDoGso: OK, IPv4\n")); return true; case PDMNETWORKGSOTYPE_IPV6_TCP: case PDMNETWORKGSOTYPE_IPV6_UDP: if (pData->dw3.fIXSM && pCtx->ip.u8CSO) { E1kLog(("e1kCanDoGso: IXSM (IPv6)\n")); return false; } if (!pData->dw3.fTXSM) { E1kLog(("e1kCanDoGso: TXSM (IPv6)\n")); return false; } /** @todo what more check should we perform here? Ethernet frame type? */ E1kLog2(("e1kCanDoGso: OK, IPv4\n")); return true; default: Assert(pGso->u8Type == PDMNETWORKGSOTYPE_INVALID); E1kLog2(("e1kCanDoGso: e1kSetupGsoCtx failed\n")); return false; } } /** * Frees the current xmit buffer. * * @param pThis The device state structure. */ static void e1kXmitFreeBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC) { PPDMSCATTERGATHER pSg = pThisCC->CTX_SUFF(pTxSg); if (pSg) { pThisCC->CTX_SUFF(pTxSg) = NULL; if (pSg->pvAllocator != pThis) { PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv); if (pDrv) pDrv->pfnFreeBuf(pDrv, pSg); } else { /* loopback */ AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t)); Assert(pSg->fFlags == (PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3)); pSg->fFlags = 0; pSg->pvAllocator = NULL; } } } #ifndef E1K_WITH_TXD_CACHE /** * Allocates an xmit buffer. * * @returns See PDMINETWORKUP::pfnAllocBuf. * @param pThis The device state structure. * @param cbMin The minimum frame size. * @param fExactSize Whether cbMin is exact or if we have to max it * out to the max MTU size. * @param fGso Whether this is a GSO frame or not. */ DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC, size_t cbMin, bool fExactSize, bool fGso) { /* Adjust cbMin if necessary. */ if (!fExactSize) cbMin = RT_MAX(cbMin, E1K_MAX_TX_PKT_SIZE); /* Deal with existing buffer (descriptor screw up, reset, etc). */ if (RT_UNLIKELY(pThisCC->CTX_SUFF(pTxSg))) e1kXmitFreeBuf(pThis, pThisCC); Assert(pThisCC->CTX_SUFF(pTxSg) == NULL); /* * Allocate the buffer. */ PPDMSCATTERGATHER pSg; if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR)) { PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv); if (RT_UNLIKELY(!pDrv)) return VERR_NET_DOWN; int rc = pDrv->pfnAllocBuf(pDrv, cbMin, fGso ? &pThis->GsoCtx : NULL, &pSg); if (RT_FAILURE(rc)) { /* Suspend TX as we are out of buffers atm */ STATUS |= STATUS_TXOFF; return rc; } } else { /* Create a loopback using the fallback buffer and preallocated SG. */ AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t)); pSg = &pThis->uTxFallback.Sg; pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3; pSg->cbUsed = 0; pSg->cbAvailable = 0; pSg->pvAllocator = pThis; pSg->pvUser = NULL; /* No GSO here. */ pSg->cSegs = 1; pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback; pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback); } pThisCC->CTX_SUFF(pTxSg) = pSg; return VINF_SUCCESS; } #else /* E1K_WITH_TXD_CACHE */ /** * Allocates an xmit buffer. * * @returns See PDMINETWORKUP::pfnAllocBuf. * @param pThis The device state structure. * @param cbMin The minimum frame size. * @param fExactSize Whether cbMin is exact or if we have to max it * out to the max MTU size. * @param fGso Whether this is a GSO frame or not. */ DECLINLINE(int) e1kXmitAllocBuf(PE1KSTATE pThis, PE1KSTATECC pThisCC, bool fGso) { /* Deal with existing buffer (descriptor screw up, reset, etc). */ if (RT_UNLIKELY(pThisCC->CTX_SUFF(pTxSg))) e1kXmitFreeBuf(pThis, pThisCC); Assert(pThisCC->CTX_SUFF(pTxSg) == NULL); /* * Allocate the buffer. */ PPDMSCATTERGATHER pSg; if (RT_LIKELY(GET_BITS(RCTL, LBM) != RCTL_LBM_TCVR)) { if (pThis->cbTxAlloc == 0) { /* Zero packet, no need for the buffer */ return VINF_SUCCESS; } if (fGso && pThis->GsoCtx.u8Type == PDMNETWORKGSOTYPE_INVALID) { E1kLog3(("Invalid GSO context, won't allocate this packet, cb=%u %s%s\n", pThis->cbTxAlloc, pThis->fVTag ? "VLAN " : "", pThis->fGSO ? "GSO " : "")); /* No valid GSO context is available, ignore this packet. */ pThis->cbTxAlloc = 0; return VINF_SUCCESS; } PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv); if (RT_UNLIKELY(!pDrv)) return VERR_NET_DOWN; int rc = pDrv->pfnAllocBuf(pDrv, pThis->cbTxAlloc, fGso ? &pThis->GsoCtx : NULL, &pSg); if (RT_FAILURE(rc)) { /* Suspend TX as we are out of buffers atm */ STATUS |= STATUS_TXOFF; return rc; } E1kLog3(("%s Allocated buffer for TX packet: cb=%u %s%s\n", pThis->szPrf, pThis->cbTxAlloc, pThis->fVTag ? "VLAN " : "", pThis->fGSO ? "GSO " : "")); } else { /* Create a loopback using the fallback buffer and preallocated SG. */ AssertCompileMemberSize(E1KSTATE, uTxFallback.Sg, 8 * sizeof(size_t)); pSg = &pThis->uTxFallback.Sg; pSg->fFlags = PDMSCATTERGATHER_FLAGS_MAGIC | PDMSCATTERGATHER_FLAGS_OWNER_3; pSg->cbUsed = 0; pSg->cbAvailable = sizeof(pThis->aTxPacketFallback); pSg->pvAllocator = pThis; pSg->pvUser = NULL; /* No GSO here. */ pSg->cSegs = 1; pSg->aSegs[0].pvSeg = pThis->aTxPacketFallback; pSg->aSegs[0].cbSeg = sizeof(pThis->aTxPacketFallback); } pThis->cbTxAlloc = 0; pThisCC->CTX_SUFF(pTxSg) = pSg; return VINF_SUCCESS; } #endif /* E1K_WITH_TXD_CACHE */ /** * Checks if it's a GSO buffer or not. * * @returns true / false. * @param pTxSg The scatter / gather buffer. */ DECLINLINE(bool) e1kXmitIsGsoBuf(PDMSCATTERGATHER const *pTxSg) { #if 0 if (!pTxSg) E1kLog(("e1kXmitIsGsoBuf: pTxSG is NULL\n")); if (pTxSg && pTxSg->pvUser) E1kLog(("e1kXmitIsGsoBuf: pvUser is NULL\n")); #endif return pTxSg && pTxSg->pvUser /* GSO indicator */; } #ifndef E1K_WITH_TXD_CACHE /** * Load transmit descriptor from guest memory. * * @param pDevIns The device instance. * @param pDesc Pointer to descriptor union. * @param addr Physical address in guest context. * @thread E1000_TX */ DECLINLINE(void) e1kLoadDesc(PPDMDEVINS pDevIns, E1KTXDESC *pDesc, RTGCPHYS addr) { PDMDevHlpPCIPhysRead(pDevIns, addr, pDesc, sizeof(E1KTXDESC)); } #else /* E1K_WITH_TXD_CACHE */ /** * Load transmit descriptors from guest memory. * * We need two physical reads in case the tail wrapped around the end of TX * descriptor ring. * * @returns the actual number of descriptors fetched. * @param pDevIns The device instance. * @param pThis The device state structure. * @thread E1000_TX */ DECLINLINE(unsigned) e1kTxDLoadMore(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc) { Assert(pThis->iTxDCurrent == 0); /* We've already loaded pThis->nTxDFetched descriptors past TDH. */ unsigned nDescsAvailable = e1kGetTxLen(pTxdc) - pThis->nTxDFetched; /* The following two lines ensure that pThis->nTxDFetched never overflows. */ AssertCompile(E1K_TXD_CACHE_SIZE < (256 * sizeof(pThis->nTxDFetched))); unsigned nDescsToFetch = RT_MIN(nDescsAvailable, E1K_TXD_CACHE_SIZE - pThis->nTxDFetched); unsigned nDescsTotal = pTxdc->tdlen / sizeof(E1KTXDESC); Assert(nDescsTotal != 0); if (nDescsTotal == 0) return 0; unsigned nFirstNotLoaded = (pTxdc->tdh + pThis->nTxDFetched) % nDescsTotal; unsigned nDescsInSingleRead = RT_MIN(nDescsToFetch, nDescsTotal - nFirstNotLoaded); E1kLog3(("%s e1kTxDLoadMore: nDescsAvailable=%u nDescsToFetch=%u nDescsTotal=%u nFirstNotLoaded=0x%x nDescsInSingleRead=%u\n", pThis->szPrf, nDescsAvailable, nDescsToFetch, nDescsTotal, nFirstNotLoaded, nDescsInSingleRead)); if (nDescsToFetch == 0) return 0; E1KTXDESC* pFirstEmptyDesc = &pThis->aTxDescriptors[pThis->nTxDFetched]; PDMDevHlpPCIPhysRead(pDevIns, ((uint64_t)TDBAH << 32) + TDBAL + nFirstNotLoaded * sizeof(E1KTXDESC), pFirstEmptyDesc, nDescsInSingleRead * sizeof(E1KTXDESC)); E1kLog3(("%s Fetched %u TX descriptors at %08x%08x(0x%x), TDLEN=%08x, TDH=%08x, TDT=%08x\n", pThis->szPrf, nDescsInSingleRead, TDBAH, TDBAL + pTxdc->tdh * sizeof(E1KTXDESC), nFirstNotLoaded, pTxdc->tdlen, pTxdc->tdh, pTxdc->tdt)); if (nDescsToFetch > nDescsInSingleRead) { PDMDevHlpPCIPhysRead(pDevIns, ((uint64_t)TDBAH << 32) + TDBAL, pFirstEmptyDesc + nDescsInSingleRead, (nDescsToFetch - nDescsInSingleRead) * sizeof(E1KTXDESC)); E1kLog3(("%s Fetched %u TX descriptors at %08x%08x\n", pThis->szPrf, nDescsToFetch - nDescsInSingleRead, TDBAH, TDBAL)); } pThis->nTxDFetched += (uint8_t)nDescsToFetch; return nDescsToFetch; } /** * Load transmit descriptors from guest memory only if there are no loaded * descriptors. * * @returns true if there are descriptors in cache. * @param pDevIns The device instance. * @param pThis The device state structure. * @thread E1000_TX */ DECLINLINE(bool) e1kTxDLazyLoad(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc) { if (pThis->nTxDFetched == 0) return e1kTxDLoadMore(pDevIns, pThis, pTxdc) != 0; return true; } #endif /* E1K_WITH_TXD_CACHE */ /** * Write back transmit descriptor to guest memory. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc Pointer to descriptor union. * @param addr Physical address in guest context. * @thread E1000_TX */ DECLINLINE(void) e1kWriteBackDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr) { /* Only the last half of the descriptor has to be written back. */ e1kPrintTDesc(pThis, pDesc, "^^^"); PDMDevHlpPCIPhysWrite(pDevIns, addr, pDesc, sizeof(E1KTXDESC)); } /** * Transmit complete frame. * * @remarks We skip the FCS since we're not responsible for sending anything to * a real ethernet wire. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @thread E1000_TX */ static void e1kTransmitFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, bool fOnWorkerThread) { PPDMSCATTERGATHER pSg = pThisCC->CTX_SUFF(pTxSg); uint32_t cbFrame = pSg ? (uint32_t)pSg->cbUsed : 0; Assert(!pSg || pSg->cSegs == 1); if (cbFrame < 14) { Log(("%s Ignoring invalid frame (%u bytes)\n", pThis->szPrf, cbFrame)); return; } if (cbFrame > 70) /* unqualified guess */ pThis->led.Asserted.s.fWriting = pThis->led.Actual.s.fWriting = 1; #ifdef E1K_INT_STATS if (cbFrame <= 1514) E1K_INC_ISTAT_CNT(pThis->uStatTx1514); else if (cbFrame <= 2962) E1K_INC_ISTAT_CNT(pThis->uStatTx2962); else if (cbFrame <= 4410) E1K_INC_ISTAT_CNT(pThis->uStatTx4410); else if (cbFrame <= 5858) E1K_INC_ISTAT_CNT(pThis->uStatTx5858); else if (cbFrame <= 7306) E1K_INC_ISTAT_CNT(pThis->uStatTx7306); else if (cbFrame <= 8754) E1K_INC_ISTAT_CNT(pThis->uStatTx8754); else if (cbFrame <= 16384) E1K_INC_ISTAT_CNT(pThis->uStatTx16384); else if (cbFrame <= 32768) E1K_INC_ISTAT_CNT(pThis->uStatTx32768); else E1K_INC_ISTAT_CNT(pThis->uStatTxLarge); #endif /* E1K_INT_STATS */ /* Add VLAN tag */ if (cbFrame > 12 && pThis->fVTag && pSg->cbUsed + 4 <= pSg->cbAvailable) { E1kLog3(("%s Inserting VLAN tag %08x\n", pThis->szPrf, RT_BE2H_U16((uint16_t)VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16))); memmove((uint8_t*)pSg->aSegs[0].pvSeg + 16, (uint8_t*)pSg->aSegs[0].pvSeg + 12, cbFrame - 12); *((uint32_t*)pSg->aSegs[0].pvSeg + 3) = RT_BE2H_U16((uint16_t)VET) | (RT_BE2H_U16(pThis->u16VTagTCI) << 16); pSg->cbUsed += 4; cbFrame += 4; Assert(pSg->cbUsed == cbFrame); Assert(pSg->cbUsed <= pSg->cbAvailable); } /* E1kLog2(("%s < < < Outgoing packet. Dump follows: > > >\n" "%.*Rhxd\n" "%s < < < < < < < < < < < < < End of dump > > > > > > > > > > > >\n", pThis->szPrf, cbFrame, pSg->aSegs[0].pvSeg, pThis->szPrf));*/ /* Update the stats */ E1K_INC_CNT32(TPT); E1K_ADD_CNT64(TOTL, TOTH, cbFrame); E1K_INC_CNT32(GPTC); if (pSg && e1kIsBroadcast(pSg->aSegs[0].pvSeg)) E1K_INC_CNT32(BPTC); else if (pSg && e1kIsMulticast(pSg->aSegs[0].pvSeg)) E1K_INC_CNT32(MPTC); /* Update octet transmit counter */ E1K_ADD_CNT64(GOTCL, GOTCH, cbFrame); if (pThisCC->CTX_SUFF(pDrv)) STAM_REL_COUNTER_ADD(&pThis->StatTransmitBytes, cbFrame); if (cbFrame == 64) E1K_INC_CNT32(PTC64); else if (cbFrame < 128) E1K_INC_CNT32(PTC127); else if (cbFrame < 256) E1K_INC_CNT32(PTC255); else if (cbFrame < 512) E1K_INC_CNT32(PTC511); else if (cbFrame < 1024) E1K_INC_CNT32(PTC1023); else E1K_INC_CNT32(PTC1522); E1K_INC_ISTAT_CNT(pThis->uStatTxFrm); /* * Dump and send the packet. */ int rc = VERR_NET_DOWN; if (pSg && pSg->pvAllocator != pThis) { e1kPacketDump(pDevIns, pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Outgoing"); pThisCC->CTX_SUFF(pTxSg) = NULL; PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv); if (pDrv) { /* Release critical section to avoid deadlock in CanReceive */ //e1kCsLeave(pThis); STAM_PROFILE_START(&pThis->CTX_SUFF_Z(StatTransmitSend), a); rc = pDrv->pfnSendBuf(pDrv, pSg, fOnWorkerThread); STAM_PROFILE_STOP(&pThis->CTX_SUFF_Z(StatTransmitSend), a); //e1kR3CsEnterAsserted(pThis); } } else if (pSg) { Assert(pSg->aSegs[0].pvSeg == pThis->aTxPacketFallback); e1kPacketDump(pDevIns, pThis, (uint8_t const *)pSg->aSegs[0].pvSeg, cbFrame, "--> Loopback"); /** @todo do we actually need to check that we're in loopback mode here? */ if (GET_BITS(RCTL, LBM) == RCTL_LBM_TCVR) { E1KRXDST status; RT_ZERO(status); status.fPIF = true; e1kHandleRxPacket(pDevIns, pThis, pSg->aSegs[0].pvSeg, cbFrame, status); rc = VINF_SUCCESS; } e1kXmitFreeBuf(pThis, pThisCC); } else rc = VERR_NET_DOWN; if (RT_FAILURE(rc)) { E1kLogRel(("E1000: ERROR! pfnSend returned %Rrc\n", rc)); /** @todo handle VERR_NET_DOWN and VERR_NET_NO_BUFFER_SPACE. Signal error ? */ } pThis->led.Actual.s.fWriting = 0; } /** * Compute and write internet checksum (e1kCSum16) at the specified offset. * * @param pThis The device state structure. * @param pPkt Pointer to the packet. * @param u16PktLen Total length of the packet. * @param cso Offset in packet to write checksum at. * @param css Offset in packet to start computing * checksum from. * @param cse Offset in packet to stop computing * checksum at. * @param fUdp Replace 0 checksum with all 1s. * @thread E1000_TX */ static void e1kInsertChecksum(PE1KSTATE pThis, uint8_t *pPkt, uint16_t u16PktLen, uint8_t cso, uint8_t css, uint16_t cse, bool fUdp = false) { RT_NOREF1(pThis); if (css >= u16PktLen) { E1kLog2(("%s css(%X) is greater than packet length-1(%X), checksum is not inserted\n", pThis->szPrf, cso, u16PktLen)); return; } if (cso >= u16PktLen - 1) { E1kLog2(("%s cso(%X) is greater than packet length-2(%X), checksum is not inserted\n", pThis->szPrf, cso, u16PktLen)); return; } if (cse == 0 || cse >= u16PktLen) cse = u16PktLen - 1; else if (cse < css) { E1kLog2(("%s css(%X) is greater than cse(%X), checksum is not inserted\n", pThis->szPrf, css, cse)); return; } uint16_t u16ChkSum = e1kCSum16(pPkt + css, cse - css + 1); if (fUdp && u16ChkSum == 0) u16ChkSum = ~u16ChkSum; /* 0 means no checksum computed in case of UDP (see @bugref{9883}) */ E1kLog2(("%s Inserting csum: %04X at %02X, old value: %04X\n", pThis->szPrf, u16ChkSum, cso, *(uint16_t*)(pPkt + cso))); *(uint16_t*)(pPkt + cso) = u16ChkSum; } /** * Add a part of descriptor's buffer to transmit frame. * * @remarks data.u64BufAddr is used unconditionally for both data * and legacy descriptors since it is identical to * legacy.u64BufAddr. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc Pointer to the descriptor to transmit. * @param u16Len Length of buffer to the end of segment. * @param fSend Force packet sending. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @thread E1000_TX */ #ifndef E1K_WITH_TXD_CACHE static void e1kFallbackAddSegment(PPDMDEVINS pDevIns, PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread) { PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); /* TCP header being transmitted */ struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS); /* IP header being transmitted */ struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS); E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n", pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend)); Assert(pThis->u32PayRemain + pThis->u16HdrRemain > 0); PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len); E1kLog3(("%s Dump of the segment:\n" "%.*Rhxd\n" "%s --- End of dump ---\n", pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf)); pThis->u16TxPktLen += u16Len; E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n", pThis->szPrf, pThis->u16TxPktLen)); if (pThis->u16HdrRemain > 0) { /* The header was not complete, check if it is now */ if (u16Len >= pThis->u16HdrRemain) { /* The rest is payload */ u16Len -= pThis->u16HdrRemain; pThis->u16HdrRemain = 0; /* Save partial checksum and flags */ pThis->u32SavedCsum = pTcpHdr->chksum; pThis->u16SavedFlags = pTcpHdr->hdrlen_flags; /* Clear FIN and PSH flags now and set them only in the last segment */ pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH); } else { /* Still not */ pThis->u16HdrRemain -= u16Len; E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n", pThis->szPrf, pThis->u16HdrRemain)); return; } } pThis->u32PayRemain -= u16Len; if (fSend) { /* Leave ethernet header intact */ /* IP Total Length = payload + headers - ethernet header */ pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS); E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n", pThis->szPrf, ntohs(pIpHdr->total_len))); /* Update IP Checksum */ pIpHdr->chksum = 0; e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen, pThis->contextTSE.ip.u8CSO, pThis->contextTSE.ip.u8CSS, pThis->contextTSE.ip.u16CSE); /* Update TCP flags */ /* Restore original FIN and PSH flags for the last segment */ if (pThis->u32PayRemain == 0) { pTcpHdr->hdrlen_flags = pThis->u16SavedFlags; E1K_INC_CNT32(TSCTC); } /* Add TCP length to partial pseudo header sum */ uint32_t csum = pThis->u32SavedCsum + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS); while (csum >> 16) csum = (csum >> 16) + (csum & 0xFFFF); pTcpHdr->chksum = csum; /* Compute final checksum */ e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen, pThis->contextTSE.tu.u8CSO, pThis->contextTSE.tu.u8CSS, pThis->contextTSE.tu.u16CSE); /* * Transmit it. If we've use the SG already, allocate a new one before * we copy of the data. */ PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg); if (!pTxSg) { e1kXmitAllocBuf(pThis, pThisCC, pThis->u16TxPktLen + (pThis->fVTag ? 4 : 0), true /*fExactSize*/, false /*fGso*/); pTxSg = pThisCC->CTX_SUFF(pTxSg); } if (pTxSg) { Assert(pThis->u16TxPktLen <= pThisCC->CTX_SUFF(pTxSg)->cbAvailable); Assert(pTxSg->cSegs == 1); if (pThis->CCCTX_SUFF(pTxSg)->aSegs[0].pvSeg != pThis->aTxPacketFallback) memcpy(pTxSg->aSegs[0].pvSeg, pThis->aTxPacketFallback, pThis->u16TxPktLen); pTxSg->cbUsed = pThis->u16TxPktLen; pTxSg->aSegs[0].cbSeg = pThis->u16TxPktLen; } e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); /* Update Sequence Number */ pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen - pThis->contextTSE.dw3.u8HDRLEN); /* Increment IP identification */ pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1); } } #else /* E1K_WITH_TXD_CACHE */ static int e1kFallbackAddSegment(PPDMDEVINS pDevIns, PE1KSTATE pThis, RTGCPHYS PhysAddr, uint16_t u16Len, bool fSend, bool fOnWorkerThread) { int rc = VINF_SUCCESS; PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); /* TCP header being transmitted */ struct E1kTcpHeader *pTcpHdr = (struct E1kTcpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.tu.u8CSS); /* IP header being transmitted */ struct E1kIpHeader *pIpHdr = (struct E1kIpHeader *)(pThis->aTxPacketFallback + pThis->contextTSE.ip.u8CSS); E1kLog3(("%s e1kFallbackAddSegment: Length=%x, remaining payload=%x, header=%x, send=%RTbool\n", pThis->szPrf, u16Len, pThis->u32PayRemain, pThis->u16HdrRemain, fSend)); AssertReturn(pThis->u32PayRemain + pThis->u16HdrRemain > 0, VINF_SUCCESS); if (pThis->u16TxPktLen + u16Len <= sizeof(pThis->aTxPacketFallback)) PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, pThis->aTxPacketFallback + pThis->u16TxPktLen, u16Len); else E1kLog(("%s e1kFallbackAddSegment: writing beyond aTxPacketFallback, u16TxPktLen=%d(0x%x) + u16Len=%d(0x%x) > %d\n", pThis->szPrf, pThis->u16TxPktLen, pThis->u16TxPktLen, u16Len, u16Len, sizeof(pThis->aTxPacketFallback))); E1kLog3(("%s Dump of the segment:\n" "%.*Rhxd\n" "%s --- End of dump ---\n", pThis->szPrf, u16Len, pThis->aTxPacketFallback + pThis->u16TxPktLen, pThis->szPrf)); pThis->u16TxPktLen += u16Len; E1kLog3(("%s e1kFallbackAddSegment: pThis->u16TxPktLen=%x\n", pThis->szPrf, pThis->u16TxPktLen)); if (pThis->u16HdrRemain > 0) { /* The header was not complete, check if it is now */ if (u16Len >= pThis->u16HdrRemain) { /* The rest is payload */ u16Len -= pThis->u16HdrRemain; pThis->u16HdrRemain = 0; /* Save partial checksum and flags */ pThis->u32SavedCsum = pTcpHdr->chksum; pThis->u16SavedFlags = pTcpHdr->hdrlen_flags; /* Clear FIN and PSH flags now and set them only in the last segment */ pTcpHdr->hdrlen_flags &= ~htons(E1K_TCP_FIN | E1K_TCP_PSH); } else { /* Still not */ pThis->u16HdrRemain -= u16Len; E1kLog3(("%s e1kFallbackAddSegment: Header is still incomplete, 0x%x bytes remain.\n", pThis->szPrf, pThis->u16HdrRemain)); return rc; } } if (u16Len > pThis->u32PayRemain) pThis->u32PayRemain = 0; else pThis->u32PayRemain -= u16Len; if (fSend) { /* Leave ethernet header intact */ /* IP Total Length = payload + headers - ethernet header */ pIpHdr->total_len = htons(pThis->u16TxPktLen - pThis->contextTSE.ip.u8CSS); E1kLog3(("%s e1kFallbackAddSegment: End of packet, pIpHdr->total_len=%x\n", pThis->szPrf, ntohs(pIpHdr->total_len))); /* Update IP Checksum */ pIpHdr->chksum = 0; e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen, pThis->contextTSE.ip.u8CSO, pThis->contextTSE.ip.u8CSS, pThis->contextTSE.ip.u16CSE); /* Update TCP flags */ /* Restore original FIN and PSH flags for the last segment */ if (pThis->u32PayRemain == 0) { pTcpHdr->hdrlen_flags = pThis->u16SavedFlags; E1K_INC_CNT32(TSCTC); } /* Add TCP length to partial pseudo header sum */ uint32_t csum = pThis->u32SavedCsum + htons(pThis->u16TxPktLen - pThis->contextTSE.tu.u8CSS); while (csum >> 16) csum = (csum >> 16) + (csum & 0xFFFF); Assert(csum < 65536); pTcpHdr->chksum = (uint16_t)csum; /* Compute final checksum */ e1kInsertChecksum(pThis, pThis->aTxPacketFallback, pThis->u16TxPktLen, pThis->contextTSE.tu.u8CSO, pThis->contextTSE.tu.u8CSS, pThis->contextTSE.tu.u16CSE); /* * Transmit it. */ PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg); if (pTxSg) { /* Make sure the packet fits into the allocated buffer */ size_t cbCopy = RT_MIN(pThis->u16TxPktLen, pThisCC->CTX_SUFF(pTxSg)->cbAvailable); #ifdef DEBUG if (pThis->u16TxPktLen > pTxSg->cbAvailable) E1kLog(("%s e1kFallbackAddSegment: truncating packet, u16TxPktLen=%d(0x%x) > cbAvailable=%d(0x%x)\n", pThis->szPrf, pThis->u16TxPktLen, pThis->u16TxPktLen, pTxSg->cbAvailable, pTxSg->cbAvailable)); #endif /* DEBUG */ Assert(pTxSg->cSegs == 1); if (pTxSg->aSegs[0].pvSeg != pThis->aTxPacketFallback) memcpy(pTxSg->aSegs[0].pvSeg, pThis->aTxPacketFallback, cbCopy); pTxSg->cbUsed = cbCopy; pTxSg->aSegs[0].cbSeg = cbCopy; } e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); /* Update Sequence Number */ pTcpHdr->seqno = htonl(ntohl(pTcpHdr->seqno) + pThis->u16TxPktLen - pThis->contextTSE.dw3.u8HDRLEN); /* Increment IP identification */ pIpHdr->ident = htons(ntohs(pIpHdr->ident) + 1); /* Allocate new buffer for the next segment. */ if (pThis->u32PayRemain) { pThis->cbTxAlloc = RT_MIN(pThis->u32PayRemain, pThis->contextTSE.dw3.u16MSS) + pThis->contextTSE.dw3.u8HDRLEN; /* Do not add VLAN tags to empty packets. */ if (pThis->fVTag && pThis->cbTxAlloc > 0) pThis->cbTxAlloc += 4; rc = e1kXmitAllocBuf(pThis, pThisCC, false /* fGSO */); } } return rc; } #endif /* E1K_WITH_TXD_CACHE */ #ifndef E1K_WITH_TXD_CACHE /** * TCP segmentation offloading fallback: Add descriptor's buffer to transmit * frame. * * We construct the frame in the fallback buffer first and the copy it to the SG * buffer before passing it down to the network driver code. * * @returns true if the frame should be transmitted, false if not. * * @param pThis The device state structure. * @param pDesc Pointer to the descriptor to transmit. * @param cbFragment Length of descriptor's buffer. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @thread E1000_TX */ static bool e1kFallbackAddToFrame(PE1KSTATE pThis, E1KTXDESC *pDesc, uint32_t cbFragment, bool fOnWorkerThread) { PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg); Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA); Assert(pDesc->data.cmd.fTSE); Assert(!e1kXmitIsGsoBuf(pTxSg)); uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS; Assert(u16MaxPktLen != 0); Assert(u16MaxPktLen < E1K_MAX_TX_PKT_SIZE); /* * Carve out segments. */ do { /* Calculate how many bytes we have left in this TCP segment */ uint32_t cb = u16MaxPktLen - pThis->u16TxPktLen; if (cb > cbFragment) { /* This descriptor fits completely into current segment */ cb = cbFragment; e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread); } else { e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread); /* * Rewind the packet tail pointer to the beginning of payload, * so we continue writing right beyond the header. */ pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN; } pDesc->data.u64BufAddr += cb; cbFragment -= cb; } while (cbFragment > 0); if (pDesc->data.cmd.fEOP) { /* End of packet, next segment will contain header. */ if (pThis->u32PayRemain != 0) E1K_INC_CNT32(TSCTFC); pThis->u16TxPktLen = 0; e1kXmitFreeBuf(pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC)); } return false; } #else /* E1K_WITH_TXD_CACHE */ /** * TCP segmentation offloading fallback: Add descriptor's buffer to transmit * frame. * * We construct the frame in the fallback buffer first and the copy it to the SG * buffer before passing it down to the network driver code. * * @returns error code * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pDesc Pointer to the descriptor to transmit. * @param cbFragment Length of descriptor's buffer. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @thread E1000_TX */ static int e1kFallbackAddToFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, bool fOnWorkerThread) { #ifdef VBOX_STRICT PPDMSCATTERGATHER pTxSg = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC)->CTX_SUFF(pTxSg); Assert(e1kGetDescType(pDesc) == E1K_DTYP_DATA); Assert(pDesc->data.cmd.fTSE); Assert(!e1kXmitIsGsoBuf(pTxSg)); #endif uint16_t u16MaxPktLen = pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw3.u16MSS; /* We cannot produce empty packets, ignore all TX descriptors (see @bugref{9571}) */ if (u16MaxPktLen == 0) return VINF_SUCCESS; /* * Carve out segments. */ int rc = VINF_SUCCESS; do { /* Calculate how many bytes we have left in this TCP segment */ uint16_t cb = u16MaxPktLen - pThis->u16TxPktLen; if (cb > pDesc->data.cmd.u20DTALEN) { /* This descriptor fits completely into current segment */ cb = (uint16_t)pDesc->data.cmd.u20DTALEN; /* u20DTALEN at this point is guarantied to fit into 16 bits. */ rc = e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, pDesc->data.cmd.fEOP /*fSend*/, fOnWorkerThread); } else { rc = e1kFallbackAddSegment(pDevIns, pThis, pDesc->data.u64BufAddr, cb, true /*fSend*/, fOnWorkerThread); /* * Rewind the packet tail pointer to the beginning of payload, * so we continue writing right beyond the header. */ pThis->u16TxPktLen = pThis->contextTSE.dw3.u8HDRLEN; } pDesc->data.u64BufAddr += cb; pDesc->data.cmd.u20DTALEN -= cb; } while (pDesc->data.cmd.u20DTALEN > 0 && RT_SUCCESS(rc)); if (pDesc->data.cmd.fEOP) { /* End of packet, next segment will contain header. */ if (pThis->u32PayRemain != 0) E1K_INC_CNT32(TSCTFC); pThis->u16TxPktLen = 0; e1kXmitFreeBuf(pThis, PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC)); } return VINF_SUCCESS; /// @todo consider rc; } #endif /* E1K_WITH_TXD_CACHE */ /** * Add descriptor's buffer to transmit frame. * * This deals with GSO and normal frames, e1kFallbackAddToFrame deals with the * TSE frames we cannot handle as GSO. * * @returns true on success, false on failure. * * @param pDevIns The device instance. * @param pThisCC The current context instance data. * @param pThis The device state structure. * @param PhysAddr The physical address of the descriptor buffer. * @param cbFragment Length of descriptor's buffer. * @thread E1000_TX */ static bool e1kAddToFrame(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, RTGCPHYS PhysAddr, uint32_t cbFragment) { PPDMSCATTERGATHER pTxSg = pThisCC->CTX_SUFF(pTxSg); bool const fGso = e1kXmitIsGsoBuf(pTxSg); uint32_t const cbNewPkt = cbFragment + pThis->u16TxPktLen; LogFlow(("%s e1kAddToFrame: ENTER cbFragment=%d u16TxPktLen=%d cbUsed=%d cbAvailable=%d fGSO=%s\n", pThis->szPrf, cbFragment, pThis->u16TxPktLen, pTxSg->cbUsed, pTxSg->cbAvailable, fGso ? "true" : "false")); PCPDMNETWORKGSO pGso = (PCPDMNETWORKGSO)pTxSg->pvUser; if (pGso) { if (RT_UNLIKELY(pGso->cbMaxSeg == 0)) { E1kLog(("%s zero-sized fragments are not allowed\n", pThis->szPrf)); return false; } if (RT_UNLIKELY(pGso->u8Type == PDMNETWORKGSOTYPE_IPV4_UDP)) { E1kLog(("%s UDP fragmentation is no longer supported\n", pThis->szPrf)); return false; } } if (RT_UNLIKELY( !fGso && cbNewPkt > E1K_MAX_TX_PKT_SIZE )) { E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", pThis->szPrf, cbNewPkt, E1K_MAX_TX_PKT_SIZE)); return false; } if (RT_UNLIKELY( cbNewPkt > pTxSg->cbAvailable )) { E1kLog(("%s Transmit packet is too large: %u > %u(max)\n", pThis->szPrf, cbNewPkt, pTxSg->cbAvailable)); return false; } if (RT_LIKELY(pTxSg)) { Assert(pTxSg->cSegs == 1); if (pTxSg->cbUsed != pThis->u16TxPktLen) E1kLog(("%s e1kAddToFrame: pTxSg->cbUsed=%d(0x%x) != u16TxPktLen=%d(0x%x)\n", pThis->szPrf, pTxSg->cbUsed, pTxSg->cbUsed, pThis->u16TxPktLen, pThis->u16TxPktLen)); PDMDevHlpPCIPhysRead(pDevIns, PhysAddr, (uint8_t *)pTxSg->aSegs[0].pvSeg + pThis->u16TxPktLen, cbFragment); pTxSg->cbUsed = cbNewPkt; } pThis->u16TxPktLen = cbNewPkt; return true; } /** * Write the descriptor back to guest memory and notify the guest. * * @param pThis The device state structure. * @param pDesc Pointer to the descriptor have been transmitted. * @param addr Physical address of the descriptor in guest memory. * @thread E1000_TX */ static void e1kDescReport(PPDMDEVINS pDevIns, PE1KSTATE pThis, E1KTXDESC *pDesc, RTGCPHYS addr) { /* * We fake descriptor write-back bursting. Descriptors are written back as they are * processed. */ /* Let's pretend we process descriptors. Write back with DD set. */ /* * Prior to r71586 we tried to accomodate the case when write-back bursts * are enabled without actually implementing bursting by writing back all * descriptors, even the ones that do not have RS set. This caused kernel * panics with Linux SMP kernels, as the e1000 driver tried to free up skb * associated with written back descriptor if it happened to be a context * descriptor since context descriptors do not have skb associated to them. * Starting from r71586 we write back only the descriptors with RS set, * which is a little bit different from what the real hardware does in * case there is a chain of data descritors where some of them have RS set * and others do not. It is very uncommon scenario imho. * We need to check RPS as well since some legacy drivers use it instead of * RS even with newer cards. */ if (pDesc->legacy.cmd.fRS || pDesc->legacy.cmd.fRPS) { pDesc->legacy.dw3.fDD = 1; /* Descriptor Done */ e1kWriteBackDesc(pDevIns, pThis, pDesc, addr); if (pDesc->legacy.cmd.fEOP) { //#ifdef E1K_USE_TX_TIMERS if (pThis->fTidEnabled && pDesc->legacy.cmd.fIDE) { E1K_INC_ISTAT_CNT(pThis->uStatTxIDE); //if (pThis->fIntRaised) //{ // /* Interrupt is already pending, no need for timers */ // ICR |= ICR_TXDW; //} //else { /* Arm the timer to fire in TIVD usec (discard .024) */ e1kArmTimer(pDevIns, pThis, pThis->hTIDTimer, TIDV); # ifndef E1K_NO_TAD /* If absolute timer delay is enabled and the timer is not running yet, arm it. */ E1kLog2(("%s Checking if TAD timer is running\n", pThis->szPrf)); if (TADV != 0 && !PDMDevHlpTimerIsActive(pDevIns, pThis->hTADTimer)) e1kArmTimer(pDevIns, pThis, pThis->hTADTimer, TADV); # endif /* E1K_NO_TAD */ } else { if (pThis->fTidEnabled) { E1kLog2(("%s No IDE set, cancel TAD timer and raise interrupt\n", pThis->szPrf)); /* Cancel both timers if armed and fire immediately. */ # ifndef E1K_NO_TAD PDMDevHlpTimerStop(pDevIns, pThis->hTADTimer); # endif PDMDevHlpTimerStop(pDevIns, pThis->hTIDTimer); } //#endif /* E1K_USE_TX_TIMERS */ E1K_INC_ISTAT_CNT(pThis->uStatIntTx); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXDW); //#ifdef E1K_USE_TX_TIMERS } //#endif /* E1K_USE_TX_TIMERS */ } } else { E1K_INC_ISTAT_CNT(pThis->uStatTxNoRS); } } #ifndef E1K_WITH_TXD_CACHE /** * Process Transmit Descriptor. * * E1000 supports three types of transmit descriptors: * - legacy data descriptors of older format (context-less). * - data the same as legacy but providing new offloading capabilities. * - context sets up the context for following data descriptors. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. * @param pDesc Pointer to descriptor union. * @param addr Physical address of descriptor in guest memory. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @thread E1000_TX */ static int e1kXmitDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, E1KTXDESC *pDesc, RTGCPHYS addr, bool fOnWorkerThread) { int rc = VINF_SUCCESS; uint32_t cbVTag = 0; e1kPrintTDesc(pThis, pDesc, "vvv"); //#ifdef E1K_USE_TX_TIMERS if (pThis->fTidEnabled) e1kCancelTimer(pDevIns, pThis, pThis->hTIDTimer); //#endif /* E1K_USE_TX_TIMERS */ switch (e1kGetDescType(pDesc)) { case E1K_DTYP_CONTEXT: if (pDesc->context.dw2.fTSE) { pThis->contextTSE = pDesc->context; pThis->u32PayRemain = pDesc->context.dw2.u20PAYLEN; pThis->u16HdrRemain = pDesc->context.dw3.u8HDRLEN; e1kSetupGsoCtx(&pThis->GsoCtx, &pDesc->context); STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE); } else { pThis->contextNormal = pDesc->context; STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal); } E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X" ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf, pDesc->context.dw2.fTSE ? "TSE" : "Normal", pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE, pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE)); E1K_INC_ISTAT_CNT(pThis->uStatDescCtx); e1kDescReport(pThis, pDesc, addr); break; case E1K_DTYP_DATA: { if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0) { E1kLog2(("% Empty data descriptor, skipped.\n", pThis->szPrf)); /** @todo Same as legacy when !TSE. See below. */ break; } STAM_COUNTER_INC(pDesc->data.cmd.fTSE? &pThis->StatTxDescTSEData: &pThis->StatTxDescData); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); E1K_INC_ISTAT_CNT(pThis->uStatDescDat); /* * The last descriptor of non-TSE packet must contain VLE flag. * TSE packets have VLE flag in the first descriptor. The later * case is taken care of a bit later when cbVTag gets assigned. * * 1) pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE */ if (pDesc->data.cmd.fEOP && !pDesc->data.cmd.fTSE) { pThis->fVTag = pDesc->data.cmd.fVLE; pThis->u16VTagTCI = pDesc->data.dw3.u16Special; } /* * First fragment: Allocate new buffer and save the IXSM and TXSM * packet options as these are only valid in the first fragment. */ if (pThis->u16TxPktLen == 0) { pThis->fIPcsum = pDesc->data.dw3.fIXSM; pThis->fTCPcsum = pDesc->data.dw3.fTXSM; E1kLog2(("%s Saving checksum flags:%s%s; \n", pThis->szPrf, pThis->fIPcsum ? " IP" : "", pThis->fTCPcsum ? " TCP/UDP" : "")); if (pDesc->data.cmd.fTSE) { /* 2) pDesc->data.cmd.fTSE && pThis->u16TxPktLen == 0 */ pThis->fVTag = pDesc->data.cmd.fVLE; pThis->u16VTagTCI = pDesc->data.dw3.u16Special; cbVTag = pThis->fVTag ? 4 : 0; } else if (pDesc->data.cmd.fEOP) cbVTag = pDesc->data.cmd.fVLE ? 4 : 0; else cbVTag = 4; E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag)); if (e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE)) rc = e1kXmitAllocBuf(pThis, pThisCC, pThis->contextTSE.dw2.u20PAYLEN + pThis->contextTSE.dw3.u8HDRLEN + cbVTag, true /*fExactSize*/, true /*fGso*/); else if (pDesc->data.cmd.fTSE) rc = e1kXmitAllocBuf(pThis, pThisCC, , pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + cbVTag, pDesc->data.cmd.fTSE /*fExactSize*/, false /*fGso*/); else rc = e1kXmitAllocBuf(pThis, pThisCC, pDesc->data.cmd.u20DTALEN + cbVTag, pDesc->data.cmd.fEOP /*fExactSize*/, false /*fGso*/); /** * @todo: Perhaps it is not that simple for GSO packets! We may * need to unwind some changes. */ if (RT_FAILURE(rc)) { STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; } /** @todo Is there any way to indicating errors other than collisions? Like * VERR_NET_DOWN. */ } /* * Add the descriptor data to the frame. If the frame is complete, * transmit it and reset the u16TxPktLen field. */ if (e1kXmitIsGsoBuf(pThisCC->CTX_SUFF(pTxSg))) { STAM_COUNTER_INC(&pThis->StatTxPathGSO); bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN); if (pDesc->data.cmd.fEOP) { if ( fRc && pThisCC->CTX_SUFF(pTxSg) && pThisCC->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN) { e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); E1K_INC_CNT32(TSCTC); } else { if (fRc) E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf, pThisCC->CTX_SUFF(pTxSg), pThisCC->CTX_SUFF(pTxSg) ? pThisCC->CTX_SUFF(pTxSg)->cbUsed : 0, pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)); e1kXmitFreeBuf(pThis); E1K_INC_CNT32(TSCTFC); } pThis->u16TxPktLen = 0; } } else if (!pDesc->data.cmd.fTSE) { STAM_COUNTER_INC(&pThis->StatTxPathRegular); bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN); if (pDesc->data.cmd.fEOP) { if (fRc && pThisCC->CTX_SUFF(pTxSg)) { Assert(pThisCC->CTX_SUFF(pTxSg)->cSegs == 1); if (pThis->fIPcsum) e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen, pThis->contextNormal.ip.u8CSO, pThis->contextNormal.ip.u8CSS, pThis->contextNormal.ip.u16CSE); if (pThis->fTCPcsum) e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen, pThis->contextNormal.tu.u8CSO, pThis->contextNormal.tu.u8CSS, pThis->contextNormal.tu.u16CSE, !pThis->contextNormal.dw2.fTCP); e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); } else e1kXmitFreeBuf(pThis); pThis->u16TxPktLen = 0; } } else { STAM_COUNTER_INC(&pThis->StatTxPathFallback); e1kFallbackAddToFrame(pDevIns, pThis, pDesc, pDesc->data.cmd.u20DTALEN, fOnWorkerThread); } e1kDescReport(pThis, pDesc, addr); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; } case E1K_DTYP_LEGACY: if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0) { E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf)); /** @todo 3.3.3, Length/Buffer Address: RS set -> write DD when processing. */ break; } STAM_COUNTER_INC(&pThis->StatTxDescLegacy); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); /* First fragment: allocate new buffer. */ if (pThis->u16TxPktLen == 0) { if (pDesc->legacy.cmd.fEOP) cbVTag = pDesc->legacy.cmd.fVLE ? 4 : 0; else cbVTag = 4; E1kLog3(("%s About to allocate TX buffer: cbVTag=%u\n", pThis->szPrf, cbVTag)); /** @todo reset status bits? */ rc = e1kXmitAllocBuf(pThis, pThisCC, pDesc->legacy.cmd.u16Length + cbVTag, pDesc->legacy.cmd.fEOP, false /*fGso*/); if (RT_FAILURE(rc)) { STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; } /** @todo Is there any way to indicating errors other than collisions? Like * VERR_NET_DOWN. */ } /* Add fragment to frame. */ if (e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length)) { E1K_INC_ISTAT_CNT(pThis->uStatDescLeg); /* Last fragment: Transmit and reset the packet storage counter. */ if (pDesc->legacy.cmd.fEOP) { pThis->fVTag = pDesc->legacy.cmd.fVLE; pThis->u16VTagTCI = pDesc->legacy.dw3.u16Special; /** @todo Offload processing goes here. */ e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); pThis->u16TxPktLen = 0; } } /* Last fragment + failure: free the buffer and reset the storage counter. */ else if (pDesc->legacy.cmd.fEOP) { e1kXmitFreeBuf(pThis); pThis->u16TxPktLen = 0; } e1kDescReport(pThis, pDesc, addr); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; default: E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n", pThis->szPrf, e1kGetDescType(pDesc))); break; } return rc; } #else /* E1K_WITH_TXD_CACHE */ /** * Process Transmit Descriptor. * * E1000 supports three types of transmit descriptors: * - legacy data descriptors of older format (context-less). * - data the same as legacy but providing new offloading capabilities. * - context sets up the context for following data descriptors. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param pThisCC The current context instance data. * @param pDesc Pointer to descriptor union. * @param addr Physical address of descriptor in guest memory. * @param fOnWorkerThread Whether we're on a worker thread or an EMT. * @param cbPacketSize Size of the packet as previously computed. * @thread E1000_TX */ static int e1kXmitDesc(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KSTATECC pThisCC, E1KTXDESC *pDesc, RTGCPHYS addr, bool fOnWorkerThread) { int rc = VINF_SUCCESS; e1kPrintTDesc(pThis, pDesc, "vvv"); //#ifdef E1K_USE_TX_TIMERS if (pThis->fTidEnabled) PDMDevHlpTimerStop(pDevIns, pThis->hTIDTimer); //#endif /* E1K_USE_TX_TIMERS */ switch (e1kGetDescType(pDesc)) { case E1K_DTYP_CONTEXT: /* The caller have already updated the context */ E1K_INC_ISTAT_CNT(pThis->uStatDescCtx); e1kDescReport(pDevIns, pThis, pDesc, addr); break; case E1K_DTYP_DATA: { STAM_COUNTER_INC(pDesc->data.cmd.fTSE? &pThis->StatTxDescTSEData: &pThis->StatTxDescData); E1K_INC_ISTAT_CNT(pThis->uStatDescDat); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); if (pDesc->data.cmd.u20DTALEN == 0 || pDesc->data.u64BufAddr == 0) { E1kLog2(("%s Empty data descriptor, skipped.\n", pThis->szPrf)); if (pDesc->data.cmd.fEOP) { e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); pThis->u16TxPktLen = 0; } } else { /* * Add the descriptor data to the frame. If the frame is complete, * transmit it and reset the u16TxPktLen field. */ if (e1kXmitIsGsoBuf(pThisCC->CTX_SUFF(pTxSg))) { STAM_COUNTER_INC(&pThis->StatTxPathGSO); bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN); if (pDesc->data.cmd.fEOP) { if ( fRc && pThisCC->CTX_SUFF(pTxSg) && pThisCC->CTX_SUFF(pTxSg)->cbUsed == (size_t)pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN) { e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); E1K_INC_CNT32(TSCTC); } else { if (fRc) E1kLog(("%s bad GSO/TSE %p or %u < %u\n" , pThis->szPrf, pThisCC->CTX_SUFF(pTxSg), pThisCC->CTX_SUFF(pTxSg) ? pThisCC->CTX_SUFF(pTxSg)->cbUsed : 0, pThis->contextTSE.dw3.u8HDRLEN + pThis->contextTSE.dw2.u20PAYLEN)); e1kXmitFreeBuf(pThis, pThisCC); E1K_INC_CNT32(TSCTFC); } pThis->u16TxPktLen = 0; } } else if (!pDesc->data.cmd.fTSE) { STAM_COUNTER_INC(&pThis->StatTxPathRegular); bool fRc = e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN); if (pDesc->data.cmd.fEOP) { if (fRc && pThisCC->CTX_SUFF(pTxSg)) { Assert(pThisCC->CTX_SUFF(pTxSg)->cSegs == 1); if (pThis->fIPcsum) e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen, pThis->contextNormal.ip.u8CSO, pThis->contextNormal.ip.u8CSS, pThis->contextNormal.ip.u16CSE); if (pThis->fTCPcsum) e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen, pThis->contextNormal.tu.u8CSO, pThis->contextNormal.tu.u8CSS, pThis->contextNormal.tu.u16CSE, !pThis->contextNormal.dw2.fTCP); e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); } else e1kXmitFreeBuf(pThis, pThisCC); pThis->u16TxPktLen = 0; } } else { STAM_COUNTER_INC(&pThis->StatTxPathFallback); rc = e1kFallbackAddToFrame(pDevIns, pThis, pDesc, fOnWorkerThread); } } e1kDescReport(pDevIns, pThis, pDesc, addr); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; } case E1K_DTYP_LEGACY: STAM_COUNTER_INC(&pThis->StatTxDescLegacy); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); if (pDesc->legacy.cmd.u16Length == 0 || pDesc->legacy.u64BufAddr == 0) { E1kLog(("%s Empty legacy descriptor, skipped.\n", pThis->szPrf)); if (pDesc->data.cmd.fEOP) { e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); pThis->u16TxPktLen = 0; } } else { /* Add fragment to frame. */ if (e1kAddToFrame(pDevIns, pThis, pThisCC, pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length)) { E1K_INC_ISTAT_CNT(pThis->uStatDescLeg); /* Last fragment: Transmit and reset the packet storage counter. */ if (pDesc->legacy.cmd.fEOP) { if (pDesc->legacy.cmd.fIC) { e1kInsertChecksum(pThis, (uint8_t *)pThisCC->CTX_SUFF(pTxSg)->aSegs[0].pvSeg, pThis->u16TxPktLen, pDesc->legacy.cmd.u8CSO, pDesc->legacy.dw3.u8CSS, 0); } e1kTransmitFrame(pDevIns, pThis, pThisCC, fOnWorkerThread); pThis->u16TxPktLen = 0; } } /* Last fragment + failure: free the buffer and reset the storage counter. */ else if (pDesc->legacy.cmd.fEOP) { e1kXmitFreeBuf(pThis, pThisCC); pThis->u16TxPktLen = 0; } } e1kDescReport(pDevIns, pThis, pDesc, addr); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); break; default: E1kLog(("%s ERROR Unsupported transmit descriptor type: 0x%04x\n", pThis->szPrf, e1kGetDescType(pDesc))); break; } return rc; } DECLINLINE(bool) e1kUpdateTxContext(PE1KSTATE pThis, E1KTXDESC *pDesc) { if (pDesc->context.dw2.fTSE) { if (!e1kSetupGsoCtx(&pThis->GsoCtx, &pDesc->context)) { pThis->contextTSE.dw2.u4DTYP = E1K_DTYP_INVALID; return false; } pThis->contextTSE = pDesc->context; uint32_t cbMaxSegmentSize = pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN + 4; /*VTAG*/ if (RT_UNLIKELY(cbMaxSegmentSize > E1K_MAX_TX_PKT_SIZE)) { pThis->contextTSE.dw3.u16MSS = E1K_MAX_TX_PKT_SIZE - pThis->contextTSE.dw3.u8HDRLEN - 4; /*VTAG*/ LogRelMax(10, ("%s: Transmit packet is too large: %u > %u(max). Adjusted MSS to %u.\n", pThis->szPrf, cbMaxSegmentSize, E1K_MAX_TX_PKT_SIZE, pThis->contextTSE.dw3.u16MSS)); } pThis->u32PayRemain = pThis->contextTSE.dw2.u20PAYLEN; pThis->u16HdrRemain = pThis->contextTSE.dw3.u8HDRLEN; e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE); STAM_COUNTER_INC(&pThis->StatTxDescCtxTSE); } else { pThis->contextNormal = pDesc->context; STAM_COUNTER_INC(&pThis->StatTxDescCtxNormal); } E1kLog2(("%s %s context updated: IP CSS=%02X, IP CSO=%02X, IP CSE=%04X" ", TU CSS=%02X, TU CSO=%02X, TU CSE=%04X\n", pThis->szPrf, pDesc->context.dw2.fTSE ? "TSE" : "Normal", pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE, pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE)); return true; /* Consider returning false for invalid descriptors */ } enum E1kPacketType { E1K_PACKET_NONE = 0, E1K_PACKET_LEGACY, E1K_PACKET_NORMAL, E1K_PACKET_TSE }; static int e1kLocateTxPacket(PE1KSTATE pThis, PE1KTXDC pTxdc) { LogFlow(("%s e1kLocateTxPacket: ENTER cbTxAlloc=%d\n", pThis->szPrf, pThis->cbTxAlloc)); /* Check if we have located the packet already. */ if (pThis->cbTxAlloc) { LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d\n", pThis->szPrf, pThis->cbTxAlloc)); return true; } pThis->fGSO = false; pThis->fVTag = false; pThis->fIPcsum = false; pThis->fTCPcsum = false; pThis->u16TxPktLen = 0; enum E1kPacketType packetType = E1K_PACKET_NONE; enum E1kPacketType expectedPacketType = E1K_PACKET_NONE; /* * Valid packets start with 1 or 0 context descriptors, followed by 1 or * more data descriptors of the same type: legacy, normal or TSE. Note * that legacy descriptors do not belong to neither normal nor segmentation * contexts rendering the sequence (context_descriptor, legacy_descriptor) * invalid, but the context descriptor will still be applied and the legacy * descriptor will be treated as the beginning of next packet. */ bool fInvalidPacket = false; bool fTSE = false; uint32_t cbPacket = 0; /* Since we process one packet at a time we will only mark current packet's descriptors as valid */ memset(pThis->afTxDValid, 0, sizeof(pThis->afTxDValid)); for (int i = pThis->iTxDCurrent; i < pThis->nTxDFetched; ++i) { E1KTXDESC *pDesc = &pThis->aTxDescriptors[i]; switch (e1kGetDescType(pDesc)) { case E1K_DTYP_CONTEXT: /* There can be only one context per packet. Each context descriptor starts a new packet. */ if (packetType != E1K_PACKET_NONE) { fInvalidPacket = true; break; } packetType = (pDesc->context.dw2.fTSE) ? E1K_PACKET_TSE : E1K_PACKET_NORMAL; if (cbPacket == 0) pThis->afTxDValid[i] = e1kUpdateTxContext(pThis, pDesc); else E1kLog(("%s e1kLocateTxPacket: ignoring a context descriptor in the middle of a packet, cbPacket=%d\n", pThis->szPrf, cbPacket)); continue; case E1K_DTYP_LEGACY: if (packetType != E1K_PACKET_NONE && packetType != E1K_PACKET_LEGACY) { fInvalidPacket = true; break; } packetType = E1K_PACKET_LEGACY; /* Skip invalid descriptors. */ if (cbPacket > 0 && (pThis->fGSO || fTSE)) { E1kLog(("%s e1kLocateTxPacket: ignoring a legacy descriptor in the segmentation context, cbPacket=%d\n", pThis->szPrf, cbPacket)); continue; } pThis->afTxDValid[i] = true; /* Passed all checks, process it */ /* Skip empty descriptors. */ if (!pDesc->legacy.u64BufAddr || !pDesc->legacy.cmd.u16Length) break; cbPacket += pDesc->legacy.cmd.u16Length; pThis->fGSO = false; break; case E1K_DTYP_DATA: expectedPacketType = pDesc->data.cmd.fTSE ? E1K_PACKET_TSE : E1K_PACKET_NORMAL; if (packetType != E1K_PACKET_NONE && packetType != expectedPacketType) { fInvalidPacket = true; break; } /* Skip invalid descriptors. */ if (pDesc->data.cmd.fTSE) { if (pThis->contextTSE.dw2.u4DTYP == E1K_DTYP_INVALID) { E1kLog(("%s e1kLocateTxPacket: ignoring TSE descriptor in invalid segmentation context, cbPacket=%d\n", pThis->szPrf, cbPacket)); continue; } } else /* !TSE */ { if (pThis->contextNormal.dw2.u4DTYP == E1K_DTYP_INVALID) { E1kLog(("%s e1kLocateTxPacket: ignoring non-TSE descriptor in invalid normal context, cbPacket=%d\n", pThis->szPrf, cbPacket)); continue; } } if (cbPacket > 0 && (bool)pDesc->data.cmd.fTSE != fTSE) { E1kLog(("%s e1kLocateTxPacket: ignoring %sTSE descriptor in the %ssegmentation context, cbPacket=%d\n", pThis->szPrf, pDesc->data.cmd.fTSE ? "" : "non-", fTSE ? "" : "non-", cbPacket)); continue; } pThis->afTxDValid[i] = true; /* Passed all checks, process it */ /* Skip empty descriptors. */ if (!pDesc->data.u64BufAddr || !pDesc->data.cmd.u20DTALEN) break; if (cbPacket == 0) { /* * The first fragment: save IXSM and TXSM options * as these are only valid in the first fragment. */ pThis->fIPcsum = pDesc->data.dw3.fIXSM; pThis->fTCPcsum = pDesc->data.dw3.fTXSM; fTSE = pDesc->data.cmd.fTSE; /* * TSE descriptors have VLE bit properly set in * the first fragment. */ if (fTSE) { pThis->fVTag = pDesc->data.cmd.fVLE; pThis->u16VTagTCI = pDesc->data.dw3.u16Special; } pThis->fGSO = e1kCanDoGso(pThis, &pThis->GsoCtx, &pDesc->data, &pThis->contextTSE); } cbPacket += pDesc->data.cmd.u20DTALEN; break; default: AssertMsgFailed(("Impossible descriptor type!")); continue; } if (fInvalidPacket) { for (int index = pThis->iTxDCurrent; index < i; ++index) pThis->afTxDValid[index] = false; /* Make sure all descriptors for this packet are skipped by processing */ LogFlow(("%s e1kLocateTxPacket: marked %d descriptors as invalid\n", pThis->szPrf, i - pThis->iTxDCurrent)); LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d cbPacket=%d%s%s\n", pThis->szPrf, pThis->cbTxAlloc, cbPacket, pThis->fGSO ? " GSO" : "", fTSE ? " TSE" : "")); pTxdc->nextPacket = i; return true; } if (pDesc->legacy.cmd.fEOP) { /* * Non-TSE descriptors have VLE bit properly set in * the last fragment. */ if (!fTSE) { pThis->fVTag = pDesc->data.cmd.fVLE; pThis->u16VTagTCI = pDesc->data.dw3.u16Special; } /* * Compute the required buffer size. If we cannot do GSO but still * have to do segmentation we allocate the first segment only. */ pThis->cbTxAlloc = (!fTSE || pThis->fGSO) ? cbPacket : RT_MIN(cbPacket, pThis->contextTSE.dw3.u16MSS + pThis->contextTSE.dw3.u8HDRLEN); /* Do not add VLAN tags to empty packets. */ if (pThis->fVTag && pThis->cbTxAlloc > 0) pThis->cbTxAlloc += 4; LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d cbPacket=%d%s%s\n", pThis->szPrf, pThis->cbTxAlloc, cbPacket, pThis->fGSO ? " GSO" : "", fTSE ? " TSE" : "")); pTxdc->nextPacket = i + 1; return true; } } if (cbPacket == 0 && pThis->nTxDFetched - pThis->iTxDCurrent > 0) { /* All descriptors were empty, we need to process them as a dummy packet */ LogFlow(("%s e1kLocateTxPacket: RET true cbTxAlloc=%d, zero packet!\n", pThis->szPrf, pThis->cbTxAlloc)); pTxdc->nextPacket = pThis->nTxDFetched; return true; } LogFlow(("%s e1kLocateTxPacket: RET false cbTxAlloc=%d cbPacket=%d\n", pThis->szPrf, pThis->cbTxAlloc, cbPacket)); return false; } static int e1kXmitPacket(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread, PE1KTXDC pTxdc) { PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); int rc = VINF_SUCCESS; LogFlow(("%s e1kXmitPacket: ENTER current=%d fetched=%d\n", pThis->szPrf, pThis->iTxDCurrent, pThis->nTxDFetched)); while (pThis->iTxDCurrent < pTxdc->nextPacket && pThis->iTxDCurrent < pThis->nTxDFetched) { E1KTXDESC *pDesc = &pThis->aTxDescriptors[pThis->iTxDCurrent]; E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n", pThis->szPrf, TDBAH, TDBAL + pTxdc->tdh * sizeof(E1KTXDESC), pTxdc->tdlen, pTxdc->tdh, pTxdc->tdt)); if (!pThis->afTxDValid[pThis->iTxDCurrent]) { e1kPrintTDesc(pThis, pDesc, "vvv"); E1kLog(("%s e1kXmitDesc: skipping bad descriptor ^^^\n", pThis->szPrf)); e1kDescReport(pDevIns, pThis, pDesc, e1kDescAddr(TDBAH, TDBAL, pTxdc->tdh)); rc = VINF_SUCCESS; } else rc = e1kXmitDesc(pDevIns, pThis, pThisCC, pDesc, e1kDescAddr(TDBAH, TDBAL, pTxdc->tdh), fOnWorkerThread); if (RT_FAILURE(rc)) break; if (++pTxdc->tdh * sizeof(E1KTXDESC) >= pTxdc->tdlen) pTxdc->tdh = 0; TDH = pTxdc->tdh; /* Sync the actual register and TXDC */ uint32_t uLowThreshold = GET_BITS(TXDCTL, LWTHRESH)*8; if (uLowThreshold != 0 && e1kGetTxLen(pTxdc) <= uLowThreshold) { E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n", pThis->szPrf, e1kGetTxLen(pTxdc), GET_BITS(TXDCTL, LWTHRESH)*8)); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW); } ++pThis->iTxDCurrent; if (e1kGetDescType(pDesc) != E1K_DTYP_CONTEXT && pDesc->legacy.cmd.fEOP) break; } LogFlow(("%s e1kXmitPacket: RET %Rrc current=%d fetched=%d\n", pThis->szPrf, rc, pThis->iTxDCurrent, pThis->nTxDFetched)); return rc; } #endif /* E1K_WITH_TXD_CACHE */ #ifndef E1K_WITH_TXD_CACHE /** * Transmit pending descriptors. * * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy. * * @param pDevIns The device instance. * @param pThis The E1000 state. * @param fOnWorkerThread Whether we're on a worker thread or on an EMT. */ static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread) { int rc = VINF_SUCCESS; PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); /* Check if transmitter is enabled. */ if (!(TCTL & TCTL_EN)) return VINF_SUCCESS; /* * Grab the xmit lock of the driver as well as the E1K device state. */ rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY); if (RT_LIKELY(rc == VINF_SUCCESS)) { PPDMINETWORKUP pDrv = pThis->CTX_SUFF(pDrv); if (pDrv) { rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread); if (RT_FAILURE(rc)) { e1kCsTxLeave(pThis); return rc; } } /* * Process all pending descriptors. * Note! Do not process descriptors in locked state */ while (TDH != TDT && !pThis->fLocked) { E1KTXDESC desc; E1kLog3(("%s About to process new TX descriptor at %08x%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n", pThis->szPrf, TDBAH, TDBAL + TDH * sizeof(desc), TDLEN, TDH, TDT)); e1kLoadDesc(pDevIns, &desc, ((uint64_t)TDBAH << 32) + TDBAL + TDH * sizeof(desc)); rc = e1kXmitDesc(pDevIns, pThis, pThisCC, &desc, e1kDescAddr(TDBAH, TDBAL, TDH), fOnWorkerThread); /* If we failed to transmit descriptor we will try it again later */ if (RT_FAILURE(rc)) break; if (++TDH * sizeof(desc) >= TDLEN) TDH = 0; if (e1kGetTxLen(pThis) <= GET_BITS(TXDCTL, LWTHRESH)*8) { E1kLog2(("%s Low on transmit descriptors, raise ICR.TXD_LOW, len=%x thresh=%x\n", pThis->szPrf, e1kGetTxLen(pThis), GET_BITS(TXDCTL, LWTHRESH)*8)); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW); } STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); } /// @todo uncomment: pThis->uStatIntTXQE++; /// @todo uncomment: e1kRaiseInterrupt(pDevIns, pThis, ICR_TXQE); /* * Release the lock. */ if (pDrv) pDrv->pfnEndXmit(pDrv); e1kCsTxLeave(pThis); } return rc; } #else /* E1K_WITH_TXD_CACHE */ static void e1kDumpTxDCache(PPDMDEVINS pDevIns, PE1KSTATE pThis, PE1KTXDC pTxdc) { unsigned i, cDescs = pTxdc->tdlen / sizeof(E1KTXDESC); uint32_t tdh = pTxdc->tdh; LogRel(("E1000: -- Transmit Descriptors (%d total) --\n", cDescs)); for (i = 0; i < cDescs; ++i) { E1KTXDESC desc; PDMDevHlpPCIPhysRead(pDevIns , e1kDescAddr(TDBAH, TDBAL, i), &desc, sizeof(desc)); if (i == tdh) LogRel(("E1000: >>> ")); LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc)); } LogRel(("E1000: -- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n", pThis->iTxDCurrent, pTxdc->tdh, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE)); if (tdh > pThis->iTxDCurrent) tdh -= pThis->iTxDCurrent; else tdh = cDescs + tdh - pThis->iTxDCurrent; for (i = 0; i < pThis->nTxDFetched; ++i) { if (i == pThis->iTxDCurrent) LogRel(("E1000: >>> ")); if (cDescs) LogRel(("E1000: %RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs), &pThis->aTxDescriptors[i])); else LogRel(("E1000: : %R[e1ktxd]\n", &pThis->aTxDescriptors[i])); } } /** * Transmit pending descriptors. * * @returns VBox status code. VERR_TRY_AGAIN is returned if we're busy. * * @param pDevIns The device instance. * @param pThis The E1000 state. * @param fOnWorkerThread Whether we're on a worker thread or on an EMT. */ static int e1kXmitPending(PPDMDEVINS pDevIns, PE1KSTATE pThis, bool fOnWorkerThread) { PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); int rc = VINF_SUCCESS; /* Check if transmitter is enabled. */ if (!(TCTL & TCTL_EN)) return VINF_SUCCESS; /* * Grab the xmit lock of the driver as well as the E1K device state. */ PPDMINETWORKUP pDrv = pThisCC->CTX_SUFF(pDrv); if (pDrv) { rc = pDrv->pfnBeginXmit(pDrv, fOnWorkerThread); if (RT_FAILURE(rc)) return rc; } /* * Process all pending descriptors. * Note! Do not process descriptors in locked state */ rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY); if (RT_LIKELY(rc == VINF_SUCCESS && (TCTL & TCTL_EN))) { E1KTXDC txdc; bool fTxContextValid = e1kUpdateTxDContext(pDevIns, pThis, &txdc); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatTransmit), a); /* * fIncomplete is set whenever we try to fetch additional descriptors * for an incomplete packet. If fail to locate a complete packet on * the next iteration we need to reset the cache or we risk to get * stuck in this loop forever. */ bool fIncomplete = false; while (fTxContextValid && !pThis->fLocked && e1kTxDLazyLoad(pDevIns, pThis, &txdc)) { while (e1kLocateTxPacket(pThis, &txdc)) { Log4(("%s e1kXmitPending: Located packet at %d. Next packet at %d\n", pThis->szPrf, pThis->iTxDCurrent, txdc.nextPacket)); fIncomplete = false; /* Found a complete packet, allocate it. */ rc = e1kXmitAllocBuf(pThis, pThisCC, pThis->fGSO); /* If we're out of bandwidth we'll come back later. */ if (RT_FAILURE(rc)) goto out; /* Copy the packet to allocated buffer and send it. */ rc = e1kXmitPacket(pDevIns, pThis, fOnWorkerThread, &txdc); /* If we're out of bandwidth we'll come back later. */ if (RT_FAILURE(rc)) goto out; } uint8_t u8Remain = pThis->nTxDFetched - pThis->iTxDCurrent; if (RT_UNLIKELY(fIncomplete)) { static bool fTxDCacheDumped = false; /* * The descriptor cache is full, but we were unable to find * a complete packet in it. Drop the cache and hope that * the guest driver can recover from network card error. */ LogRel(("%s: No complete packets in%s TxD cache! " "Fetched=%d, current=%d, TX len=%d.\n", pThis->szPrf, u8Remain == E1K_TXD_CACHE_SIZE ? " full" : "", pThis->nTxDFetched, pThis->iTxDCurrent, e1kGetTxLen(&txdc))); if (!fTxDCacheDumped) { fTxDCacheDumped = true; e1kDumpTxDCache(pDevIns, pThis, &txdc); } pThis->iTxDCurrent = pThis->nTxDFetched = 0; /* * Returning an error at this point means Guru in R0 * (see @bugref{6428}). */ # ifdef IN_RING3 rc = VERR_NET_INCOMPLETE_TX_PACKET; # else /* !IN_RING3 */ rc = VINF_IOM_R3_MMIO_WRITE; # endif /* !IN_RING3 */ goto out; } if (u8Remain > 0) { Log4(("%s Incomplete packet at %d. Already fetched %d, " "%d more are available\n", pThis->szPrf, pThis->iTxDCurrent, u8Remain, e1kGetTxLen(&txdc) - u8Remain)); /* * A packet was partially fetched. Move incomplete packet to * the beginning of cache buffer, then load more descriptors. */ memmove(pThis->aTxDescriptors, &pThis->aTxDescriptors[pThis->iTxDCurrent], u8Remain * sizeof(E1KTXDESC)); pThis->iTxDCurrent = 0; pThis->nTxDFetched = u8Remain; e1kTxDLoadMore(pDevIns, pThis, &txdc); fIncomplete = true; } else pThis->nTxDFetched = 0; pThis->iTxDCurrent = 0; } if (!pThis->fLocked && GET_BITS(TXDCTL, LWTHRESH) == 0) { E1kLog2(("%s Out of transmit descriptors, raise ICR.TXD_LOW\n", pThis->szPrf)); e1kRaiseInterrupt(pDevIns, pThis, VERR_SEM_BUSY, ICR_TXD_LOW); } out: STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatTransmit), a); /// @todo uncomment: pThis->uStatIntTXQE++; /// @todo uncomment: e1kRaiseInterrupt(pDevIns, pThis, ICR_TXQE); e1kCsTxLeave(pThis); } /* * Release the lock. */ if (pDrv) pDrv->pfnEndXmit(pDrv); return rc; } #endif /* E1K_WITH_TXD_CACHE */ #ifdef IN_RING3 /** * @interface_method_impl{PDMINETWORKDOWN,pfnXmitPending} */ static DECLCALLBACK(void) e1kR3NetworkDown_XmitPending(PPDMINETWORKDOWN pInterface) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown); PE1KSTATE pThis = pThisCC->pShared; /* Resume suspended transmission */ STATUS &= ~STATUS_TXOFF; e1kXmitPending(pThisCC->pDevInsR3, pThis, true /*fOnWorkerThread*/); } /** * @callback_method_impl{FNPDMTASKDEV, * Executes e1kXmitPending at the behest of ring-0/raw-mode.} * @note Not executed on EMT. */ static DECLCALLBACK(void) e1kR3TxTaskCallback(PPDMDEVINS pDevIns, void *pvUser) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); E1kLog2(("%s e1kR3TxTaskCallback:\n", pThis->szPrf)); int rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/); AssertMsg(RT_SUCCESS(rc) || rc == VERR_TRY_AGAIN || rc == VERR_NET_DOWN, ("%Rrc\n", rc)); RT_NOREF(rc, pvUser); } #endif /* IN_RING3 */ /** * Write handler for Transmit Descriptor Tail register. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteTDT(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { int rc = e1kRegWriteDefault(pDevIns, pThis, offset, index, value); /* All descriptors starting with head and not including tail belong to us. */ /* Process them. */ E1kLog2(("%s e1kRegWriteTDT: TDBAL=%08x, TDBAH=%08x, TDLEN=%08x, TDH=%08x, TDT=%08x\n", pThis->szPrf, TDBAL, TDBAH, TDLEN, TDH, TDT)); /* Compose a temporary TX context, breaking TX CS rule, for debugging purposes. */ /* If we decide to transmit, the TX critical section will be entered later in e1kXmitPending(). */ E1KTXDC txdc; txdc.tdlen = TDLEN; txdc.tdh = TDH; txdc.tdt = TDT; /* Ignore TDT writes when the link is down. */ if (txdc.tdh != txdc.tdt && (STATUS & STATUS_LU)) { Log5(("E1000: TDT write: TDH=%08x, TDT=%08x, %d descriptors to process\n", txdc.tdh, txdc.tdt, e1kGetTxLen(&txdc))); E1kLog(("%s e1kRegWriteTDT: %d descriptors to process\n", pThis->szPrf, e1kGetTxLen(&txdc))); /* Transmit pending packets if possible, defer it if we cannot do it in the current context. */ #ifdef E1K_TX_DELAY rc = e1kCsTxEnter(pThis, VERR_SEM_BUSY); if (RT_LIKELY(rc == VINF_SUCCESS)) { if (!PDMDevInsTimerIsActive(pDevIns, pThis->hTXDTimer)) { # ifdef E1K_INT_STATS pThis->u64ArmedAt = RTTimeNanoTS(); # endif e1kArmTimer(pDevIns, pThis, pThis->hTXDTimer, E1K_TX_DELAY); } E1K_INC_ISTAT_CNT(pThis->uStatTxDelayed); e1kCsTxLeave(pThis); return rc; } /* We failed to enter the TX critical section -- transmit as usual. */ #endif /* E1K_TX_DELAY */ #ifndef IN_RING3 PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); if (!pThisCC->CTX_SUFF(pDrv)) { PDMDevHlpTaskTrigger(pDevIns, pThis->hTxTask); rc = VINF_SUCCESS; } else #endif { rc = e1kXmitPending(pDevIns, pThis, false /*fOnWorkerThread*/); if (rc == VERR_TRY_AGAIN) rc = VINF_SUCCESS; #ifndef IN_RING3 else if (rc == VERR_SEM_BUSY) rc = VINF_IOM_R3_MMIO_WRITE; #endif AssertRC(rc); } } return rc; } /** * Write handler for Multicast Table Array registers. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @thread EMT */ static int e1kRegWriteMTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auMTA), VERR_DEV_IO_ERROR); pThis->auMTA[(offset - g_aE1kRegMap[index].offset) / sizeof(pThis->auMTA[0])] = value; return VINF_SUCCESS; } /** * Read handler for Multicast Table Array registers. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadMTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auMTA), VERR_DEV_IO_ERROR); *pu32Value = pThis->auMTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auMTA[0])]; return VINF_SUCCESS; } /** * Write handler for Receive Address registers. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @thread EMT */ static int e1kRegWriteRA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR); pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])] = value; return VINF_SUCCESS; } /** * Read handler for Receive Address registers. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadRA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->aRecAddr.au32), VERR_DEV_IO_ERROR); *pu32Value = pThis->aRecAddr.au32[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->aRecAddr.au32[0])]; return VINF_SUCCESS; } /** * Write handler for VLAN Filter Table Array registers. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @thread EMT */ static int e1kRegWriteVFTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset < sizeof(pThis->auVFTA), VINF_SUCCESS); pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])] = value; return VINF_SUCCESS; } /** * Read handler for VLAN Filter Table Array registers. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadVFTA(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF_PV(pDevIns); AssertReturn(offset - g_aE1kRegMap[index].offset< sizeof(pThis->auVFTA), VERR_DEV_IO_ERROR); *pu32Value = pThis->auVFTA[(offset - g_aE1kRegMap[index].offset)/sizeof(pThis->auVFTA[0])]; return VINF_SUCCESS; } /** * Read handler for unimplemented registers. * * Merely reports reads from unimplemented registers. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadUnimplemented(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF(pDevIns, pThis, offset, index); E1kLog(("%s At %08X read (00000000) attempt from unimplemented register %s (%s)\n", pThis->szPrf, offset, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); *pu32Value = 0; return VINF_SUCCESS; } /** * Default register read handler with automatic clear operation. * * Retrieves the value of register from register array in device state structure. * Then resets all bits. * * @remarks The 'mask' parameter is simply ignored as masking and shifting is * done in the caller. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadAutoClear(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR); int rc = e1kRegReadDefault(pDevIns, pThis, offset, index, pu32Value); pThis->auRegs[index] = 0; return rc; } /** * Default register read handler. * * Retrieves the value of register from register array in device state structure. * Bits corresponding to 0s in 'readable' mask will always read as 0s. * * @remarks The 'mask' parameter is simply ignored as masking and shifting is * done in the caller. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @thread EMT */ static int e1kRegReadDefault(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t *pu32Value) { RT_NOREF_PV(pDevIns); RT_NOREF_PV(offset); AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR); *pu32Value = pThis->auRegs[index] & g_aE1kRegMap[index].readable; return VINF_SUCCESS; } /** * Write handler for unimplemented registers. * * Merely reports writes to unimplemented registers. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @thread EMT */ static int e1kRegWriteUnimplemented(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF_PV(pDevIns); RT_NOREF_PV(pThis); RT_NOREF_PV(offset); RT_NOREF_PV(index); RT_NOREF_PV(value); E1kLog(("%s At %08X write attempt (%08X) to unimplemented register %s (%s)\n", pThis->szPrf, offset, value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); return VINF_SUCCESS; } /** * Default register write handler. * * Stores the value to the register array in device state structure. Only bits * corresponding to 1s both in 'writable' and 'mask' will be stored. * * @returns VBox status code. * * @param pThis The device state structure. * @param offset Register offset in memory-mapped frame. * @param index Register index in register array. * @param value The value to store. * @param mask Used to implement partial writes (8 and 16-bit). * @thread EMT */ static int e1kRegWriteDefault(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offset, uint32_t index, uint32_t value) { RT_NOREF(pDevIns, offset); AssertReturn(index < E1K_NUM_OF_32BIT_REGS, VERR_DEV_IO_ERROR); pThis->auRegs[index] = (value & g_aE1kRegMap[index].writable) | (pThis->auRegs[index] & ~g_aE1kRegMap[index].writable); return VINF_SUCCESS; } /** * Search register table for matching register. * * @returns Index in the register table or -1 if not found. * * @param offReg Register offset in memory-mapped region. * @thread EMT */ static int e1kRegLookup(uint32_t offReg) { #if 0 int index; for (index = 0; index < E1K_NUM_OF_REGS; index++) { if (g_aE1kRegMap[index].offset <= offReg && offReg < g_aE1kRegMap[index].offset + g_aE1kRegMap[index].size) { return index; } } #else int iStart = 0; int iEnd = E1K_NUM_OF_BINARY_SEARCHABLE; for (;;) { int i = (iEnd - iStart) / 2 + iStart; uint32_t offCur = g_aE1kRegMap[i].offset; if (offReg < offCur) { if (i == iStart) break; iEnd = i; } else if (offReg >= offCur + g_aE1kRegMap[i].size) { i++; if (i == iEnd) break; iStart = i; } else return i; Assert(iEnd > iStart); } for (unsigned i = E1K_NUM_OF_BINARY_SEARCHABLE; i < RT_ELEMENTS(g_aE1kRegMap); i++) if (offReg - g_aE1kRegMap[i].offset < g_aE1kRegMap[i].size) return (int)i; # ifdef VBOX_STRICT for (unsigned i = 0; i < RT_ELEMENTS(g_aE1kRegMap); i++) Assert(offReg - g_aE1kRegMap[i].offset >= g_aE1kRegMap[i].size); # endif #endif return -1; } /** * Handle unaligned register read operation. * * Looks up and calls appropriate handler. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param offReg Register offset in memory-mapped frame. * @param pv Where to store the result. * @param cb Number of bytes to read. * @thread EMT * @remarks IOM takes care of unaligned and small reads via MMIO. For I/O port * accesses we have to take care of that ourselves. */ static int e1kRegReadUnaligned(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, void *pv, uint32_t cb) { uint32_t u32 = 0; uint32_t shift; int rc = VINF_SUCCESS; int index = e1kRegLookup(offReg); #ifdef LOG_ENABLED char buf[9]; #endif /* * From the spec: * For registers that should be accessed as 32-bit double words, partial writes (less than a 32-bit * double word) is ignored. Partial reads return all 32 bits of data regardless of the byte enables. */ /* * To be able to read bytes and short word we convert them to properly * shifted 32-bit words and masks. The idea is to keep register-specific * handlers simple. Most accesses will be 32-bit anyway. */ uint32_t mask; switch (cb) { case 4: mask = 0xFFFFFFFF; break; case 2: mask = 0x0000FFFF; break; case 1: mask = 0x000000FF; break; default: return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "unsupported op size: offset=%#10x cb=%#10x\n", offReg, cb); } if (index >= 0) { RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */ if (g_aE1kRegMap[index].readable) { /* Make the mask correspond to the bits we are about to read. */ shift = (offReg - g_aE1kRegMap[index].offset) % sizeof(uint32_t) * 8; mask <<= shift; if (!mask) return PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "Zero mask: offset=%#10x cb=%#10x\n", offReg, cb); /* * Read it. Pass the mask so the handler knows what has to be read. * Mask out irrelevant bits. */ //e1kCsEnterReturn(pThis, VERR_SEM_BUSY); //pThis->fDelayInts = false; //pThis->iStatIntLost += pThis->iStatIntLostOne; //pThis->iStatIntLostOne = 0; rc = g_aE1kRegMap[index].pfnRead(pDevIns, pThis, offReg & 0xFFFFFFFC, (uint32_t)index, &u32); u32 &= mask; //e1kCsLeave(pThis); E1kLog2(("%s At %08X read %s from %s (%s)\n", pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); Log6(("%s At %08X read %s from %s (%s) [UNALIGNED]\n", pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); /* Shift back the result. */ u32 >>= shift; } else E1kLog(("%s At %08X read (%s) attempt from write-only register %s (%s)\n", pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf), g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); if (IOM_SUCCESS(rc)) STAM_COUNTER_INC(&pThis->aStatRegReads[index]); } else E1kLog(("%s At %08X read (%s) attempt from non-existing register\n", pThis->szPrf, offReg, e1kU32toHex(u32, mask, buf))); memcpy(pv, &u32, cb); return rc; } /** * Handle 4 byte aligned and sized read operation. * * Looks up and calls appropriate handler. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param offReg Register offset in memory-mapped frame. * @param pu32 Where to store the result. * @thread EMT */ static VBOXSTRICTRC e1kRegReadAlignedU32(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, uint32_t *pu32) { Assert(!(offReg & 3)); /* * Lookup the register and check that it's readable. */ VBOXSTRICTRC rc = VINF_SUCCESS; int idxReg = e1kRegLookup(offReg); if (RT_LIKELY(idxReg >= 0)) { RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */ if (RT_UNLIKELY(g_aE1kRegMap[idxReg].readable)) { /* * Read it. Pass the mask so the handler knows what has to be read. * Mask out irrelevant bits. */ //e1kCsEnterReturn(pThis, VERR_SEM_BUSY); //pThis->fDelayInts = false; //pThis->iStatIntLost += pThis->iStatIntLostOne; //pThis->iStatIntLostOne = 0; rc = g_aE1kRegMap[idxReg].pfnRead(pDevIns, pThis, offReg & 0xFFFFFFFC, (uint32_t)idxReg, pu32); //e1kCsLeave(pThis); Log6(("%s At %08X read %08X from %s (%s)\n", pThis->szPrf, offReg, *pu32, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name)); if (IOM_SUCCESS(rc)) STAM_COUNTER_INC(&pThis->aStatRegReads[idxReg]); } else E1kLog(("%s At %08X read attempt from non-readable register %s (%s)\n", pThis->szPrf, offReg, g_aE1kRegMap[idxReg].abbrev, g_aE1kRegMap[idxReg].name)); } else E1kLog(("%s At %08X read attempt from non-existing register\n", pThis->szPrf, offReg)); return rc; } /** * Handle 4 byte sized and aligned register write operation. * * Looks up and calls appropriate handler. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pThis The device state structure. * @param offReg Register offset in memory-mapped frame. * @param u32Value The value to write. * @thread EMT */ static VBOXSTRICTRC e1kRegWriteAlignedU32(PPDMDEVINS pDevIns, PE1KSTATE pThis, uint32_t offReg, uint32_t u32Value) { VBOXSTRICTRC rc = VINF_SUCCESS; int index = e1kRegLookup(offReg); if (RT_LIKELY(index >= 0)) { RT_UNTRUSTED_VALIDATED_FENCE(); /* paranoia because of port I/O. */ if (RT_LIKELY(g_aE1kRegMap[index].writable)) { /* * Write it. Pass the mask so the handler knows what has to be written. * Mask out irrelevant bits. */ Log6(("%s At %08X write %08X to %s (%s)\n", pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); //e1kCsEnterReturn(pThis, VERR_SEM_BUSY); //pThis->fDelayInts = false; //pThis->iStatIntLost += pThis->iStatIntLostOne; //pThis->iStatIntLostOne = 0; rc = g_aE1kRegMap[index].pfnWrite(pDevIns, pThis, offReg, (uint32_t)index, u32Value); //e1kCsLeave(pThis); } else E1kLog(("%s At %08X write attempt (%08X) to read-only register %s (%s)\n", pThis->szPrf, offReg, u32Value, g_aE1kRegMap[index].abbrev, g_aE1kRegMap[index].name)); if (IOM_SUCCESS(rc)) STAM_COUNTER_INC(&pThis->aStatRegWrites[index]); } else E1kLog(("%s At %08X write attempt (%08X) to non-existing register\n", pThis->szPrf, offReg, u32Value)); return rc; } /* -=-=-=-=- MMIO and I/O Port Callbacks -=-=-=-=- */ /** * @callback_method_impl{FNIOMMMIONEWREAD} */ static DECLCALLBACK(VBOXSTRICTRC) e1kMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, uint32_t cb) { RT_NOREF2(pvUser, cb); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIORead), a); Assert(off < E1K_MM_SIZE); Assert(cb == 4); Assert(!(off & 3)); VBOXSTRICTRC rcStrict = e1kRegReadAlignedU32(pDevIns, pThis, (uint32_t)off, (uint32_t *)pv); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIORead), a); return rcStrict; } /** * @callback_method_impl{FNIOMMMIONEWWRITE} */ static DECLCALLBACK(VBOXSTRICTRC) e1kMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, uint32_t cb) { RT_NOREF2(pvUser, cb); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatMMIOWrite), a); Assert(off < E1K_MM_SIZE); Assert(cb == 4); Assert(!(off & 3)); VBOXSTRICTRC rcStrict = e1kRegWriteAlignedU32(pDevIns, pThis, (uint32_t)off, *(uint32_t const *)pv); STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatMMIOWrite), a); return rcStrict; } /** * @callback_method_impl{FNIOMIOPORTNEWIN} */ static DECLCALLBACK(VBOXSTRICTRC) e1kIOPortIn(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); VBOXSTRICTRC rc; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIORead), a); RT_NOREF_PV(pvUser); if (RT_LIKELY(cb == 4)) switch (offPort) { case 0x00: /* IOADDR */ *pu32 = pThis->uSelectedReg; Log9(("%s e1kIOPortIn: IOADDR(0), selecting register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32)); rc = VINF_SUCCESS; break; case 0x04: /* IODATA */ if (!(pThis->uSelectedReg & 3)) rc = e1kRegReadAlignedU32(pDevIns, pThis, pThis->uSelectedReg, pu32); else /** @todo r=bird: I wouldn't be surprised if this unaligned branch wasn't necessary. */ rc = e1kRegReadUnaligned(pDevIns, pThis, pThis->uSelectedReg, pu32, cb); if (rc == VINF_IOM_R3_MMIO_READ) rc = VINF_IOM_R3_IOPORT_READ; Log9(("%s e1kIOPortIn: IODATA(4), reading from selected register %#010x, val=%#010x\n", pThis->szPrf, pThis->uSelectedReg, *pu32)); break; default: E1kLog(("%s e1kIOPortIn: invalid port %#010x\n", pThis->szPrf, offPort)); /** @todo r=bird: Check what real hardware returns here. */ //rc = VERR_IOM_IOPORT_UNUSED; /* Why not? */ rc = VINF_IOM_MMIO_UNUSED_00; /* used to return VINF_SUCCESS and not touch *pu32, which amounted to this. */ break; } else { E1kLog(("%s e1kIOPortIn: invalid op size: offPort=%RTiop cb=%08x", pThis->szPrf, offPort, cb)); rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s e1kIOPortIn: invalid op size: offPort=%RTiop cb=%08x\n", pThis->szPrf, offPort, cb); *pu32 = 0; /** @todo r=bird: Check what real hardware returns here. (Didn't used to set a value here, picked zero as that's what we'd end up in most cases.) */ } STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIORead), a); return rc; } /** * @callback_method_impl{FNIOMIOPORTNEWOUT} */ static DECLCALLBACK(VBOXSTRICTRC) e1kIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); VBOXSTRICTRC rc; STAM_PROFILE_ADV_START(&pThis->CTX_SUFF_Z(StatIOWrite), a); RT_NOREF_PV(pvUser); Log9(("%s e1kIOPortOut: offPort=%RTiop value=%08x\n", pThis->szPrf, offPort, u32)); if (RT_LIKELY(cb == 4)) { switch (offPort) { case 0x00: /* IOADDR */ pThis->uSelectedReg = u32; Log9(("%s e1kIOPortOut: IOADDR(0), selected register %08x\n", pThis->szPrf, pThis->uSelectedReg)); rc = VINF_SUCCESS; break; case 0x04: /* IODATA */ Log9(("%s e1kIOPortOut: IODATA(4), writing to selected register %#010x, value=%#010x\n", pThis->szPrf, pThis->uSelectedReg, u32)); if (RT_LIKELY(!(pThis->uSelectedReg & 3))) { rc = e1kRegWriteAlignedU32(pDevIns, pThis, pThis->uSelectedReg, u32); if (rc == VINF_IOM_R3_MMIO_WRITE) rc = VINF_IOM_R3_IOPORT_WRITE; } else rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "Spec violation: misaligned offset: %#10x, ignored.\n", pThis->uSelectedReg); break; default: E1kLog(("%s e1kIOPortOut: invalid port %#010x\n", pThis->szPrf, offPort)); rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "invalid port %#010x\n", offPort); } } else { E1kLog(("%s e1kIOPortOut: invalid op size: offPort=%RTiop cb=%08x\n", pThis->szPrf, offPort, cb)); rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s: invalid op size: offPort=%RTiop cb=%#x\n", pThis->szPrf, offPort, cb); } STAM_PROFILE_ADV_STOP(&pThis->CTX_SUFF_Z(StatIOWrite), a); return rc; } #ifdef IN_RING3 /** * Dump complete device state to log. * * @param pThis Pointer to device state. */ static void e1kDumpState(PE1KSTATE pThis) { RT_NOREF(pThis); for (int i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i) E1kLog2(("%s: %8.8s = %08x\n", pThis->szPrf, g_aE1kRegMap[i].abbrev, pThis->auRegs[i])); # ifdef E1K_INT_STATS LogRel(("%s: Interrupt attempts: %d\n", pThis->szPrf, pThis->uStatIntTry)); LogRel(("%s: Interrupts raised : %d\n", pThis->szPrf, pThis->uStatInt)); LogRel(("%s: Interrupts lowered: %d\n", pThis->szPrf, pThis->uStatIntLower)); LogRel(("%s: ICR outside ISR : %d\n", pThis->szPrf, pThis->uStatNoIntICR)); LogRel(("%s: IMS raised ints : %d\n", pThis->szPrf, pThis->uStatIntIMS)); LogRel(("%s: Interrupts skipped: %d\n", pThis->szPrf, pThis->uStatIntSkip)); LogRel(("%s: Masked interrupts : %d\n", pThis->szPrf, pThis->uStatIntMasked)); LogRel(("%s: Early interrupts : %d\n", pThis->szPrf, pThis->uStatIntEarly)); LogRel(("%s: Late interrupts : %d\n", pThis->szPrf, pThis->uStatIntLate)); LogRel(("%s: Lost interrupts : %d\n", pThis->szPrf, pThis->iStatIntLost)); LogRel(("%s: Interrupts by RX : %d\n", pThis->szPrf, pThis->uStatIntRx)); LogRel(("%s: Interrupts by TX : %d\n", pThis->szPrf, pThis->uStatIntTx)); LogRel(("%s: Interrupts by ICS : %d\n", pThis->szPrf, pThis->uStatIntICS)); LogRel(("%s: Interrupts by RDTR: %d\n", pThis->szPrf, pThis->uStatIntRDTR)); LogRel(("%s: Interrupts by RDMT: %d\n", pThis->szPrf, pThis->uStatIntRXDMT0)); LogRel(("%s: Interrupts by TXQE: %d\n", pThis->szPrf, pThis->uStatIntTXQE)); LogRel(("%s: TX int delay asked: %d\n", pThis->szPrf, pThis->uStatTxIDE)); LogRel(("%s: TX delayed: %d\n", pThis->szPrf, pThis->uStatTxDelayed)); LogRel(("%s: TX delay expired: %d\n", pThis->szPrf, pThis->uStatTxDelayExp)); LogRel(("%s: TX no report asked: %d\n", pThis->szPrf, pThis->uStatTxNoRS)); LogRel(("%s: TX abs timer expd : %d\n", pThis->szPrf, pThis->uStatTAD)); LogRel(("%s: TX int timer expd : %d\n", pThis->szPrf, pThis->uStatTID)); LogRel(("%s: RX abs timer expd : %d\n", pThis->szPrf, pThis->uStatRAD)); LogRel(("%s: RX int timer expd : %d\n", pThis->szPrf, pThis->uStatRID)); LogRel(("%s: TX CTX descriptors: %d\n", pThis->szPrf, pThis->uStatDescCtx)); LogRel(("%s: TX DAT descriptors: %d\n", pThis->szPrf, pThis->uStatDescDat)); LogRel(("%s: TX LEG descriptors: %d\n", pThis->szPrf, pThis->uStatDescLeg)); LogRel(("%s: Received frames : %d\n", pThis->szPrf, pThis->uStatRxFrm)); LogRel(("%s: Transmitted frames: %d\n", pThis->szPrf, pThis->uStatTxFrm)); LogRel(("%s: TX frames up to 1514: %d\n", pThis->szPrf, pThis->uStatTx1514)); LogRel(("%s: TX frames up to 2962: %d\n", pThis->szPrf, pThis->uStatTx2962)); LogRel(("%s: TX frames up to 4410: %d\n", pThis->szPrf, pThis->uStatTx4410)); LogRel(("%s: TX frames up to 5858: %d\n", pThis->szPrf, pThis->uStatTx5858)); LogRel(("%s: TX frames up to 7306: %d\n", pThis->szPrf, pThis->uStatTx7306)); LogRel(("%s: TX frames up to 8754: %d\n", pThis->szPrf, pThis->uStatTx8754)); LogRel(("%s: TX frames up to 16384: %d\n", pThis->szPrf, pThis->uStatTx16384)); LogRel(("%s: TX frames up to 32768: %d\n", pThis->szPrf, pThis->uStatTx32768)); LogRel(("%s: Larger TX frames : %d\n", pThis->szPrf, pThis->uStatTxLarge)); LogRel(("%s: Max TX Delay : %lld\n", pThis->szPrf, pThis->uStatMaxTxDelay)); # endif /* E1K_INT_STATS */ } /* -=-=-=-=- PDMINETWORKDOWN -=-=-=-=- */ /** * Check if the device can receive data now. * This must be called before the pfnRecieve() method is called. * * @returns VBox status code. * @retval VERR_NET_NO_BUFFER_SPACE if we cannot receive. * @param pDevIns The device instance. * @param pThis The instance data. * @thread EMT */ static int e1kR3CanReceive(PPDMDEVINS pDevIns, PE1KSTATE pThis) { # ifndef E1K_WITH_RXD_CACHE size_t cb; e1kCsRxEnterReturn(pThis); if (RT_UNLIKELY(RDLEN == sizeof(E1KRXDESC))) { E1KRXDESC desc; PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, RDH), &desc, sizeof(desc)); if (desc.status.fDD) cb = 0; else cb = pThis->u16RxBSize; } else if (RDH < RDT) cb = (RDT - RDH) * pThis->u16RxBSize; else if (RDH > RDT) cb = (RDLEN / sizeof(E1KRXDESC) - RDH + RDT) * pThis->u16RxBSize; else { cb = 0; E1kLogRel(("E1000: OUT of RX descriptors!\n")); } E1kLog2(("%s e1kR3CanReceive: at exit RDH=%d RDT=%d RDLEN=%d u16RxBSize=%d cb=%lu\n", pThis->szPrf, RDH, RDT, RDLEN, pThis->u16RxBSize, cb)); e1kCsRxLeave(pThis); return cb > 0 ? VINF_SUCCESS : VERR_NET_NO_BUFFER_SPACE; # else /* E1K_WITH_RXD_CACHE */ e1kCsRxEnterReturn(pThis); E1KRXDC rxdc; if (RT_UNLIKELY(!e1kUpdateRxDContext(pDevIns, pThis, &rxdc, "e1kR3CanReceive"))) { e1kCsRxLeave(pThis); E1kLog(("%s e1kR3CanReceive: failed to update Rx context, returning VERR_NET_NO_BUFFER_SPACE\n", pThis->szPrf)); return VERR_NET_NO_BUFFER_SPACE; } int rc = VINF_SUCCESS; if (RT_UNLIKELY(rxdc.rdlen == sizeof(E1KRXDESC))) { E1KRXDESC desc; PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, rxdc.rdh), &desc, sizeof(desc)); if (desc.status.fDD) rc = VERR_NET_NO_BUFFER_SPACE; } else if (e1kRxDIsCacheEmpty(pThis) && rxdc.rdh == rxdc.rdt) { /* Cache is empty, so is the RX ring. */ rc = VERR_NET_NO_BUFFER_SPACE; } E1kLog2(("%s e1kR3CanReceive: at exit in_cache=%d RDH=%d RDT=%d RDLEN=%d u16RxBSize=%d rc=%Rrc\n", pThis->szPrf, e1kRxDInCache(pThis), rxdc.rdh, rxdc.rdt, rxdc.rdlen, pThis->u16RxBSize, rc)); e1kCsRxLeave(pThis); return rc; # endif /* E1K_WITH_RXD_CACHE */ } /** * @interface_method_impl{PDMINETWORKDOWN,pfnWaitReceiveAvail} */ static DECLCALLBACK(int) e1kR3NetworkDown_WaitReceiveAvail(PPDMINETWORKDOWN pInterface, RTMSINTERVAL cMillies) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown); PE1KSTATE pThis = pThisCC->pShared; PPDMDEVINS pDevIns = pThisCC->pDevInsR3; int rc = e1kR3CanReceive(pDevIns, pThis); if (RT_SUCCESS(rc)) return VINF_SUCCESS; if (RT_UNLIKELY(cMillies == 0)) return VERR_NET_NO_BUFFER_SPACE; rc = VERR_INTERRUPTED; ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, true); STAM_PROFILE_START(&pThis->StatRxOverflow, a); VMSTATE enmVMState; while (RT_LIKELY( (enmVMState = PDMDevHlpVMState(pDevIns)) == VMSTATE_RUNNING || enmVMState == VMSTATE_RUNNING_LS)) { int rc2 = e1kR3CanReceive(pDevIns, pThis); if (RT_SUCCESS(rc2)) { rc = VINF_SUCCESS; break; } E1kLogRel(("E1000: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", cMillies)); E1kLog(("%s: e1kR3NetworkDown_WaitReceiveAvail: waiting cMillies=%u...\n", pThis->szPrf, cMillies)); PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEventMoreRxDescAvail, cMillies); } STAM_PROFILE_STOP(&pThis->StatRxOverflow, a); ASMAtomicXchgBool(&pThis->fMaybeOutOfSpace, false); return rc; } /** * Matches the packet addresses against Receive Address table. Looks for * exact matches only. * * @returns true if address matches. * @param pThis Pointer to the state structure. * @param pvBuf The ethernet packet. * @param cb Number of bytes available in the packet. * @thread EMT */ static bool e1kPerfectMatch(PE1KSTATE pThis, const void *pvBuf) { for (unsigned i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++) { E1KRAELEM* ra = pThis->aRecAddr.array + i; /* Valid address? */ if (ra->ctl & RA_CTL_AV) { Assert((ra->ctl & RA_CTL_AS) < 2); //unsigned char *pAddr = (unsigned char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS); //E1kLog3(("%s Matching %02x:%02x:%02x:%02x:%02x:%02x against %02x:%02x:%02x:%02x:%02x:%02x...\n", // pThis->szPrf, pAddr[0], pAddr[1], pAddr[2], pAddr[3], pAddr[4], pAddr[5], // ra->addr[0], ra->addr[1], ra->addr[2], ra->addr[3], ra->addr[4], ra->addr[5])); /* * Address Select: * 00b = Destination address * 01b = Source address * 10b = Reserved * 11b = Reserved * Since ethernet header is (DA, SA, len) we can use address * select as index. */ if (memcmp((char*)pvBuf + sizeof(ra->addr)*(ra->ctl & RA_CTL_AS), ra->addr, sizeof(ra->addr)) == 0) return true; } } return false; } /** * Matches the packet addresses against Multicast Table Array. * * @remarks This is imperfect match since it matches not exact address but * a subset of addresses. * * @returns true if address matches. * @param pThis Pointer to the state structure. * @param pvBuf The ethernet packet. * @param cb Number of bytes available in the packet. * @thread EMT */ static bool e1kImperfectMatch(PE1KSTATE pThis, const void *pvBuf) { /* Get bits 32..47 of destination address */ uint16_t u16Bit = ((uint16_t*)pvBuf)[2]; unsigned offset = GET_BITS(RCTL, MO); /* * offset means: * 00b = bits 36..47 * 01b = bits 35..46 * 10b = bits 34..45 * 11b = bits 32..43 */ if (offset < 3) u16Bit = u16Bit >> (4 - offset); return ASMBitTest(pThis->auMTA, u16Bit & 0xFFF); } /** * Determines if the packet is to be delivered to upper layer. * * The following filters supported: * - Exact Unicast/Multicast * - Promiscuous Unicast/Multicast * - Multicast * - VLAN * * @returns true if packet is intended for this node. * @param pThis Pointer to the state structure. * @param pvBuf The ethernet packet. * @param cb Number of bytes available in the packet. * @param pStatus Bit field to store status bits. * @thread EMT */ static bool e1kAddressFilter(PE1KSTATE pThis, const void *pvBuf, size_t cb, E1KRXDST *pStatus) { Assert(cb > 14); /* Assume that we fail to pass exact filter. */ pStatus->fPIF = false; pStatus->fVP = false; /* Discard oversized packets */ if (cb > E1K_MAX_RX_PKT_SIZE) { E1kLog(("%s ERROR: Incoming packet is too big, cb=%d > max=%d\n", pThis->szPrf, cb, E1K_MAX_RX_PKT_SIZE)); E1K_INC_CNT32(ROC); return false; } else if (!(RCTL & RCTL_LPE) && cb > 1522) { /* When long packet reception is disabled packets over 1522 are discarded */ E1kLog(("%s Discarding incoming packet (LPE=0), cb=%d\n", pThis->szPrf, cb)); E1K_INC_CNT32(ROC); return false; } uint16_t *u16Ptr = (uint16_t*)pvBuf; /* Compare TPID with VLAN Ether Type */ if (RT_BE2H_U16(u16Ptr[6]) == VET) { pStatus->fVP = true; /* Is VLAN filtering enabled? */ if (RCTL & RCTL_VFE) { /* It is 802.1q packet indeed, let's filter by VID */ if (RCTL & RCTL_CFIEN) { E1kLog3(("%s VLAN filter: VLAN=%d CFI=%d RCTL_CFI=%d\n", pThis->szPrf, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])), E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])), !!(RCTL & RCTL_CFI))); if (E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])) != !!(RCTL & RCTL_CFI)) { E1kLog2(("%s Packet filter: CFIs do not match in packet and RCTL (%d!=%d)\n", pThis->szPrf, E1K_SPEC_CFI(RT_BE2H_U16(u16Ptr[7])), !!(RCTL & RCTL_CFI))); return false; } } else E1kLog3(("%s VLAN filter: VLAN=%d\n", pThis->szPrf, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])))); if (!ASMBitTest(pThis->auVFTA, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])))) { E1kLog2(("%s Packet filter: no VLAN match (id=%d)\n", pThis->szPrf, E1K_SPEC_VLAN(RT_BE2H_U16(u16Ptr[7])))); return false; } } } /* Broadcast filtering */ if (e1kIsBroadcast(pvBuf) && (RCTL & RCTL_BAM)) return true; E1kLog2(("%s Packet filter: not a broadcast\n", pThis->szPrf)); if (e1kIsMulticast(pvBuf)) { /* Is multicast promiscuous enabled? */ if (RCTL & RCTL_MPE) return true; E1kLog2(("%s Packet filter: no promiscuous multicast\n", pThis->szPrf)); /* Try perfect matches first */ if (e1kPerfectMatch(pThis, pvBuf)) { pStatus->fPIF = true; return true; } E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf)); if (e1kImperfectMatch(pThis, pvBuf)) return true; E1kLog2(("%s Packet filter: no imperfect match\n", pThis->szPrf)); } else { /* Is unicast promiscuous enabled? */ if (RCTL & RCTL_UPE) return true; E1kLog2(("%s Packet filter: no promiscuous unicast\n", pThis->szPrf)); if (e1kPerfectMatch(pThis, pvBuf)) { pStatus->fPIF = true; return true; } E1kLog2(("%s Packet filter: no perfect match\n", pThis->szPrf)); } E1kLog2(("%s Packet filter: packet discarded\n", pThis->szPrf)); return false; } /** * @interface_method_impl{PDMINETWORKDOWN,pfnReceive} */ static DECLCALLBACK(int) e1kR3NetworkDown_Receive(PPDMINETWORKDOWN pInterface, const void *pvBuf, size_t cb) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkDown); PE1KSTATE pThis = pThisCC->pShared; PPDMDEVINS pDevIns = pThisCC->pDevInsR3; int rc = VINF_SUCCESS; /* * Drop packets if the VM is not running yet/anymore. */ VMSTATE enmVMState = PDMDevHlpVMState(pDevIns); if ( enmVMState != VMSTATE_RUNNING && enmVMState != VMSTATE_RUNNING_LS) { E1kLog(("%s Dropping incoming packet as VM is not running.\n", pThis->szPrf)); return VINF_SUCCESS; } /* Discard incoming packets in locked state */ if (!(RCTL & RCTL_EN) || pThis->fLocked || !(STATUS & STATUS_LU)) { E1kLog(("%s Dropping incoming packet as receive operation is disabled.\n", pThis->szPrf)); return VINF_SUCCESS; } STAM_PROFILE_ADV_START(&pThis->StatReceive, a); //e1kR3CsEnterAsserted(pThis); e1kPacketDump(pDevIns, pThis, (const uint8_t*)pvBuf, cb, "<-- Incoming"); /* Update stats */ e1kR3CsEnterAsserted(pThis); E1K_INC_CNT32(TPR); E1K_ADD_CNT64(TORL, TORH, cb < 64? 64 : cb); e1kCsLeave(pThis); STAM_PROFILE_ADV_START(&pThis->StatReceiveFilter, a); E1KRXDST status; RT_ZERO(status); bool fPassed = e1kAddressFilter(pThis, pvBuf, cb, &status); STAM_PROFILE_ADV_STOP(&pThis->StatReceiveFilter, a); if (fPassed) { rc = e1kHandleRxPacket(pDevIns, pThis, pvBuf, cb, status); } //e1kCsLeave(pThis); STAM_PROFILE_ADV_STOP(&pThis->StatReceive, a); return rc; } /* -=-=-=-=- PDMILEDPORTS -=-=-=-=- */ /** * @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed} */ static DECLCALLBACK(int) e1kR3QueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { if (iLUN == 0) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, ILeds); *ppLed = &pThisCC->pShared->led; return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /* -=-=-=-=- PDMINETWORKCONFIG -=-=-=-=- */ /** * @interface_method_impl{PDMINETWORKCONFIG,pfnGetMac} */ static DECLCALLBACK(int) e1kR3GetMac(PPDMINETWORKCONFIG pInterface, PRTMAC pMac) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig); pThisCC->eeprom.getMac(pMac); return VINF_SUCCESS; } /** * @interface_method_impl{PDMINETWORKCONFIG,pfnGetLinkState} */ static DECLCALLBACK(PDMNETWORKLINKSTATE) e1kR3GetLinkState(PPDMINETWORKCONFIG pInterface) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig); PE1KSTATE pThis = pThisCC->pShared; if (STATUS & STATUS_LU) return PDMNETWORKLINKSTATE_UP; return PDMNETWORKLINKSTATE_DOWN; } /** * @interface_method_impl{PDMINETWORKCONFIG,pfnSetLinkState} */ static DECLCALLBACK(int) e1kR3SetLinkState(PPDMINETWORKCONFIG pInterface, PDMNETWORKLINKSTATE enmState) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, INetworkConfig); PE1KSTATE pThis = pThisCC->pShared; PPDMDEVINS pDevIns = pThisCC->pDevInsR3; E1kLog(("%s e1kR3SetLinkState: enmState=%d\n", pThis->szPrf, enmState)); switch (enmState) { case PDMNETWORKLINKSTATE_UP: pThis->fCableConnected = true; /* If link was down, bring it up after a while. */ if (!(STATUS & STATUS_LU)) e1kBringLinkUpDelayed(pDevIns, pThis); break; case PDMNETWORKLINKSTATE_DOWN: pThis->fCableConnected = false; /* Always set the phy link state to down, regardless of the STATUS_LU bit. * We might have to set the link state before the driver initializes us. */ Phy::setLinkStatus(&pThis->phy, false); /* If link was up, bring it down. */ if (STATUS & STATUS_LU) e1kR3LinkDown(pDevIns, pThis, pThisCC); break; case PDMNETWORKLINKSTATE_DOWN_RESUME: /* * There is not much sense in bringing down the link if it has not come up yet. * If it is up though, we bring it down temporarely, then bring it up again. */ if (STATUS & STATUS_LU) e1kR3LinkDownTemp(pDevIns, pThis, pThisCC); break; default: ; } return VINF_SUCCESS; } /* -=-=-=-=- PDMIBASE -=-=-=-=- */ /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) e1kR3QueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { PE1KSTATECC pThisCC = RT_FROM_MEMBER(pInterface, E1KSTATECC, IBase); Assert(&pThisCC->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThisCC->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKDOWN, &pThisCC->INetworkDown); PDMIBASE_RETURN_INTERFACE(pszIID, PDMINETWORKCONFIG, &pThisCC->INetworkConfig); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThisCC->ILeds); return NULL; } /* -=-=-=-=- Saved State -=-=-=-=- */ /** * Saves the configuration. * * @param pThis The E1K state. * @param pSSM The handle to the saved state. */ static void e1kR3SaveConfig(PCPDMDEVHLPR3 pHlp, PE1KSTATE pThis, PSSMHANDLE pSSM) { pHlp->pfnSSMPutMem(pSSM, &pThis->macConfigured, sizeof(pThis->macConfigured)); pHlp->pfnSSMPutU32(pSSM, pThis->eChip); } /** * @callback_method_impl{FNSSMDEVLIVEEXEC,Save basic configuration.} */ static DECLCALLBACK(int) e1kR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass) { RT_NOREF(uPass); e1kR3SaveConfig(pDevIns->pHlpR3, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE), pSSM); return VINF_SSM_DONT_CALL_AGAIN; } /** * @callback_method_impl{FNSSMDEVSAVEPREP,Synchronize.} */ static DECLCALLBACK(int) e1kR3SavePrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { RT_NOREF(pSSM); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); e1kCsEnterReturn(pThis, VERR_SEM_BUSY); e1kCsLeave(pThis); return VINF_SUCCESS; #if 0 /* 1) Prevent all threads from modifying the state and memory */ //pThis->fLocked = true; /* 2) Cancel all timers */ #ifdef E1K_TX_DELAY e1kCancelTimer(pThis, pThis->CTX_SUFF(pTXDTimer)); #endif /* E1K_TX_DELAY */ //#ifdef E1K_USE_TX_TIMERS if (pThis->fTidEnabled) { e1kCancelTimer(pThis, pThis->CTX_SUFF(pTIDTimer)); #ifndef E1K_NO_TAD e1kCancelTimer(pThis, pThis->CTX_SUFF(pTADTimer)); #endif /* E1K_NO_TAD */ } //#endif /* E1K_USE_TX_TIMERS */ #ifdef E1K_USE_RX_TIMERS e1kCancelTimer(pThis, pThis->CTX_SUFF(pRIDTimer)); e1kCancelTimer(pThis, pThis->CTX_SUFF(pRADTimer)); #endif /* E1K_USE_RX_TIMERS */ e1kCancelTimer(pThis, pThis->CTX_SUFF(pIntTimer)); /* 3) Did I forget anything? */ E1kLog(("%s Locked\n", pThis->szPrf)); return VINF_SUCCESS; #endif } /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) e1kR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; e1kR3SaveConfig(pHlp, pThis, pSSM); pThisCC->eeprom.save(pHlp, pSSM); e1kDumpState(pThis); pHlp->pfnSSMPutMem(pSSM, pThis->auRegs, sizeof(pThis->auRegs)); pHlp->pfnSSMPutBool(pSSM, pThis->fIntRaised); Phy::saveState(pHlp, pSSM, &pThis->phy); pHlp->pfnSSMPutU32(pSSM, pThis->uSelectedReg); pHlp->pfnSSMPutMem(pSSM, pThis->auMTA, sizeof(pThis->auMTA)); pHlp->pfnSSMPutMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr)); pHlp->pfnSSMPutMem(pSSM, pThis->auVFTA, sizeof(pThis->auVFTA)); pHlp->pfnSSMPutU64(pSSM, pThis->u64AckedAt); pHlp->pfnSSMPutU16(pSSM, pThis->u16RxBSize); //pHlp->pfnSSMPutBool(pSSM, pThis->fDelayInts); //pHlp->pfnSSMPutBool(pSSM, pThis->fIntMaskUsed); pHlp->pfnSSMPutU16(pSSM, pThis->u16TxPktLen); /** @todo State wrt to the TSE buffer is incomplete, so little point in * saving this actually. */ pHlp->pfnSSMPutMem(pSSM, pThis->aTxPacketFallback, pThis->u16TxPktLen); pHlp->pfnSSMPutBool(pSSM, pThis->fIPcsum); pHlp->pfnSSMPutBool(pSSM, pThis->fTCPcsum); pHlp->pfnSSMPutMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE)); pHlp->pfnSSMPutMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal)); pHlp->pfnSSMPutBool(pSSM, pThis->fVTag); pHlp->pfnSSMPutU16(pSSM, pThis->u16VTagTCI); #ifdef E1K_WITH_TXD_CACHE # if 0 pHlp->pfnSSMPutU8(pSSM, pThis->nTxDFetched); pHlp->pfnSSMPutMem(pSSM, pThis->aTxDescriptors, pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0])); # else /* * There is no point in storing TX descriptor cache entries as we can simply * fetch them again. Moreover, normally the cache is always empty when we * save the state. Store zero entries for compatibility. */ pHlp->pfnSSMPutU8(pSSM, 0); # endif #endif /* E1K_WITH_TXD_CACHE */ /** @todo GSO requires some more state here. */ E1kLog(("%s State has been saved\n", pThis->szPrf)); return VINF_SUCCESS; } #if 0 /** * @callback_method_impl{FNSSMDEVSAVEDONE} */ static DECLCALLBACK(int) e1kSaveDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); /* If VM is being powered off unlocking will result in assertions in PGM */ if (PDMDevHlpGetVM(pDevIns)->enmVMState == VMSTATE_RUNNING) pThis->fLocked = false; else E1kLog(("%s VM is not running -- remain locked\n", pThis->szPrf)); E1kLog(("%s Unlocked\n", pThis->szPrf)); return VINF_SUCCESS; } #endif /** * @callback_method_impl{FNSSMDEVLOADPREP,Synchronize.} */ static DECLCALLBACK(int) e1kR3LoadPrep(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { RT_NOREF(pSSM); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); e1kCsEnterReturn(pThis, VERR_SEM_BUSY); e1kCsLeave(pThis); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) e1kR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; int rc; if ( uVersion != E1K_SAVEDSTATE_VERSION #ifdef E1K_WITH_TXD_CACHE && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG #endif /* E1K_WITH_TXD_CACHE */ && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_41 && uVersion != E1K_SAVEDSTATE_VERSION_VBOX_30) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; if ( uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30 || uPass != SSM_PASS_FINAL) { /* config checks */ RTMAC macConfigured; rc = pHlp->pfnSSMGetMem(pSSM, &macConfigured, sizeof(macConfigured)); AssertRCReturn(rc, rc); if ( memcmp(&macConfigured, &pThis->macConfigured, sizeof(macConfigured)) && (uPass == 0 || !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns)) ) LogRel(("%s: The mac address differs: config=%RTmac saved=%RTmac\n", pThis->szPrf, &pThis->macConfigured, &macConfigured)); E1KCHIP eChip; rc = pHlp->pfnSSMGetU32(pSSM, &eChip); AssertRCReturn(rc, rc); if (eChip != pThis->eChip) return pHlp->pfnSSMSetCfgError(pSSM, RT_SRC_POS, N_("The chip type differs: config=%u saved=%u"), pThis->eChip, eChip); } if (uPass == SSM_PASS_FINAL) { if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_30) { rc = pThisCC->eeprom.load(pHlp, pSSM); AssertRCReturn(rc, rc); } /* the state */ pHlp->pfnSSMGetMem(pSSM, &pThis->auRegs, sizeof(pThis->auRegs)); pHlp->pfnSSMGetBool(pSSM, &pThis->fIntRaised); /** @todo PHY could be made a separate device with its own versioning */ Phy::loadState(pHlp, pSSM, &pThis->phy); pHlp->pfnSSMGetU32(pSSM, &pThis->uSelectedReg); pHlp->pfnSSMGetMem(pSSM, &pThis->auMTA, sizeof(pThis->auMTA)); pHlp->pfnSSMGetMem(pSSM, &pThis->aRecAddr, sizeof(pThis->aRecAddr)); pHlp->pfnSSMGetMem(pSSM, &pThis->auVFTA, sizeof(pThis->auVFTA)); pHlp->pfnSSMGetU64(pSSM, &pThis->u64AckedAt); pHlp->pfnSSMGetU16(pSSM, &pThis->u16RxBSize); //pHlp->pfnSSMGetBool(pSSM, pThis->fDelayInts); //pHlp->pfnSSMGetBool(pSSM, pThis->fIntMaskUsed); rc = pHlp->pfnSSMGetU16(pSSM, &pThis->u16TxPktLen); AssertRCReturn(rc, rc); if (pThis->u16TxPktLen > sizeof(pThis->aTxPacketFallback)) pThis->u16TxPktLen = sizeof(pThis->aTxPacketFallback); pHlp->pfnSSMGetMem(pSSM, &pThis->aTxPacketFallback[0], pThis->u16TxPktLen); pHlp->pfnSSMGetBool(pSSM, &pThis->fIPcsum); pHlp->pfnSSMGetBool(pSSM, &pThis->fTCPcsum); pHlp->pfnSSMGetMem(pSSM, &pThis->contextTSE, sizeof(pThis->contextTSE)); rc = pHlp->pfnSSMGetMem(pSSM, &pThis->contextNormal, sizeof(pThis->contextNormal)); AssertRCReturn(rc, rc); if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_41) { pHlp->pfnSSMGetBool(pSSM, &pThis->fVTag); rc = pHlp->pfnSSMGetU16(pSSM, &pThis->u16VTagTCI); AssertRCReturn(rc, rc); } else { pThis->fVTag = false; pThis->u16VTagTCI = 0; } #ifdef E1K_WITH_TXD_CACHE if (uVersion > E1K_SAVEDSTATE_VERSION_VBOX_42_VTAG) { rc = pHlp->pfnSSMGetU8(pSSM, &pThis->nTxDFetched); AssertRCReturn(rc, rc); if (pThis->nTxDFetched) pHlp->pfnSSMGetMem(pSSM, pThis->aTxDescriptors, pThis->nTxDFetched * sizeof(pThis->aTxDescriptors[0])); } else pThis->nTxDFetched = 0; /** * @todo Perhaps we should not store TXD cache as the entries can be * simply fetched again from guest's memory. Or can't they? */ #endif /* E1K_WITH_TXD_CACHE */ #ifdef E1K_WITH_RXD_CACHE /* * There is no point in storing the RX descriptor cache in the saved * state, we just need to make sure it is empty. */ pThis->iRxDCurrent = pThis->nRxDFetched = 0; #endif /* E1K_WITH_RXD_CACHE */ rc = pHlp->pfnSSMHandleGetStatus(pSSM); AssertRCReturn(rc, rc); /* derived state */ e1kSetupGsoCtx(&pThis->GsoCtx, &pThis->contextTSE); E1kLog(("%s State has been restored\n", pThis->szPrf)); e1kDumpState(pThis); } return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMDEVLOADDONE, Link status adjustments after loading.} */ static DECLCALLBACK(int) e1kR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); RT_NOREF(pSSM); /* Update promiscuous mode */ if (pThisCC->pDrvR3) pThisCC->pDrvR3->pfnSetPromiscuousMode(pThisCC->pDrvR3, !!(RCTL & (RCTL_UPE | RCTL_MPE))); /* * Force the link down here, since PDMNETWORKLINKSTATE_DOWN_RESUME is never * passed to us. We go through all this stuff if the link was up and we * wasn't teleported. */ if ( (STATUS & STATUS_LU) && !PDMDevHlpVMTeleportedAndNotFullyResumedYet(pDevIns) && pThis->cMsLinkUpDelay) { e1kR3LinkDownTemp(pDevIns, pThis, pThisCC); } return VINF_SUCCESS; } /* -=-=-=-=- Debug Info + Log Types -=-=-=-=- */ /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) e1kR3FmtRxDesc(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser); AssertReturn(strcmp(pszType, "e1krxd") == 0, 0); E1KRXDESC* pDesc = (E1KRXDESC*)pvValue; if (!pDesc) return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_RXD"); size_t cbPrintf = 0; cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Address=%16LX Length=%04X Csum=%04X\n", pDesc->u64BufAddr, pDesc->u16Length, pDesc->u16Checksum); cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " STA: %s %s %s %s %s %s %s ERR: %s %s %s %s SPECIAL: %s VLAN=%03x PRI=%x", pDesc->status.fPIF ? "PIF" : "pif", pDesc->status.fIPCS ? "IPCS" : "ipcs", pDesc->status.fTCPCS ? "TCPCS" : "tcpcs", pDesc->status.fVP ? "VP" : "vp", pDesc->status.fIXSM ? "IXSM" : "ixsm", pDesc->status.fEOP ? "EOP" : "eop", pDesc->status.fDD ? "DD" : "dd", pDesc->status.fRXE ? "RXE" : "rxe", pDesc->status.fIPE ? "IPE" : "ipe", pDesc->status.fTCPE ? "TCPE" : "tcpe", pDesc->status.fCE ? "CE" : "ce", E1K_SPEC_CFI(pDesc->status.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->status.u16Special), E1K_SPEC_PRI(pDesc->status.u16Special)); return cbPrintf; } /** * @callback_method_impl{FNRTSTRFORMATTYPE} */ static DECLCALLBACK(size_t) e1kR3FmtTxDesc(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char *pszType, void const *pvValue, int cchWidth, int cchPrecision, unsigned fFlags, void *pvUser) { RT_NOREF(cchWidth, cchPrecision, fFlags, pvUser); AssertReturn(strcmp(pszType, "e1ktxd") == 0, 0); E1KTXDESC *pDesc = (E1KTXDESC*)pvValue; if (!pDesc) return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "NULL_TXD"); size_t cbPrintf = 0; switch (e1kGetDescType(pDesc)) { case E1K_DTYP_CONTEXT: cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Context\n" " IPCSS=%02X IPCSO=%02X IPCSE=%04X TUCSS=%02X TUCSO=%02X TUCSE=%04X\n" " TUCMD:%s%s%s %s %s PAYLEN=%04x HDRLEN=%04x MSS=%04x STA: %s", pDesc->context.ip.u8CSS, pDesc->context.ip.u8CSO, pDesc->context.ip.u16CSE, pDesc->context.tu.u8CSS, pDesc->context.tu.u8CSO, pDesc->context.tu.u16CSE, pDesc->context.dw2.fIDE ? " IDE":"", pDesc->context.dw2.fRS ? " RS" :"", pDesc->context.dw2.fTSE ? " TSE":"", pDesc->context.dw2.fIP ? "IPv4":"IPv6", pDesc->context.dw2.fTCP ? "TCP":"UDP", pDesc->context.dw2.u20PAYLEN, pDesc->context.dw3.u8HDRLEN, pDesc->context.dw3.u16MSS, pDesc->context.dw3.fDD?"DD":""); break; case E1K_DTYP_DATA: cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Data Address=%16LX DTALEN=%05X\n" " DCMD:%s%s%s%s%s%s%s STA:%s%s%s POPTS:%s%s SPECIAL:%s VLAN=%03x PRI=%x", pDesc->data.u64BufAddr, pDesc->data.cmd.u20DTALEN, pDesc->data.cmd.fIDE ? " IDE" :"", pDesc->data.cmd.fVLE ? " VLE" :"", pDesc->data.cmd.fRPS ? " RPS" :"", pDesc->data.cmd.fRS ? " RS" :"", pDesc->data.cmd.fTSE ? " TSE" :"", pDesc->data.cmd.fIFCS? " IFCS":"", pDesc->data.cmd.fEOP ? " EOP" :"", pDesc->data.dw3.fDD ? " DD" :"", pDesc->data.dw3.fEC ? " EC" :"", pDesc->data.dw3.fLC ? " LC" :"", pDesc->data.dw3.fTXSM? " TXSM":"", pDesc->data.dw3.fIXSM? " IXSM":"", E1K_SPEC_CFI(pDesc->data.dw3.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->data.dw3.u16Special), E1K_SPEC_PRI(pDesc->data.dw3.u16Special)); break; case E1K_DTYP_LEGACY: cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Type=Legacy Address=%16LX DTALEN=%05X\n" " CMD:%s%s%s%s%s%s%s STA:%s%s%s CSO=%02x CSS=%02x SPECIAL:%s VLAN=%03x PRI=%x", pDesc->data.u64BufAddr, pDesc->legacy.cmd.u16Length, pDesc->legacy.cmd.fIDE ? " IDE" :"", pDesc->legacy.cmd.fVLE ? " VLE" :"", pDesc->legacy.cmd.fRPS ? " RPS" :"", pDesc->legacy.cmd.fRS ? " RS" :"", pDesc->legacy.cmd.fIC ? " IC" :"", pDesc->legacy.cmd.fIFCS? " IFCS":"", pDesc->legacy.cmd.fEOP ? " EOP" :"", pDesc->legacy.dw3.fDD ? " DD" :"", pDesc->legacy.dw3.fEC ? " EC" :"", pDesc->legacy.dw3.fLC ? " LC" :"", pDesc->legacy.cmd.u8CSO, pDesc->legacy.dw3.u8CSS, E1K_SPEC_CFI(pDesc->legacy.dw3.u16Special) ? "CFI" :"cfi", E1K_SPEC_VLAN(pDesc->legacy.dw3.u16Special), E1K_SPEC_PRI(pDesc->legacy.dw3.u16Special)); break; default: cbPrintf += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "Invalid Transmit Descriptor"); break; } return cbPrintf; } /** Initializes debug helpers (logging format types). */ static int e1kR3InitDebugHelpers(void) { int rc = VINF_SUCCESS; static bool s_fHelpersRegistered = false; if (!s_fHelpersRegistered) { s_fHelpersRegistered = true; rc = RTStrFormatTypeRegister("e1krxd", e1kR3FmtRxDesc, NULL); AssertRCReturn(rc, rc); rc = RTStrFormatTypeRegister("e1ktxd", e1kR3FmtTxDesc, NULL); AssertRCReturn(rc, rc); } return rc; } /** * Status info callback. * * @param pDevIns The device instance. * @param pHlp The output helpers. * @param pszArgs The arguments. */ static DECLCALLBACK(void) e1kR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { RT_NOREF(pszArgs); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); unsigned i; // bool fRcvRing = false; // bool fXmtRing = false; /* * Parse args. if (pszArgs) { fRcvRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "rcv"); fXmtRing = strstr(pszArgs, "verbose") || strstr(pszArgs, "xmt"); } */ /* * Show info. */ pHlp->pfnPrintf(pHlp, "E1000 #%d: port=%04x mmio=%RGp mac-cfg=%RTmac %s%s%s\n", pDevIns->iInstance, PDMDevHlpIoPortGetMappingAddress(pDevIns, pThis->hIoPorts), PDMDevHlpMmioGetMappingAddress(pDevIns, pThis->hMmioRegion), &pThis->macConfigured, g_aChips[pThis->eChip].pcszName, pDevIns->fRCEnabled ? " RC" : "", pDevIns->fR0Enabled ? " R0" : ""); e1kR3CsEnterAsserted(pThis); /* Not sure why but PCNet does it */ for (i = 0; i < E1K_NUM_OF_32BIT_REGS; ++i) pHlp->pfnPrintf(pHlp, "%8.8s = %08x\n", g_aE1kRegMap[i].abbrev, pThis->auRegs[i]); for (i = 0; i < RT_ELEMENTS(pThis->aRecAddr.array); i++) { E1KRAELEM* ra = pThis->aRecAddr.array + i; if (ra->ctl & RA_CTL_AV) { const char *pcszTmp; switch (ra->ctl & RA_CTL_AS) { case 0: pcszTmp = "DST"; break; case 1: pcszTmp = "SRC"; break; default: pcszTmp = "reserved"; } pHlp->pfnPrintf(pHlp, "RA%02d: %s %RTmac\n", i, pcszTmp, ra->addr); } } unsigned cDescs = RDLEN / sizeof(E1KRXDESC); uint32_t rdh = RDH; pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors (%d total) --\n", cDescs); for (i = 0; i < cDescs; ++i) { E1KRXDESC desc; PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(RDBAH, RDBAL, i), &desc, sizeof(desc)); if (i == rdh) pHlp->pfnPrintf(pHlp, ">>> "); pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n", e1kDescAddr(RDBAH, RDBAL, i), &desc); } #ifdef E1K_WITH_RXD_CACHE pHlp->pfnPrintf(pHlp, "\n-- Receive Descriptors in Cache (at %d (RDH %d)/ fetched %d / max %d) --\n", pThis->iRxDCurrent, RDH, pThis->nRxDFetched, E1K_RXD_CACHE_SIZE); if (rdh > pThis->iRxDCurrent) rdh -= pThis->iRxDCurrent; else rdh = cDescs + rdh - pThis->iRxDCurrent; for (i = 0; i < pThis->nRxDFetched; ++i) { if (i == pThis->iRxDCurrent) pHlp->pfnPrintf(pHlp, ">>> "); if (cDescs) pHlp->pfnPrintf(pHlp, "%RGp: %R[e1krxd]\n", e1kDescAddr(RDBAH, RDBAL, rdh++ % cDescs), &pThis->aRxDescriptors[i]); else pHlp->pfnPrintf(pHlp, ": %R[e1krxd]\n", &pThis->aRxDescriptors[i]); } #endif /* E1K_WITH_RXD_CACHE */ cDescs = TDLEN / sizeof(E1KTXDESC); uint32_t tdh = TDH; pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors (%d total) --\n", cDescs); for (i = 0; i < cDescs; ++i) { E1KTXDESC desc; PDMDevHlpPCIPhysRead(pDevIns, e1kDescAddr(TDBAH, TDBAL, i), &desc, sizeof(desc)); if (i == tdh) pHlp->pfnPrintf(pHlp, ">>> "); pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, i), &desc); } #ifdef E1K_WITH_TXD_CACHE pHlp->pfnPrintf(pHlp, "\n-- Transmit Descriptors in Cache (at %d (TDH %d)/ fetched %d / max %d) --\n", pThis->iTxDCurrent, TDH, pThis->nTxDFetched, E1K_TXD_CACHE_SIZE); if (tdh > pThis->iTxDCurrent) tdh -= pThis->iTxDCurrent; else tdh = cDescs + tdh - pThis->iTxDCurrent; for (i = 0; i < pThis->nTxDFetched; ++i) { if (i == pThis->iTxDCurrent) pHlp->pfnPrintf(pHlp, ">>> "); if (cDescs) pHlp->pfnPrintf(pHlp, "%RGp: %R[e1ktxd]\n", e1kDescAddr(TDBAH, TDBAL, tdh++ % cDescs), &pThis->aTxDescriptors[i]); else pHlp->pfnPrintf(pHlp, ": %R[e1ktxd]\n", &pThis->aTxDescriptors[i]); } #endif /* E1K_WITH_TXD_CACHE */ #ifdef E1K_INT_STATS pHlp->pfnPrintf(pHlp, "Interrupt attempts: %d\n", pThis->uStatIntTry); pHlp->pfnPrintf(pHlp, "Interrupts raised : %d\n", pThis->uStatInt); pHlp->pfnPrintf(pHlp, "Interrupts lowered: %d\n", pThis->uStatIntLower); pHlp->pfnPrintf(pHlp, "ICR outside ISR : %d\n", pThis->uStatNoIntICR); pHlp->pfnPrintf(pHlp, "IMS raised ints : %d\n", pThis->uStatIntIMS); pHlp->pfnPrintf(pHlp, "Interrupts skipped: %d\n", pThis->uStatIntSkip); pHlp->pfnPrintf(pHlp, "Masked interrupts : %d\n", pThis->uStatIntMasked); pHlp->pfnPrintf(pHlp, "Early interrupts : %d\n", pThis->uStatIntEarly); pHlp->pfnPrintf(pHlp, "Late interrupts : %d\n", pThis->uStatIntLate); pHlp->pfnPrintf(pHlp, "Lost interrupts : %d\n", pThis->iStatIntLost); pHlp->pfnPrintf(pHlp, "Interrupts by RX : %d\n", pThis->uStatIntRx); pHlp->pfnPrintf(pHlp, "Interrupts by TX : %d\n", pThis->uStatIntTx); pHlp->pfnPrintf(pHlp, "Interrupts by ICS : %d\n", pThis->uStatIntICS); pHlp->pfnPrintf(pHlp, "Interrupts by RDTR: %d\n", pThis->uStatIntRDTR); pHlp->pfnPrintf(pHlp, "Interrupts by RDMT: %d\n", pThis->uStatIntRXDMT0); pHlp->pfnPrintf(pHlp, "Interrupts by TXQE: %d\n", pThis->uStatIntTXQE); pHlp->pfnPrintf(pHlp, "TX int delay asked: %d\n", pThis->uStatTxIDE); pHlp->pfnPrintf(pHlp, "TX delayed: %d\n", pThis->uStatTxDelayed); pHlp->pfnPrintf(pHlp, "TX delayed expired: %d\n", pThis->uStatTxDelayExp); pHlp->pfnPrintf(pHlp, "TX no report asked: %d\n", pThis->uStatTxNoRS); pHlp->pfnPrintf(pHlp, "TX abs timer expd : %d\n", pThis->uStatTAD); pHlp->pfnPrintf(pHlp, "TX int timer expd : %d\n", pThis->uStatTID); pHlp->pfnPrintf(pHlp, "RX abs timer expd : %d\n", pThis->uStatRAD); pHlp->pfnPrintf(pHlp, "RX int timer expd : %d\n", pThis->uStatRID); pHlp->pfnPrintf(pHlp, "TX CTX descriptors: %d\n", pThis->uStatDescCtx); pHlp->pfnPrintf(pHlp, "TX DAT descriptors: %d\n", pThis->uStatDescDat); pHlp->pfnPrintf(pHlp, "TX LEG descriptors: %d\n", pThis->uStatDescLeg); pHlp->pfnPrintf(pHlp, "Received frames : %d\n", pThis->uStatRxFrm); pHlp->pfnPrintf(pHlp, "Transmitted frames: %d\n", pThis->uStatTxFrm); pHlp->pfnPrintf(pHlp, "TX frames up to 1514: %d\n", pThis->uStatTx1514); pHlp->pfnPrintf(pHlp, "TX frames up to 2962: %d\n", pThis->uStatTx2962); pHlp->pfnPrintf(pHlp, "TX frames up to 4410: %d\n", pThis->uStatTx4410); pHlp->pfnPrintf(pHlp, "TX frames up to 5858: %d\n", pThis->uStatTx5858); pHlp->pfnPrintf(pHlp, "TX frames up to 7306: %d\n", pThis->uStatTx7306); pHlp->pfnPrintf(pHlp, "TX frames up to 8754: %d\n", pThis->uStatTx8754); pHlp->pfnPrintf(pHlp, "TX frames up to 16384: %d\n", pThis->uStatTx16384); pHlp->pfnPrintf(pHlp, "TX frames up to 32768: %d\n", pThis->uStatTx32768); pHlp->pfnPrintf(pHlp, "Larger TX frames : %d\n", pThis->uStatTxLarge); #endif /* E1K_INT_STATS */ e1kCsLeave(pThis); } /* -=-=-=-=- PDMDEVREG -=-=-=-=- */ /** * Detach notification. * * One port on the network card has been disconnected from the network. * * @param pDevIns The device instance. * @param iLUN The logical unit which is being detached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. */ static DECLCALLBACK(void) e1kR3Detach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); Log(("%s e1kR3Detach:\n", pThis->szPrf)); RT_NOREF(fFlags); AssertLogRelReturnVoid(iLUN == 0); e1kR3CsEnterAsserted(pThis); /* Mark device as detached. */ pThis->fIsAttached = false; /* * Zero some important members. */ pThisCC->pDrvBase = NULL; pThisCC->pDrvR3 = NULL; #if 0 /** @todo @bugref{9218} ring-0 driver stuff */ pThisR0->pDrvR0 = NIL_RTR0PTR; pThisRC->pDrvRC = NIL_RTRCPTR; #endif PDMDevHlpCritSectLeave(pDevIns, &pThis->cs); } /** * Attach the Network attachment. * * One port on the network card has been connected to a network. * * @returns VBox status code. * @param pDevIns The device instance. * @param iLUN The logical unit which is being attached. * @param fFlags Flags, combination of the PDMDEVATT_FLAGS_* \#defines. * * @remarks This code path is not used during construction. */ static DECLCALLBACK(int) e1kR3Attach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); LogFlow(("%s e1kR3Attach:\n", pThis->szPrf)); RT_NOREF(fFlags); AssertLogRelReturn(iLUN == 0, VERR_PDM_NO_SUCH_LUN); e1kR3CsEnterAsserted(pThis); /* * Attach the driver. */ int rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port"); if (RT_SUCCESS(rc)) { pThisCC->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP); AssertMsgStmt(pThisCC->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"), rc = VERR_PDM_MISSING_INTERFACE_BELOW); if (RT_SUCCESS(rc)) { #if 0 /** @todo @bugref{9218} ring-0 driver stuff */ pThisR0->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASER0), PDMINETWORKUP); pThisRC->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASERC), PDMINETWORKUP); #endif /* Mark device as attached. */ pThis->fIsAttached = true; } } else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME) { /* This should never happen because this function is not called * if there is no driver to attach! */ Log(("%s No attached driver!\n", pThis->szPrf)); } /* * Temporary set the link down if it was up so that the guest will know * that we have change the configuration of the network card */ if ((STATUS & STATUS_LU) && RT_SUCCESS(rc)) e1kR3LinkDownTemp(pDevIns, pThis, pThisCC); PDMDevHlpCritSectLeave(pDevIns, &pThis->cs); return rc; } /** * @copydoc FNPDMDEVPOWEROFF */ static DECLCALLBACK(void) e1kR3PowerOff(PPDMDEVINS pDevIns) { /* Poke thread waiting for buffer space. */ e1kWakeupReceive(pDevIns, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE)); } /** * @copydoc FNPDMDEVRESET */ static DECLCALLBACK(void) e1kR3Reset(PPDMDEVINS pDevIns) { PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); #ifdef E1K_TX_DELAY e1kCancelTimer(pDevIns, pThis, pThis->hTXDTimer); #endif /* E1K_TX_DELAY */ e1kCancelTimer(pDevIns, pThis, pThis->hIntTimer); e1kCancelTimer(pDevIns, pThis, pThis->hLUTimer); e1kXmitFreeBuf(pThis, pThisCC); pThis->u16TxPktLen = 0; pThis->fIPcsum = false; pThis->fTCPcsum = false; pThis->fIntMaskUsed = false; pThis->fDelayInts = false; pThis->fLocked = false; pThis->u64AckedAt = 0; e1kR3HardReset(pDevIns, pThis, pThisCC); } /** * @copydoc FNPDMDEVSUSPEND */ static DECLCALLBACK(void) e1kR3Suspend(PPDMDEVINS pDevIns) { /* Poke thread waiting for buffer space. */ e1kWakeupReceive(pDevIns, PDMDEVINS_2_DATA(pDevIns, PE1KSTATE)); } /** * Device relocation callback. * * When this callback is called the device instance data, and if the * device have a GC component, is being relocated, or/and the selectors * have been changed. The device must use the chance to perform the * necessary pointer relocations and data updates. * * Before the GC code is executed the first time, this function will be * called with a 0 delta so GC pointer calculations can be one in one place. * * @param pDevIns Pointer to the device instance. * @param offDelta The relocation delta relative to the old location. * * @remark A relocation CANNOT fail. */ static DECLCALLBACK(void) e1kR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { PE1KSTATERC pThisRC = PDMINS_2_DATA_RC(pDevIns, PE1KSTATERC); if (pThisRC) pThisRC->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); RT_NOREF(offDelta); } /** * Destruct a device instance. * * We need to free non-VM resources only. * * @returns VBox status code. * @param pDevIns The device instance data. * @thread EMT */ static DECLCALLBACK(int) e1kR3Destruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN_QUIET(pDevIns); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); e1kDumpState(pThis); E1kLog(("%s Destroying instance\n", pThis->szPrf)); if (PDMDevHlpCritSectIsInitialized(pDevIns, &pThis->cs)) { if (pThis->hEventMoreRxDescAvail != NIL_SUPSEMEVENT) { PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEventMoreRxDescAvail); RTThreadYield(); PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEventMoreRxDescAvail); pThis->hEventMoreRxDescAvail = NIL_SUPSEMEVENT; } #ifdef E1K_WITH_TX_CS PDMDevHlpCritSectDelete(pDevIns, &pThis->csTx); #endif /* E1K_WITH_TX_CS */ PDMDevHlpCritSectDelete(pDevIns, &pThis->csRx); PDMDevHlpCritSectDelete(pDevIns, &pThis->cs); } return VINF_SUCCESS; } /** * Set PCI configuration space registers. * * @param pci Reference to PCI device structure. * @thread EMT */ static void e1kR3ConfigurePciDev(PPDMPCIDEV pPciDev, E1KCHIP eChip) { Assert(eChip < RT_ELEMENTS(g_aChips)); /* Configure PCI Device, assume 32-bit mode ******************************/ PDMPciDevSetVendorId(pPciDev, g_aChips[eChip].uPCIVendorId); PDMPciDevSetDeviceId(pPciDev, g_aChips[eChip].uPCIDeviceId); PDMPciDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_VENDOR_ID, g_aChips[eChip].uPCISubsystemVendorId); PDMPciDevSetWord( pPciDev, VBOX_PCI_SUBSYSTEM_ID, g_aChips[eChip].uPCISubsystemId); PDMPciDevSetWord( pPciDev, VBOX_PCI_COMMAND, 0x0000); /* DEVSEL Timing (medium device), 66 MHz Capable, New capabilities */ PDMPciDevSetWord( pPciDev, VBOX_PCI_STATUS, VBOX_PCI_STATUS_DEVSEL_MEDIUM | VBOX_PCI_STATUS_CAP_LIST | VBOX_PCI_STATUS_66MHZ); /* Stepping A2 */ PDMPciDevSetByte( pPciDev, VBOX_PCI_REVISION_ID, 0x02); /* Ethernet adapter */ PDMPciDevSetByte( pPciDev, VBOX_PCI_CLASS_PROG, 0x00); PDMPciDevSetWord( pPciDev, VBOX_PCI_CLASS_DEVICE, 0x0200); /* normal single function Ethernet controller */ PDMPciDevSetByte( pPciDev, VBOX_PCI_HEADER_TYPE, 0x00); /* Memory Register Base Address */ PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_0, 0x00000000); /* Memory Flash Base Address */ PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_1, 0x00000000); /* IO Register Base Address */ PDMPciDevSetDWord(pPciDev, VBOX_PCI_BASE_ADDRESS_2, 0x00000001); /* Expansion ROM Base Address */ PDMPciDevSetDWord(pPciDev, VBOX_PCI_ROM_ADDRESS, 0x00000000); /* Capabilities Pointer */ PDMPciDevSetByte( pPciDev, VBOX_PCI_CAPABILITY_LIST, 0xDC); /* Interrupt Pin: INTA# */ PDMPciDevSetByte( pPciDev, VBOX_PCI_INTERRUPT_PIN, 0x01); /* Max_Lat/Min_Gnt: very high priority and time slice */ PDMPciDevSetByte( pPciDev, VBOX_PCI_MIN_GNT, 0xFF); PDMPciDevSetByte( pPciDev, VBOX_PCI_MAX_LAT, 0x00); /* PCI Power Management Registers ****************************************/ /* Capability ID: PCI Power Management Registers */ PDMPciDevSetByte( pPciDev, 0xDC, VBOX_PCI_CAP_ID_PM); /* Next Item Pointer: PCI-X */ PDMPciDevSetByte( pPciDev, 0xDC + 1, 0xE4); /* Power Management Capabilities: PM disabled, DSI */ PDMPciDevSetWord( pPciDev, 0xDC + 2, 0x0002 | VBOX_PCI_PM_CAP_DSI); /* Power Management Control / Status Register: PM disabled */ PDMPciDevSetWord( pPciDev, 0xDC + 4, 0x0000); /* PMCSR_BSE Bridge Support Extensions: Not supported */ PDMPciDevSetByte( pPciDev, 0xDC + 6, 0x00); /* Data Register: PM disabled, always 0 */ PDMPciDevSetByte( pPciDev, 0xDC + 7, 0x00); /* PCI-X Configuration Registers *****************************************/ /* Capability ID: PCI-X Configuration Registers */ PDMPciDevSetByte( pPciDev, 0xE4, VBOX_PCI_CAP_ID_PCIX); #ifdef E1K_WITH_MSI PDMPciDevSetByte( pPciDev, 0xE4 + 1, 0x80); #else /* Next Item Pointer: None (Message Signalled Interrupts are disabled) */ PDMPciDevSetByte( pPciDev, 0xE4 + 1, 0x00); #endif /* PCI-X Command: Enable Relaxed Ordering */ PDMPciDevSetWord( pPciDev, 0xE4 + 2, VBOX_PCI_X_CMD_ERO); /* PCI-X Status: 32-bit, 66MHz*/ /** @todo is this value really correct? fff8 doesn't look like actual PCI address */ PDMPciDevSetDWord(pPciDev, 0xE4 + 4, 0x0040FFF8); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) e1kR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); int rc; /* * Initialize the instance data (state). * Note! Caller has initialized it to ZERO already. */ RTStrPrintf(pThis->szPrf, sizeof(pThis->szPrf), "E1000#%d", iInstance); E1kLog(("%s Constructing new instance sizeof(E1KRXDESC)=%d\n", pThis->szPrf, sizeof(E1KRXDESC))); pThis->hEventMoreRxDescAvail = NIL_SUPSEMEVENT; pThis->u16TxPktLen = 0; pThis->fIPcsum = false; pThis->fTCPcsum = false; pThis->fIntMaskUsed = false; pThis->fDelayInts = false; pThis->fLocked = false; pThis->u64AckedAt = 0; pThis->led.u32Magic = PDMLED_MAGIC; pThis->u32PktNo = 1; pThis->fIsAttached = false; pThisCC->pDevInsR3 = pDevIns; pThisCC->pShared = pThis; /* Interfaces */ pThisCC->IBase.pfnQueryInterface = e1kR3QueryInterface; pThisCC->INetworkDown.pfnWaitReceiveAvail = e1kR3NetworkDown_WaitReceiveAvail; pThisCC->INetworkDown.pfnReceive = e1kR3NetworkDown_Receive; pThisCC->INetworkDown.pfnXmitPending = e1kR3NetworkDown_XmitPending; pThisCC->ILeds.pfnQueryStatusLed = e1kR3QueryStatusLed; pThisCC->INetworkConfig.pfnGetMac = e1kR3GetMac; pThisCC->INetworkConfig.pfnGetLinkState = e1kR3GetLinkState; pThisCC->INetworkConfig.pfnSetLinkState = e1kR3SetLinkState; /* * Internal validations. */ for (uint32_t iReg = 1; iReg < E1K_NUM_OF_BINARY_SEARCHABLE; iReg++) AssertLogRelMsgReturn( g_aE1kRegMap[iReg].offset > g_aE1kRegMap[iReg - 1].offset && g_aE1kRegMap[iReg].offset + g_aE1kRegMap[iReg].size >= g_aE1kRegMap[iReg - 1].offset + g_aE1kRegMap[iReg - 1].size, ("%s@%#xLB%#x vs %s@%#xLB%#x\n", g_aE1kRegMap[iReg].abbrev, g_aE1kRegMap[iReg].offset, g_aE1kRegMap[iReg].size, g_aE1kRegMap[iReg - 1].abbrev, g_aE1kRegMap[iReg - 1].offset, g_aE1kRegMap[iReg - 1].size), VERR_INTERNAL_ERROR_4); /* * Validate configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "MAC|" "CableConnected|" "AdapterType|" "LineSpeed|" "ItrEnabled|" "ItrRxEnabled|" "EthernetCRC|" "GSOEnabled|" "LinkUpDelay|" "StatNo", ""); /** @todo LineSpeed unused! */ /* * Get config params */ PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; rc = pHlp->pfnCFGMQueryBytes(pCfg, "MAC", pThis->macConfigured.au8, sizeof(pThis->macConfigured.au8)); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get MAC address")); rc = pHlp->pfnCFGMQueryBool(pCfg, "CableConnected", &pThis->fCableConnected); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'CableConnected'")); rc = pHlp->pfnCFGMQueryU32(pCfg, "AdapterType", (uint32_t*)&pThis->eChip); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'AdapterType'")); Assert(pThis->eChip <= E1K_CHIP_82545EM); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "EthernetCRC", &pThis->fEthernetCRC, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'EthernetCRC'")); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "GSOEnabled", &pThis->fGSOEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'GSOEnabled'")); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "ItrEnabled", &pThis->fItrEnabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'ItrEnabled'")); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "ItrRxEnabled", &pThis->fItrRxEnabled, true); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'ItrRxEnabled'")); rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "TidEnabled", &pThis->fTidEnabled, false); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'TidEnabled'")); /* * Increased the link up delay from 3 to 5 seconds to make sure a guest notices the link loss * and updates its network configuration when the link is restored. See @bugref{10114}. */ rc = pHlp->pfnCFGMQueryU32Def(pCfg, "LinkUpDelay", (uint32_t*)&pThis->cMsLinkUpDelay, 5000); /* ms */ if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the value of 'LinkUpDelay'")); Assert(pThis->cMsLinkUpDelay <= 300000); /* less than 5 minutes */ if (pThis->cMsLinkUpDelay > 5000) LogRel(("%s: WARNING! Link up delay is set to %u seconds!\n", pThis->szPrf, pThis->cMsLinkUpDelay / 1000)); else if (pThis->cMsLinkUpDelay == 0) LogRel(("%s: WARNING! Link up delay is disabled!\n", pThis->szPrf)); uint32_t uStatNo = (uint32_t)iInstance; rc = pHlp->pfnCFGMQueryU32Def(pCfg, "StatNo", &uStatNo, (uint32_t)iInstance); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Configuration error: Failed to get the \"StatNo\" value")); LogRel(("%s: Chip=%s LinkUpDelay=%ums EthernetCRC=%s GSO=%s Itr=%s ItrRx=%s TID=%s R0=%s RC=%s\n", pThis->szPrf, g_aChips[pThis->eChip].pcszName, pThis->cMsLinkUpDelay, pThis->fEthernetCRC ? "on" : "off", pThis->fGSOEnabled ? "enabled" : "disabled", pThis->fItrEnabled ? "enabled" : "disabled", pThis->fItrRxEnabled ? "enabled" : "disabled", pThis->fTidEnabled ? "enabled" : "disabled", pDevIns->fR0Enabled ? "enabled" : "disabled", pDevIns->fRCEnabled ? "enabled" : "disabled")); /* * Initialize sub-components and register everything with the VMM. */ /* Initialize the EEPROM. */ pThisCC->eeprom.init(pThis->macConfigured); /* Initialize internal PHY. */ Phy::init(&pThis->phy, iInstance, pThis->eChip == E1K_CHIP_82543GC ? PHY_EPID_M881000 : PHY_EPID_M881011); /* Initialize critical sections. We do our own locking. */ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->cs, RT_SRC_POS, "E1000#%d", iInstance); AssertRCReturn(rc, rc); rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csRx, RT_SRC_POS, "E1000#%dRX", iInstance); AssertRCReturn(rc, rc); #ifdef E1K_WITH_TX_CS rc = PDMDevHlpCritSectInit(pDevIns, &pThis->csTx, RT_SRC_POS, "E1000#%dTX", iInstance); AssertRCReturn(rc, rc); #endif /* Saved state registration. */ rc = PDMDevHlpSSMRegisterEx(pDevIns, E1K_SAVEDSTATE_VERSION, sizeof(E1KSTATE), NULL, NULL, e1kR3LiveExec, NULL, e1kR3SavePrep, e1kR3SaveExec, NULL, e1kR3LoadPrep, e1kR3LoadExec, e1kR3LoadDone); AssertRCReturn(rc, rc); /* Set PCI config registers and register ourselves with the PCI bus. */ PDMPCIDEV_ASSERT_VALID(pDevIns, pDevIns->apPciDevs[0]); e1kR3ConfigurePciDev(pDevIns->apPciDevs[0], pThis->eChip); rc = PDMDevHlpPCIRegister(pDevIns, pDevIns->apPciDevs[0]); AssertRCReturn(rc, rc); #ifdef E1K_WITH_MSI PDMMSIREG MsiReg; RT_ZERO(MsiReg); MsiReg.cMsiVectors = 1; MsiReg.iMsiCapOffset = 0x80; MsiReg.iMsiNextOffset = 0x0; MsiReg.fMsi64bit = false; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &MsiReg); AssertRCReturn(rc, rc); #endif /* * Map our registers to memory space (region 0, see e1kR3ConfigurePciDev) * From the spec (regarding flags): * For registers that should be accessed as 32-bit double words, * partial writes (less than a 32-bit double word) is ignored. * Partial reads return all 32 bits of data regardless of the * byte enables. */ rc = PDMDevHlpMmioCreateEx(pDevIns, E1K_MM_SIZE, IOMMMIO_FLAGS_READ_DWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD, pDevIns->apPciDevs[0], 0 /*iPciRegion*/, e1kMMIOWrite, e1kMMIORead, NULL /*pfnFill*/, NULL /*pvUser*/, "E1000", &pThis->hMmioRegion); AssertRCReturn(rc, rc); rc = PDMDevHlpPCIIORegionRegisterMmio(pDevIns, 0, E1K_MM_SIZE, PCI_ADDRESS_SPACE_MEM, pThis->hMmioRegion, NULL); AssertRCReturn(rc, rc); /* Map our registers to IO space (region 2, see e1kR3ConfigurePciDev) */ static IOMIOPORTDESC const s_aExtDescs[] = { { "IOADDR", "IOADDR", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "IODATA", "IODATA", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { "unused", "unused", NULL, NULL }, { NULL, NULL, NULL, NULL } }; rc = PDMDevHlpIoPortCreate(pDevIns, E1K_IOPORT_SIZE, pDevIns->apPciDevs[0], 2 /*iPciRegion*/, e1kIOPortOut, e1kIOPortIn, NULL /*pvUser*/, "E1000", s_aExtDescs, &pThis->hIoPorts); AssertRCReturn(rc, rc); rc = PDMDevHlpPCIIORegionRegisterIo(pDevIns, 2, E1K_IOPORT_SIZE, pThis->hIoPorts); AssertRCReturn(rc, rc); /* Create transmit queue */ rc = PDMDevHlpTaskCreate(pDevIns, PDMTASK_F_RZ, "E1000-Xmit", e1kR3TxTaskCallback, NULL, &pThis->hTxTask); AssertRCReturn(rc, rc); #ifdef E1K_TX_DELAY /* Create Transmit Delay Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxDelayTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Xmit Delay", &pThis->hTXDTimer); AssertRCReturn(rc, rc); rc = PDMDevHlpTimerSetCritSect(pDevIns, pThis->hTXDTimer, &pThis->csTx); AssertRCReturn(rc, rc); #endif /* E1K_TX_DELAY */ //#ifdef E1K_USE_TX_TIMERS if (pThis->fTidEnabled) { /* Create Transmit Interrupt Delay Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxIntDelayTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Xmit IRQ Delay", &pThis->hTIDTimer); AssertRCReturn(rc, rc); # ifndef E1K_NO_TAD /* Create Transmit Absolute Delay Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3TxAbsDelayTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Xmit Abs Delay", &pThis->hTADTimer); AssertRCReturn(rc, rc); # endif /* E1K_NO_TAD */ } //#endif /* E1K_USE_TX_TIMERS */ #ifdef E1K_USE_RX_TIMERS /* Create Receive Interrupt Delay Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3RxIntDelayTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Recv IRQ Delay", &pThis->hRIDTimer); AssertRCReturn(rc, rc); /* Create Receive Absolute Delay Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3RxAbsDelayTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Recv Abs Delay", &pThis->hRADTimer); AssertRCReturn(rc, rc); #endif /* E1K_USE_RX_TIMERS */ /* Create Late Interrupt Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3LateIntTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Late IRQ", &pThis->hIntTimer); AssertRCReturn(rc, rc); /* Create Link Up Timer */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, e1kR3LinkUpTimer, pThis, TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0, "E1000 Link Up", &pThis->hLUTimer); AssertRCReturn(rc, rc); /* Register the info item */ char szTmp[20]; RTStrPrintf(szTmp, sizeof(szTmp), "e1k%d", iInstance); PDMDevHlpDBGFInfoRegister(pDevIns, szTmp, "E1000 info.", e1kR3Info); /* Status driver */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThisCC->IBase, &pBase, "Status Port"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN")); pThisCC->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); /* Network driver */ rc = PDMDevHlpDriverAttach(pDevIns, 0, &pThisCC->IBase, &pThisCC->pDrvBase, "Network Port"); if (RT_SUCCESS(rc)) { pThisCC->pDrvR3 = PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMINETWORKUP); AssertMsgReturn(pThisCC->pDrvR3, ("Failed to obtain the PDMINETWORKUP interface!\n"), VERR_PDM_MISSING_INTERFACE_BELOW); #if 0 /** @todo @bugref{9218} ring-0 driver stuff */ pThisR0->pDrvR0 = PDMIBASER0_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASER0), PDMINETWORKUP); pThisRC->pDrvRC = PDMIBASERC_QUERY_INTERFACE(PDMIBASE_QUERY_INTERFACE(pThisCC->pDrvBase, PDMIBASERC), PDMINETWORKUP); #endif /* Mark device as attached. */ pThis->fIsAttached = true; } else if ( rc == VERR_PDM_NO_ATTACHED_DRIVER || rc == VERR_PDM_CFG_MISSING_DRIVER_NAME) { /* No error! */ E1kLog(("%s This adapter is not attached to any network!\n", pThis->szPrf)); } else return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the network LUN")); rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEventMoreRxDescAvail); AssertRCReturn(rc, rc); rc = e1kR3InitDebugHelpers(); AssertRCReturn(rc, rc); e1kR3HardReset(pDevIns, pThis, pThisCC); /* * Register statistics. * The /Public/ bits are official and used by session info in the GUI. */ PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data received", "/Public/NetAdapter/%u/BytesReceived", uStatNo); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Amount of data transmitted", "/Public/NetAdapter/%u/BytesTransmitted", uStatNo); PDMDevHlpSTAMRegisterF(pDevIns, &pDevIns->iInstance, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_NONE, "Device instance number", "/Public/NetAdapter/%u/%s", uStatNo, pDevIns->pReg->szName); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveBytes, STAMTYPE_COUNTER, "ReceiveBytes", STAMUNIT_BYTES, "Amount of data received"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitBytes, STAMTYPE_COUNTER, "TransmitBytes", STAMUNIT_BYTES, "Amount of data transmitted"); #if defined(VBOX_WITH_STATISTICS) PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOReadRZ, STAMTYPE_PROFILE, "MMIO/ReadRZ", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOReadR3, STAMTYPE_PROFILE, "MMIO/ReadR3", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO reads in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOWriteRZ, STAMTYPE_PROFILE, "MMIO/WriteRZ", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMMIOWriteR3, STAMTYPE_PROFILE, "MMIO/WriteR3", STAMUNIT_TICKS_PER_CALL, "Profiling MMIO writes in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEEPROMRead, STAMTYPE_PROFILE, "EEPROM/Read", STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM reads"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatEEPROMWrite, STAMTYPE_PROFILE, "EEPROM/Write", STAMUNIT_TICKS_PER_CALL, "Profiling EEPROM writes"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOReadRZ, STAMTYPE_PROFILE, "IO/ReadRZ", STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOReadR3, STAMTYPE_PROFILE, "IO/ReadR3", STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOWriteRZ, STAMTYPE_PROFILE, "IO/WriteRZ", STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIOWriteR3, STAMTYPE_PROFILE, "IO/WriteR3", STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatLateIntTimer, STAMTYPE_PROFILE, "LateInt/Timer", STAMUNIT_TICKS_PER_CALL, "Profiling late int timer"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatLateInts, STAMTYPE_COUNTER, "LateInt/Occured", STAMUNIT_OCCURENCES, "Number of late interrupts"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntsRaised, STAMTYPE_COUNTER, "Interrupts/Raised", STAMUNIT_OCCURENCES, "Number of raised interrupts"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIntsPrevented, STAMTYPE_COUNTER, "Interrupts/Prevented", STAMUNIT_OCCURENCES, "Number of prevented interrupts"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceive, STAMTYPE_PROFILE, "Receive/Total", STAMUNIT_TICKS_PER_CALL, "Profiling receive"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveCRC, STAMTYPE_PROFILE, "Receive/CRC", STAMUNIT_TICKS_PER_CALL, "Profiling receive checksumming"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveFilter, STAMTYPE_PROFILE, "Receive/Filter", STAMUNIT_TICKS_PER_CALL, "Profiling receive filtering"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatReceiveStore, STAMTYPE_PROFILE, "Receive/Store", STAMUNIT_TICKS_PER_CALL, "Profiling receive storing"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflow, STAMTYPE_PROFILE, "RxOverflow", STAMUNIT_TICKS_PER_OCCURENCE, "Profiling RX overflows"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflowWakeupRZ, STAMTYPE_COUNTER, "RxOverflowWakeupRZ", STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatRxOverflowWakeupR3, STAMTYPE_COUNTER, "RxOverflowWakeupR3", STAMUNIT_OCCURENCES, "Nr of RX overflow wakeups in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitRZ, STAMTYPE_PROFILE, "Transmit/TotalRZ", STAMUNIT_TICKS_PER_CALL, "Profiling transmits in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitR3, STAMTYPE_PROFILE, "Transmit/TotalR3", STAMUNIT_TICKS_PER_CALL, "Profiling transmits in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitSendRZ, STAMTYPE_PROFILE, "Transmit/SendRZ", STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in RZ"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTransmitSendR3, STAMTYPE_PROFILE, "Transmit/SendR3", STAMUNIT_TICKS_PER_CALL, "Profiling send transmit in R3"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescCtxNormal, STAMTYPE_COUNTER, "TxDesc/ContexNormal", STAMUNIT_OCCURENCES, "Number of normal context descriptors"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescCtxTSE, STAMTYPE_COUNTER, "TxDesc/ContextTSE", STAMUNIT_OCCURENCES, "Number of TSE context descriptors"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescData, STAMTYPE_COUNTER, "TxDesc/Data", STAMUNIT_OCCURENCES, "Number of TX data descriptors"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescLegacy, STAMTYPE_COUNTER, "TxDesc/Legacy", STAMUNIT_OCCURENCES, "Number of TX legacy descriptors"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxDescTSEData, STAMTYPE_COUNTER, "TxDesc/TSEData", STAMUNIT_OCCURENCES, "Number of TX TSE data descriptors"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathFallback, STAMTYPE_COUNTER, "TxPath/Fallback", STAMUNIT_OCCURENCES, "Fallback TSE descriptor path"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathGSO, STAMTYPE_COUNTER, "TxPath/GSO", STAMUNIT_OCCURENCES, "GSO TSE descriptor path"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatTxPathRegular, STAMTYPE_COUNTER, "TxPath/Normal", STAMUNIT_OCCURENCES, "Regular descriptor path"); PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPHYAccesses, STAMTYPE_COUNTER, "PHYAccesses", STAMUNIT_OCCURENCES, "Number of PHY accesses"); for (unsigned iReg = 0; iReg < E1K_NUM_OF_REGS; iReg++) { PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegReads[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, g_aE1kRegMap[iReg].name, "Regs/%s-Reads", g_aE1kRegMap[iReg].abbrev); PDMDevHlpSTAMRegisterF(pDevIns, &pThis->aStatRegWrites[iReg], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, g_aE1kRegMap[iReg].name, "Regs/%s-Writes", g_aE1kRegMap[iReg].abbrev); } #endif /* VBOX_WITH_STATISTICS */ #ifdef E1K_INT_STATS PDMDevHlpSTAMRegister(pDevIns, &pThis->u64ArmedAt, STAMTYPE_U64, "u64ArmedAt", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatMaxTxDelay, STAMTYPE_U64, "uStatMaxTxDelay", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatInt, STAMTYPE_U32, "uStatInt", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTry, STAMTYPE_U32, "uStatIntTry", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntLower, STAMTYPE_U32, "uStatIntLower", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatNoIntICR, STAMTYPE_U32, "uStatNoIntICR", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->iStatIntLost, STAMTYPE_U32, "iStatIntLost", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->iStatIntLostOne, STAMTYPE_U32, "iStatIntLostOne", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntIMS, STAMTYPE_U32, "uStatIntIMS", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntSkip, STAMTYPE_U32, "uStatIntSkip", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntLate, STAMTYPE_U32, "uStatIntLate", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntMasked, STAMTYPE_U32, "uStatIntMasked", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntEarly, STAMTYPE_U32, "uStatIntEarly", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRx, STAMTYPE_U32, "uStatIntRx", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTx, STAMTYPE_U32, "uStatIntTx", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntICS, STAMTYPE_U32, "uStatIntICS", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRDTR, STAMTYPE_U32, "uStatIntRDTR", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntRXDMT0, STAMTYPE_U32, "uStatIntRXDMT0", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatIntTXQE, STAMTYPE_U32, "uStatIntTXQE", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxNoRS, STAMTYPE_U32, "uStatTxNoRS", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxIDE, STAMTYPE_U32, "uStatTxIDE", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxDelayed, STAMTYPE_U32, "uStatTxDelayed", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxDelayExp, STAMTYPE_U32, "uStatTxDelayExp", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTAD, STAMTYPE_U32, "uStatTAD", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTID, STAMTYPE_U32, "uStatTID", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRAD, STAMTYPE_U32, "uStatRAD", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRID, STAMTYPE_U32, "uStatRID", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatRxFrm, STAMTYPE_U32, "uStatRxFrm", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxFrm, STAMTYPE_U32, "uStatTxFrm", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescCtx, STAMTYPE_U32, "uStatDescCtx", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescDat, STAMTYPE_U32, "uStatDescDat", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatDescLeg, STAMTYPE_U32, "uStatDescLeg", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx1514, STAMTYPE_U32, "uStatTx1514", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx2962, STAMTYPE_U32, "uStatTx2962", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx4410, STAMTYPE_U32, "uStatTx4410", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx5858, STAMTYPE_U32, "uStatTx5858", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx7306, STAMTYPE_U32, "uStatTx7306", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx8754, STAMTYPE_U32, "uStatTx8754", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx16384, STAMTYPE_U32, "uStatTx16384", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTx32768, STAMTYPE_U32, "uStatTx32768", STAMUNIT_NS, NULL); PDMDevHlpSTAMRegister(pDevIns, &pThis->uStatTxLarge, STAMTYPE_U32, "uStatTxLarge", STAMUNIT_NS, NULL); #endif /* E1K_INT_STATS */ return VINF_SUCCESS; } #else /* !IN_RING3 */ /** * @callback_method_impl{PDMDEVREGR0,pfnConstruct} */ static DECLCALLBACK(int) e1kRZConstruct(PPDMDEVINS pDevIns) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); PE1KSTATE pThis = PDMDEVINS_2_DATA(pDevIns, PE1KSTATE); PE1KSTATECC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PE1KSTATECC); /* Initialize context specific state data: */ pThisCC->CTX_SUFF(pDevIns) = pDevIns; /** @todo @bugref{9218} ring-0 driver stuff */ pThisCC->CTX_SUFF(pDrv) = NULL; pThisCC->CTX_SUFF(pTxSg) = NULL; /* Configure critical sections the same way: */ int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns)); AssertRCReturn(rc, rc); /* Set up MMIO and I/O port callbacks for this context: */ rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmioRegion, e1kMMIOWrite, e1kMMIORead, NULL /*pvUser*/); AssertRCReturn(rc, rc); rc = PDMDevHlpIoPortSetUpContext(pDevIns, pThis->hIoPorts, e1kIOPortOut, e1kIOPortIn, NULL /*pvUser*/); AssertRCReturn(rc, rc); return VINF_SUCCESS; } #endif /* !IN_RING3 */ /** * The device registration structure. */ const PDMDEVREG g_DeviceE1000 = { /* .u32version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "e1000", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_NETWORK, /* .cMaxInstances = */ ~0U, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(E1KSTATE), /* .cbInstanceCC = */ sizeof(E1KSTATECC), /* .cbInstanceRC = */ sizeof(E1KSTATERC), /* .cMaxPciDevices = */ 1, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "Intel PRO/1000 MT Desktop Ethernet.", #if defined(IN_RING3) /* .pszRCMod = */ "VBoxDDRC.rc", /* .pszR0Mod = */ "VBoxDDR0.r0", /* .pfnConstruct = */ e1kR3Construct, /* .pfnDestruct = */ e1kR3Destruct, /* .pfnRelocate = */ e1kR3Relocate, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ e1kR3Reset, /* .pfnSuspend = */ e1kR3Suspend, /* .pfnResume = */ NULL, /* .pfnAttach = */ e1kR3Attach, /* .pfnDeatch = */ e1kR3Detach, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ e1kR3PowerOff, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ e1kRZConstruct, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ e1kRZConstruct, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; #endif /* !VBOX_DEVICE_STRUCT_TESTCASE */