#include "slirp.h" #ifdef RT_OS_OS2 # include #endif #include #include #include #ifndef RT_OS_WINDOWS # include # include #else # include # define _WINSOCK2API_ # include #endif #include #if !defined(RT_OS_WINDOWS) # define DO_ENGAGE_EVENT1(so, fdset, label) \ do { \ if( so->so_poll_index != -1 \ && so->s == polls[so->so_poll_index].fd) { \ polls[so->so_poll_index].events |= N_(fdset ## _poll); \ break; /* out of this loop */ \ } \ AssertRelease(poll_index < (nfds)); \ AssertRelease(poll_index >= 0 && poll_index < (nfds)); \ polls[poll_index].fd = (so)->s; \ (so)->so_poll_index = poll_index; \ polls[poll_index].events = N_(fdset ## _poll); \ polls[poll_index].revents = 0; \ poll_index++; \ } while(0) # define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \ do { \ if( so->so_poll_index != -1 \ && so->s == polls[so->so_poll_index].fd) { \ polls[so->so_poll_index].events |= \ N_(fdset1 ## _poll) | N_(fdset1 ## _poll); \ break; /* out of this loop */ \ } \ AssertRelease(poll_index < (nfds)); \ polls[poll_index].fd = (so)->s; \ (so)->so_poll_index = poll_index; \ polls[poll_index].events = \ N_(fdset1 ## _poll) | N_(fdset1 ## _poll); \ poll_index++; \ } while(0) # define DO_POLL_EVENTS(rc, error, so, events, label) do {} while (0) # define DO_CHECK_FD_SET(so, events, fdset) ( ((so)->so_poll_index != -1) \ && ((so)->so_poll_index <= ndfs) \ && ((so)->s == polls[so->so_poll_index].fd) \ && (polls[(so)->so_poll_index].revents & N_(fdset ## _poll))) # define DO_UNIX_CHECK_FD_SET(so, events, fdset ) DO_CHECK_FD_SET((so), (events), fdset) /*specific for Unix API */ # define DO_WIN_CHECK_FD_SET(so, events, fdset ) 0 /* specific for Windows Winsock API */ # ifndef RT_OS_WINDOWS # ifndef RT_OS_LINUX # define readfds_poll (POLLRDNORM) # define writefds_poll (POLLWRNORM) # define xfds_poll (POLLRDBAND|POLLWRBAND|POLLPRI) # else # define readfds_poll (POLLIN) # define writefds_poll (POLLOUT) # define xfds_poll (POLLPRI) # endif # define rderr_poll (POLLERR) # define rdhup_poll (POLLHUP) # define nval_poll (POLLNVAL) # define ICMP_ENGAGE_EVENT(so, fdset) \ do { \ if (pData->icmp_socket.s != -1) \ DO_ENGAGE_EVENT1((so), fdset, ICMP); \ } while (0) # else /* !RT_OS_WINDOWS */ # define DO_WIN_CHECK_FD_SET(so, events, fdset ) DO_CHECK_FD_SET((so), (events), fdset) # define ICMP_ENGAGE_EVENT(so, fdset) do {} while(0) #endif /* RT_OS_WINDOWS */ #else /* defined(RT_OS_WINDOWS) */ /* * On Windows, we will be notified by IcmpSendEcho2() when the response arrives. * So no call to WSAEventSelect necessary. */ # define ICMP_ENGAGE_EVENT(so, fdset) do {} while(0) # define DO_ENGAGE_EVENT1(so, fdset1, label) \ do { \ rc = WSAEventSelect((so)->s, VBOX_SOCKET_EVENT, FD_ALL_EVENTS); \ if (rc == SOCKET_ERROR) \ { \ /* This should not happen */ \ error = WSAGetLastError(); \ LogRel(("WSAEventSelect (" #label ") error %d (so=%x, socket=%s, event=%x)\n", \ error, (so), (so)->s, VBOX_SOCKET_EVENT)); \ } \ } while(0); \ CONTINUE(label) # define DO_ENGAGE_EVENT2(so, fdset1, fdset2, label) \ DO_ENGAGE_EVENT1((so), (fdset1), label) # define DO_POLL_EVENTS(rc, error, so, events, label) \ (rc) = WSAEnumNetworkEvents((so)->s, VBOX_SOCKET_EVENT, (events)); \ if ((rc) == SOCKET_ERROR) \ { \ (error) = WSAGetLastError(); \ LogRel(("WSAEnumNetworkEvents " #label " error %d\n", (error))); \ CONTINUE(label); \ } # define acceptds_win FD_ACCEPT # define acceptds_win_bit FD_ACCEPT_BIT # define readfds_win FD_READ # define readfds_win_bit FD_READ_BIT # define writefds_win FD_WRITE # define writefds_win_bit FD_WRITE_BIT # define xfds_win FD_OOB # define xfds_win_bit FD_OOB_BIT # define DO_CHECK_FD_SET(so, events, fdset) \ (((events).lNetworkEvents & fdset ## _win) && ((events).iErrorCode[fdset ## _win_bit] == 0)) # define DO_WIN_CHECK_FD_SET(so, events, fdset ) DO_CHECK_FD_SET((so), (events), fdset) # define DO_UNIX_CHECK_FD_SET(so, events, fdset ) 1 /*specific for Unix API */ #endif /* defined(RT_OS_WINDOWS) */ #define TCP_ENGAGE_EVENT1(so, fdset) \ DO_ENGAGE_EVENT1((so), fdset, tcp) #define TCP_ENGAGE_EVENT2(so, fdset1, fdset2) \ DO_ENGAGE_EVENT2((so), fdset1, fdset2, tcp) #define UDP_ENGAGE_EVENT(so, fdset) \ DO_ENGAGE_EVENT1((so), fdset, udp) #define POLL_TCP_EVENTS(rc, error, so, events) \ DO_POLL_EVENTS((rc), (error), (so), (events), tcp) #define POLL_UDP_EVENTS(rc, error, so, events) \ DO_POLL_EVENTS((rc), (error), (so), (events), udp) #define CHECK_FD_SET(so, events, set) \ (DO_CHECK_FD_SET((so), (events), set)) #define WIN_CHECK_FD_SET(so, events, set) \ (DO_WIN_CHECK_FD_SET((so), (events), set)) #define UNIX_CHECK_FD_SET(so, events, set) \ (DO_UNIX_CHECK_FD_SET(so, events, set)) /* * Loging macros */ #if VBOX_WITH_DEBUG_NAT_SOCKETS # if defined(RT_OS_WINDOWS) # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \ do { \ LogRel((" " #proto " %R[natsock] %R[natwinnetevents]\n", (so), (winevent))); \ } while (0) # else /* RT_OS_WINDOWS */ # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) \ do { \ LogRel((" " #proto " %R[natsock] %s %s %s er: %s, %s, %s\n", (so), \ CHECK_FD_SET(so, ign ,r_fdset) ? "READ":"", \ CHECK_FD_SET(so, ign, w_fdset) ? "WRITE":"", \ CHECK_FD_SET(so, ign, x_fdset) ? "OOB":"", \ CHECK_FD_SET(so, ign, rderr) ? "RDERR":"", \ CHECK_FD_SET(so, ign, rdhup) ? "RDHUP":"", \ CHECK_FD_SET(so, ign, nval) ? "RDNVAL":"")); \ } while (0) # endif /* !RT_OS_WINDOWS */ #else /* VBOX_WITH_DEBUG_NAT_SOCKETS */ # define DO_LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) do {} while (0) #endif /* !VBOX_WITH_DEBUG_NAT_SOCKETS */ #define LOG_NAT_SOCK(so, proto, winevent, r_fdset, w_fdset, x_fdset) DO_LOG_NAT_SOCK((so), proto, (winevent), r_fdset, w_fdset, x_fdset) static void acivate_port_forwarding(PNATState, struct ethhdr *); static uint32_t find_guest_ip(PNATState, uint8_t *); static const uint8_t special_ethaddr[6] = { 0x52, 0x54, 0x00, 0x12, 0x35, 0x00 }; static const uint8_t broadcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; const uint8_t zerro_ethaddr[6] = { 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; #ifdef RT_OS_WINDOWS static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { /* Get amount of memory required for operation */ ULONG flags = GAA_FLAG_INCLUDE_PREFIX; /*GAA_FLAG_INCLUDE_ALL_INTERFACES;*/ /* all interfaces registered in NDIS */ PIP_ADAPTER_ADDRESSES addresses = NULL; PIP_ADAPTER_ADDRESSES addr = NULL; PIP_ADAPTER_DNS_SERVER_ADDRESS dns = NULL; ULONG size = 0; int wlen = 0; char *suffix; struct dns_entry *da = NULL; struct dns_domain_entry *dd = NULL; ULONG ret = ERROR_SUCCESS; /* @todo add SKIPing flags to get only required information */ ret = pData->pfGetAdaptersAddresses(AF_INET, 0, NULL /* reserved */, addresses, &size); if (ret != ERROR_BUFFER_OVERFLOW) { LogRel(("NAT: error %lu occurred on capacity detection operation\n", ret)); return -1; } if (size == 0) { LogRel(("NAT: Win socket API returns non capacity\n")); return -1; } addresses = RTMemAllocZ(size); if (addresses == NULL) { LogRel(("NAT: No memory available \n")); return -1; } ret = pData->pfGetAdaptersAddresses(AF_INET, 0, NULL /* reserved */, addresses, &size); if (ret != ERROR_SUCCESS) { LogRel(("NAT: error %lu occurred on fetching adapters info\n", ret)); RTMemFree(addresses); return -1; } addr = addresses; while(addr != NULL) { int found; if (addr->OperStatus != IfOperStatusUp) goto next; dns = addr->FirstDnsServerAddress; while (dns != NULL) { struct sockaddr *saddr = dns->Address.lpSockaddr; if (saddr->sa_family != AF_INET) goto next_dns; /* add dns server to list */ da = RTMemAllocZ(sizeof(struct dns_entry)); if (da == NULL) { LogRel(("NAT: Can't allocate buffer for DNS entry\n")); RTMemFree(addresses); return VERR_NO_MEMORY; } LogRel(("NAT: adding %R[IP4] to DNS server list\n", &((struct sockaddr_in *)saddr)->sin_addr)); if ((((struct sockaddr_in *)saddr)->sin_addr.s_addr & htonl(IN_CLASSA_NET)) == ntohl(INADDR_LOOPBACK & IN_CLASSA_NET)) { da->de_addr.s_addr = htonl(ntohl(special_addr.s_addr) | CTL_ALIAS); } else { da->de_addr.s_addr = ((struct sockaddr_in *)saddr)->sin_addr.s_addr; } TAILQ_INSERT_HEAD(&pData->dns_list_head, da, de_list); if (addr->DnsSuffix == NULL) goto next_dns; /*uniq*/ RTUtf16ToUtf8(addr->DnsSuffix, &suffix); if (!suffix || strlen(suffix) == 0) { RTStrFree(suffix); goto next_dns; } found = 0; LIST_FOREACH(dd, &pData->dns_domain_list_head, dd_list) { if ( dd->dd_pszDomain != NULL && strcmp(dd->dd_pszDomain, suffix) == 0) { found = 1; RTStrFree(suffix); break; } } if (found == 0) { dd = RTMemAllocZ(sizeof(struct dns_domain_entry)); if (dd == NULL) { LogRel(("NAT: not enough memory\n")); RTStrFree(suffix); RTMemFree(addresses); return VERR_NO_MEMORY; } dd->dd_pszDomain = suffix; LogRel(("NAT: adding domain name %s to search list\n", dd->dd_pszDomain)); LIST_INSERT_HEAD(&pData->dns_domain_list_head, dd, dd_list); } next_dns: dns = dns->Next; } next: addr = addr->Next; } RTMemFree(addresses); return 0; } #else /* !RT_OS_WINDOWS */ static int get_dns_addr_domain(PNATState pData, bool fVerbose, struct in_addr *pdns_addr, const char **ppszDomain) { char buff[512]; char buff2[256]; FILE *f = NULL; int found = 0; struct in_addr tmp_addr; #ifdef RT_OS_OS2 /* Try various locations. */ char *etc = getenv("ETC"); if (etc) { snprintf(buff, sizeof(buff), "%s/RESOLV2", etc); f = fopen(buff, "rt"); } if (!f) { snprintf(buff, sizeof(buff), "%s/RESOLV2", _PATH_ETC); f = fopen(buff, "rt"); } if (!f) { snprintf(buff, sizeof(buff), "%s/resolv.conf", _PATH_ETC); f = fopen(buff, "rt"); } #else #ifndef DEBUG_vvl f = fopen("/etc/resolv.conf", "r"); #else char *home = getenv("HOME"); snprintf(buff, sizeof(buff), "%s/resolv.conf", home); f = fopen(buff, "r"); if (f != NULL) { Log(("NAT: DNS we're using %s\n", buff)); } else { f = fopen("/etc/resolv.conf", "r"); Log(("NAT: DNS we're using %s\n", buff)); } #endif #endif if (!f) return -1; if (ppszDomain) *ppszDomain = NULL; Log(("nat: DNS Servers:\n")); while (fgets(buff, 512, f) != NULL) { struct dns_entry *da = NULL; if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { if (!inet_aton(buff2, &tmp_addr)) continue; /*localhost mask */ da = RTMemAllocZ(sizeof (struct dns_entry)); if (da == NULL) { LogRel(("can't alloc memory for DNS entry\n")); return -1; } /*check */ da->de_addr.s_addr = tmp_addr.s_addr; if ((da->de_addr.s_addr & htonl(IN_CLASSA_NET)) == ntohl(INADDR_LOOPBACK & IN_CLASSA_NET)) { da->de_addr.s_addr = htonl(ntohl(special_addr.s_addr) | CTL_ALIAS); } TAILQ_INSERT_HEAD(&pData->dns_list_head, da, de_list); found++; } if ((!strncmp(buff, "domain", 6) || !strncmp(buff, "search", 6))) { char *tok; char *saveptr; struct dns_domain_entry *dd = NULL; int found = 0; tok = strtok_r(&buff[6], " \t\n", &saveptr); LIST_FOREACH(dd, &pData->dns_domain_list_head, dd_list) { if( tok != NULL && strcmp(tok, dd->dd_pszDomain) == 0) { found = 1; break; } } if (tok != NULL && found == 0) { dd = RTMemAllocZ(sizeof(struct dns_domain_entry)); if (dd == NULL) { LogRel(("NAT: not enought memory to add domain list\n")); return VERR_NO_MEMORY; } dd->dd_pszDomain = RTStrDup(tok); LogRel(("NAT: adding domain name %s to search list\n", dd->dd_pszDomain)); LIST_INSERT_HEAD(&pData->dns_domain_list_head, dd, dd_list); } } } fclose(f); if (!found) return -1; return 0; } #endif static int slirp_init_dns_list(PNATState pData) { TAILQ_INIT(&pData->dns_list_head); LIST_INIT(&pData->dns_domain_list_head); return get_dns_addr_domain(pData, true, NULL, NULL); } static void slirp_release_dns_list(PNATState pData) { struct dns_entry *de = NULL; struct dns_domain_entry *dd = NULL; while(!TAILQ_EMPTY(&pData->dns_list_head)) { de = TAILQ_FIRST(&pData->dns_list_head); TAILQ_REMOVE(&pData->dns_list_head, de, de_list); RTMemFree(de); } while(!LIST_EMPTY(&pData->dns_domain_list_head)) { dd = LIST_FIRST(&pData->dns_domain_list_head); LIST_REMOVE(dd, dd_list); if (dd->dd_pszDomain != NULL) RTStrFree(dd->dd_pszDomain); RTMemFree(dd); } } int get_dns_addr(PNATState pData, struct in_addr *pdns_addr) { return get_dns_addr_domain(pData, false, pdns_addr, NULL); } #ifndef VBOX_WITH_NAT_SERVICE int slirp_init(PNATState *ppData, const char *pszNetAddr, uint32_t u32Netmask, bool fPassDomain, void *pvUser) #else int slirp_init(PNATState *ppData, uint32_t u32NetAddr, uint32_t u32Netmask, bool fPassDomain, void *pvUser) #endif { int fNATfailed = 0; int rc; PNATState pData = RTMemAllocZ(sizeof(NATState)); *ppData = pData; if (!pData) return VERR_NO_MEMORY; if (u32Netmask & 0x1f) /* CTL is x.x.x.15, bootp passes up to 16 IPs (15..31) */ return VERR_INVALID_PARAMETER; pData->fPassDomain = fPassDomain; pData->pvUser = pvUser; pData->netmask = u32Netmask; /* sockets & TCP defaults */ pData->socket_rcv = 64 * _1K; pData->socket_snd = 64 * _1K; tcp_sndspace = 64 * _1K; tcp_rcvspace = 64 * _1K; #ifdef RT_OS_WINDOWS { WSADATA Data; WSAStartup(MAKEWORD(2, 0), &Data); } pData->phEvents[VBOX_SOCKET_EVENT_INDEX] = CreateEvent(NULL, FALSE, FALSE, NULL); #endif #ifdef VBOX_WITH_SLIRP_MT QSOCKET_LOCK_CREATE(tcb); QSOCKET_LOCK_CREATE(udb); rc = RTReqCreateQueue(&pData->pReqQueue); AssertReleaseRC(rc); #endif link_up = 1; debug_init(); if_init(pData); ip_init(pData); icmp_init(pData); /* Initialise mbufs *after* setting the MTU */ m_init(pData); #ifndef VBOX_WITH_NAT_SERVICE inet_aton(pszNetAddr, &special_addr); #else special_addr.s_addr = u32NetAddr; #endif pData->slirp_ethaddr = &special_ethaddr[0]; alias_addr.s_addr = special_addr.s_addr | htonl(CTL_ALIAS); /* @todo: add ability to configure this staff */ /* set default addresses */ inet_aton("127.0.0.1", &loopback_addr); if (slirp_init_dns_list(pData) < 0) fNATfailed = 1; dnsproxy_init(pData); getouraddr(pData); { int flags = 0; struct in_addr proxy_addr; pData->proxy_alias = LibAliasInit(pData, NULL); if (pData->proxy_alias == NULL) { LogRel(("NAT: LibAlias default rule wasn't initialized\n")); AssertMsgFailed(("NAT: LibAlias default rule wasn't initialized\n")); } flags = LibAliasSetMode(pData->proxy_alias, 0, 0); flags |= PKT_ALIAS_LOG; /* set logging */ flags = LibAliasSetMode(pData->proxy_alias, flags, ~0); proxy_addr.s_addr = htonl(ntohl(special_addr.s_addr) | CTL_ALIAS); LibAliasSetAddress(pData->proxy_alias, proxy_addr); ftp_alias_load(pData); nbt_alias_load(pData); } return fNATfailed ? VINF_NAT_DNS : VINF_SUCCESS; } /** * Register statistics. */ void slirp_register_statistics(PNATState pData, PPDMDRVINS pDrvIns) { #ifdef VBOX_WITH_STATISTICS # define COUNTER(name, type, units, dsc) \ do { \ PDMDrvHlpSTAMRegisterF(pDrvIns, \ &pData->Stat ## name, \ type, \ STAMVISIBILITY_ALWAYS, \ units, \ dsc, \ "/Drivers/NAT%u/" #name, \ pDrvIns->iInstance); \ } while (0) # define PROFILE_COUNTER(name, dsc) COUNTER(name, STAMTYPE_PROFILE, STAMUNIT_TICKS_PER_CALL, dsc) # define COUNTING_COUNTER(name, dsc) COUNTER(name, STAMTYPE_COUNTER, STAMUNIT_COUNT, dsc) # include "counters.h" # undef COUNTER # undef PROFILE_COUNTER # undef COUNTING_COUNTER /** @todo register statistics for the variables dumped by: * ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData); * mbufstats(pData); sockstats(pData); */ #endif /* VBOX_WITH_STATISTICS */ } /** * Deregister statistics. */ void slirp_deregister_statistics(PNATState pData, PPDMDRVINS pDrvIns) { #ifdef VBOX_WITH_STATISTICS # define PROFILE_COUNTER(name, dsc) PDMDrvHlpSTAMDeregister(pDrvIns, &pData->Stat ## name) # define COUNTING_COUNTER(name, dsc) PDMDrvHlpSTAMDeregister(pDrvIns, &pData->Stat ## name) # include "counters.h" # undef COUNTING_COUNTER # undef PROFILE_COUNTER #endif /* VBOX_WITH_STATISTICS */ } /** * Marks the link as up, making it possible to establish new connections. */ void slirp_link_up(PNATState pData) { link_up = 1; } /** * Marks the link as down and cleans up the current connections. */ void slirp_link_down(PNATState pData) { struct socket *so; while ((so = tcb.so_next) != &tcb) { if (so->so_state & SS_NOFDREF || so->s == -1) sofree(pData, so); else tcp_drop(pData, sototcpcb(so), 0); } while ((so = udb.so_next) != &udb) udp_detach(pData, so); link_up = 0; } /** * Terminates the slirp component. */ void slirp_term(PNATState pData) { #ifdef RT_OS_WINDOWS pData->pfIcmpCloseHandle(pData->icmp_socket.sh); FreeLibrary(pData->hmIcmpLibrary); RTMemFree(pData->pvIcmpBuffer); #else closesocket(pData->icmp_socket.s); #endif slirp_link_down(pData); slirp_release_dns_list(pData); ftp_alias_unload(pData); nbt_alias_unload(pData); while(!LIST_EMPTY(&instancehead)) { struct libalias *la = LIST_FIRST(&instancehead); /* libalias do all clean up */ LibAliasUninit(la); } #ifdef RT_OS_WINDOWS WSACleanup(); #endif #ifdef LOG_ENABLED Log(("\n" "NAT statistics\n" "--------------\n" "\n")); ipstats(pData); tcpstats(pData); udpstats(pData); icmpstats(pData); mbufstats(pData); sockstats(pData); Log(("\n" "\n" "\n")); #endif RTMemFree(pData); } #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) /* * curtime kept to an accuracy of 1ms */ static void updtime(PNATState pData) { #ifdef RT_OS_WINDOWS struct _timeb tb; _ftime(&tb); curtime = (u_int)tb.time * (u_int)1000; curtime += (u_int)tb.millitm; #else gettimeofday(&tt, 0); curtime = (u_int)tt.tv_sec * (u_int)1000; curtime += (u_int)tt.tv_usec / (u_int)1000; if ((tt.tv_usec % 1000) >= 500) curtime++; #endif } #ifdef RT_OS_WINDOWS void slirp_select_fill(PNATState pData, int *pnfds) #else /* RT_OS_WINDOWS */ void slirp_select_fill(PNATState pData, int *pnfds, struct pollfd *polls) #endif /* !RT_OS_WINDOWS */ { struct socket *so, *so_next; int nfds; #if defined(RT_OS_WINDOWS) int rc; int error; #else int poll_index = 0; #endif int i; STAM_PROFILE_START(&pData->StatFill, a); nfds = *pnfds; /* * First, TCP sockets */ do_slowtimo = 0; if (!link_up) goto done; /* * *_slowtimo needs calling if there are IP fragments * in the fragment queue, or there are TCP connections active */ /* XXX: * triggering of fragment expiration should be the same but use new macroses */ do_slowtimo = (tcb.so_next != &tcb); if (!do_slowtimo) { for (i = 0; i < IPREASS_NHASH; i++) { if (!TAILQ_EMPTY(&ipq[i])) { do_slowtimo = 1; break; } } } ICMP_ENGAGE_EVENT(&pData->icmp_socket, readfds); STAM_COUNTER_RESET(&pData->StatTCP); STAM_COUNTER_RESET(&pData->StatTCPHot); QSOCKET_FOREACH(so, so_next, tcp) /* { */ #if !defined(RT_OS_WINDOWS) so->so_poll_index = -1; #endif STAM_COUNTER_INC(&pData->StatTCP); /* * See if we need a tcp_fasttimo */ if ( time_fasttimo == 0 && so->so_tcpcb != NULL && so->so_tcpcb->t_flags & TF_DELACK) time_fasttimo = curtime; /* Flag when we want a fasttimo */ /* * NOFDREF can include still connecting to local-host, * newly socreated() sockets etc. Don't want to select these. */ if (so->so_state & SS_NOFDREF || so->s == -1) CONTINUE(tcp); /* * Set for reading sockets which are accepting */ if (so->so_state & SS_FACCEPTCONN) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, readfds); CONTINUE(tcp); } /* * Set for writing sockets which are connecting */ if (so->so_state & SS_ISFCONNECTING) { Log2(("connecting %R[natsock] engaged\n",so)); STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, writefds); } /* * Set for writing if we are connected, can send more, and * we have something to send */ if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT1(so, writefds); } /* * Set for reading (and urgent data) if we are connected, can * receive more, and we have room for it XXX /2 ? */ if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { STAM_COUNTER_INC(&pData->StatTCPHot); TCP_ENGAGE_EVENT2(so, readfds, xfds); } LOOP_LABEL(tcp, so, so_next); } /* * UDP sockets */ STAM_COUNTER_RESET(&pData->StatUDP); STAM_COUNTER_RESET(&pData->StatUDPHot); QSOCKET_FOREACH(so, so_next, udp) /* { */ STAM_COUNTER_INC(&pData->StatUDP); #if !defined(RT_OS_WINDOWS) so->so_poll_index = -1; #endif /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { Log2(("NAT: %R[natsock] expired\n", so)); if (so->so_timeout != NULL) { so->so_timeout(pData, so, so->so_timeout_arg); } #ifdef VBOX_WITH_SLIRP_MT /* we need so_next for continue our cycle*/ so_next = so->so_next; #endif UDP_DETACH(pData, so, so_next); CONTINUE_NO_UNLOCK(udp); } else do_slowtimo = 1; /* Let socket expire */ } /* * When UDP packets are received from over the link, they're * sendto()'d straight away, so no need for setting for writing * Limit the number of packets queued by this session to 4. * Note that even though we try and limit this to 4 packets, * the session could have more queued if the packets needed * to be fragmented. * * (XXX <= 4 ?) */ if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { STAM_COUNTER_INC(&pData->StatUDPHot); UDP_ENGAGE_EVENT(so, readfds); } LOOP_LABEL(udp, so, so_next); } done: #if defined(RT_OS_WINDOWS) *pnfds = VBOX_EVENT_COUNT; #else /* RT_OS_WINDOWS */ AssertRelease(poll_index <= *pnfds); *pnfds = poll_index; #endif /* !RT_OS_WINDOWS */ STAM_PROFILE_STOP(&pData->StatFill, a); } #if defined(RT_OS_WINDOWS) void slirp_select_poll(PNATState pData, int fTimeout, int fIcmp) #else /* RT_OS_WINDOWS */ void slirp_select_poll(PNATState pData, struct pollfd *polls, int ndfs) #endif /* !RT_OS_WINDOWS */ { struct socket *so, *so_next; int ret; #if defined(RT_OS_WINDOWS) WSANETWORKEVENTS NetworkEvents; int rc; int error; #else int poll_index = 0; #endif STAM_PROFILE_START(&pData->StatPoll, a); /* Update time */ updtime(pData); /* * See if anything has timed out */ if (link_up) { if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) { STAM_PROFILE_START(&pData->StatFastTimer, a); tcp_fasttimo(pData); time_fasttimo = 0; STAM_PROFILE_STOP(&pData->StatFastTimer, a); } if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) { STAM_PROFILE_START(&pData->StatSlowTimer, a); ip_slowtimo(pData); tcp_slowtimo(pData); last_slowtimo = curtime; STAM_PROFILE_STOP(&pData->StatSlowTimer, a); } } #if defined(RT_OS_WINDOWS) if (fTimeout) return; /* only timer update */ #endif /* * Check sockets */ if (!link_up) goto done; #if defined(RT_OS_WINDOWS) /*XXX: before renaming please make see define * fIcmp in slirp_state.h */ if (fIcmp) sorecvfrom(pData, &pData->icmp_socket); #else if ( (pData->icmp_socket.s != -1) && CHECK_FD_SET(&pData->icmp_socket, ignored, readfds)) sorecvfrom(pData, &pData->icmp_socket); #endif /* * Check TCP sockets */ QSOCKET_FOREACH(so, so_next, tcp) /* { */ #ifdef VBOX_WITH_SLIRP_MT if ( so->so_state & SS_NOFDREF && so->so_deleted == 1) { struct socket *son, *sop = NULL; QSOCKET_LOCK(tcb); if (so->so_next != NULL) { if (so->so_next != &tcb) SOCKET_LOCK(so->so_next); son = so->so_next; } if ( so->so_prev != &tcb && so->so_prev != NULL) { SOCKET_LOCK(so->so_prev); sop = so->so_prev; } QSOCKET_UNLOCK(tcb); remque(pData, so); NSOCK_DEC(); SOCKET_UNLOCK(so); SOCKET_LOCK_DESTROY(so); RTMemFree(so); so_next = son; if (sop != NULL) SOCKET_UNLOCK(sop); CONTINUE_NO_UNLOCK(tcp); } #endif /* * FD_ISSET is meaningless on these sockets * (and they can crash the program) */ if (so->so_state & SS_NOFDREF || so->s == -1) CONTINUE(tcp); POLL_TCP_EVENTS(rc, error, so, &NetworkEvents); LOG_NAT_SOCK(so, TCP, &NetworkEvents, readfds, writefds, xfds); /* * Check for URG data * This will soread as well, so no need to * test for readfds below if this succeeds */ /* out-of-band data */ if (CHECK_FD_SET(so, NetworkEvents, xfds)) { sorecvoob(pData, so); } /* * Check sockets for reading */ else if ( CHECK_FD_SET(so, NetworkEvents, readfds) || WIN_CHECK_FD_SET(so, NetworkEvents, acceptds)) { /* * Check for incoming connections */ if (so->so_state & SS_FACCEPTCONN) { TCP_CONNECT(pData, so); #if defined(RT_OS_WINDOWS) if (!(NetworkEvents.lNetworkEvents & FD_CLOSE)) #endif CONTINUE(tcp); } ret = soread(pData, so); /* Output it if we read something */ if (RT_LIKELY(ret > 0)) TCP_OUTPUT(pData, sototcpcb(so)); } #if defined(RT_OS_WINDOWS) /* * Check for FD_CLOSE events. * in some cases once FD_CLOSE engaged on socket it could be flashed latter (for some reasons) */ if ( (NetworkEvents.lNetworkEvents & FD_CLOSE) || (so->so_close == 1)) { so->so_close = 1; /* mark it */ /* * drain the socket */ for (;;) { ret = soread(pData, so); if (ret > 0) TCP_OUTPUT(pData, sototcpcb(so)); else break; } CONTINUE(tcp); } #endif /* * Check sockets for writing */ if (CHECK_FD_SET(so, NetworkEvents, writefds)) { /* * Check for non-blocking, still-connecting sockets */ if (so->so_state & SS_ISFCONNECTING) { Log2(("connecting %R[natsock] catched\n", so)); /* Connected */ so->so_state &= ~SS_ISFCONNECTING; /* * This should be probably guarded by PROBE_CONN too. Anyway, * we disable it on OS/2 because the below send call returns * EFAULT which causes the opened TCP socket to close right * after it has been opened and connected. */ #ifndef RT_OS_OS2 ret = send(so->s, (const char *)&ret, 0, 0); if (ret < 0) { /* XXXXX Must fix, zero bytes is a NOP */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) CONTINUE(tcp); /* else failed */ so->so_state = SS_NOFDREF; } /* else so->so_state &= ~SS_ISFCONNECTING; */ #endif /* * Continue tcp_input */ TCP_INPUT(pData, (struct mbuf *)NULL, sizeof(struct ip), so); /* continue; */ } else SOWRITE(ret, pData, so); /* * XXX If we wrote something (a lot), there could be the need * for a window update. In the worst case, the remote will send * a window probe to get things going again. */ } /* * Probe a still-connecting, non-blocking socket * to check if it's still alive */ #ifdef PROBE_CONN if (so->so_state & SS_ISFCONNECTING) { ret = recv(so->s, (char *)&ret, 0, 0); if (ret < 0) { /* XXX */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { CONTINUE(tcp); /* Still connecting, continue */ } /* else failed */ so->so_state = SS_NOFDREF; /* tcp_input will take care of it */ } else { ret = send(so->s, &ret, 0, 0); if (ret < 0) { /* XXX */ if ( errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { CONTINUE(tcp); } /* else failed */ so->so_state = SS_NOFDREF; } else so->so_state &= ~SS_ISFCONNECTING; } TCP_INPUT((struct mbuf *)NULL, sizeof(struct ip),so); } /* SS_ISFCONNECTING */ #endif #ifndef RT_OS_WINDOWS if ( UNIX_CHECK_FD_SET(so, NetworkEvents, rdhup) || UNIX_CHECK_FD_SET(so, NetworkEvents, rderr)) { int err; int inq, outq; int status; socklen_t optlen = sizeof(int); inq = outq = 0; status = getsockopt(so->s, SOL_SOCKET, SO_ERROR, &err, &optlen); if (status != 0) Log(("NAT: can't get error status from %R[natsock]\n", so)); #ifndef RT_OS_SOLARIS status = ioctl(so->s, FIONREAD, &inq); /* tcp(7) recommends SIOCINQ which is Linux specific */ if (status != 0 || status != EINVAL) { /* EINVAL returned if socket in listen state tcp(7)*/ Log(("NAT: can't get depth of IN queue status from %R[natsock]\n", so)); } status = ioctl(so->s, TIOCOUTQ, &outq); /* SIOCOUTQ see previous comment */ if (status != 0) Log(("NAT: can't get depth of OUT queue from %R[natsock]\n", so)); #else /* * Solaris has bit different ioctl commands and its handlings * hint: streamio(7) I_NREAD */ #endif if ( so->so_state & SS_ISFCONNECTING || UNIX_CHECK_FD_SET(so, NetworkEvents, readfds)) { /** * Check if we need here take care about gracefull connection * @todo try with proxy server */ if (UNIX_CHECK_FD_SET(so, NetworkEvents, readfds)) { /* * Never meet inq != 0 or outq != 0, anyway let it stay for a while * in case it happens we'll able to detect it. * Give TCP/IP stack wait or expire the socket. */ Log(("NAT: %R[natsock] err(%d:%s) s(in:%d,out:%d)happens on read I/O, " "other side close connection \n", so, err, strerror(err), inq, outq)); CONTINUE(tcp); } goto tcp_input_close; } if ( !UNIX_CHECK_FD_SET(so, NetworkEvents, readfds) && !UNIX_CHECK_FD_SET(so, NetworkEvents, writefds) && !UNIX_CHECK_FD_SET(so, NetworkEvents, xfds)) { Log(("NAT: system expires the socket %R[natsock] err(%d:%s) s(in:%d,out:%d) happens on non-I/O. ", so, err, strerror(err), inq, outq)); goto tcp_input_close; } Log(("NAT: %R[natsock] we've met(%d:%s) s(in:%d, out:%d) unhandled combination hup (%d) " "rederr(%d) on (r:%d, w:%d, x:%d)\n", so, err, strerror(err), inq, outq, UNIX_CHECK_FD_SET(so, ign, rdhup), UNIX_CHECK_FD_SET(so, ign, rderr), UNIX_CHECK_FD_SET(so, ign, readfds), UNIX_CHECK_FD_SET(so, ign, writefds), UNIX_CHECK_FD_SET(so, ign, xfds))); /* * Give OS's TCP/IP stack a chance to resolve an issue or expire the socket. */ CONTINUE(tcp); tcp_input_close: so->so_state = SS_NOFDREF; /*cause connection valid tcp connection termination and socket closing */ TCP_INPUT(pData, (struct mbuf *)NULL, sizeof(struct ip), so); CONTINUE(tcp); } #endif LOOP_LABEL(tcp, so, so_next); } /* * Now UDP sockets. * Incoming packets are sent straight away, they're not buffered. * Incoming UDP data isn't buffered either. */ QSOCKET_FOREACH(so, so_next, udp) /* { */ #ifdef VBOX_WITH_SLIRP_MT if ( so->so_state & SS_NOFDREF && so->so_deleted == 1) { struct socket *son, *sop = NULL; QSOCKET_LOCK(udb); if (so->so_next != NULL) { if (so->so_next != &udb) SOCKET_LOCK(so->so_next); son = so->so_next; } if ( so->so_prev != &udb && so->so_prev != NULL) { SOCKET_LOCK(so->so_prev); sop = so->so_prev; } QSOCKET_UNLOCK(udb); remque(pData, so); NSOCK_DEC(); SOCKET_UNLOCK(so); SOCKET_LOCK_DESTROY(so); RTMemFree(so); so_next = son; if (sop != NULL) SOCKET_UNLOCK(sop); CONTINUE_NO_UNLOCK(udp); } #endif POLL_UDP_EVENTS(rc, error, so, &NetworkEvents); LOG_NAT_SOCK(so, UDP, &NetworkEvents, readfds, writefds, xfds); if (so->s != -1 && CHECK_FD_SET(so, NetworkEvents, readfds)) { SORECVFROM(pData, so); } LOOP_LABEL(udp, so, so_next); } done: #ifndef VBOX_WITH_SLIRP_MT /* * See if we can start outputting */ if (if_queued && link_up) if_start(pData); #endif STAM_PROFILE_STOP(&pData->StatPoll, a); } struct arphdr { unsigned short ar_hrd; /* format of hardware address */ unsigned short ar_pro; /* format of protocol address */ unsigned char ar_hln; /* length of hardware address */ unsigned char ar_pln; /* length of protocol address */ unsigned short ar_op; /* ARP opcode (command) */ /* * Ethernet looks like this : This bit is variable sized however... */ unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ unsigned char ar_sip[4]; /* sender IP address */ unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ unsigned char ar_tip[4]; /* target IP address */ }; AssertCompileSize(struct arphdr, 28); static void arp_input(PNATState pData, struct mbuf *m) { struct ethhdr *eh; struct ethhdr *reh; struct arphdr *ah; struct arphdr *rah; int ar_op; struct ex_list *ex_ptr; uint32_t htip; uint32_t tip; struct mbuf *mr; eh = mtod(m, struct ethhdr *); ah = (struct arphdr *)&eh[1]; htip = ntohl(*(uint32_t*)ah->ar_tip); tip = *(uint32_t*)ah->ar_tip; mr = m_get(pData); reh = mtod(mr, struct ethhdr *); memcpy(reh->h_source, eh->h_source, ETH_ALEN); /* XXX: if_encap will swap src and dst*/ Log4(("NAT: arp:%R[ether]->%R[ether]\n", reh->h_source, reh->h_dest)); Log4(("NAT: arp: %R[IP4]\n", &tip)); mr->m_data += if_maxlinkhdr; mr->m_len = sizeof(struct arphdr); rah = mtod(mr, struct arphdr *); ar_op = ntohs(ah->ar_op); switch(ar_op) { case ARPOP_REQUEST: #ifdef VBOX_WITH_NAT_SERVICE if (tip == special_addr.s_addr) goto arp_ok; #endif if ((htip & pData->netmask) == ntohl(special_addr.s_addr)) { if ( CTL_CHECK(htip, CTL_DNS) || CTL_CHECK(htip, CTL_ALIAS) || CTL_CHECK(htip, CTL_TFTP)) goto arp_ok; for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if ((htip & ~pData->netmask) == ex_ptr->ex_addr) { goto arp_ok; } } return; arp_ok: rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REPLY); memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN); switch (htip & ~pData->netmask) { case CTL_DNS: case CTL_ALIAS: rah->ar_sha[5] = (uint8_t)(htip & ~pData->netmask); break; default:; } memcpy(rah->ar_sip, ah->ar_tip, 4); memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); memcpy(rah->ar_tip, ah->ar_sip, 4); if_encap(pData, ETH_P_ARP, mr); m_free(pData, m); } break; default: break; } } void slirp_input(PNATState pData, const uint8_t *pkt, int pkt_len) { struct mbuf *m; int proto; static bool fWarnedIpv6; struct ethhdr *eh = (struct ethhdr*)pkt; Log2(("NAT: slirp_input %d\n", pkt_len)); if (pkt_len < ETH_HLEN) { LogRel(("NAT: packet having size %d has been ingnored\n", pkt_len)); return; } Log4(("NAT: in:%R[ether]->%R[ether]\n", &eh->h_source, &eh->h_dest)); if (memcmp(eh->h_source, special_ethaddr, ETH_ALEN) == 0) { /* @todo vasily: add ether logging routine in debug.c */ Log(("NAT: packet was addressed to other MAC\n")); RTMemFree((void *)pkt); return; } m = m_get(pData); if (!m) { LogRel(("NAT: can't allocate new mbuf\n")); return; } /* Note: we add to align the IP header */ if (M_FREEROOM(m) < pkt_len) m_inc(m, pkt_len); m->m_len = pkt_len ; memcpy(m->m_data, pkt, pkt_len); if (pData->port_forwarding_activated == 0) acivate_port_forwarding(pData, mtod(m, struct ethhdr *)); proto = ntohs(*(uint16_t *)(pkt + 12)); switch(proto) { case ETH_P_ARP: arp_input(pData, m); break; case ETH_P_IP: /* Update time. Important if the network is very quiet, as otherwise * the first outgoing connection gets an incorrect timestamp. */ updtime(pData); m_adj(m, ETH_HLEN); ip_input(pData, m); break; case ETH_P_IPV6: m_free(pData, m); if (!fWarnedIpv6) { LogRel(("NAT: IPv6 not supported\n")); fWarnedIpv6 = true; } break; default: Log(("NAT: Unsupported protocol %x\n", proto)); m_free(pData, m); break; } RTMemFree((void *)pkt); } /* output the IP packet to the ethernet device */ void if_encap(PNATState pData, uint16_t eth_proto, struct mbuf *m) { struct ethhdr *eh; uint8_t *buf = RTMemAlloc(1600); STAM_PROFILE_START(&pData->StatIF_encap, a); m->m_data -= if_maxlinkhdr; m->m_len += ETH_HLEN; eh = mtod(m, struct ethhdr *); if(MBUF_HEAD(m) != m->m_data) { LogRel(("NAT: ethernet detects corruption of the packet")); AssertMsgFailed(("!!Ethernet frame corrupted!!")); } if (memcmp(eh->h_source, special_ethaddr, ETH_ALEN) != 0) { memcpy(eh->h_dest, eh->h_source, ETH_ALEN); memcpy(eh->h_source, special_ethaddr, ETH_ALEN); Assert(memcmp(eh->h_dest, special_ethaddr, ETH_ALEN) != 0); if (memcmp(eh->h_dest, zerro_ethaddr, ETH_ALEN) == 0) { /* don't do anything */ goto done; } } eh->h_proto = htons(eth_proto); memcpy(buf, mtod(m, uint8_t *), m->m_len); slirp_output(pData->pvUser, NULL, buf, m->m_len); done: STAM_PROFILE_STOP(&pData->StatIF_encap, a); m_free(pData, m); } /** * Still we're using dhcp server leasing to map ether to IP * @todo see rt_lookup_in_cache */ static uint32_t find_guest_ip(PNATState pData, uint8_t *eth_addr) { int i; if (memcmp(eth_addr, zerro_ethaddr, ETH_ALEN) == 0 || memcmp(eth_addr, broadcast_ethaddr, ETH_ALEN) == 0) goto done; for (i = 0; i < NB_ADDR; i++) { if ( bootp_clients[i].allocated && memcmp(bootp_clients[i].macaddr, eth_addr, ETH_ALEN) == 0) return bootp_clients[i].addr.s_addr; } done: return INADDR_ANY; } /** * We need check if we've activated port forwarding * for specific machine ... that of course relates to * service mode * @todo finish this for service case */ static void acivate_port_forwarding(PNATState pData, struct ethhdr *ethdr) { struct port_forward_rule *rule = NULL; pData->port_forwarding_activated = 1; /* check mac here */ LIST_FOREACH(rule, &pData->port_forward_rule_head, list) { struct socket *so; struct alias_link *link; struct libalias *lib; int flags; struct sockaddr sa; struct sockaddr_in *psin; socklen_t socketlen; struct in_addr alias; int rc; uint32_t guest_addr; /* need to understand if we already give address to guest */ if (rule->activated) continue; /*already activated */ #ifdef VBOX_WITH_NAT_SERVICE if (memcmp(rule->mac_address, ethdr->h_source, ETH_ALEN) != 0) continue; /*not right mac, @todo: it'd be better do the list port forwarding per mac */ guest_addr = find_guest_ip(pData, ethdr->h_source); #else if (memcmp(client_ethaddr, ethdr->h_source, ETH_ALEN) != 0) continue; guest_addr = find_guest_ip(pData, ethdr->h_source); #endif if (guest_addr == INADDR_ANY) { /* the address wasn't granted */ pData->port_forwarding_activated = 0; return; } #if defined(DEBUG_vvl) && !defined(VBOX_WITH_NAT_SERVICE) Assert(rule->guest_addr.s_addr == guest_addr); #endif LogRel(("NAT: set redirect %s hp:%d gp:%d\n", (rule->proto == IPPROTO_UDP?"UDP":"TCP"), rule->host_port, rule->guest_port)); if (rule->proto == IPPROTO_UDP) { so = udp_listen(pData, rule->bind_ip.s_addr, htons(rule->host_port), guest_addr, htons(rule->guest_port), 0); } else { so = solisten(pData, rule->bind_ip.s_addr, htons(rule->host_port), guest_addr, htons(rule->guest_port), 0); } if (so == NULL) { LogRel(("NAT: failed redirect %s hp:%d gp:%d\n", (rule->proto == IPPROTO_UDP?"UDP":"TCP"), rule->host_port, rule->guest_port)); goto remove_port_forwarding; } psin = (struct sockaddr_in *)&sa; psin->sin_family = AF_INET; psin->sin_port = 0; psin->sin_addr.s_addr = INADDR_ANY; socketlen = sizeof(struct sockaddr); rc = getsockname(so->s, &sa, &socketlen); if (rc < 0 || sa.sa_family != AF_INET) { LogRel(("NAT: failed redirect %s hp:%d gp:%d\n", (rule->proto == IPPROTO_UDP?"UDP":"TCP"), rule->host_port, rule->guest_port)); goto remove_port_forwarding; } psin = (struct sockaddr_in *)&sa; lib = LibAliasInit(pData, NULL); flags = LibAliasSetMode(lib, 0, 0); flags |= PKT_ALIAS_LOG; /* set logging */ flags |= PKT_ALIAS_REVERSE; /* set logging */ flags = LibAliasSetMode(lib, flags, ~0); alias.s_addr = htonl(ntohl(guest_addr) | CTL_ALIAS); link = LibAliasRedirectPort(lib, psin->sin_addr, htons(rule->host_port), alias, htons(rule->guest_port), special_addr, -1, /* not very clear for now*/ rule->proto); if (link == NULL) { LogRel(("NAT: failed redirect %s hp:%d gp:%d\n", (rule->proto == IPPROTO_UDP?"UDP":"TCP"), rule->host_port, rule->guest_port)); goto remove_port_forwarding; } so->so_la = lib; rule->activated = 1; continue; remove_port_forwarding: LIST_REMOVE(rule, list); RTMemFree(rule); } } /** * Changes in 3.1 instead of opening new socket do the following: * gain more information: * 1. bind IP * 2. host port * 3. guest port * 4. proto * 5. guest MAC address * the guest's MAC address is rather important for service, but we easily * could get it from VM configuration in DrvNAT or Service, the idea is activating * corresponding port-forwarding */ int slirp_redir(PNATState pData, int is_udp, struct in_addr host_addr, int host_port, struct in_addr guest_addr, int guest_port, const uint8_t *ethaddr) { struct port_forward_rule *rule = NULL; Assert(memcmp(ethaddr, zerro_ethaddr, ETH_ALEN) == 0); rule = RTMemAllocZ(sizeof(struct port_forward_rule)); if (rule == NULL) return 1; rule->proto = (is_udp ? IPPROTO_UDP : IPPROTO_TCP); rule->host_port = host_port; rule->guest_port = guest_port; #ifndef VBOX_WITH_NAT_SERVICE rule->guest_addr.s_addr = guest_addr.s_addr; #endif rule->bind_ip.s_addr = host_addr.s_addr; memcmp(rule->mac_address, ethaddr, ETH_ALEN); /* @todo add mac address */ LIST_INSERT_HEAD(&pData->port_forward_rule_head, rule, list); return 0; } int slirp_add_exec(PNATState pData, int do_pty, const char *args, int addr_low_byte, int guest_port) { return add_exec(&exec_list, do_pty, (char *)args, addr_low_byte, htons(guest_port)); } void slirp_set_ethaddr(PNATState pData, const uint8_t *ethaddr) { #ifndef VBOX_WITH_NAT_SERVICE memcpy(client_ethaddr, ethaddr, ETH_ALEN); #endif } #if defined(RT_OS_WINDOWS) HANDLE *slirp_get_events(PNATState pData) { return pData->phEvents; } void slirp_register_external_event(PNATState pData, HANDLE hEvent, int index) { pData->phEvents[index] = hEvent; } #endif unsigned int slirp_get_timeout_ms(PNATState pData) { if (link_up) { if (time_fasttimo) return 2; if (do_slowtimo) return 500; /* see PR_SLOWHZ */ } return 0; } #ifndef RT_OS_WINDOWS int slirp_get_nsock(PNATState pData) { return pData->nsock; } #endif /* * this function called from NAT thread */ void slirp_post_sent(PNATState pData, void *pvArg) { struct socket *so = 0; struct tcpcb *tp = 0; struct mbuf *m = (struct mbuf *)pvArg; m_free(pData, m); } #ifdef VBOX_WITH_SLIRP_MT void slirp_process_queue(PNATState pData) { RTReqProcess(pData->pReqQueue, RT_INDEFINITE_WAIT); } void *slirp_get_queue(PNATState pData) { return pData->pReqQueue; } #endif void slirp_set_dhcp_TFTP_prefix(PNATState pData, const char *tftpPrefix) { Log2(("tftp_prefix:%s\n", tftpPrefix)); tftp_prefix = tftpPrefix; } void slirp_set_dhcp_TFTP_bootfile(PNATState pData, const char *bootFile) { Log2(("bootFile:%s\n", bootFile)); bootp_filename = bootFile; } void slirp_set_dhcp_next_server(PNATState pData, const char *next_server) { Log2(("next_server:%s\n", next_server)); if (next_server == NULL) pData->tftp_server.s_addr = htonl(ntohl(special_addr.s_addr) | CTL_TFTP); else inet_aton(next_server, &pData->tftp_server); } int slirp_set_binding_address(PNATState pData, char *addr) { if (addr == NULL || (inet_aton(addr, &pData->bindIP) == 0)) { pData->bindIP.s_addr = INADDR_ANY; return 1; } return 0; } void slirp_set_dhcp_dns_proxy(PNATState pData, bool fDNSProxy) { Log2(("NAT: DNS proxy switched %s\n", (fDNSProxy ? "on" : "off"))); pData->use_dns_proxy = fDNSProxy; } #define CHECK_ARG(name, val, lim_min, lim_max) \ do { \ if ((val) < (lim_min) || (val) > (lim_max)) \ { \ LogRel(("NAT: (" #name ":%d) has been ignored, " \ "because out of range (%d, %d)\n", (val), (lim_min), (lim_max))); \ return; \ } \ else \ { \ LogRel(("NAT: (" #name ":%d)\n", (val))); \ } \ } while (0) /* don't allow user set less 8kB and more than 1M values */ #define _8K_1M_CHECK_ARG(name, val) CHECK_ARG(name, (val), 8, 1024) void slirp_set_rcvbuf(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("SOCKET_RCVBUF", kilobytes); pData->socket_rcv = kilobytes; } void slirp_set_sndbuf(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("SOCKET_SNDBUF", kilobytes); pData->socket_snd = kilobytes * _1K; } void slirp_set_tcp_rcvspace(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("TCP_RCVSPACE", kilobytes); tcp_rcvspace = kilobytes * _1K; } void slirp_set_tcp_sndspace(PNATState pData, int kilobytes) { _8K_1M_CHECK_ARG("TCP_SNDSPACE", kilobytes); tcp_sndspace = kilobytes * _1K; }