/* $Id: DevDMA.cpp 57393 2015-08-17 15:02:05Z vboxsync $ */ /** @file * DevDMA - DMA Controller Device. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * -------------------------------------------------------------------- * * This code is loosely based on: * * QEMU DMA emulation * * Copyright (c) 2003 Vassili Karpov (malc) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_DMA #include #include #include #include #include #include #include #include "VBoxDD.h" /** @page pg_dev_dma DMA Overview and notes * * Modern PCs typically emulate AT-compatible DMA. The IBM PC/AT used dual * cascaded 8237A DMA controllers, augmented with a 74LS612 memory mapper. * The 8237As are 8-bit parts, only capable of addressing up to 64KB; the * 74LS612 extends addressing to 24 bits. That leads to well known and * inconvenient DMA limitations: * - DMA can only access physical memory under the 16MB line * - DMA transfers must occur within a 64KB/128KB 'page' * * The 16-bit DMA controller added in the PC/AT shifts all 8237A addresses * left by one, including the control registers addresses. The DMA register * offsets (except for the page registers) are therefore "double spaced". * * Due to the address shifting, the DMA controller decodes more addresses * than are usually documented, with aliasing. See the ICH8 datasheet. * * In the IBM PC and PC/XT, DMA channel 0 was used for memory refresh, thus * preventing the use of memory-to-memory DMA transfers (which use channels * 0 and 1). In the PC/AT, memory-to-memory DMA was theoretically possible. * However, it would transfer a single byte at a time, while the CPU can * transfer two (on a 286) or four (on a 386+) bytes at a time. On many * compatibles, memory-to-memory DMA is not even implemented at all, and * therefore has no practical use. * * Auto-init mode is handled implicitly; a device's transfer handler may * return an end count lower than the start count. * * Naming convention: 'channel' refers to a system-wide DMA channel (0-7) * while 'chidx' refers to a DMA channel index within a controller (0-3). * * References: * - IBM Personal Computer AT Technical Reference, 1984 * - Intel 8237A-5 Datasheet, 1993 * - Frank van Gilluwe, The Undocumented PC, 1994 * - OPTi 82C206 Data Book, 1996 (or Chips & Tech 82C206) * - Intel ICH8 Datasheet, 2007 */ /* Saved state versions. */ #define DMA_SAVESTATE_OLD 1 /* The original saved state. */ #define DMA_SAVESTATE_CURRENT 2 /* The new and improved saved state. */ /* State information for a single DMA channel. */ typedef struct { void *pvUser; /* User specific context. */ PFNDMATRANSFERHANDLER pfnXferHandler; /* Transfer handler for channel. */ uint16_t u16BaseAddr; /* Base address for transfers. */ uint16_t u16BaseCount; /* Base count for transfers. */ uint16_t u16CurAddr; /* Current address. */ uint16_t u16CurCount; /* Current count. */ uint8_t u8Mode; /* Channel mode. */ } DMAChannel; /* State information for a DMA controller (DMA8 or DMA16). */ typedef struct { DMAChannel ChState[4]; /* Per-channel state. */ uint8_t au8Page[8]; /* Page registers (A16-A23). */ uint8_t au8PageHi[8]; /* High page registers (A24-A31). */ uint8_t u8Command; /* Command register. */ uint8_t u8Status; /* Status register. */ uint8_t u8Mask; /* Mask register. */ uint8_t u8Temp; /* Temporary (mem/mem) register. */ uint8_t u8ModeCtr; /* Mode register counter for reads. */ bool fHiByte; /* Byte pointer (T/F -> high/low). */ uint32_t is16bit; /* True for 16-bit DMA. */ } DMAControl; /* Complete DMA state information. */ typedef struct { PPDMDEVINS pDevIns; /* Device instance. */ PCPDMDMACHLP pHlp; /* PDM DMA helpers. */ DMAControl DMAC[2]; /* Two DMA controllers. */ } DMAState; /* DMA command register bits. */ enum { CMD_MEMTOMEM = 0x01, /* Enable mem-to-mem trasfers. */ CMD_ADRHOLD = 0x02, /* Address hold for mem-to-mem. */ CMD_DISABLE = 0x04, /* Disable controller. */ CMD_COMPRTIME = 0x08, /* Compressed timing. */ CMD_ROTPRIO = 0x10, /* Rotating priority. */ CMD_EXTWR = 0x20, /* Extended write. */ CMD_DREQHI = 0x40, /* DREQ is active high if set. */ CMD_DACKHI = 0x80, /* DACK is active high if set. */ CMD_UNSUPPORTED = CMD_MEMTOMEM | CMD_ADRHOLD | CMD_COMPRTIME | CMD_EXTWR | CMD_DREQHI | CMD_DACKHI }; /* DMA control register offsets for read accesses. */ enum { CTL_R_STAT, /* Read status registers. */ CTL_R_DMAREQ, /* Read DRQ register. */ CTL_R_CMD, /* Read command register. */ CTL_R_MODE, /* Read mode register. */ CTL_R_SETBPTR, /* Set byte pointer flip-flop. */ CTL_R_TEMP, /* Read temporary register. */ CTL_R_CLRMODE, /* Clear mode register counter. */ CTL_R_MASK /* Read all DRQ mask bits. */ }; /* DMA control register offsets for read accesses. */ enum { CTL_W_CMD, /* Write command register. */ CTL_W_DMAREQ, /* Write DRQ register. */ CTL_W_MASKONE, /* Write single DRQ mask bit. */ CTL_W_MODE, /* Write mode register. */ CTL_W_CLRBPTR, /* Clear byte pointer flip-flop. */ CTL_W_MASTRCLR, /* Master clear. */ CTL_W_CLRMASK, /* Clear all DRQ mask bits. */ CTL_W_MASK /* Write all DRQ mask bits. */ }; /* DMA transfer modes. */ enum { DMODE_DEMAND, /* Demand transfer mode. */ DMODE_SINGLE, /* Single transfer mode. */ DMODE_BLOCK, /* Block transfer mode. */ DMODE_CASCADE /* Cascade mode. */ }; /* DMA transfer types. */ enum { DTYPE_VERIFY, /* Verify transfer type. */ DTYPE_WRITE, /* Write transfer type. */ DTYPE_READ, /* Read transfer type. */ DTYPE_ILLEGAL /* Undefined. */ }; /* Convert DMA channel number (0-7) to controller number (0-1). */ #define DMACH2C(c) (c < 4 ? 0 : 1) static int dmaChannelMap[8] = {-1, 2, 3, 1, -1, -1, -1, 0}; /* Map a DMA page register offset (0-7) to channel index (0-3). */ #define DMAPG2CX(c) (dmaChannelMap[c]) static int dmaMapChannel[4] = {7, 3, 1, 2}; /* Map a channel index (0-3) to DMA page register offset (0-7). */ #define DMACX2PG(c) (dmaMapChannel[c]) /* Map a channel number (0-7) to DMA page register offset (0-7). */ #define DMACH2PG(c) (dmaMapChannel[c & 3]) /* Test the decrement bit of mode register. */ #define IS_MODE_DEC(c) ((c) & 0x20) /* Test the auto-init bit of mode register. */ #define IS_MODE_AI(c) ((c) & 0x10) /* Extract the transfer type bits of mode register. */ #define GET_MODE_XTYP(c)(((c) & 0x0c) >> 2) /* Perform a master clear (reset) on a DMA controller. */ static void dmaClear(DMAControl *dc) { dc->u8Command = 0; dc->u8Status = 0; dc->u8Temp = 0; dc->u8ModeCtr = 0; dc->fHiByte = false; dc->u8Mask = ~0; } /* Read the byte pointer and flip it. */ static inline bool dmaReadBytePtr(DMAControl *dc) { bool bHighByte; bHighByte = !!dc->fHiByte; dc->fHiByte ^= 1; return bHighByte; } /* DMA address registers writes and reads. */ static DECLCALLBACK(int) dmaWriteAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; DMAChannel *ch; int chidx, reg, is_count; Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ reg = (port >> dc->is16bit) & 0x0f; chidx = reg >> 1; is_count = reg & 1; ch = &dc->ChState[chidx]; if (dmaReadBytePtr(dc)) { /* Write the high byte. */ if (is_count) ch->u16BaseCount = RT_MAKE_U16(ch->u16BaseCount, u32); else ch->u16BaseAddr = RT_MAKE_U16(ch->u16BaseAddr, u32); ch->u16CurCount = 0; ch->u16CurAddr = ch->u16BaseAddr; } else { /* Write the low byte. */ if (is_count) ch->u16BaseCount = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseCount)); else ch->u16BaseAddr = RT_MAKE_U16(u32, RT_HIBYTE(ch->u16BaseAddr)); } Log2(("dmaWriteAddr: port %#06x, chidx %d, data %#02x\n", port, chidx, u32)); } else { /* Likely a guest bug. */ Log(("Bad size write to count register %#x (size %d, data %#x)\n", port, cb, u32)); } return VINF_SUCCESS; } static DECLCALLBACK(int) dmaReadAddr(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; DMAChannel *ch; int chidx, reg, val, dir; int bptr; reg = (port >> dc->is16bit) & 0x0f; chidx = reg >> 1; ch = &dc->ChState[chidx]; dir = IS_MODE_DEC(ch->u8Mode) ? -1 : 1; if (reg & 1) val = ch->u16BaseCount - ch->u16CurCount; else val = ch->u16CurAddr + ch->u16CurCount * dir; bptr = dmaReadBytePtr(dc); *pu32 = RT_LOBYTE(val >> (bptr * 8)); Log(("Count read: port %#06x, reg %#04x, data %#x\n", port, reg, val)); return VINF_SUCCESS; } else return VERR_IOM_IOPORT_UNUSED; } /* DMA control registers writes and reads. */ static DECLCALLBACK(int) dmaWriteCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; int chidx = 0; int reg; reg = ((port >> dc->is16bit) & 0x0f) - 8; Assert((reg >= CTL_W_CMD && reg <= CTL_W_MASK)); Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ switch (reg) { case CTL_W_CMD: /* Unsupported commands are entirely ignored. */ if (u32 & CMD_UNSUPPORTED) { Log(("DMA command %#x is not supported, ignoring!\n", u32)); break; } dc->u8Command = u32; break; case CTL_W_DMAREQ: chidx = u32 & 3; if (u32 & 4) dc->u8Status |= 1 << (chidx + 4); else dc->u8Status &= ~(1 << (chidx + 4)); dc->u8Status &= ~(1 << chidx); /* Clear TC for channel. */ break; case CTL_W_MASKONE: chidx = u32 & 3; if (u32 & 4) dc->u8Mask |= 1 << chidx; else dc->u8Mask &= ~(1 << chidx); break; case CTL_W_MODE: { int op, opmode; chidx = u32 & 3; op = (u32 >> 2) & 3; opmode = (u32 >> 6) & 3; Log2(("chidx %d, op %d, %sauto-init, %screment, opmode %d\n", chidx, op, IS_MODE_AI(u32) ? "" : "no ", IS_MODE_DEC(u32) ? "de" : "in", opmode)); dc->ChState[chidx].u8Mode = u32; break; } case CTL_W_CLRBPTR: dc->fHiByte = false; break; case CTL_W_MASTRCLR: dmaClear(dc); break; case CTL_W_CLRMASK: dc->u8Mask = 0; break; case CTL_W_MASK: dc->u8Mask = u32; break; default: Assert(0); break; } Log(("dmaWriteCtl: port %#06x, chidx %d, data %#02x\n", port, chidx, u32)); } else { /* Likely a guest bug. */ Log(("Bad size write to controller register %#x (size %d, data %#x)\n", port, cb, u32)); } return VINF_SUCCESS; } static DECLCALLBACK(int) dmaReadCtl(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; uint8_t val = 0; int reg; reg = ((port >> dc->is16bit) & 0x0f) - 8; Assert((reg >= CTL_R_STAT && reg <= CTL_R_MASK)); switch (reg) { case CTL_R_STAT: val = dc->u8Status; dc->u8Status &= 0xf0; /* A read clears all TCs. */ break; case CTL_R_DMAREQ: val = (dc->u8Status >> 4) | 0xf0; break; case CTL_R_CMD: val = dc->u8Command; break; case CTL_R_MODE: val = dc->ChState[dc->u8ModeCtr].u8Mode | 3; dc->u8ModeCtr = (dc->u8ModeCtr + 1) & 3; case CTL_R_SETBPTR: dc->fHiByte = true; break; case CTL_R_TEMP: val = dc->u8Temp; break; case CTL_R_CLRMODE: dc->u8ModeCtr = 0; break; case CTL_R_MASK: val = dc->u8Mask; break; default: Assert(0); break; } Log(("Ctrl read: port %#06x, reg %#04x, data %#x\n", port, reg, val)); *pu32 = val; return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** DMA page registers. There are 16 R/W page registers for compatibility with * the IBM PC/AT; only some of those registers are used for DMA. The page register * accessible via port 80h may be read to insert small delays or used as a scratch * register by a BIOS. */ static DECLCALLBACK(int) dmaReadPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb) { DMAControl *dc = (DMAControl *)pvUser; int reg; if (cb == 1) { reg = port & 7; *pu32 = dc->au8Page[reg]; Log2(("Read %#x (byte) from page register %#x (channel %d)\n", *pu32, port, DMAPG2CX(reg))); return VINF_SUCCESS; } if (cb == 2) { reg = port & 7; *pu32 = dc->au8Page[reg] | (dc->au8Page[(reg + 1) & 7] << 8); Log2(("Read %#x (word) from page register %#x (channel %d)\n", *pu32, port, DMAPG2CX(reg))); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } static DECLCALLBACK(int) dmaWritePage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb) { DMAControl *dc = (DMAControl *)pvUser; int reg; if (cb == 1) { Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ reg = port & 7; dc->au8Page[reg] = u32; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ Log2(("Wrote %#x to page register %#x (channel %d)\n", u32, port, DMAPG2CX(reg))); } else if (cb == 2) { Assert(!(u32 & ~0xffff)); /* Check for garbage in high bits. */ reg = port & 7; dc->au8Page[reg] = u32; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ reg = (port + 1) & 7; dc->au8Page[reg] = u32 >> 8; dc->au8PageHi[reg] = 0; /* Corresponding high page cleared. */ } else { /* Likely a guest bug. */ Log(("Bad size write to page register %#x (size %d, data %#x)\n", port, cb, u32)); } return VINF_SUCCESS; } /** * EISA style high page registers, for extending the DMA addresses to cover * the entire 32-bit address space. */ static DECLCALLBACK(int) dmaReadHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t *pu32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; int reg; reg = port & 7; *pu32 = dc->au8PageHi[reg]; Log2(("Read %#x to from high page register %#x (channel %d)\n", *pu32, port, DMAPG2CX(reg))); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } static DECLCALLBACK(int) dmaWriteHiPage(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT port, uint32_t u32, unsigned cb) { if (cb == 1) { DMAControl *dc = (DMAControl *)pvUser; int reg; Assert(!(u32 & ~0xff)); /* Check for garbage in high bits. */ reg = port & 7; dc->au8PageHi[reg] = u32; Log2(("Wrote %#x to high page register %#x (channel %d)\n", u32, port, DMAPG2CX(reg))); } else { /* Likely a guest bug. */ Log(("Bad size write to high page register %#x (size %d, data %#x)\n", port, cb, u32)); } return VINF_SUCCESS; } /** Perform any pending transfers on a single DMA channel. */ static void dmaRunChannel(DMAState *pThis, int ctlidx, int chidx) { DMAControl *dc = &pThis->DMAC[ctlidx]; DMAChannel *ch = &dc->ChState[chidx]; uint32_t start_cnt, end_cnt; int opmode; opmode = (ch->u8Mode >> 6) & 3; Log3(("DMA address %screment, mode %d\n", IS_MODE_DEC(ch->u8Mode) ? "de" : "in", ch->u8Mode >> 6)); /* Addresses and counts are shifted for 16-bit channels. */ start_cnt = ch->u16CurCount << dc->is16bit; /* NB: The device is responsible for examining the DMA mode and not * transferring more than it should if auto-init is not in use. */ end_cnt = ch->pfnXferHandler(pThis->pDevIns, ch->pvUser, (ctlidx * 4) + chidx, start_cnt, (ch->u16BaseCount + 1) << dc->is16bit); ch->u16CurCount = end_cnt >> dc->is16bit; /* Set the TC (Terminal Count) bit if transfer was completed. */ if (ch->u16CurCount == ch->u16BaseCount + 1) switch (opmode) { case DMODE_DEMAND: case DMODE_SINGLE: case DMODE_BLOCK: dc->u8Status |= RT_BIT(chidx); Log3(("TC set for DMA channel %d\n", (ctlidx * 4) + chidx)); break; default: break; } Log3(("DMA position %d, size %d\n", end_cnt, (ch->u16BaseCount + 1) << dc->is16bit)); } /** * @interface_method_impl{PDMDMAREG,pfnRun} */ static DECLCALLBACK(bool) dmaRun(PPDMDEVINS pDevIns) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAControl *dc; int ctlidx, chidx, mask; PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); /* Run all controllers and channels. */ for (ctlidx = 0; ctlidx < 2; ++ctlidx) { dc = &pThis->DMAC[ctlidx]; /* If controller is disabled, don't even bother. */ if (dc->u8Command & CMD_DISABLE) continue; for (chidx = 0; chidx < 4; ++chidx) { mask = 1 << chidx; if (!(dc->u8Mask & mask) && (dc->u8Status & (mask << 4))) dmaRunChannel(pThis, ctlidx, chidx); } } PDMCritSectLeave(pDevIns->pCritSectRoR3); return 0; } /** * @interface_method_impl{PDMDMAREG,pfnRegister} */ static DECLCALLBACK(void) dmaRegister(PPDMDEVINS pDevIns, unsigned uChannel, PFNDMATRANSFERHANDLER pfnTransferHandler, void *pvUser) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAChannel *ch = &pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3]; LogFlow(("dmaRegister: pThis=%p uChannel=%u pfnTransferHandler=%p pvUser=%p\n", pThis, uChannel, pfnTransferHandler, pvUser)); PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); ch->pfnXferHandler = pfnTransferHandler; ch->pvUser = pvUser; PDMCritSectLeave(pDevIns->pCritSectRoR3); } /** Reverse the order of bytes in a memory buffer. */ static void dmaReverseBuf8(void *buf, unsigned len) { uint8_t *pBeg, *pEnd; uint8_t temp; pBeg = (uint8_t *)buf; pEnd = pBeg + len - 1; for (len = len / 2; len; --len) { temp = *pBeg; *pBeg++ = *pEnd; *pEnd-- = temp; } } /** Reverse the order of words in a memory buffer. */ static void dmaReverseBuf16(void *buf, unsigned len) { uint16_t *pBeg, *pEnd; uint16_t temp; Assert(!(len & 1)); len /= 2; /* Convert to word count. */ pBeg = (uint16_t *)buf; pEnd = pBeg + len - 1; for (len = len / 2; len; --len) { temp = *pBeg; *pBeg++ = *pEnd; *pEnd-- = temp; } } /** * @interface_method_impl{PDMDMAREG,pfnReadMemory} */ static DECLCALLBACK(uint32_t) dmaReadMemory(PPDMDEVINS pDevIns, unsigned uChannel, void *pvBuffer, uint32_t off, uint32_t cbBlock) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; DMAChannel *ch = &dc->ChState[uChannel & 3]; uint32_t page, pagehi; uint32_t addr; LogFlow(("dmaReadMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock)); PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); /* Build the address for this transfer. */ page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit; pagehi = dc->au8PageHi[DMACH2PG(uChannel)]; addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit); if (IS_MODE_DEC(ch->u8Mode)) { PDMDevHlpPhysRead(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock); if (dc->is16bit) dmaReverseBuf16(pvBuffer, cbBlock); else dmaReverseBuf8(pvBuffer, cbBlock); } else PDMDevHlpPhysRead(pThis->pDevIns, addr + off, pvBuffer, cbBlock); PDMCritSectLeave(pDevIns->pCritSectRoR3); return cbBlock; } /** * @interface_method_impl{PDMDMAREG,pfnWriteMemory} */ static DECLCALLBACK(uint32_t) dmaWriteMemory(PPDMDEVINS pDevIns, unsigned uChannel, const void *pvBuffer, uint32_t off, uint32_t cbBlock) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; DMAChannel *ch = &dc->ChState[uChannel & 3]; uint32_t page, pagehi; uint32_t addr; LogFlow(("dmaWriteMemory: pThis=%p uChannel=%u pvBuffer=%p off=%u cbBlock=%u\n", pThis, uChannel, pvBuffer, off, cbBlock)); if (GET_MODE_XTYP(ch->u8Mode) == DTYPE_VERIFY) { Log(("DMA verify transfer, ignoring write.\n")); return cbBlock; } PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); /* Build the address for this transfer. */ page = dc->au8Page[DMACH2PG(uChannel)] & ~dc->is16bit; pagehi = dc->au8PageHi[DMACH2PG(uChannel)]; addr = (pagehi << 24) | (page << 16) | (ch->u16CurAddr << dc->is16bit); if (IS_MODE_DEC(ch->u8Mode)) { //@todo: This would need a temporary buffer. Assert(0); #if 0 if (dc->is16bit) dmaReverseBuf16(pvBuffer, cbBlock); else dmaReverseBuf8(pvBuffer, cbBlock); #endif PDMDevHlpPhysWrite(pThis->pDevIns, addr - off - cbBlock, pvBuffer, cbBlock); } else PDMDevHlpPhysWrite(pThis->pDevIns, addr + off, pvBuffer, cbBlock); PDMCritSectLeave(pDevIns->pCritSectRoR3); return cbBlock; } /** * @interface_method_impl{PDMDMAREG,pfnSetDREQ} */ static DECLCALLBACK(void) dmaSetDREQ(PPDMDEVINS pDevIns, unsigned uChannel, unsigned uLevel) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAControl *dc = &pThis->DMAC[DMACH2C(uChannel)]; int chidx; LogFlow(("dmaSetDREQ: pThis=%p uChannel=%u uLevel=%u\n", pThis, uChannel, uLevel)); PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); chidx = uChannel & 3; if (uLevel) dc->u8Status |= 1 << (chidx + 4); else dc->u8Status &= ~(1 << (chidx + 4)); PDMCritSectLeave(pDevIns->pCritSectRoR3); } /** * @interface_method_impl{PDMDMAREG,pfnGetChannelMode} */ static DECLCALLBACK(uint8_t) dmaGetChannelMode(PPDMDEVINS pDevIns, unsigned uChannel) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); LogFlow(("dmaGetChannelMode: pThis=%p uChannel=%u\n", pThis, uChannel)); PDMCritSectEnter(pDevIns->pCritSectRoR3, VERR_IGNORED); uint8_t u8Mode = pThis->DMAC[DMACH2C(uChannel)].ChState[uChannel & 3].u8Mode; PDMCritSectLeave(pDevIns->pCritSectRoR3); return u8Mode; } /** * @interface_method_impl{PDMDEVREG,pfnReset} */ static DECLCALLBACK(void) dmaReset(PPDMDEVINS pDevIns) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); LogFlow(("dmaReset: pThis=%p\n", pThis)); /* NB: The page and address registers are unaffected by a reset * and in an undefined state after power-up. */ dmaClear(&pThis->DMAC[0]); dmaClear(&pThis->DMAC[1]); } /** Register DMA I/O port handlers. */ static void dmaIORegister(PPDMDEVINS pDevIns, bool fHighPage) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); DMAControl *dc8 = &pThis->DMAC[0]; DMAControl *dc16 = &pThis->DMAC[1]; dc8->is16bit = false; dc16->is16bit = true; /* Base and current address for each channel. */ PDMDevHlpIOPortRegister(pThis->pDevIns, 0x00, 8, dc8, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA8 Address"); PDMDevHlpIOPortRegister(pThis->pDevIns, 0xC0, 16, dc16, dmaWriteAddr, dmaReadAddr, NULL, NULL, "DMA16 Address"); /* Control registers for both DMA controllers. */ PDMDevHlpIOPortRegister(pThis->pDevIns, 0x08, 8, dc8, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA8 Control"); PDMDevHlpIOPortRegister(pThis->pDevIns, 0xD0, 16, dc16, dmaWriteCtl, dmaReadCtl, NULL, NULL, "DMA16 Control"); /* Page registers for each channel (plus a few unused ones). */ PDMDevHlpIOPortRegister(pThis->pDevIns, 0x80, 8, dc8, dmaWritePage, dmaReadPage, NULL, NULL, "DMA8 Page"); PDMDevHlpIOPortRegister(pThis->pDevIns, 0x88, 8, dc16, dmaWritePage, dmaReadPage, NULL, NULL, "DMA16 Page"); /* Optional EISA style high page registers (address bits 24-31). */ if (fHighPage) { PDMDevHlpIOPortRegister(pThis->pDevIns, 0x480, 8, dc8, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA8 Page High"); PDMDevHlpIOPortRegister(pThis->pDevIns, 0x488, 8, dc16, dmaWriteHiPage, dmaReadHiPage, NULL, NULL, "DMA16 Page High"); } } static void dmaSaveController(PSSMHANDLE pSSMHandle, DMAControl *dc) { int chidx; /* Save controller state... */ SSMR3PutU8(pSSMHandle, dc->u8Command); SSMR3PutU8(pSSMHandle, dc->u8Mask); SSMR3PutU8(pSSMHandle, dc->fHiByte); SSMR3PutU32(pSSMHandle, dc->is16bit); SSMR3PutU8(pSSMHandle, dc->u8Status); SSMR3PutU8(pSSMHandle, dc->u8Temp); SSMR3PutU8(pSSMHandle, dc->u8ModeCtr); SSMR3PutMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page)); SSMR3PutMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi)); /* ...and all four of its channels. */ for (chidx = 0; chidx < 4; ++chidx) { DMAChannel *ch = &dc->ChState[chidx]; SSMR3PutU16(pSSMHandle, ch->u16CurAddr); SSMR3PutU16(pSSMHandle, ch->u16CurCount); SSMR3PutU16(pSSMHandle, ch->u16BaseAddr); SSMR3PutU16(pSSMHandle, ch->u16BaseCount); SSMR3PutU8(pSSMHandle, ch->u8Mode); } } static int dmaLoadController(PSSMHANDLE pSSMHandle, DMAControl *dc, int version) { uint8_t u8val; uint32_t u32val; int chidx; SSMR3GetU8(pSSMHandle, &dc->u8Command); SSMR3GetU8(pSSMHandle, &dc->u8Mask); SSMR3GetU8(pSSMHandle, &u8val); dc->fHiByte = !!u8val; SSMR3GetU32(pSSMHandle, &dc->is16bit); if (version > DMA_SAVESTATE_OLD) { SSMR3GetU8(pSSMHandle, &dc->u8Status); SSMR3GetU8(pSSMHandle, &dc->u8Temp); SSMR3GetU8(pSSMHandle, &dc->u8ModeCtr); SSMR3GetMem(pSSMHandle, &dc->au8Page, sizeof(dc->au8Page)); SSMR3GetMem(pSSMHandle, &dc->au8PageHi, sizeof(dc->au8PageHi)); } for (chidx = 0; chidx < 4; ++chidx) { DMAChannel *ch = &dc->ChState[chidx]; if (version == DMA_SAVESTATE_OLD) { /* Convert from 17-bit to 16-bit format. */ SSMR3GetU32(pSSMHandle, &u32val); ch->u16CurAddr = u32val >> dc->is16bit; SSMR3GetU32(pSSMHandle, &u32val); ch->u16CurCount = u32val >> dc->is16bit; } else { SSMR3GetU16(pSSMHandle, &ch->u16CurAddr); SSMR3GetU16(pSSMHandle, &ch->u16CurCount); } SSMR3GetU16(pSSMHandle, &ch->u16BaseAddr); SSMR3GetU16(pSSMHandle, &ch->u16BaseCount); SSMR3GetU8(pSSMHandle, &ch->u8Mode); /* Convert from old save state. */ if (version == DMA_SAVESTATE_OLD) { /* Remap page register contents. */ SSMR3GetU8(pSSMHandle, &u8val); dc->au8Page[DMACX2PG(chidx)] = u8val; SSMR3GetU8(pSSMHandle, &u8val); dc->au8PageHi[DMACX2PG(chidx)] = u8val; /* Throw away dack, eop. */ SSMR3GetU8(pSSMHandle, &u8val); SSMR3GetU8(pSSMHandle, &u8val); } } return 0; } /** @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) dmaSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); dmaSaveController(pSSMHandle, &pThis->DMAC[0]); dmaSaveController(pSSMHandle, &pThis->DMAC[1]); return VINF_SUCCESS; } /** @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) dmaLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSMHandle, uint32_t uVersion, uint32_t uPass) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); AssertMsgReturn(uVersion <= DMA_SAVESTATE_CURRENT, ("%d\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); dmaLoadController(pSSMHandle, &pThis->DMAC[0], uVersion); return dmaLoadController(pSSMHandle, &pThis->DMAC[1], uVersion); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) dmaConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { DMAState *pThis = PDMINS_2_DATA(pDevIns, DMAState *); bool bHighPage = false; PDMDMACREG reg; int rc; pThis->pDevIns = pDevIns; /* * Validate configuration. */ if (!CFGMR3AreValuesValid(pCfg, "\0")) /* "HighPageEnable\0")) */ return VERR_PDM_DEVINS_UNKNOWN_CFG_VALUES; #if 0 rc = CFGMR3QueryBool(pCfg, "HighPageEnable", &bHighPage); if (RT_FAILURE (rc)) return rc; #endif dmaIORegister(pDevIns, bHighPage); dmaReset(pDevIns); reg.u32Version = PDM_DMACREG_VERSION; reg.pfnRun = dmaRun; reg.pfnRegister = dmaRegister; reg.pfnReadMemory = dmaReadMemory; reg.pfnWriteMemory = dmaWriteMemory; reg.pfnSetDREQ = dmaSetDREQ; reg.pfnGetChannelMode = dmaGetChannelMode; rc = PDMDevHlpDMACRegister(pDevIns, ®, &pThis->pHlp); if (RT_FAILURE (rc)) return rc; rc = PDMDevHlpSSMRegister(pDevIns, DMA_SAVESTATE_CURRENT, sizeof(*pThis), dmaSaveExec, dmaLoadExec); if (RT_FAILURE(rc)) return rc; return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceDMA = { /* u32Version */ PDM_DEVREG_VERSION, /* szName */ "8237A", /* szRCMod */ "", /* szR0Mod */ "", /* pszDescription */ "DMA Controller Device", /* fFlags */ PDM_DEVREG_FLAGS_DEFAULT_BITS, /* fClass */ PDM_DEVREG_CLASS_DMA, /* cMaxInstances */ 1, /* cbInstance */ sizeof(DMAState), /* pfnConstruct */ dmaConstruct, /* pfnDestruct */ NULL, /* pfnRelocate */ NULL, /* pfnMemSetup */ NULL, /* pfnPowerOn */ NULL, /* pfnReset */ dmaReset, /* pfnSuspend */ NULL, /* pfnResume */ NULL, /* pfnAttach */ NULL, /* pfnDetach */ NULL, /* pfnQueryInterface. */ NULL, /* pfnInitComplete */ NULL, /* pfnPowerOff */ NULL, /* pfnSoftReset */ NULL, /* u32VersionEnd */ PDM_DEVREG_VERSION };