/* $Id: DevFdc.cpp 95058 2022-05-23 09:16:23Z vboxsync $ */ /** @file * VBox storage devices - Floppy disk controller */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * -------------------------------------------------------------------- * * This code is based on: * * QEMU Floppy disk emulator (Intel 82078) * * Copyright (c) 2003 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_FDC #include #include #include #include #include #include #include "VBoxDD.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @name FDC saved state versions * @{ */ #define FDC_SAVESTATE_CURRENT 3 /**< Current version. */ #define FDC_SAVESTATE_PRE_DELAY 2 /**< Pre IRQDelay. */ #define FDC_SAVESTATE_OLD 1 /**< The original saved state. */ /** @}*/ #define MAX_FD 2 /********************************************************/ /* debug Floppy devices */ /* #define DEBUG_FLOPPY */ #ifdef LOG_ENABLED # define FLOPPY_DPRINTF(...) Log(("floppy: " __VA_ARGS__)) #else # define FLOPPY_DPRINTF(...) do { } while (0) #endif #define FLOPPY_ERROR RTLogPrintf typedef struct fdctrl_t fdctrl_t; /********************************************************/ /* Floppy drive emulation */ /* Drive selection note: * For many commands, the FDC can select one of four drives through the * second command byte. The Digital Output Register (DOR) can also select * one of four drives. On PCs, the FDC drive selection is ignored, but * should be reflected back in command status. Only the DOR drive selection * is effective; on old PCs with a discrete NEC uPD765 or similar, the FDC * drive selection signals (US0/US1) are not connected at all. * NB: A drive is actually selected only when its motor on bit in the DOR * is also set. It is possible to have no drive selected. * * The FDC cur_drv field tracks the drive the FDC thinks is selected, but * the DOR is used for actual drive selection. */ #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) /* Will always be a fixed parameter for us */ #define FD_SECTOR_LEN 512 #define FD_SECTOR_SC 2 /* Sector size code */ #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ /* Floppy disk drive emulation */ typedef enum fdrive_type_t { FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */ FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */ FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */ FDRIVE_DRV_NONE = 0x03, /* No drive connected */ FDRIVE_DRV_FAKE_15_6 = 0x0e, /* Fake 15.6 MB drive. */ FDRIVE_DRV_FAKE_63_5 = 0x0f /* Fake 63.5 MB drive. */ } fdrive_type_t; typedef uint8_t fdrive_flags_t; #define FDISK_DBL_SIDES UINT8_C(0x01) typedef enum fdrive_rate_t { FDRIVE_RATE_500K = 0x00, /* 500 Kbps */ FDRIVE_RATE_300K = 0x01, /* 300 Kbps */ FDRIVE_RATE_250K = 0x02, /* 250 Kbps */ FDRIVE_RATE_1M = 0x03 /* 1 Mbps */ } fdrive_rate_t; /** * The status for one drive. * * @implements PDMIBASE * @implements PDMIMEDIAPORT * @implements PDMIMOUNTNOTIFY */ typedef struct fdrive_t { /** Pointer to the owning device instance. */ R3PTRTYPE(PPDMDEVINS) pDevIns; /** Pointer to the attached driver's base interface. */ R3PTRTYPE(PPDMIBASE) pDrvBase; /** Pointer to the attached driver's block interface. */ R3PTRTYPE(PPDMIMEDIA) pDrvMedia; /** Pointer to the attached driver's mount interface. * This is NULL if the driver isn't a removable unit. */ R3PTRTYPE(PPDMIMOUNT) pDrvMount; /** The base interface. */ PDMIBASE IBase; /** The block port interface. */ PDMIMEDIAPORT IPort; /** The mount notify interface. */ PDMIMOUNTNOTIFY IMountNotify; /** The LUN #. */ RTUINT iLUN; /** The LED for this LUN. */ PDMLED Led; /* Drive status */ fdrive_type_t drive; uint8_t perpendicular; /* 2.88 MB access mode */ uint8_t dsk_chg; /* Disk change line */ /* Position */ uint8_t head; uint8_t track; uint8_t sect; uint8_t ltrk; /* Logical track */ /* Media */ fdrive_flags_t flags; uint8_t last_sect; /* Nb sector per track */ uint8_t max_track; /* Nb of tracks */ uint16_t bps; /* Bytes per sector */ uint8_t ro; /* Is read-only */ uint8_t media_rate; /* Data rate of medium */ } fdrive_t; #define NUM_SIDES(drv) (drv->flags & FDISK_DBL_SIDES ? 2 : 1) static void fd_init(fdrive_t *drv, bool fInit) { /* Drive */ if (fInit) { /* Fixate the drive type at init time if possible. */ if (drv->pDrvMedia) { PDMMEDIATYPE enmType = drv->pDrvMedia->pfnGetType(drv->pDrvMedia); switch (enmType) { case PDMMEDIATYPE_FLOPPY_360: case PDMMEDIATYPE_FLOPPY_1_20: drv->drive = FDRIVE_DRV_120; break; case PDMMEDIATYPE_FLOPPY_720: case PDMMEDIATYPE_FLOPPY_1_44: drv->drive = FDRIVE_DRV_144; break; default: AssertFailed(); RT_FALL_THRU(); case PDMMEDIATYPE_FLOPPY_2_88: drv->drive = FDRIVE_DRV_288; break; case PDMMEDIATYPE_FLOPPY_FAKE_15_6: drv->drive = FDRIVE_DRV_FAKE_15_6; break; case PDMMEDIATYPE_FLOPPY_FAKE_63_5: drv->drive = FDRIVE_DRV_FAKE_63_5; break; } } else { drv->drive = FDRIVE_DRV_NONE; } } /* else: The BIOS (and others) get the drive type via the CMOS, so don't change it after the VM has been constructed. */ drv->perpendicular = 0; /* Disk */ drv->last_sect = 0; drv->max_track = 0; } static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, uint8_t last_sect, uint8_t num_sides) { return (((track * num_sides) + head) * last_sect) + sect - 1; /* sect >= 1 */ } /* Returns current position, in sectors, for given drive */ static int fd_sector(fdrive_t *drv) { return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, NUM_SIDES(drv)); } /* Seek to a new position: * returns 0 if already on right track * returns 1 if track changed * returns 2 if track is invalid * returns 3 if sector is invalid * returns 4 if seek is disabled * returns 5 if no media in drive */ static int fd_seek(fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect, int enable_seek) { int sector; int ret; if (!drv->last_sect) { FLOPPY_DPRINTF("no disk in drive (max=%d %d %02x %02x)\n", 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 5; } if (track > drv->max_track || (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 2; } if (sect > drv->last_sect || sect < 1) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 3; } sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); ret = 0; if (sector != fd_sector(drv)) { #if 0 if (!enable_seek) { FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 4; } #else RT_NOREF(enable_seek); #endif drv->head = head; if (drv->track != track) ret = 1; drv->track = track; drv->sect = sect; } drv->ltrk = drv->track; return ret; } /* Set drive back to track 0 */ static void fd_recalibrate(fdrive_t *drv) { FLOPPY_DPRINTF("recalibrate\n"); drv->head = 0; drv->track = 0; drv->ltrk = 0; drv->sect = 1; } /* Recognize floppy formats */ typedef struct fd_format_t { fdrive_type_t drive; uint8_t last_sect; /**< Number of sectors. */ uint8_t max_track; /**< Number of tracks. */ uint8_t max_head; /**< Max head number. */ fdrive_rate_t rate; const char *str; } fd_format_t; /* Note: Low-density disks (160K/180K/320K/360K) use 250 Kbps data rate * in 40-track drives, but 300 Kbps in high-capacity 80-track drives. */ static fd_format_t fd_formats[] = { /* First entry is default format */ /* 1.44 MB 3"1/2 floppy disks */ { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 3\"1/2", }, { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 3\"1/2", }, { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB 3\"1/2", }, { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB 3\"1/2", }, { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB 3\"1/2", }, { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB 3\"1/2", }, { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB 3\"1/2", }, { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB 3\"1/2", }, /* 2.88 MB 3"1/2 floppy disks */ { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB 3\"1/2", }, { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB 3\"1/2", }, { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB 3\"1/2", }, { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB 3\"1/2", }, { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB 3\"1/2", }, /* 720 kB 3"1/2 floppy disks */ { FDRIVE_DRV_144, 9, 80, 1, FDRIVE_RATE_250K, "720 kB 3\"1/2", }, { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, "800 kB 3\"1/2", }, { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, "820 kB 3\"1/2", }, { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, "830 kB 3\"1/2", }, { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB 3\"1/2", }, { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB 3\"1/2", }, /* 1.2 MB 5"1/4 floppy disks */ { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, "1.2 MB 5\"1/4", }, { FDRIVE_DRV_120, 16, 80, 1, FDRIVE_RATE_500K, "1.28 MB 5\"1/4", }, /* CP Backup 5.25" HD */ { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB 5\"1/4", }, { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, "1.48 MB 5\"1/4", }, { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, "1.49 MB 5\"1/4", }, { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB 5\"1/4", }, /* 720 kB 5"1/4 floppy disks */ { FDRIVE_DRV_120, 9, 80, 1, FDRIVE_RATE_300K, "720 kB 5\"1/4", }, { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_300K, "880 kB 5\"1/4", }, /* 360 kB 5"1/4 floppy disks (newer 9-sector formats) */ { FDRIVE_DRV_120, 9, 40, 1, FDRIVE_RATE_300K, "360 kB 5\"1/4", }, { FDRIVE_DRV_120, 9, 40, 0, FDRIVE_RATE_300K, "180 kB 5\"1/4", }, { FDRIVE_DRV_120, 10, 40, 1, FDRIVE_RATE_300K, "400 kB 5\"1/4", }, /* CP Backup 5.25" DD */ { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, "410 kB 5\"1/4", }, { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, "420 kB 5\"1/4", }, /* 320 kB 5"1/4 floppy disks (old 8-sector formats) */ { FDRIVE_DRV_120, 8, 40, 1, FDRIVE_RATE_300K, "320 kB 5\"1/4", }, { FDRIVE_DRV_120, 8, 40, 0, FDRIVE_RATE_300K, "160 kB 5\"1/4", }, /* 1.2 MB and low density 3"1/2 floppy 'aliases' */ { FDRIVE_DRV_144, 15, 80, 1, FDRIVE_RATE_500K, "1.2 MB 3\"1/2", }, { FDRIVE_DRV_144, 16, 80, 1, FDRIVE_RATE_500K, "1.28 MB 3\"1/2", }, { FDRIVE_DRV_144, 10, 40, 1, FDRIVE_RATE_300K, "400 kB 3\"1/2", }, /* CP Backup 5.25" DD */ { FDRIVE_DRV_144, 9, 40, 1, FDRIVE_RATE_300K, "360 kB 3\"1/2", }, { FDRIVE_DRV_144, 9, 40, 0, FDRIVE_RATE_300K, "180 kB 3\"1/2", }, { FDRIVE_DRV_144, 8, 40, 1, FDRIVE_RATE_300K, "320 kB 3\"1/2", }, { FDRIVE_DRV_144, 8, 40, 0, FDRIVE_RATE_300K, "160 kB 3\"1/2", }, /* For larger than real life floppy images (see DrvBlock.cpp). */ /* 15.6 MB fake floppy disk (just need something big). */ { FDRIVE_DRV_FAKE_15_6, 63, 255, 1, FDRIVE_RATE_1M, "15.6 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 9, 80, 1, FDRIVE_RATE_250K, "720 kB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 10, 80, 1, FDRIVE_RATE_250K, "800 kB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 10, 82, 1, FDRIVE_RATE_250K, "820 kB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 10, 83, 1, FDRIVE_RATE_250K, "830 kB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB fake 15.6", }, { FDRIVE_DRV_FAKE_15_6, 9, 80, 0, FDRIVE_RATE_250K, "360 kB fake 15.6", }, /* 63.5 MB fake floppy disk (just need something big). */ { FDRIVE_DRV_FAKE_63_5, 255, 255, 1, FDRIVE_RATE_1M, "63.5 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 63, 255, 1, FDRIVE_RATE_1M, "15.6 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 36, 80, 1, FDRIVE_RATE_1M, "2.88 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 39, 80, 1, FDRIVE_RATE_1M, "3.12 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 40, 80, 1, FDRIVE_RATE_1M, "3.2 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 44, 80, 1, FDRIVE_RATE_1M, "3.52 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 48, 80, 1, FDRIVE_RATE_1M, "3.84 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 18, 80, 1, FDRIVE_RATE_500K, "1.44 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 20, 80, 1, FDRIVE_RATE_500K, "1.6 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 21, 80, 1, FDRIVE_RATE_500K, "1.68 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 21, 82, 1, FDRIVE_RATE_500K, "1.72 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 21, 83, 1, FDRIVE_RATE_500K, "1.74 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 22, 80, 1, FDRIVE_RATE_500K, "1.76 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 23, 80, 1, FDRIVE_RATE_500K, "1.84 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 24, 80, 1, FDRIVE_RATE_500K, "1.92 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 9, 80, 1, FDRIVE_RATE_250K, "720 kB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 10, 80, 1, FDRIVE_RATE_250K, "800 kB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 10, 82, 1, FDRIVE_RATE_250K, "820 kB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 10, 83, 1, FDRIVE_RATE_250K, "830 kB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 13, 80, 1, FDRIVE_RATE_250K, "1.04 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 14, 80, 1, FDRIVE_RATE_250K, "1.12 MB fake 63.5", }, { FDRIVE_DRV_FAKE_63_5, 9, 80, 0, FDRIVE_RATE_250K, "360 kB fake 63.5", }, /* end */ { FDRIVE_DRV_NONE, (uint8_t)-1, (uint8_t)-1, 0, (fdrive_rate_t)0, NULL, }, }; /* Revalidate a disk drive after a disk change */ static void fd_revalidate(fdrive_t *drv) { const fd_format_t *parse; uint64_t nb_sectors, size; int i, first_match, match; int nb_heads, max_track, last_sect, ro; FLOPPY_DPRINTF("revalidate\n"); if ( drv->pDrvMedia && drv->pDrvMount && drv->pDrvMount->pfnIsMounted (drv->pDrvMount)) { ro = drv->pDrvMedia->pfnIsReadOnly (drv->pDrvMedia); nb_heads = max_track = last_sect = 0; if (nb_heads != 0 && max_track != 0 && last_sect != 0) { FLOPPY_DPRINTF("User defined disk (%d %d %d)", nb_heads - 1, max_track, last_sect); } else { uint64_t size2 = drv->pDrvMedia->pfnGetSize (drv->pDrvMedia); nb_sectors = size2 / FD_SECTOR_LEN; match = -1; first_match = -1; for (i = 0;; i++) { parse = &fd_formats[i]; if (parse->drive == FDRIVE_DRV_NONE) break; if (drv->drive == parse->drive || drv->drive == FDRIVE_DRV_NONE) { size = (parse->max_head + 1) * parse->max_track * parse->last_sect; if (nb_sectors == size) { match = i; break; } if (first_match == -1) first_match = i; } } if (match == -1) { if (first_match == -1) match = 1; else match = first_match; parse = &fd_formats[match]; } nb_heads = parse->max_head + 1; max_track = parse->max_track; last_sect = parse->last_sect; drv->drive = parse->drive; drv->media_rate = parse->rate; FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str, nb_heads, max_track, last_sect, ro ? "ro" : "rw"); LogRel(("FDC: %s floppy disk (%d h %d t %d s) %s\n", parse->str, nb_heads, max_track, last_sect, ro ? "ro" : "rw")); } if (nb_heads == 1) { drv->flags &= ~FDISK_DBL_SIDES; } else { drv->flags |= FDISK_DBL_SIDES; } drv->max_track = max_track; drv->last_sect = last_sect; drv->ro = ro; } else { FLOPPY_DPRINTF("No disk in drive\n"); drv->last_sect = 0; drv->max_track = 0; drv->flags &= ~FDISK_DBL_SIDES; drv->dsk_chg = true; /* Disk change line active. */ } } /********************************************************/ /* Intel 82078 floppy disk controller emulation */ static void fdctrl_reset(fdctrl_t *fdctrl, int do_irq); static void fdctrl_reset_fifo(fdctrl_t *fdctrl); static fdrive_t *get_cur_drv(fdctrl_t *fdctrl); static uint32_t fdctrl_read_statusA(fdctrl_t *fdctrl); static uint32_t fdctrl_read_statusB(fdctrl_t *fdctrl); static uint32_t fdctrl_read_dor(fdctrl_t *fdctrl); static void fdctrl_write_dor(fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_tape(fdctrl_t *fdctrl); static void fdctrl_write_tape(fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_main_status(fdctrl_t *fdctrl); static void fdctrl_write_rate(fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_data(fdctrl_t *fdctrl); static void fdctrl_write_data(fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_dir(fdctrl_t *fdctrl); static void fdctrl_write_ccr(fdctrl_t *fdctrl, uint32_t value); enum { FD_DIR_WRITE = 0, FD_DIR_READ = 1, FD_DIR_SCANE = 2, FD_DIR_SCANL = 3, FD_DIR_SCANH = 4, FD_DIR_FORMAT = 5 }; enum { FD_STATE_MULTI = 0x01, /* multi track flag */ FD_STATE_FORMAT = 0x02, /* format flag */ FD_STATE_SEEK = 0x04 /* seek flag */ }; enum { FD_REG_SRA = 0x00, FD_REG_SRB = 0x01, FD_REG_DOR = 0x02, FD_REG_TDR = 0x03, FD_REG_MSR = 0x04, FD_REG_DSR = 0x04, FD_REG_FIFO = 0x05, FD_REG_DIR = 0x07, FD_REG_CCR = 0x07 }; enum { FD_CMD_READ_TRACK = 0x02, FD_CMD_SPECIFY = 0x03, FD_CMD_SENSE_DRIVE_STATUS = 0x04, FD_CMD_WRITE = 0x05, FD_CMD_READ = 0x06, FD_CMD_RECALIBRATE = 0x07, FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, FD_CMD_WRITE_DELETED = 0x09, FD_CMD_READ_ID = 0x0a, FD_CMD_READ_DELETED = 0x0c, FD_CMD_FORMAT_TRACK = 0x0d, FD_CMD_DUMPREG = 0x0e, FD_CMD_SEEK = 0x0f, FD_CMD_VERSION = 0x10, FD_CMD_SCAN_EQUAL = 0x11, FD_CMD_PERPENDICULAR_MODE = 0x12, FD_CMD_CONFIGURE = 0x13, FD_CMD_LOCK = 0x14, FD_CMD_VERIFY = 0x16, FD_CMD_POWERDOWN_MODE = 0x17, FD_CMD_PART_ID = 0x18, FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, FD_CMD_SAVE = 0x2e, FD_CMD_OPTION = 0x33, FD_CMD_RESTORE = 0x4e, FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, FD_CMD_RELATIVE_SEEK_OUT = 0x8f, FD_CMD_FORMAT_AND_WRITE = 0xcd, FD_CMD_RELATIVE_SEEK_IN = 0xcf }; enum { FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ FD_CONFIG_POLL = 0x10, /* Poll enabled */ FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ FD_CONFIG_EIS = 0x40 /* No implied seeks */ }; enum { FD_SR0_EQPMT = 0x10, FD_SR0_SEEK = 0x20, FD_SR0_ABNTERM = 0x40, FD_SR0_INVCMD = 0x80, FD_SR0_RDYCHG = 0xc0 }; enum { FD_SR1_MA = 0x01, /* Missing address mark */ FD_SR1_NW = 0x02, /* Not writable */ FD_SR1_ND = 0x04, /* No data */ FD_SR1_EC = 0x80 /* End of cylinder */ }; enum { FD_SR2_MD = 0x01, /* Missing data address mark */ FD_SR2_SNS = 0x04, /* Scan not satisfied */ FD_SR2_SEH = 0x08 /* Scan equal hit */ }; enum { FD_SRA_DIR = 0x01, FD_SRA_nWP = 0x02, FD_SRA_nINDX = 0x04, FD_SRA_HDSEL = 0x08, FD_SRA_nTRK0 = 0x10, FD_SRA_STEP = 0x20, FD_SRA_nDRV2 = 0x40, FD_SRA_INTPEND = 0x80 }; enum { FD_SRB_MTR0 = 0x01, FD_SRB_MTR1 = 0x02, FD_SRB_WGATE = 0x04, FD_SRB_RDATA = 0x08, FD_SRB_WDATA = 0x10, FD_SRB_DR0 = 0x20 }; enum { #if MAX_FD == 4 FD_DRV_SELMASK = 0x03, #else FD_DRV_SELMASK = 0x01, #endif }; enum { FD_DOR_SELMASK = 0x03, /* Always two bits regardless of FD_DRV_SELMASK. */ FD_DOR_nRESET = 0x04, FD_DOR_DMAEN = 0x08, FD_DOR_MOTEN0 = 0x10, FD_DOR_MOTEN1 = 0x20, FD_DOR_MOTEN2 = 0x40, FD_DOR_MOTEN3 = 0x80 }; enum { #if MAX_FD == 4 FD_TDR_BOOTSEL = 0x0c #else FD_TDR_BOOTSEL = 0x04 #endif }; enum { FD_DSR_DRATEMASK= 0x03, FD_DSR_PWRDOWN = 0x40, FD_DSR_SWRESET = 0x80 }; enum { FD_MSR_DRV0BUSY = 0x01, FD_MSR_DRV1BUSY = 0x02, FD_MSR_DRV2BUSY = 0x04, FD_MSR_DRV3BUSY = 0x08, FD_MSR_CMDBUSY = 0x10, FD_MSR_NONDMA = 0x20, FD_MSR_DIO = 0x40, FD_MSR_RQM = 0x80 }; enum { FD_DIR_DSKCHG = 0x80 }; #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) #define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK) #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) /** * Floppy controller state. * * @implements PDMILEDPORTS */ struct fdctrl_t { /* Controller's identification */ uint8_t version; /* HW */ uint8_t irq_lvl; uint8_t dma_chann; uint16_t io_base; /* Controller state */ TMTIMERHANDLE hResultTimer; /* Interrupt delay timers. */ TMTIMERHANDLE hXferDelayTimer; TMTIMERHANDLE hIrqDelayTimer; uint16_t uIrqDelayMsec; uint8_t st0; uint8_t st1; uint8_t st2; uint8_t sra; uint8_t srb; uint8_t dor; uint8_t tdr; uint8_t dsr; uint8_t msr; uint8_t cur_drv; uint8_t status0; uint8_t status1; uint8_t status2; /* Command FIFO */ uint8_t fifo[FD_SECTOR_LEN]; uint32_t data_pos; uint32_t data_len; uint8_t data_state; uint8_t data_dir; uint8_t eot; /* last wanted sector */ /* Debugging only */ uint8_t cur_cmd; uint8_t prev_cmd; /* States kept only to be returned back */ /* Timers state */ uint8_t timer0; uint8_t timer1; /* precompensation */ uint8_t precomp_trk; uint8_t config; uint8_t lock; /* Power down config (also with status regB access mode */ uint8_t pwrd; /* Floppy drives */ uint8_t num_floppies; fdrive_t drives[MAX_FD]; uint8_t reset_sensei; /** Pointer to device instance. */ PPDMDEVINS pDevIns; /** Status LUN: The base interface. */ PDMIBASE IBaseStatus; /** Status LUN: The Leds interface. */ PDMILEDPORTS ILeds; /** Status LUN: The Partner of ILeds. */ PPDMILEDCONNECTORS pLedsConnector; /** I/O ports: 0x3f0 */ IOMIOPORTHANDLE hIoPorts0; /** I/O ports: 0x3f1..0x3f5 */ IOMIOPORTHANDLE hIoPorts1; /** I/O port: 0x3f7 */ IOMIOPORTHANDLE hIoPorts2; }; static uint32_t fdctrl_read (fdctrl_t *fdctrl, uint32_t reg) { uint32_t retval; switch (reg) { case FD_REG_SRA: retval = fdctrl_read_statusA(fdctrl); break; case FD_REG_SRB: retval = fdctrl_read_statusB(fdctrl); break; case FD_REG_DOR: retval = fdctrl_read_dor(fdctrl); break; case FD_REG_TDR: retval = fdctrl_read_tape(fdctrl); break; case FD_REG_MSR: retval = fdctrl_read_main_status(fdctrl); break; case FD_REG_FIFO: retval = fdctrl_read_data(fdctrl); break; case FD_REG_DIR: retval = fdctrl_read_dir(fdctrl); break; default: retval = UINT32_MAX; break; } FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval); return retval; } static void fdctrl_write (fdctrl_t *fdctrl, uint32_t reg, uint32_t value) { FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value); switch (reg) { case FD_REG_DOR: fdctrl_write_dor(fdctrl, value); break; case FD_REG_TDR: fdctrl_write_tape(fdctrl, value); break; case FD_REG_DSR: fdctrl_write_rate(fdctrl, value); break; case FD_REG_FIFO: fdctrl_write_data(fdctrl, value); break; case FD_REG_CCR: fdctrl_write_ccr(fdctrl, value); break; default: break; } } /* Change IRQ state */ static void fdctrl_reset_irq(fdctrl_t *fdctrl) { if (!(fdctrl->sra & FD_SRA_INTPEND)) return; FLOPPY_DPRINTF("Reset interrupt\n"); PDMDevHlpISASetIrq (fdctrl->pDevIns, fdctrl->irq_lvl, 0); fdctrl->sra &= ~FD_SRA_INTPEND; } static void fdctrl_raise_irq_now(fdctrl_t *fdctrl, uint8_t status0) { if (!(fdctrl->sra & FD_SRA_INTPEND)) { FLOPPY_DPRINTF("Raising interrupt...\n"); PDMDevHlpISASetIrq (fdctrl->pDevIns, fdctrl->irq_lvl, 1); fdctrl->sra |= FD_SRA_INTPEND; } if (status0 & FD_SR0_SEEK) { fdrive_t *cur_drv; /* A seek clears the disk change line (if a disk is inserted). */ cur_drv = get_cur_drv(fdctrl); if (cur_drv->max_track) cur_drv->dsk_chg = false; } fdctrl->reset_sensei = 0; fdctrl->status0 = status0; FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); } static void fdctrl_raise_irq(fdctrl_t *fdctrl, uint8_t status0) { if (!fdctrl->uIrqDelayMsec) { /* If not IRQ delay needed, trigger the interrupt now. */ fdctrl_raise_irq_now(fdctrl, status0); } else { /* Otherwise schedule completion after a short while. */ fdctrl->st0 = status0; PDMDevHlpTimerSetMillies(fdctrl->pDevIns, fdctrl->hIrqDelayTimer, fdctrl->uIrqDelayMsec); } } /* Reset controller */ static void fdctrl_reset(fdctrl_t *fdctrl, int do_irq) { int i; FLOPPY_DPRINTF("reset controller\n"); fdctrl_reset_irq(fdctrl); /* Initialise controller */ fdctrl->sra = 0; fdctrl->srb = 0xc0; if (!fdctrl->drives[1].pDrvMedia) fdctrl->sra |= FD_SRA_nDRV2; fdctrl->cur_drv = 0; fdctrl->dor = FD_DOR_nRESET; fdctrl->dor |= (fdctrl->dma_chann != 0xff) ? FD_DOR_DMAEN : 0; fdctrl->msr = FD_MSR_RQM; /* FIFO state */ fdctrl->data_pos = 0; fdctrl->data_len = 0; fdctrl->data_state = 0; fdctrl->data_dir = FD_DIR_WRITE; for (i = 0; i < MAX_FD; i++) fd_recalibrate(&fdctrl->drives[i]); fdctrl_reset_fifo(fdctrl); if (do_irq) { fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG); fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; } } static inline fdrive_t *drv0(fdctrl_t *fdctrl) { return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; } static inline fdrive_t *drv1(fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) return &fdctrl->drives[1]; else return &fdctrl->drives[0]; } #if MAX_FD == 4 static inline fdrive_t *drv2(fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) return &fdctrl->drives[2]; else return &fdctrl->drives[1]; } static inline fdrive_t *drv3(fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) return &fdctrl->drives[3]; else return &fdctrl->drives[2]; } #endif static fdrive_t *get_cur_drv(fdctrl_t *fdctrl) { switch (fdctrl->dor & FD_DRV_SELMASK) { case 0: return drv0(fdctrl); case 1: return drv1(fdctrl); #if MAX_FD == 4 case 2: return drv2(fdctrl); case 3: return drv3(fdctrl); #endif default: return NULL; } } /* Status A register : 0x00 (read-only) */ static uint32_t fdctrl_read_statusA(fdctrl_t *fdctrl) { uint32_t retval = fdctrl->sra; FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); return retval; } /* Status B register : 0x01 (read-only) */ static uint32_t fdctrl_read_statusB(fdctrl_t *fdctrl) { uint32_t retval = fdctrl->srb; FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); return retval; } /* Digital output register : 0x02 */ static uint32_t fdctrl_read_dor(fdctrl_t *fdctrl) { uint32_t retval = fdctrl->dor; FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); return retval; } static void fdctrl_write_dor(fdctrl_t *fdctrl, uint32_t value) { FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); /* Motors */ if (value & FD_DOR_MOTEN0) fdctrl->srb |= FD_SRB_MTR0; else fdctrl->srb &= ~FD_SRB_MTR0; if (value & FD_DOR_MOTEN1) fdctrl->srb |= FD_SRB_MTR1; else fdctrl->srb &= ~FD_SRB_MTR1; /* Drive */ if (value & 1) fdctrl->srb |= FD_SRB_DR0; else fdctrl->srb &= ~FD_SRB_DR0; /* Reset */ if (!(value & FD_DOR_nRESET)) { if (fdctrl->dor & FD_DOR_nRESET) { FLOPPY_DPRINTF("controller enter RESET state\n"); } } else { if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("controller out of RESET state\n"); fdctrl_reset(fdctrl, 1); fdctrl->dsr &= ~FD_DSR_PWRDOWN; } } fdctrl->dor = value; } /* Tape drive register : 0x03 */ static uint32_t fdctrl_read_tape(fdctrl_t *fdctrl) { uint32_t retval = fdctrl->tdr; FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); return retval; } static void fdctrl_write_tape(fdctrl_t *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); /* Disk boot selection indicator */ fdctrl->tdr = value & FD_TDR_BOOTSEL; /* Tape indicators: never allow */ } /* Main status register : 0x04 (read) */ static uint32_t fdctrl_read_main_status(fdctrl_t *fdctrl) { uint32_t retval = fdctrl->msr; fdctrl->dsr &= ~FD_DSR_PWRDOWN; fdctrl->dor |= FD_DOR_nRESET; FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); return retval; } /* Data select rate register : 0x04 (write) */ static void fdctrl_write_rate(fdctrl_t *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); /* Reset: autoclear */ if (value & FD_DSR_SWRESET) { fdctrl->dor &= ~FD_DOR_nRESET; fdctrl_reset(fdctrl, 1); fdctrl->dor |= FD_DOR_nRESET; } if (value & FD_DSR_PWRDOWN) { fdctrl_reset(fdctrl, 1); } fdctrl->dsr = value; } /* Configuration control register : 0x07 (write) */ static void fdctrl_write_ccr(fdctrl_t *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); /* Only the rate selection bits used in AT mode, and we * store those in the DSR. */ fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | (value & FD_DSR_DRATEMASK); } static int fdctrl_media_changed(fdrive_t *drv) { return drv->dsk_chg; } /* Digital input register : 0x07 (read-only) */ static uint32_t fdctrl_read_dir(fdctrl_t *fdctrl) { uint32_t retval = 0; /* The change line signal is reported by the currently selected * drive. If the corresponding motor on bit is not set, the drive * is *not* selected! */ if (fdctrl_media_changed(get_cur_drv(fdctrl)) && (fdctrl->dor & (0x10 << (fdctrl->dor & FD_DOR_SELMASK)))) retval |= FD_DIR_DSKCHG; if (retval != 0) FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); return retval; } /* FIFO state control */ static void fdctrl_reset_fifo(fdctrl_t *fdctrl) { fdctrl->data_dir = FD_DIR_WRITE; fdctrl->data_pos = 0; fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); fdctrl->prev_cmd = fdctrl->cur_cmd; fdctrl->cur_cmd = 0; } /* Set FIFO status for the host to read */ static void fdctrl_set_fifo(fdctrl_t *fdctrl, int fifo_len, int do_irq) { fdctrl->data_dir = FD_DIR_READ; fdctrl->data_len = fifo_len; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; if (do_irq) fdctrl_raise_irq(fdctrl, 0x00); } /* Set an error: unimplemented/unknown command */ static void fdctrl_unimplemented(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); FLOPPY_ERROR("unimplemented command 0x%02x\n", fdctrl->fifo[0]); fdctrl->fifo[0] = FD_SR0_INVCMD; fdctrl_set_fifo(fdctrl, 1, 0); } /* Seek to next sector */ static int fdctrl_seek_to_next_sect(fdctrl_t *fdctrl, fdrive_t *cur_drv) { FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); /* XXX: cur_drv->sect >= cur_drv->last_sect should be an error in fact */ if (cur_drv->sect >= cur_drv->last_sect || cur_drv->sect == fdctrl->eot) { cur_drv->sect = 1; if (FD_MULTI_TRACK(fdctrl->data_state)) { if (cur_drv->head == 0 && (cur_drv->flags & FDISK_DBL_SIDES) != 0) { cur_drv->head = 1; } else { cur_drv->head = 0; cur_drv->ltrk++; if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) return 0; } } else { cur_drv->ltrk++; return 0; } FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); } else { cur_drv->sect++; } return 1; } /* Callback for transfer end (stop or abort) */ static void fdctrl_stop_transfer_now(fdctrl_t *fdctrl, uint8_t status0, uint8_t status1, uint8_t status2) { fdrive_t *cur_drv; cur_drv = get_cur_drv(fdctrl); FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", status0, status1, status2, status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl)); fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); fdctrl->fifo[1] = status1; fdctrl->fifo[2] = status2; fdctrl->fifo[3] = cur_drv->ltrk; fdctrl->fifo[4] = cur_drv->head; fdctrl->fifo[5] = cur_drv->sect; fdctrl->fifo[6] = FD_SECTOR_SC; FLOPPY_DPRINTF("ST0:%02x ST1:%02x ST2:%02x C:%02x H:%02x R:%02x N:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2], fdctrl->fifo[3], fdctrl->fifo[4], fdctrl->fifo[5], fdctrl->fifo[6]); fdctrl->data_dir = FD_DIR_READ; if (!(fdctrl->msr & FD_MSR_NONDMA)) { PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 0); } fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; fdctrl->msr &= ~FD_MSR_NONDMA; fdctrl_set_fifo(fdctrl, 7, 1); } static void fdctrl_stop_transfer(fdctrl_t *fdctrl, uint8_t status0, uint8_t status1, uint8_t status2) { if (!fdctrl->uIrqDelayMsec) { /* If not IRQ delay needed, just stop the transfer and trigger IRQ now. */ fdctrl_stop_transfer_now(fdctrl, status0, status1, status2); } else { /* Otherwise schedule completion after a short while. */ fdctrl->st0 = status0; fdctrl->st1 = status1; fdctrl->st2 = status2; PDMDevHlpTimerSetMillies(fdctrl->pDevIns, fdctrl->hXferDelayTimer, fdctrl->uIrqDelayMsec); } } /* Prepare a data transfer (either DMA or FIFO) */ static void fdctrl_start_transfer(fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; uint8_t kh, kt, ks; int did_seek = 0; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[2]; kh = fdctrl->fifo[3]; ks = fdctrl->fifo[4]; FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv))); FLOPPY_DPRINTF("CMD:%02x SEL:%02x C:%02x H:%02x R:%02x N:%02x EOT:%02x GPL:%02x DTL:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2], fdctrl->fifo[3], fdctrl->fifo[4], fdctrl->fifo[5], fdctrl->fifo[6], fdctrl->fifo[7], fdctrl->fifo[8]); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 5: /* No disk in drive */ /// @todo This is wrong! Command should not complete. fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | 0x08, /*FD_SR1_MA |*/ FD_SR1_ND, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: did_seek = 1; break; default: break; } /* Check the data rate. If the programmed data rate does not match * the currently inserted medium, the operation has to fail. */ if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, FD_SR2_MD); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; } /* Set the FIFO state */ fdctrl->data_dir = direction; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY; if (fdctrl->fifo[0] & 0x80) fdctrl->data_state |= FD_STATE_MULTI; else fdctrl->data_state &= ~FD_STATE_MULTI; if (did_seek) fdctrl->data_state |= FD_STATE_SEEK; else fdctrl->data_state &= ~FD_STATE_SEEK; if (fdctrl->fifo[5] == 00) { fdctrl->data_len = fdctrl->fifo[8]; } else { int tmp; fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); tmp = (fdctrl->fifo[6] - ks + 1); if (fdctrl->fifo[0] & 0x80) tmp += fdctrl->fifo[6]; fdctrl->data_len *= tmp; } fdctrl->eot = fdctrl->fifo[6]; if (fdctrl->dor & FD_DOR_DMAEN) { int dma_mode; /* DMA transfer are enabled. Check if DMA channel is well programmed */ dma_mode = PDMDevHlpDMAGetChannelMode (fdctrl->pDevIns, fdctrl->dma_chann); dma_mode = (dma_mode >> 2) & 3; FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n", dma_mode, direction, (128 << fdctrl->fifo[5]) * (cur_drv->last_sect - ks + 1), fdctrl->data_len); if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL || direction == FD_DIR_SCANH) && dma_mode == 0) || (direction == FD_DIR_WRITE && dma_mode == 2) || (direction == FD_DIR_READ && (dma_mode == 1 || dma_mode == 0))) { /* No access is allowed until DMA transfer has completed */ fdctrl->msr &= ~FD_MSR_RQM; /* Now, we just have to wait for the DMA controller to * recall us... */ PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 1); PDMDevHlpDMASchedule (fdctrl->pDevIns); return; } else { FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction); } } FLOPPY_DPRINTF("start non-DMA transfer\n"); fdctrl->msr |= FD_MSR_NONDMA; if (direction != FD_DIR_WRITE) fdctrl->msr |= FD_MSR_DIO; /* IO based transfer: calculate len */ fdctrl_raise_irq(fdctrl, 0x00); return; } /* Prepare a format data transfer (either DMA or FIFO) */ static void fdctrl_start_format(fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint8_t ns, dp, kh, kt, ks; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = cur_drv->track; kh = (fdctrl->fifo[1] & 0x04) >> 2; ns = fdctrl->fifo[3]; dp = fdctrl->fifo[5]; ks = 1; FLOPPY_DPRINTF("Start format at %d %d %02x, %d sect, pat %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ns, dp, fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv))); switch (fd_seek(cur_drv, kh, kt, ks, false)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 5: /* No disk in drive */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: break; default: break; } /* It's not clear what should happen if the data rate does not match. */ #if 0 /* Check the data rate. If the programmed data rate does not match * the currently inserted medium, the operation has to fail. */ if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, FD_SR2_MD); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; } #endif /* Set the FIFO state */ fdctrl->data_dir = FD_DIR_FORMAT; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY; fdctrl->data_state &= ~(FD_STATE_MULTI | FD_STATE_SEEK); fdctrl->data_len = ns * 4; fdctrl->eot = ns; if (fdctrl->dor & FD_DOR_DMAEN) { int dma_mode; /* DMA transfer are enabled. Check if DMA channel is well programmed */ dma_mode = PDMDevHlpDMAGetChannelMode (fdctrl->pDevIns, fdctrl->dma_chann); dma_mode = (dma_mode >> 2) & 3; FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n", dma_mode, fdctrl->data_dir, (128 << fdctrl->fifo[2]) * (cur_drv->last_sect + 1), fdctrl->data_len); if (fdctrl->data_dir == FD_DIR_FORMAT && dma_mode == 2) { /* No access is allowed until DMA transfer has completed */ fdctrl->msr &= ~FD_MSR_RQM; /* Now, we just have to wait for the DMA controller to * recall us... */ PDMDevHlpDMASetDREQ (fdctrl->pDevIns, fdctrl->dma_chann, 1); PDMDevHlpDMASchedule (fdctrl->pDevIns); return; } else { FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, fdctrl->data_dir); } } FLOPPY_DPRINTF("start non-DMA format\n"); fdctrl->msr |= FD_MSR_NONDMA; /* IO based transfer: calculate len */ fdctrl_raise_irq(fdctrl, 0x00); return; } /* Prepare a transfer of deleted data */ static void fdctrl_start_transfer_del(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); FLOPPY_ERROR("fdctrl_start_transfer_del() unimplemented\n"); /* We don't handle deleted data, * so we don't return *ANYTHING* */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } /* Block driver read/write wrappers. */ static int blk_write(fdrive_t *drv, int64_t sector_num, const uint8_t *buf, int nb_sectors) { int rc; drv->Led.Asserted.s.fWriting = drv->Led.Actual.s.fWriting = 1; rc = drv->pDrvMedia->pfnWrite(drv->pDrvMedia, sector_num * FD_SECTOR_LEN, buf, nb_sectors * FD_SECTOR_LEN); drv->Led.Actual.s.fWriting = 0; if (RT_FAILURE(rc)) AssertMsgFailed(("Floppy: Failure to read sector %d. rc=%Rrc", sector_num, rc)); return rc; } static int blk_read(fdrive_t *drv, int64_t sector_num, uint8_t *buf, int nb_sectors) { int rc; drv->Led.Asserted.s.fReading = drv->Led.Actual.s.fReading = 1; rc = drv->pDrvMedia->pfnRead(drv->pDrvMedia, sector_num * FD_SECTOR_LEN, buf, nb_sectors * FD_SECTOR_LEN); drv->Led.Actual.s.fReading = 0; if (RT_FAILURE(rc)) AssertMsgFailed(("Floppy: Failure to read sector %d. rc=%Rrc", sector_num, rc)); return rc; } /** * @callback_method_impl{FNDMATRANSFERHANDLER, handlers for DMA transfers} */ static DECLCALLBACK(uint32_t) fdctrl_transfer_handler(PPDMDEVINS pDevIns, void *pvUser, unsigned uChannel, uint32_t off, uint32_t cb) { RT_NOREF(pDevIns, off); fdctrl_t *fdctrl; fdrive_t *cur_drv; int rc; uint32_t len = 0; uint32_t start_pos, rel_pos; uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; fdctrl = (fdctrl_t *)pvUser; if (fdctrl->msr & FD_MSR_RQM) { FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); return 0; } cur_drv = get_cur_drv(fdctrl); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SNS; if (cb > fdctrl->data_len) cb = fdctrl->data_len; if (cur_drv->pDrvMedia == NULL) { if (fdctrl->data_dir == FD_DIR_WRITE) fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); Assert(len == 0); goto transfer_error; } if (cur_drv->ro) { if (fdctrl->data_dir == FD_DIR_WRITE || fdctrl->data_dir == FD_DIR_FORMAT) { /* Handle readonly medium early, no need to do DMA, touch the * LED or attempt any writes. A real floppy doesn't attempt * to write to readonly media either. */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 0x00); Assert(len == 0); goto transfer_error; } } rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; for (start_pos = fdctrl->data_pos; fdctrl->data_pos < cb;) { len = cb - fdctrl->data_pos; if (len + rel_pos > FD_SECTOR_LEN) len = FD_SECTOR_LEN - rel_pos; FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x (%d-0x%08x 0x%08x)\n", len, cb, fdctrl->data_pos, fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv), fd_sector(cur_drv) * FD_SECTOR_LEN); if (fdctrl->data_dir != FD_DIR_FORMAT && (fdctrl->data_dir != FD_DIR_WRITE || len < FD_SECTOR_LEN || rel_pos != 0)) { /* READ & SCAN commands and realign to a sector for WRITE */ rc = blk_read(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); if (RT_FAILURE(rc)) { FLOPPY_DPRINTF("Floppy: error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } switch (fdctrl->data_dir) { case FD_DIR_READ: /* READ commands */ { uint32_t read; int rc2 = PDMDevHlpDMAWriteMemory(fdctrl->pDevIns, uChannel, fdctrl->fifo + rel_pos, fdctrl->data_pos, len, &read); AssertMsgRC (rc2, ("DMAWriteMemory -> %Rrc\n", rc2)); } break; case FD_DIR_WRITE: /* WRITE commands */ { uint32_t written; int rc2 = PDMDevHlpDMAReadMemory(fdctrl->pDevIns, uChannel, fdctrl->fifo + rel_pos, fdctrl->data_pos, len, &written); AssertMsgRC (rc2, ("DMAReadMemory -> %Rrc\n", rc2)); } rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); if (RT_FAILURE(rc)) { FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); goto transfer_error; } break; case FD_DIR_FORMAT: /* FORMAT command */ { uint8_t eot = fdctrl->fifo[3]; uint8_t filler = fdctrl->fifo[5]; uint32_t written; int sct; int rc2 = PDMDevHlpDMAReadMemory(fdctrl->pDevIns, uChannel, fdctrl->fifo + rel_pos, fdctrl->data_pos, len, &written); AssertMsgRC (rc2, ("DMAReadMemory -> %Rrc\n", rc2)); /* Fill the entire track with desired data pattern. */ FLOPPY_DPRINTF("formatting track: %d sectors, pattern %02x\n", eot, filler); memset(fdctrl->fifo, filler, FD_SECTOR_LEN); for (sct = 0; sct < eot; ++sct) { rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); if (RT_FAILURE(rc)) { FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); goto transfer_error; } fdctrl_seek_to_next_sect(fdctrl, cur_drv); } } break; default: /* SCAN commands */ { uint8_t tmpbuf[FD_SECTOR_LEN]; int ret; uint32_t read; int rc2 = PDMDevHlpDMAReadMemory(fdctrl->pDevIns, uChannel, tmpbuf, fdctrl->data_pos, len, &read); AssertMsg(RT_SUCCESS(rc2), ("DMAReadMemory -> %Rrc2\n", rc2)); NOREF(rc2); ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); if (ret == 0) { status2 = FD_SR2_SEH; goto end_transfer; } if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { status2 = 0x00; goto end_transfer; } } break; } fdctrl->data_pos += len; rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; if (rel_pos == 0) { /* Seek to next sector */ if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) break; } } end_transfer: len = fdctrl->data_pos - start_pos; FLOPPY_DPRINTF("end transfer %d %d %d\n", fdctrl->data_pos, len, fdctrl->data_len); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SEH; if (FD_DID_SEEK(fdctrl->data_state)) status0 |= FD_SR0_SEEK; fdctrl->data_len -= len; fdctrl_stop_transfer(fdctrl, status0, status1, status2); transfer_error: return len; } /* Data register : 0x05 */ static uint32_t fdctrl_read_data(fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint32_t retval = 0; unsigned pos; int rc; cur_drv = get_cur_drv(fdctrl); fdctrl->dsr &= ~FD_DSR_PWRDOWN; if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { FLOPPY_ERROR("controller not ready for reading\n"); return 0; } pos = fdctrl->data_pos % FD_SECTOR_LEN; if (fdctrl->msr & FD_MSR_NONDMA) { if (cur_drv->pDrvMedia == NULL) { if (fdctrl->data_dir == FD_DIR_WRITE) fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); } else if (pos == 0) { if (fdctrl->data_pos != 0) if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { FLOPPY_DPRINTF("error seeking to next sector %d\n", fd_sector(cur_drv)); return 0; } rc = blk_read(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); if (RT_FAILURE(rc)) { FLOPPY_DPRINTF("error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } } retval = fdctrl->fifo[pos]; if (++fdctrl->data_pos == fdctrl->data_len) { fdctrl->data_pos = 0; /* Switch from transfer mode to status mode * then from status mode to command mode */ if (fdctrl->msr & FD_MSR_NONDMA) { fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); } else { fdctrl_reset_fifo(fdctrl); fdctrl_reset_irq(fdctrl); } } FLOPPY_DPRINTF("data register: 0x%02x\n", retval); return retval; } static void fdctrl_format_sector(fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint8_t kh, kt, ks; int ok = 0, rc; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[6]; kh = fdctrl->fifo[7]; ks = fdctrl->fifo[8]; FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv))); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 5: /* No disk in drive */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: fdctrl->data_state |= FD_STATE_SEEK; break; default: break; } memset(fdctrl->fifo, 0, FD_SECTOR_LEN); if (cur_drv->pDrvMedia) { rc = blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); if (RT_FAILURE (rc)) { FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } else { ok = 1; } } if (ok) { if (cur_drv->sect == cur_drv->last_sect) { fdctrl->data_state &= ~FD_STATE_FORMAT; /* Last sector done */ if (FD_DID_SEEK(fdctrl->data_state)) fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } else { /* More to do */ fdctrl->data_pos = 0; fdctrl->data_len = 4; } } } static void fdctrl_handle_lock(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; fdctrl->fifo[0] = fdctrl->lock << 4; fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_dumpreg(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); /* Drives position */ fdctrl->fifo[0] = drv0(fdctrl)->track; fdctrl->fifo[1] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[2] = drv2(fdctrl)->track; fdctrl->fifo[3] = drv3(fdctrl)->track; #else fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; #endif /* timers */ fdctrl->fifo[4] = fdctrl->timer0; fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); fdctrl->fifo[6] = cur_drv->last_sect; fdctrl->fifo[7] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[8] = fdctrl->config; fdctrl->fifo[9] = fdctrl->precomp_trk; fdctrl_set_fifo(fdctrl, 10, 0); } static void fdctrl_handle_version(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); /* Controller's version */ fdctrl->fifo[0] = fdctrl->version; fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_partid(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdctrl->fifo[0] = 0x01; /* Stepping 1 */ fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_restore(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); /* Drives position */ drv0(fdctrl)->track = fdctrl->fifo[3]; drv1(fdctrl)->track = fdctrl->fifo[4]; #if MAX_FD == 4 drv2(fdctrl)->track = fdctrl->fifo[5]; drv3(fdctrl)->track = fdctrl->fifo[6]; #endif /* timers */ fdctrl->timer0 = fdctrl->fifo[7]; fdctrl->timer1 = fdctrl->fifo[8]; cur_drv->last_sect = fdctrl->fifo[9]; fdctrl->lock = fdctrl->fifo[10] >> 7; cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; fdctrl->config = fdctrl->fifo[11]; fdctrl->precomp_trk = fdctrl->fifo[12]; fdctrl->pwrd = fdctrl->fifo[13]; fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_save(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); fdctrl->fifo[0] = 0; fdctrl->fifo[1] = 0; /* Drives position */ fdctrl->fifo[2] = drv0(fdctrl)->track; fdctrl->fifo[3] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[4] = drv2(fdctrl)->track; fdctrl->fifo[5] = drv3(fdctrl)->track; #else fdctrl->fifo[4] = 0; fdctrl->fifo[5] = 0; #endif /* timers */ fdctrl->fifo[6] = fdctrl->timer0; fdctrl->fifo[7] = fdctrl->timer1; fdctrl->fifo[8] = cur_drv->last_sect; fdctrl->fifo[9] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[10] = fdctrl->config; fdctrl->fifo[11] = fdctrl->precomp_trk; fdctrl->fifo[12] = fdctrl->pwrd; fdctrl->fifo[13] = 0; fdctrl->fifo[14] = 0; fdctrl_set_fifo(fdctrl, 15, 0); } static void fdctrl_handle_readid(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); FLOPPY_DPRINTF("CMD:%02x SEL:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1]); fdctrl->msr &= ~FD_MSR_RQM; cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; PDMDevHlpTimerSetMillies(fdctrl->pDevIns, fdctrl->hResultTimer, 1000 / 50); } static void fdctrl_handle_format_track(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; uint8_t ns, dp; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl->data_state &= ~(FD_STATE_MULTI | FD_STATE_SEEK); ns = fdctrl->fifo[3]; dp = fdctrl->fifo[5]; FLOPPY_DPRINTF("Format track %d at %d, %d sectors, filler %02x\n", cur_drv->track, GET_CUR_DRV(fdctrl), ns, dp); FLOPPY_DPRINTF("CMD:%02x SEL:%02x N:%02x SC:%02x GPL:%02x D:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2], fdctrl->fifo[3], fdctrl->fifo[4], fdctrl->fifo[5]); /* Since we cannot actually format anything, we have to make sure that * whatever new format the guest is trying to establish matches the * existing format of the medium. */ if (cur_drv->last_sect != ns || fdctrl->fifo[2] != 2) fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_NW, 0); else { cur_drv->bps = fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; cur_drv->last_sect = ns; fdctrl_start_format(fdctrl); } } static void fdctrl_handle_specify(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; fdctrl->timer1 = fdctrl->fifo[2] >> 1; if (fdctrl->fifo[2] & 1) fdctrl->dor &= ~FD_DOR_DMAEN; else fdctrl->dor |= FD_DOR_DMAEN; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_sense_drive_status(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; /* 1 Byte status back */ fdctrl->fifo[0] = (cur_drv->ro << 6) | (cur_drv->track == 0 ? 0x10 : 0x00) | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl) | 0x28; fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_recalibrate(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; uint8_t st0; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fd_recalibrate(cur_drv); fdctrl_reset_fifo(fdctrl); st0 = FD_SR0_SEEK | GET_CUR_DRV(fdctrl); /* No drive means no TRK0 signal. */ if (cur_drv->drive == FDRIVE_DRV_NONE) st0 |= FD_SR0_ABNTERM | FD_SR0_EQPMT; /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, st0); } static void fdctrl_handle_sense_interrupt_status(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); FLOPPY_DPRINTF("CMD:%02x\n", fdctrl->fifo[0]); if(fdctrl->reset_sensei > 0) { fdctrl->fifo[0] = FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; fdctrl->reset_sensei--; } else { /* XXX: status0 handling is broken for read/write commands, so we do this hack. It should be suppressed ASAP */ fdctrl->fifo[0] = FD_SR0_SEEK | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); /* Hack to preserve SR0 on equipment check failures (no drive). */ if (fdctrl->status0 & FD_SR0_EQPMT) fdctrl->fifo[0] = fdctrl->status0; } fdctrl->fifo[1] = cur_drv->track; fdctrl_set_fifo(fdctrl, 2, 0); FLOPPY_DPRINTF("ST0:%02x PCN:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1]); fdctrl->status0 = FD_SR0_RDYCHG; } static void fdctrl_handle_seek(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; FLOPPY_DPRINTF("CMD:%02x SEL:%02x NCN:%02x\n", fdctrl->fifo[0], fdctrl->fifo[1], fdctrl->fifo[2]); SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl_reset_fifo(fdctrl); /* The seek command just sends step pulses to the drive and doesn't care if * there's a medium inserted or if it's banging the head against the drive. */ cur_drv->track = fdctrl->fifo[2]; cur_drv->ltrk = cur_drv->track; cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK | GET_CUR_DRV(fdctrl)); } static void fdctrl_handle_perpendicular_mode(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[1] & 0x80) cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_configure(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdctrl->config = fdctrl->fifo[2]; fdctrl->precomp_trk = fdctrl->fifo[3]; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_powerdown_mode(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdctrl->pwrd = fdctrl->fifo[1]; fdctrl->fifo[0] = fdctrl->fifo[1]; fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_option(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_drive_specification_command(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); /* fdrive_t *cur_drv = get_cur_drv(fdctrl); - unused */ /* This command takes a variable number of parameters. It can be terminated * at any time if the high bit of a parameter is set. Once there are 6 bytes * in the FIFO (command + 5 parameter bytes), data_len/data_pos will be 7. */ if (fdctrl->data_len == 7 || (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80)) { /* Command parameters done */ if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) { /* Data is echoed, but not stored! */ fdctrl->fifo[0] = fdctrl->data_len > 2 ? fdctrl->fifo[1] : 0; fdctrl->fifo[1] = fdctrl->data_len > 3 ? fdctrl->fifo[2] : 0; fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; fdctrl_set_fifo(fdctrl, 4, 0); } else { fdctrl_reset_fifo(fdctrl); } } else fdctrl->data_len++; /* Wait for another byte. */ } static void fdctrl_handle_relative_seek_out(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { cur_drv->track = cur_drv->max_track - 1; } else { cur_drv->track += fdctrl->fifo[2]; } fdctrl_reset_fifo(fdctrl); /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } static void fdctrl_handle_relative_seek_in(fdctrl_t *fdctrl, int direction) { RT_NOREF(direction); fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] > cur_drv->track) { cur_drv->track = 0; } else { cur_drv->track -= fdctrl->fifo[2]; } fdctrl_reset_fifo(fdctrl); /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } static const struct { uint8_t value; uint8_t mask; const char* name; int parameters; void (*handler)(fdctrl_t *fdctrl, int direction); int direction; } handlers[] = { { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, { FD_CMD_READ_TRACK, 0x9f, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented }, { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 1, fdctrl_handle_drive_specification_command }, { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ }; /* Associate command to an index in the 'handlers' array */ static uint8_t command_to_handler[256]; static void fdctrl_write_data(fdctrl_t *fdctrl, uint32_t value) { fdrive_t *cur_drv; int pos; cur_drv = get_cur_drv(fdctrl); /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { FLOPPY_ERROR("controller not ready for writing\n"); return; } fdctrl->dsr &= ~FD_DSR_PWRDOWN; /* Is it write command time ? */ if (fdctrl->msr & FD_MSR_NONDMA) { /* FIFO data write */ pos = fdctrl->data_pos++; pos %= FD_SECTOR_LEN; fdctrl->fifo[pos] = value; if (cur_drv->pDrvMedia == NULL) { if (fdctrl->data_dir == FD_DIR_WRITE) fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); } else if (pos == FD_SECTOR_LEN - 1 || fdctrl->data_pos == fdctrl->data_len) { blk_write(cur_drv, fd_sector(cur_drv), fdctrl->fifo, 1); } /* Switch from transfer mode to status mode * then from status mode to command mode */ if (fdctrl->data_pos == fdctrl->data_len) fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); return; } if (fdctrl->data_pos == 0) { /* Command */ fdctrl_reset_irq(fdctrl); /* If pending from previous seek/recalibrate. */ pos = command_to_handler[value & 0xff]; FLOPPY_DPRINTF("%s command\n", handlers[pos].name); fdctrl->data_len = handlers[pos].parameters + 1; fdctrl->msr |= FD_MSR_CMDBUSY; fdctrl->cur_cmd = value & 0xff; } FLOPPY_DPRINTF("%s: %02x\n", __FUNCTION__, value); fdctrl->fifo[fdctrl->data_pos++ % FD_SECTOR_LEN] = value; if (fdctrl->data_pos == fdctrl->data_len) { /* We now have all parameters * and will be able to treat the command */ if (fdctrl->data_state & FD_STATE_FORMAT) { fdctrl_format_sector(fdctrl); return; } pos = command_to_handler[fdctrl->fifo[0] & 0xff]; FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name); (*handlers[pos].handler)(fdctrl, handlers[pos].direction); } } /* -=-=-=-=-=-=-=-=- Timer Callback -=-=-=-=-=-=-=-=- */ /** * @callback_method_impl{FNTMTIMERDEV} */ static DECLCALLBACK(void) fdcTimerCallback(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { fdctrl_t *fdctrl = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); fdrive_t *cur_drv = get_cur_drv(fdctrl); RT_NOREF(hTimer, pvUser); /* Pretend we are spinning. * This is needed for Coherent, which uses READ ID to check for * sector interleaving. */ if (cur_drv->last_sect != 0) { cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; } /* READ_ID can't automatically succeed! */ if (!cur_drv->max_track) { FLOPPY_DPRINTF("read id when no disk in drive\n"); /// @todo This is wrong! Command should not complete. fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD); } else if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD); } else if (cur_drv->track >= cur_drv->max_track) { FLOPPY_DPRINTF("read id past last track (%d >= %d)\n", cur_drv->track, cur_drv->max_track); cur_drv->ltrk = 0; fdctrl_stop_transfer_now(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA | FD_SR1_ND, FD_SR2_MD); } else fdctrl_stop_transfer_now(fdctrl, 0x00, 0x00, 0x00); } /* -=-=-=-=-=-=-=-=- I/O Port Access Handlers -=-=-=-=-=-=-=-=- */ /** * @callback_method_impl{FNIOMIOPORTNEWOUT, Handling 0x3f0 accesses.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort0Write(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { RT_NOREF(pvUser); if (cb == 1) fdctrl_write(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), offPort, u32); else ASSERT_GUEST_MSG_FAILED(("offPort=%#x cb=%d u32=%#x\n", offPort, cb, u32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTNEWIN, Handling 0x3f0 accesses.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort0Read(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pvUser); if (cb == 1) { *pu32 = fdctrl_read(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), offPort); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * @callback_method_impl{FNIOMIOPORTNEWOUT, Handling 0x3f1..0x3f5 accesses.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort1Write(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { RT_NOREF(pvUser); if (cb == 1) fdctrl_write(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), offPort + 1, u32); else ASSERT_GUEST_MSG_FAILED(("offPort=%#x cb=%d u32=%#x\n", offPort, cb, u32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNTMTIMERDEV} */ static DECLCALLBACK(void) fdcTransferDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { fdctrl_t *fdctrl = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); RT_NOREF(pvUser, hTimer); fdctrl_stop_transfer_now(fdctrl, fdctrl->st0, fdctrl->st1, fdctrl->st2); } /** * @callback_method_impl{FNTMTIMERDEV} */ static DECLCALLBACK(void) fdcIrqDelayTimer(PPDMDEVINS pDevIns, TMTIMERHANDLE hTimer, void *pvUser) { fdctrl_t *fdctrl = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); RT_NOREF(pvUser, hTimer); fdctrl_raise_irq_now(fdctrl, fdctrl->st0); } /* -=-=-=-=-=-=-=-=- I/O Port Access Handlers -=-=-=-=-=-=-=-=- */ /** * @callback_method_impl{FNIOMIOPORTNEWIN, Handling 0x3f1..0x3f5 accesses.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort1Read(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pvUser); if (cb == 1) { *pu32 = fdctrl_read(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), offPort + 1); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /** * @callback_method_impl{FNIOMIOPORTNEWOUT, Handling 0x3f7 access.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort2Write(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t u32, unsigned cb) { RT_NOREF(offPort, pvUser); Assert(offPort == 0); if (cb == 1) fdctrl_write(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), 7, u32); else ASSERT_GUEST_MSG_FAILED(("offPort=%#x cb=%d u32=%#x\n", offPort, cb, u32)); return VINF_SUCCESS; } /** * @callback_method_impl{FNIOMIOPORTNEWIN, Handling 0x3f7 access.} */ static DECLCALLBACK(VBOXSTRICTRC) fdcIoPort2Read(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT offPort, uint32_t *pu32, unsigned cb) { RT_NOREF(pvUser, offPort); Assert(offPort == 0); if (cb == 1) { *pu32 = fdctrl_read(PDMDEVINS_2_DATA(pDevIns, fdctrl_t *), 7); return VINF_SUCCESS; } return VERR_IOM_IOPORT_UNUSED; } /* -=-=-=-=-=-=-=-=- Debugger callback -=-=-=-=-=-=-=-=- */ /** * FDC debugger info callback. * * @param pDevIns The device instance. * @param pHlp The output helpers. * @param pszArgs The arguments. */ static DECLCALLBACK(void) fdcInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs) { fdctrl_t *pThis = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); unsigned i; bool fVerbose = false; /* Parse arguments. */ if (pszArgs) fVerbose = strstr(pszArgs, "verbose") != NULL; /* Show basic information. */ pHlp->pfnPrintf(pHlp, "%s#%d: ", pDevIns->pReg->szName, pDevIns->iInstance); pHlp->pfnPrintf(pHlp, "I/O=%X IRQ=%u DMA=%u ", pThis->io_base, pThis->irq_lvl, pThis->dma_chann); pHlp->pfnPrintf(pHlp, "RC=%RTbool R0=%RTbool\n", pDevIns->fRCEnabled, pDevIns->fR0Enabled); /* Print register contents. */ pHlp->pfnPrintf(pHlp, "Registers: MSR=%02X DSR=%02X DOR=%02X\n", pThis->msr, pThis->dsr, pThis->dor); pHlp->pfnPrintf(pHlp, " DIR=%02X\n", fdctrl_read_dir(pThis)); /* Print the current command, if any. */ if (pThis->cur_cmd) pHlp->pfnPrintf(pHlp, "Curr cmd: %02X (%s)\n", pThis->cur_cmd, handlers[command_to_handler[pThis->cur_cmd]].name); if (pThis->prev_cmd) pHlp->pfnPrintf(pHlp, "Prev cmd: %02X (%s)\n", pThis->prev_cmd, handlers[command_to_handler[pThis->prev_cmd]].name); for (i = 0; i < pThis->num_floppies; ++i) { fdrive_t *drv = &pThis->drives[i]; pHlp->pfnPrintf(pHlp, " Drive %u state:\n", i); pHlp->pfnPrintf(pHlp, " Medium : %u tracks, %u sectors\n", drv->max_track, drv->last_sect); pHlp->pfnPrintf(pHlp, " Current: track %u, head %u, sector %u\n", drv->track, drv->head, drv->sect); } } /* -=-=-=-=-=-=-=-=- Saved state -=-=-=-=-=-=-=-=- */ /** * @callback_method_impl{FNSSMDEVSAVEEXEC} */ static DECLCALLBACK(int) fdcSaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM) { fdctrl_t *pThis = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; unsigned int i; int rc; /* Save the FDC I/O registers... */ pHlp->pfnSSMPutU8(pSSM, pThis->sra); pHlp->pfnSSMPutU8(pSSM, pThis->srb); pHlp->pfnSSMPutU8(pSSM, pThis->dor); pHlp->pfnSSMPutU8(pSSM, pThis->tdr); pHlp->pfnSSMPutU8(pSSM, pThis->dsr); pHlp->pfnSSMPutU8(pSSM, pThis->msr); /* ...the status registers... */ pHlp->pfnSSMPutU8(pSSM, pThis->status0); pHlp->pfnSSMPutU8(pSSM, pThis->status1); pHlp->pfnSSMPutU8(pSSM, pThis->status2); /* ...the command FIFO... */ pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->fifo)); pHlp->pfnSSMPutMem(pSSM, &pThis->fifo, sizeof(pThis->fifo)); pHlp->pfnSSMPutU32(pSSM, pThis->data_pos); pHlp->pfnSSMPutU32(pSSM, pThis->data_len); pHlp->pfnSSMPutU8(pSSM, pThis->data_state); pHlp->pfnSSMPutU8(pSSM, pThis->data_dir); /* ...and miscellaneous internal FDC state. */ pHlp->pfnSSMPutU8(pSSM, pThis->reset_sensei); pHlp->pfnSSMPutU8(pSSM, pThis->eot); pHlp->pfnSSMPutU8(pSSM, pThis->timer0); pHlp->pfnSSMPutU8(pSSM, pThis->timer1); pHlp->pfnSSMPutU8(pSSM, pThis->precomp_trk); pHlp->pfnSSMPutU8(pSSM, pThis->config); pHlp->pfnSSMPutU8(pSSM, pThis->lock); pHlp->pfnSSMPutU8(pSSM, pThis->pwrd); pHlp->pfnSSMPutU8(pSSM, pThis->version); /* Save the number of drives and per-drive state. Note that the media * states will be updated in fd_revalidate() and need not be saved. */ pHlp->pfnSSMPutU8(pSSM, pThis->num_floppies); Assert(RT_ELEMENTS(pThis->drives) == pThis->num_floppies); for (i = 0; i < pThis->num_floppies; ++i) { fdrive_t *d = &pThis->drives[i]; pHlp->pfnSSMPutMem(pSSM, &d->Led, sizeof(d->Led)); pHlp->pfnSSMPutU32(pSSM, d->drive); pHlp->pfnSSMPutU8(pSSM, d->dsk_chg); pHlp->pfnSSMPutU8(pSSM, d->perpendicular); pHlp->pfnSSMPutU8(pSSM, d->head); pHlp->pfnSSMPutU8(pSSM, d->track); pHlp->pfnSSMPutU8(pSSM, d->sect); } rc = pHlp->pfnTimerSave(pDevIns, pThis->hXferDelayTimer, pSSM); AssertRCReturn(rc, rc); rc = pHlp->pfnTimerSave(pDevIns, pThis->hIrqDelayTimer, pSSM); AssertRCReturn(rc, rc); return pHlp->pfnTimerSave(pDevIns, pThis->hResultTimer, pSSM); } /** * @callback_method_impl{FNSSMDEVLOADEXEC} */ static DECLCALLBACK(int) fdcLoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { fdctrl_t *pThis = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; unsigned int i; uint32_t val32; uint8_t val8; int rc; if (uVersion > FDC_SAVESTATE_CURRENT) return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); if (uVersion > FDC_SAVESTATE_OLD) { /* Load the FDC I/O registers... */ pHlp->pfnSSMGetU8(pSSM, &pThis->sra); pHlp->pfnSSMGetU8(pSSM, &pThis->srb); pHlp->pfnSSMGetU8(pSSM, &pThis->dor); pHlp->pfnSSMGetU8(pSSM, &pThis->tdr); pHlp->pfnSSMGetU8(pSSM, &pThis->dsr); pHlp->pfnSSMGetU8(pSSM, &pThis->msr); /* ...the status registers... */ pHlp->pfnSSMGetU8(pSSM, &pThis->status0); pHlp->pfnSSMGetU8(pSSM, &pThis->status1); pHlp->pfnSSMGetU8(pSSM, &pThis->status2); /* ...the command FIFO, if the size matches... */ rc = pHlp->pfnSSMGetU32(pSSM, &val32); AssertRCReturn(rc, rc); AssertMsgReturn(sizeof(pThis->fifo) == val32, ("The size of FIFO in saved state doesn't match!\n"), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); pHlp->pfnSSMGetMem(pSSM, &pThis->fifo, sizeof(pThis->fifo)); pHlp->pfnSSMGetU32(pSSM, &pThis->data_pos); pHlp->pfnSSMGetU32(pSSM, &pThis->data_len); pHlp->pfnSSMGetU8(pSSM, &pThis->data_state); pHlp->pfnSSMGetU8(pSSM, &pThis->data_dir); /* ...and miscellaneous internal FDC state. */ pHlp->pfnSSMGetU8(pSSM, &pThis->reset_sensei); pHlp->pfnSSMGetU8(pSSM, &pThis->eot); pHlp->pfnSSMGetU8(pSSM, &pThis->timer0); pHlp->pfnSSMGetU8(pSSM, &pThis->timer1); pHlp->pfnSSMGetU8(pSSM, &pThis->precomp_trk); pHlp->pfnSSMGetU8(pSSM, &pThis->config); pHlp->pfnSSMGetU8(pSSM, &pThis->lock); pHlp->pfnSSMGetU8(pSSM, &pThis->pwrd); pHlp->pfnSSMGetU8(pSSM, &pThis->version); /* Validate the number of drives. */ rc = pHlp->pfnSSMGetU8(pSSM, &pThis->num_floppies); AssertRCReturn(rc, rc); AssertMsgReturn(RT_ELEMENTS(pThis->drives) == pThis->num_floppies, ("The number of drives in saved state doesn't match!\n"), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); /* Load the per-drive state. */ for (i = 0; i < pThis->num_floppies; ++i) { fdrive_t *d = &pThis->drives[i]; pHlp->pfnSSMGetMem(pSSM, &d->Led, sizeof(d->Led)); rc = pHlp->pfnSSMGetU32(pSSM, &val32); AssertRCReturn(rc, rc); d->drive = (fdrive_type_t)val32; pHlp->pfnSSMGetU8(pSSM, &d->dsk_chg); pHlp->pfnSSMGetU8(pSSM, &d->perpendicular); pHlp->pfnSSMGetU8(pSSM, &d->head); pHlp->pfnSSMGetU8(pSSM, &d->track); pHlp->pfnSSMGetU8(pSSM, &d->sect); } if (uVersion > FDC_SAVESTATE_PRE_DELAY) { pHlp->pfnTimerLoad(pDevIns, pThis->hXferDelayTimer, pSSM); pHlp->pfnTimerLoad(pDevIns, pThis->hIrqDelayTimer, pSSM); } } else if (uVersion == FDC_SAVESTATE_OLD) { /* The old saved state was significantly different. However, we can get * back most of the controller state and fix the rest by pretending the * disk in the drive (if any) has been replaced. At any rate there should * be no difficulty unless the state was saved during a floppy operation. */ /* First verify a few assumptions. */ AssertMsgReturn(sizeof(pThis->fifo) == FD_SECTOR_LEN, ("The size of FIFO in saved state doesn't match!\n"), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); AssertMsgReturn(RT_ELEMENTS(pThis->drives) == 2, ("The number of drives in old saved state doesn't match!\n"), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); /* Now load the old state. */ pHlp->pfnSSMGetU8(pSSM, &pThis->version); /* Toss IRQ level, DMA channel, I/O base, and state. */ pHlp->pfnSSMGetU8(pSSM, &val8); pHlp->pfnSSMGetU8(pSSM, &val8); pHlp->pfnSSMGetU32(pSSM, &val32); pHlp->pfnSSMGetU8(pSSM, &val8); /* Translate dma_en. */ rc = pHlp->pfnSSMGetU8(pSSM, &val8); AssertRCReturn(rc, rc); if (val8) pThis->dor |= FD_DOR_DMAEN; pHlp->pfnSSMGetU8(pSSM, &pThis->cur_drv); /* Translate bootsel. */ rc = pHlp->pfnSSMGetU8(pSSM, &val8); AssertRCReturn(rc, rc); pThis->tdr |= val8 << 2; pHlp->pfnSSMGetMem(pSSM, &pThis->fifo, FD_SECTOR_LEN); pHlp->pfnSSMGetU32(pSSM, &pThis->data_pos); pHlp->pfnSSMGetU32(pSSM, &pThis->data_len); pHlp->pfnSSMGetU8(pSSM, &pThis->data_state); pHlp->pfnSSMGetU8(pSSM, &pThis->data_dir); pHlp->pfnSSMGetU8(pSSM, &pThis->status0); pHlp->pfnSSMGetU8(pSSM, &pThis->eot); pHlp->pfnSSMGetU8(pSSM, &pThis->timer0); pHlp->pfnSSMGetU8(pSSM, &pThis->timer1); pHlp->pfnSSMGetU8(pSSM, &pThis->precomp_trk); pHlp->pfnSSMGetU8(pSSM, &pThis->config); pHlp->pfnSSMGetU8(pSSM, &pThis->lock); pHlp->pfnSSMGetU8(pSSM, &pThis->pwrd); for (i = 0; i < 2; ++i) { fdrive_t *d = &pThis->drives[i]; pHlp->pfnSSMGetMem(pSSM, &d->Led, sizeof (d->Led)); rc = pHlp->pfnSSMGetU32(pSSM, &val32); d->drive = (fdrive_type_t)val32; AssertRCReturn(rc, rc); pHlp->pfnSSMGetU32(pSSM, &val32); /* Toss drflags */ pHlp->pfnSSMGetU8(pSSM, &d->perpendicular); pHlp->pfnSSMGetU8(pSSM, &d->head); pHlp->pfnSSMGetU8(pSSM, &d->track); pHlp->pfnSSMGetU8(pSSM, &d->sect); pHlp->pfnSSMGetU8(pSSM, &val8); /* Toss dir, rw */ pHlp->pfnSSMGetU8(pSSM, &val8); rc = pHlp->pfnSSMGetU32(pSSM, &val32); AssertRCReturn(rc, rc); d->flags = (fdrive_flags_t)val32; pHlp->pfnSSMGetU8(pSSM, &d->last_sect); pHlp->pfnSSMGetU8(pSSM, &d->max_track); pHlp->pfnSSMGetU16(pSSM, &d->bps); pHlp->pfnSSMGetU8(pSSM, &d->ro); } } else AssertFailedReturn(VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION); return pHlp->pfnTimerLoad(pDevIns, pThis->hResultTimer, pSSM); } /* -=-=-=-=-=-=-=-=- Drive level interfaces -=-=-=-=-=-=-=-=- */ /** * @interface_method_impl{PDMIMOUNTNOTIFY,pfnMountNotify} */ static DECLCALLBACK(void) fdMountNotify(PPDMIMOUNTNOTIFY pInterface) { fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IMountNotify); LogFlow(("fdMountNotify:\n")); fd_revalidate(pDrv); } /** * @interface_method_impl{PDMIMOUNTNOTIFY,pfnUnmountNotify} */ static DECLCALLBACK(void) fdUnmountNotify(PPDMIMOUNTNOTIFY pInterface) { fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IMountNotify); LogFlow(("fdUnmountNotify:\n")); fd_revalidate(pDrv); } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) fdQueryInterface (PPDMIBASE pInterface, const char *pszIID) { fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pDrv->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIMEDIAPORT, &pDrv->IPort); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIMOUNTNOTIFY, &pDrv->IMountNotify); return NULL; } /** * @interface_method_impl{PDMIMEDIAPORT,pfnQueryDeviceLocation} */ static DECLCALLBACK(int) fdQueryDeviceLocation(PPDMIMEDIAPORT pInterface, const char **ppcszController, uint32_t *piInstance, uint32_t *piLUN) { fdrive_t *pDrv = RT_FROM_MEMBER(pInterface, fdrive_t, IPort); PPDMDEVINS pDevIns = pDrv->pDevIns; AssertPtrReturn(ppcszController, VERR_INVALID_POINTER); AssertPtrReturn(piInstance, VERR_INVALID_POINTER); AssertPtrReturn(piLUN, VERR_INVALID_POINTER); *ppcszController = pDevIns->pReg->szName; *piInstance = pDevIns->iInstance; *piLUN = pDrv->iLUN; return VINF_SUCCESS; } /* -=-=-=-=-=-=-=-=- Controller level interfaces -=-=-=-=-=-=-=-=- */ /** * @interface_method_impl{PDMILEDPORTS,pfnQueryStatusLed} */ static DECLCALLBACK(int) fdcStatusQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { fdctrl_t *pThis = RT_FROM_MEMBER (pInterface, fdctrl_t, ILeds); if (iLUN < RT_ELEMENTS(pThis->drives)) { *ppLed = &pThis->drives[iLUN].Led; Assert ((*ppLed)->u32Magic == PDMLED_MAGIC); return VINF_SUCCESS; } return VERR_PDM_LUN_NOT_FOUND; } /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ static DECLCALLBACK(void *) fdcStatusQueryInterface(PPDMIBASE pInterface, const char *pszIID) { fdctrl_t *pThis = RT_FROM_MEMBER (pInterface, fdctrl_t, IBaseStatus); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBaseStatus); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds); return NULL; } /** * Configure a drive. * * @returns VBox status code. * @param drv The drive in question. * @param pDevIns The driver instance. * @param fInit Set if we're at init time and can change the drive type. */ static int fdConfig(fdrive_t *drv, PPDMDEVINS pDevIns, bool fInit) { static const char * const s_apszDesc[] = {"Floppy Drive A:", "Floppy Drive B"}; int rc; /* * Reset the LED just to be on the safe side. */ Assert (RT_ELEMENTS(s_apszDesc) > drv->iLUN); Assert (drv->Led.u32Magic == PDMLED_MAGIC); drv->Led.Actual.u32 = 0; drv->Led.Asserted.u32 = 0; /* * Try attach the block device and get the interfaces. */ rc = PDMDevHlpDriverAttach (pDevIns, drv->iLUN, &drv->IBase, &drv->pDrvBase, s_apszDesc[drv->iLUN]); if (RT_SUCCESS (rc)) { drv->pDrvMedia = PDMIBASE_QUERY_INTERFACE(drv->pDrvBase, PDMIMEDIA); if (drv->pDrvMedia) { drv->pDrvMount = PDMIBASE_QUERY_INTERFACE(drv->pDrvBase, PDMIMOUNT); if (drv->pDrvMount) { fd_init(drv, fInit); } else { AssertMsgFailed (("Configuration error: LUN#%d without mountable interface!\n", drv->iLUN)); rc = VERR_PDM_MISSING_INTERFACE; } } else { AssertMsgFailed (("Configuration error: LUN#%d hasn't a block interface!\n", drv->iLUN)); rc = VERR_PDM_MISSING_INTERFACE; } } else { AssertMsg (rc == VERR_PDM_NO_ATTACHED_DRIVER, ("Failed to attach LUN#%d. rc=%Rrc\n", drv->iLUN, rc)); switch (rc) { case VERR_ACCESS_DENIED: /* Error already cached by DrvHostBase */ break; case VERR_PDM_NO_ATTACHED_DRIVER: /* Legal on architectures without a floppy controller */ break; default: rc = PDMDevHlpVMSetError (pDevIns, rc, RT_SRC_POS, N_ ("The floppy controller cannot attach to the floppy drive")); break; } } if (RT_FAILURE (rc)) { drv->pDrvBase = NULL; drv->pDrvMedia = NULL; drv->pDrvMount = NULL; } LogFlow (("fdConfig: returns %Rrc\n", rc)); return rc; } /** * @interface_method_impl{PDMDEVREG,pfnAttach} * * This is called when we change block driver for a floppy drive. */ static DECLCALLBACK(int) fdcAttach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { fdctrl_t *fdctrl = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); fdrive_t *drv; int rc; LogFlow (("ideDetach: iLUN=%u\n", iLUN)); AssertMsgReturn(fFlags & PDM_TACH_FLAGS_NOT_HOT_PLUG, ("The FDC device does not support hotplugging\n"), VERR_INVALID_PARAMETER); /* * Validate. */ if (iLUN >= 2) { AssertMsgFailed (("Configuration error: cannot attach or detach any but the first two LUNs - iLUN=%u\n", iLUN)); return VERR_PDM_DEVINS_NO_ATTACH; } /* * Locate the drive and stuff. */ drv = &fdctrl->drives[iLUN]; /* the usual paranoia */ AssertRelease (!drv->pDrvBase); AssertRelease (!drv->pDrvMedia); AssertRelease (!drv->pDrvMount); rc = fdConfig (drv, pDevIns, false /*fInit*/); AssertMsg (rc != VERR_PDM_NO_ATTACHED_DRIVER, ("Configuration error: failed to configure drive %d, rc=%Rrc\n", iLUN, rc)); if (RT_SUCCESS(rc)) { fd_revalidate (drv); } LogFlow (("floppyAttach: returns %Rrc\n", rc)); return rc; } /** * @interface_method_impl{PDMDEVREG,pfnDetach} * * The floppy drive has been temporarily 'unplugged'. */ static DECLCALLBACK(void) fdcDetach(PPDMDEVINS pDevIns, unsigned iLUN, uint32_t fFlags) { RT_NOREF(fFlags); fdctrl_t *pThis = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); LogFlow (("ideDetach: iLUN=%u\n", iLUN)); switch (iLUN) { case 0: case 1: { fdrive_t *drv = &pThis->drives[iLUN]; drv->pDrvBase = NULL; drv->pDrvMedia = NULL; drv->pDrvMount = NULL; break; } default: AssertMsgFailed(("Cannot detach LUN#%d!\n", iLUN)); break; } } /** * @interface_method_impl{PDMDEVREG,pfnReset} * * I haven't check the specs on what's supposed to happen on reset, but we * should get any 'FATAL: floppy recal:f07 ctrl not ready' when resetting * at wrong time like we do if this was all void. */ static DECLCALLBACK(void) fdcReset(PPDMDEVINS pDevIns) { fdctrl_t *pThis = PDMDEVINS_2_DATA (pDevIns, fdctrl_t *); unsigned i; LogFlow (("fdcReset:\n")); fdctrl_reset(pThis, 0); for (i = 0; i < RT_ELEMENTS(pThis->drives); i++) fd_revalidate(&pThis->drives[i]); } /** * @interface_method_impl{PDMDEVREG,pfnConstruct} */ static DECLCALLBACK(int) fdcConstruct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg) { PDMDEV_CHECK_VERSIONS_RETURN(pDevIns); fdctrl_t *pThis = PDMDEVINS_2_DATA(pDevIns, fdctrl_t *); PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3; int rc; RT_NOREF(iInstance); Assert(iInstance == 0); /* * Validate configuration. */ PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "IRQ|DMA|MemMapped|IOBase|StatusA|IRQDelay", ""); /* * Read the configuration. */ rc = pHlp->pfnCFGMQueryU8Def(pCfg, "IRQ", &pThis->irq_lvl, 6); AssertMsgRCReturn(rc, ("Configuration error: Failed to read U8 IRQ, rc=%Rrc\n", rc), rc); rc = pHlp->pfnCFGMQueryU8Def(pCfg, "DMA", &pThis->dma_chann, 2); AssertMsgRCReturn(rc, ("Configuration error: Failed to read U8 DMA, rc=%Rrc\n", rc), rc); rc = pHlp->pfnCFGMQueryU16Def(pCfg, "IOBase", &pThis->io_base, 0x3f0); AssertMsgRCReturn(rc, ("Configuration error: Failed to read U16 IOBase, rc=%Rrc\n", rc), rc); bool fMemMapped; rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "MemMapped", &fMemMapped, false); AssertMsgRCReturn(rc, ("Configuration error: Failed to read bool value MemMapped rc=%Rrc\n", rc), rc); uint16_t uIrqDelay; rc = pHlp->pfnCFGMQueryU16Def(pCfg, "IRQDelay", &uIrqDelay, 0); AssertMsgRCReturn(rc, ("Configuration error: Failed to read U16 IRQDelay, rc=%Rrc\n", rc), rc); bool fStatusA; rc = pHlp->pfnCFGMQueryBoolDef(pCfg, "StatusA", &fStatusA, false); AssertMsgRCReturn(rc, ("Configuration error: Failed to read bool value fStatusA rc=%Rrc\n", rc), rc); /* * Initialize data. */ LogFlow(("fdcConstruct: irq_lvl=%d dma_chann=%d io_base=%#x\n", pThis->irq_lvl, pThis->dma_chann, pThis->io_base)); pThis->pDevIns = pDevIns; pThis->version = 0x90; /* Intel 82078 controller */ pThis->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ pThis->num_floppies = MAX_FD; pThis->hIoPorts0 = NIL_IOMMMIOHANDLE; pThis->hIoPorts1 = NIL_IOMMMIOHANDLE; pThis->hIoPorts2 = NIL_IOMMMIOHANDLE; /* Fill 'command_to_handler' lookup table */ for (int ii = RT_ELEMENTS(handlers) - 1; ii >= 0; ii--) for (unsigned j = 0; j < sizeof(command_to_handler); j++) if ((j & handlers[ii].mask) == handlers[ii].value) command_to_handler[j] = ii; pThis->IBaseStatus.pfnQueryInterface = fdcStatusQueryInterface; pThis->ILeds.pfnQueryStatusLed = fdcStatusQueryStatusLed; for (unsigned i = 0; i < RT_ELEMENTS(pThis->drives); ++i) { fdrive_t *pDrv = &pThis->drives[i]; pDrv->drive = FDRIVE_DRV_NONE; pDrv->iLUN = i; pDrv->pDevIns = pDevIns; pDrv->IBase.pfnQueryInterface = fdQueryInterface; pDrv->IMountNotify.pfnMountNotify = fdMountNotify; pDrv->IMountNotify.pfnUnmountNotify = fdUnmountNotify; pDrv->IPort.pfnQueryDeviceLocation = fdQueryDeviceLocation; pDrv->Led.u32Magic = PDMLED_MAGIC; } /* * Create the FDC timer. */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL, fdcTimerCallback, pThis, TMTIMER_FLAGS_DEFAULT_CRIT_SECT | TMTIMER_FLAGS_NO_RING0, "FDC Timer", &pThis->hResultTimer); AssertRCReturn(rc, rc); /* * Create the transfer delay timer. */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, fdcTransferDelayTimer, pThis, TMTIMER_FLAGS_DEFAULT_CRIT_SECT | TMTIMER_FLAGS_NO_RING0, "FDC Transfer Delay", &pThis->hXferDelayTimer); AssertRCReturn(rc, rc); /* * Create the IRQ delay timer. */ rc = PDMDevHlpTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, fdcIrqDelayTimer, pThis, TMTIMER_FLAGS_DEFAULT_CRIT_SECT | TMTIMER_FLAGS_NO_RING0, "FDC IRQ Delay", &pThis->hIrqDelayTimer); AssertRCReturn(rc, rc); pThis->uIrqDelayMsec = uIrqDelay; /* * Register DMA channel. */ if (pThis->dma_chann != 0xff) { rc = PDMDevHlpDMARegister(pDevIns, pThis->dma_chann, &fdctrl_transfer_handler, pThis); AssertRCReturn(rc, rc); } /* * IO / MMIO. * * We must skip I/O port 0x3f6 as it is the ATA alternate status register. * Why we skip registering status register A, though, isn't as clear. */ if (!fMemMapped) { static const IOMIOPORTDESC s_aDescs[] = { { "SRA", NULL, "Status register A", NULL }, { "SRB", NULL, "Status register B", NULL }, { "DOR", "DOR", "Digital output register", "Digital output register"}, { "TDR", "TDR", "Tape driver register", "Tape driver register"}, { "MSR", "DSR", "Main status register", "Datarate select register" }, { "FIFO", "FIFO", "Data FIFO", "Data FIFO" }, { "ATA", "ATA", NULL, NULL }, { "DIR", "CCR", "Digital input register", "Configuration control register"}, { NULL, NULL, NULL, NULL } }; /* 0x3f0 */ if (fStatusA) { rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->io_base, 1 /*cPorts*/, fdcIoPort0Write, fdcIoPort0Read, "FDC-SRA", s_aDescs, &pThis->hIoPorts0); AssertRCReturn(rc, rc); } /* 0x3f1..0x3f5 */ rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->io_base + 0x1, 5, fdcIoPort1Write, fdcIoPort1Read, "FDC#1", &s_aDescs[1], &pThis->hIoPorts1); AssertRCReturn(rc, rc); /* 0x3f7 */ rc = PDMDevHlpIoPortCreateAndMap(pDevIns, pThis->io_base + 0x7, 1, fdcIoPort2Write, fdcIoPort2Read, "FDC#2", &s_aDescs[7], &pThis->hIoPorts2); AssertRCReturn(rc, rc); } else AssertMsgFailedReturn(("Memory mapped floppy not support by now\n"), VERR_NOT_SUPPORTED); /* * Register the saved state data unit. */ rc = PDMDevHlpSSMRegister(pDevIns, FDC_SAVESTATE_CURRENT, sizeof(*pThis), fdcSaveExec, fdcLoadExec); AssertRCReturn(rc, rc); /* * Register the debugger info callback. */ PDMDevHlpDBGFInfoRegister(pDevIns, "fdc", "FDC info", fdcInfo); /* * Attach the status port (optional). */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pThis->IBaseStatus, &pBase, "Status Port"); if (RT_SUCCESS (rc)) pThis->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); else AssertMsgReturn(rc == VERR_PDM_NO_ATTACHED_DRIVER, ("Failed to attach to status driver. rc=%Rrc\n", rc), rc); /* * Initialize drives. */ for (unsigned i = 0; i < RT_ELEMENTS(pThis->drives); i++) { rc = fdConfig(&pThis->drives[i], pDevIns, true /*fInit*/); AssertMsgReturn(RT_SUCCESS(rc) || rc == VERR_PDM_NO_ATTACHED_DRIVER, ("Configuration error: failed to configure drive %d, rc=%Rrc\n", i, rc), rc); } fdctrl_reset(pThis, 0); for (unsigned i = 0; i < RT_ELEMENTS(pThis->drives); i++) fd_revalidate(&pThis->drives[i]); return VINF_SUCCESS; } /** * The device registration structure. */ const PDMDEVREG g_DeviceFloppyController = { /* .u32Version = */ PDM_DEVREG_VERSION, /* .uReserved0 = */ 0, /* .szName = */ "i82078", /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_NEW_STYLE, /* .fClass = */ PDM_DEVREG_CLASS_STORAGE, /* .cMaxInstances = */ 1, /* .uSharedVersion = */ 42, /* .cbInstanceShared = */ sizeof(fdctrl_t), /* .cbInstanceCC = */ 0, /* .cbInstanceRC = */ 0, /* .cMaxPciDevices = */ 0, /* .cMaxMsixVectors = */ 0, /* .pszDescription = */ "Floppy drive controller (Intel 82078)", #if defined(IN_RING3) /* .pszRCMod = */ "", /* .pszR0Mod = */ "", /* .pfnConstruct = */ fdcConstruct, /* .pfnDestruct = */ NULL, /* .pfnRelocate = */ NULL, /* .pfnMemSetup = */ NULL, /* .pfnPowerOn = */ NULL, /* .pfnReset = */ fdcReset, /* .pfnSuspend = */ NULL, /* .pfnResume = */ NULL, /* .pfnAttach = */ fdcAttach, /* .pfnDetach = */ fdcDetach, /* .pfnQueryInterface = */ NULL, /* .pfnInitComplete = */ NULL, /* .pfnPowerOff = */ NULL, /* .pfnSoftReset = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RING0) /* .pfnEarlyConstruct = */ NULL, /* .pfnConstruct = */ NULL, /* .pfnDestruct = */ NULL, /* .pfnFinalDestruct = */ NULL, /* .pfnRequest = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #elif defined(IN_RC) /* .pfnConstruct = */ NULL, /* .pfnReserved0 = */ NULL, /* .pfnReserved1 = */ NULL, /* .pfnReserved2 = */ NULL, /* .pfnReserved3 = */ NULL, /* .pfnReserved4 = */ NULL, /* .pfnReserved5 = */ NULL, /* .pfnReserved6 = */ NULL, /* .pfnReserved7 = */ NULL, #else # error "Not in IN_RING3, IN_RING0 or IN_RC!" #endif /* .u32VersionEnd = */ PDM_DEVREG_VERSION }; /* * Local Variables: * mode: c * c-file-style: "k&r" * indent-tabs-mode: nil * End: */