/* $Id: Virtio.cpp 64393 2016-10-24 14:42:05Z vboxsync $ */ /** @file * Virtio - Virtio Common Functions (VRing, VQueue, Virtio PCI) */ /* * Copyright (C) 2009-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_VIRTIO #include #include #include #include "Virtio.h" #define INSTANCE(pState) pState->szInstance #define IFACE_TO_STATE(pIface, ifaceName) ((VPCISTATE *)((char*)pIface - RT_OFFSETOF(VPCISTATE, ifaceName))) #ifdef LOG_ENABLED # define QUEUENAME(s, q) (q->pcszName) #endif #ifndef VBOX_DEVICE_STRUCT_TESTCASE //RT_C_DECLS_BEGIN //RT_C_DECLS_END static void vqueueReset(PVQUEUE pQueue) { pQueue->VRing.addrDescriptors = 0; pQueue->VRing.addrAvail = 0; pQueue->VRing.addrUsed = 0; pQueue->uNextAvailIndex = 0; pQueue->uNextUsedIndex = 0; pQueue->uPageNumber = 0; } static void vqueueInit(PVQUEUE pQueue, uint32_t uPageNumber) { pQueue->VRing.addrDescriptors = (uint64_t)uPageNumber << PAGE_SHIFT; pQueue->VRing.addrAvail = pQueue->VRing.addrDescriptors + sizeof(VRINGDESC) * pQueue->VRing.uSize; pQueue->VRing.addrUsed = RT_ALIGN( pQueue->VRing.addrAvail + RT_OFFSETOF(VRINGAVAIL, auRing[pQueue->VRing.uSize]), PAGE_SIZE); /* The used ring must start from the next page. */ pQueue->uNextAvailIndex = 0; pQueue->uNextUsedIndex = 0; } // void vqueueElemFree(PVQUEUEELEM pElem) // { // } void vringReadDesc(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex, PVRINGDESC pDesc) { //Log(("%s vringReadDesc: ring=%p idx=%u\n", INSTANCE(pState), pVRing, uIndex)); PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pVRing->addrDescriptors + sizeof(VRINGDESC) * (uIndex % pVRing->uSize), pDesc, sizeof(VRINGDESC)); } uint16_t vringReadAvail(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex) { uint16_t tmp; PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pVRing->addrAvail + RT_OFFSETOF(VRINGAVAIL, auRing[uIndex % pVRing->uSize]), &tmp, sizeof(tmp)); return tmp; } uint16_t vringReadAvailFlags(PVPCISTATE pState, PVRING pVRing) { uint16_t tmp; PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pVRing->addrAvail + RT_OFFSETOF(VRINGAVAIL, uFlags), &tmp, sizeof(tmp)); return tmp; } void vringSetNotification(PVPCISTATE pState, PVRING pVRing, bool fEnabled) { uint16_t tmp; PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uFlags), &tmp, sizeof(tmp)); if (fEnabled) tmp &= ~ VRINGUSED_F_NO_NOTIFY; else tmp |= VRINGUSED_F_NO_NOTIFY; PDMDevHlpPCIPhysWrite(pState->CTX_SUFF(pDevIns), pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uFlags), &tmp, sizeof(tmp)); } bool vqueueSkip(PVPCISTATE pState, PVQUEUE pQueue) { if (vqueueIsEmpty(pState, pQueue)) return false; Log2(("%s vqueueSkip: %s avail_idx=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pQueue->uNextAvailIndex)); pQueue->uNextAvailIndex++; return true; } bool vqueueGet(PVPCISTATE pState, PVQUEUE pQueue, PVQUEUEELEM pElem, bool fRemove) { if (vqueueIsEmpty(pState, pQueue)) return false; pElem->nIn = pElem->nOut = 0; Log2(("%s vqueueGet: %s avail_idx=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pQueue->uNextAvailIndex)); VRINGDESC desc; uint16_t idx = vringReadAvail(pState, &pQueue->VRing, pQueue->uNextAvailIndex); if (fRemove) pQueue->uNextAvailIndex++; pElem->uIndex = idx; do { VQUEUESEG *pSeg; /* * Malicious guests may try to trick us into writing beyond aSegsIn or * aSegsOut boundaries by linking several descriptors into a loop. We * cannot possibly get a sequence of linked descriptors exceeding the * total number of descriptors in the ring (see @bugref{8620}). */ if (pElem->nIn + pElem->nOut >= VRING_MAX_SIZE) { static volatile uint32_t s_cMessages = 0; static volatile uint32_t s_cThreshold = 1; if (ASMAtomicIncU32(&s_cMessages) == ASMAtomicReadU32(&s_cThreshold)) { LogRel(("%s: too many linked descriptors; check if the guest arranges descriptors in a loop.\n", INSTANCE(pState))); if (ASMAtomicReadU32(&s_cMessages) != 1) LogRel(("%s: (the above error has occured %u times so far)\n", INSTANCE(pState), ASMAtomicReadU32(&s_cMessages))); ASMAtomicWriteU32(&s_cThreshold, ASMAtomicReadU32(&s_cThreshold) * 10); } break; } vringReadDesc(pState, &pQueue->VRing, idx, &desc); if (desc.u16Flags & VRINGDESC_F_WRITE) { Log2(("%s vqueueGet: %s IN seg=%u desc_idx=%u addr=%p cb=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pElem->nIn, idx, desc.u64Addr, desc.uLen)); pSeg = &pElem->aSegsIn[pElem->nIn++]; } else { Log2(("%s vqueueGet: %s OUT seg=%u desc_idx=%u addr=%p cb=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pElem->nOut, idx, desc.u64Addr, desc.uLen)); pSeg = &pElem->aSegsOut[pElem->nOut++]; } pSeg->addr = desc.u64Addr; pSeg->cb = desc.uLen; pSeg->pv = NULL; idx = desc.u16Next; } while (desc.u16Flags & VRINGDESC_F_NEXT); Log2(("%s vqueueGet: %s head_desc_idx=%u nIn=%u nOut=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pElem->uIndex, pElem->nIn, pElem->nOut)); return true; } uint16_t vringReadUsedIndex(PVPCISTATE pState, PVRING pVRing) { uint16_t tmp; PDMDevHlpPhysRead(pState->CTX_SUFF(pDevIns), pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uIndex), &tmp, sizeof(tmp)); return tmp; } void vringWriteUsedIndex(PVPCISTATE pState, PVRING pVRing, uint16_t u16Value) { PDMDevHlpPCIPhysWrite(pState->CTX_SUFF(pDevIns), pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, uIndex), &u16Value, sizeof(u16Value)); } void vringWriteUsedElem(PVPCISTATE pState, PVRING pVRing, uint32_t uIndex, uint32_t uId, uint32_t uLen) { VRINGUSEDELEM elem; elem.uId = uId; elem.uLen = uLen; PDMDevHlpPCIPhysWrite(pState->CTX_SUFF(pDevIns), pVRing->addrUsed + RT_OFFSETOF(VRINGUSED, aRing[uIndex % pVRing->uSize]), &elem, sizeof(elem)); } void vqueuePut(PVPCISTATE pState, PVQUEUE pQueue, PVQUEUEELEM pElem, uint32_t uLen, uint32_t uReserved) { unsigned int i, uOffset, cbReserved = uReserved; Log2(("%s vqueuePut: %s desc_idx=%u acb=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pElem->uIndex, uLen)); for (i = uOffset = 0; i < pElem->nIn && uOffset < uLen - uReserved; i++) { uint32_t cbSegLen = RT_MIN(uLen - cbReserved - uOffset, pElem->aSegsIn[i].cb - cbReserved); if (pElem->aSegsIn[i].pv) { Log2(("%s vqueuePut: %s used_idx=%u seg=%u addr=%p pv=%p cb=%u acb=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pQueue->uNextUsedIndex, i, pElem->aSegsIn[i].addr, pElem->aSegsIn[i].pv, pElem->aSegsIn[i].cb, cbSegLen)); PDMDevHlpPCIPhysWrite(pState->CTX_SUFF(pDevIns), pElem->aSegsIn[i].addr + cbReserved, pElem->aSegsIn[i].pv, cbSegLen); cbReserved = 0; } uOffset += cbSegLen; } Assert((uReserved + uOffset) == uLen || pElem->nIn == 0); Log2(("%s vqueuePut: %s used_idx=%u guest_used_idx=%u id=%u len=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), pQueue->uNextUsedIndex, vringReadUsedIndex(pState, &pQueue->VRing), pElem->uIndex, uLen)); vringWriteUsedElem(pState, &pQueue->VRing, pQueue->uNextUsedIndex++, pElem->uIndex, uLen); } void vqueueNotify(PVPCISTATE pState, PVQUEUE pQueue) { LogFlow(("%s vqueueNotify: %s availFlags=%x guestFeatures=%x vqueue is %sempty\n", INSTANCE(pState), QUEUENAME(pState, pQueue), vringReadAvailFlags(pState, &pQueue->VRing), pState->uGuestFeatures, vqueueIsEmpty(pState, pQueue)?"":"not ")); if (!(vringReadAvailFlags(pState, &pQueue->VRing) & VRINGAVAIL_F_NO_INTERRUPT) || ((pState->uGuestFeatures & VPCI_F_NOTIFY_ON_EMPTY) && vqueueIsEmpty(pState, pQueue))) { int rc = vpciRaiseInterrupt(pState, VERR_INTERNAL_ERROR, VPCI_ISR_QUEUE); if (RT_FAILURE(rc)) Log(("%s vqueueNotify: Failed to raise an interrupt (%Rrc).\n", INSTANCE(pState), rc)); } else { STAM_COUNTER_INC(&pState->StatIntsSkipped); } } void vqueueSync(PVPCISTATE pState, PVQUEUE pQueue) { Log2(("%s vqueueSync: %s old_used_idx=%u new_used_idx=%u\n", INSTANCE(pState), QUEUENAME(pState, pQueue), vringReadUsedIndex(pState, &pQueue->VRing), pQueue->uNextUsedIndex)); vringWriteUsedIndex(pState, &pQueue->VRing, pQueue->uNextUsedIndex); vqueueNotify(pState, pQueue); } void vpciReset(PVPCISTATE pState) { pState->uGuestFeatures = 0; pState->uQueueSelector = 0; pState->uStatus = 0; pState->uISR = 0; for (unsigned i = 0; i < pState->nQueues; i++) vqueueReset(&pState->Queues[i]); } /** * Raise interrupt. * * @param pState The device state structure. * @param rcBusy Status code to return when the critical section is busy. * @param u8IntCause Interrupt cause bit mask to set in PCI ISR port. */ int vpciRaiseInterrupt(VPCISTATE *pState, int rcBusy, uint8_t u8IntCause) { RT_NOREF_PV(rcBusy); // int rc = vpciCsEnter(pState, rcBusy); // if (RT_UNLIKELY(rc != VINF_SUCCESS)) // return rc; STAM_COUNTER_INC(&pState->StatIntsRaised); LogFlow(("%s vpciRaiseInterrupt: u8IntCause=%x\n", INSTANCE(pState), u8IntCause)); pState->uISR |= u8IntCause; PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 1); // vpciCsLeave(pState); return VINF_SUCCESS; } /** * Lower interrupt. * * @param pState The device state structure. */ static void vpciLowerInterrupt(VPCISTATE *pState) { LogFlow(("%s vpciLowerInterrupt\n", INSTANCE(pState))); PDMDevHlpPCISetIrq(pState->CTX_SUFF(pDevIns), 0, 0); } DECLINLINE(uint32_t) vpciGetHostFeatures(PVPCISTATE pState, PFNGETHOSTFEATURES pfnGetHostFeatures) { return pfnGetHostFeatures(pState) | VPCI_F_NOTIFY_ON_EMPTY; } /** * Port I/O Handler for IN operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser Pointer to the device state structure. * @param Port Port number used for the IN operation. * @param pu32 Where to store the result. * @param cb Number of bytes read. * @param pCallbacks Pointer to the callbacks. * @thread EMT */ int vpciIOPortIn(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t *pu32, unsigned cb, PCVPCIIOCALLBACKS pCallbacks) { VPCISTATE *pState = PDMINS_2_DATA(pDevIns, VPCISTATE *); int rc = VINF_SUCCESS; STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIORead), a); RT_NOREF_PV(pvUser); /* * We probably do not need to enter critical section when reading registers * as the most of them are either constant or being changed during * initialization only, the exception being ISR which can be raced by all * threads but I see no big harm in it. It also happens to be the most read * register as it gets read in interrupt handler. By dropping cs protection * here we gain the ability to deliver RX packets to the guest while TX is * holding cs transmitting queued packets. * rc = vpciCsEnter(pState, VINF_IOM_R3_IOPORT_READ); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIORead), a); return rc; }*/ Port -= pState->IOPortBase; switch (Port) { case VPCI_HOST_FEATURES: /* Tell the guest what features we support. */ *pu32 = vpciGetHostFeatures(pState, pCallbacks->pfnGetHostFeatures) | VPCI_F_BAD_FEATURE; break; case VPCI_GUEST_FEATURES: *pu32 = pState->uGuestFeatures; break; case VPCI_QUEUE_PFN: *pu32 = pState->Queues[pState->uQueueSelector].uPageNumber; break; case VPCI_QUEUE_NUM: Assert(cb == 2); *(uint16_t*)pu32 = pState->Queues[pState->uQueueSelector].VRing.uSize; break; case VPCI_QUEUE_SEL: Assert(cb == 2); *(uint16_t*)pu32 = pState->uQueueSelector; break; case VPCI_STATUS: Assert(cb == 1); *(uint8_t*)pu32 = pState->uStatus; break; case VPCI_ISR: Assert(cb == 1); *(uint8_t*)pu32 = pState->uISR; pState->uISR = 0; /* read clears all interrupts */ vpciLowerInterrupt(pState); break; default: if (Port >= VPCI_CONFIG) rc = pCallbacks->pfnGetConfig(pState, Port - VPCI_CONFIG, cb, pu32); else { *pu32 = 0xFFFFFFFF; rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s vpciIOPortIn: no valid port at offset port=%RTiop cb=%08x\n", INSTANCE(pState), Port, cb); } break; } Log3(("%s vpciIOPortIn: At %RTiop in %0*x\n", INSTANCE(pState), Port, cb*2, *pu32)); STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIORead), a); //vpciCsLeave(pState); return rc; } /** * Port I/O Handler for OUT operations. * * @returns VBox status code. * * @param pDevIns The device instance. * @param pvUser User argument. * @param Port Port number used for the IN operation. * @param u32 The value to output. * @param cb The value size in bytes. * @param pCallbacks Pointer to the callbacks. * @thread EMT */ int vpciIOPortOut(PPDMDEVINS pDevIns, void *pvUser, RTIOPORT Port, uint32_t u32, unsigned cb, PCVPCIIOCALLBACKS pCallbacks) { VPCISTATE *pState = PDMINS_2_DATA(pDevIns, VPCISTATE *); int rc = VINF_SUCCESS; bool fHasBecomeReady; STAM_PROFILE_ADV_START(&pState->CTXSUFF(StatIOWrite), a); RT_NOREF_PV(pvUser); Port -= pState->IOPortBase; Log3(("%s virtioIOPortOut: At %RTiop out %0*x\n", INSTANCE(pState), Port, cb*2, u32)); switch (Port) { case VPCI_GUEST_FEATURES: /* Check if the guest negotiates properly, fall back to basics if it does not. */ if (VPCI_F_BAD_FEATURE & u32) { Log(("%s WARNING! Guest failed to negotiate properly (guest=%x)\n", INSTANCE(pState), u32)); pState->uGuestFeatures = pCallbacks->pfnGetHostMinimalFeatures(pState); } /* The guest may potentially desire features we don't support! */ else if (~vpciGetHostFeatures(pState, pCallbacks->pfnGetHostFeatures) & u32) { Log(("%s Guest asked for features host does not support! (host=%x guest=%x)\n", INSTANCE(pState), vpciGetHostFeatures(pState, pCallbacks->pfnGetHostFeatures), u32)); pState->uGuestFeatures = vpciGetHostFeatures(pState, pCallbacks->pfnGetHostFeatures); } else pState->uGuestFeatures = u32; pCallbacks->pfnSetHostFeatures(pState, pState->uGuestFeatures); break; case VPCI_QUEUE_PFN: /* * The guest is responsible for allocating the pages for queues, * here it provides us with the page number of descriptor table. * Note that we provide the size of the queue to the guest via * VIRTIO_PCI_QUEUE_NUM. */ pState->Queues[pState->uQueueSelector].uPageNumber = u32; if (u32) vqueueInit(&pState->Queues[pState->uQueueSelector], u32); else rc = pCallbacks->pfnReset(pState); break; case VPCI_QUEUE_SEL: Assert(cb == 2); u32 &= 0xFFFF; if (u32 < pState->nQueues) pState->uQueueSelector = u32; else Log3(("%s vpciIOPortOut: Invalid queue selector %08x\n", INSTANCE(pState), u32)); break; case VPCI_QUEUE_NOTIFY: #ifdef IN_RING3 Assert(cb == 2); u32 &= 0xFFFF; if (u32 < pState->nQueues) if (pState->Queues[u32].VRing.addrDescriptors) { // rc = vpciCsEnter(pState, VERR_SEM_BUSY); // if (RT_LIKELY(rc == VINF_SUCCESS)) // { pState->Queues[u32].pfnCallback(pState, &pState->Queues[u32]); // vpciCsLeave(pState); // } } else Log(("%s The queue (#%d) being notified has not been initialized.\n", INSTANCE(pState), u32)); else Log(("%s Invalid queue number (%d)\n", INSTANCE(pState), u32)); #else rc = VINF_IOM_R3_IOPORT_WRITE; #endif break; case VPCI_STATUS: Assert(cb == 1); u32 &= 0xFF; fHasBecomeReady = !(pState->uStatus & VPCI_STATUS_DRV_OK) && (u32 & VPCI_STATUS_DRV_OK); pState->uStatus = u32; /* Writing 0 to the status port triggers device reset. */ if (u32 == 0) rc = pCallbacks->pfnReset(pState); else if (fHasBecomeReady) pCallbacks->pfnReady(pState); break; default: if (Port >= VPCI_CONFIG) rc = pCallbacks->pfnSetConfig(pState, Port - VPCI_CONFIG, cb, &u32); else rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "%s vpciIOPortOut: no valid port at offset Port=%RTiop cb=%08x\n", INSTANCE(pState), Port, cb); break; } STAM_PROFILE_ADV_STOP(&pState->CTXSUFF(StatIOWrite), a); return rc; } #ifdef IN_RING3 /** * @interface_method_impl{PDMIBASE,pfnQueryInterface} */ void *vpciQueryInterface(struct PDMIBASE *pInterface, const char *pszIID) { VPCISTATE *pThis = IFACE_TO_STATE(pInterface, IBase); Assert(&pThis->IBase == pInterface); PDMIBASE_RETURN_INTERFACE(pszIID, PDMIBASE, &pThis->IBase); PDMIBASE_RETURN_INTERFACE(pszIID, PDMILEDPORTS, &pThis->ILeds); return NULL; } /** * Gets the pointer to the status LED of a unit. * * @returns VBox status code. * @param pInterface Pointer to the interface structure. * @param iLUN The unit which status LED we desire. * @param ppLed Where to store the LED pointer. * @thread EMT */ static DECLCALLBACK(int) vpciQueryStatusLed(PPDMILEDPORTS pInterface, unsigned iLUN, PPDMLED *ppLed) { VPCISTATE *pState = IFACE_TO_STATE(pInterface, ILeds); int rc = VERR_PDM_LUN_NOT_FOUND; if (iLUN == 0) { *ppLed = &pState->led; rc = VINF_SUCCESS; } return rc; } /** * Turns on/off the write status LED. * * @returns VBox status code. * @param pState Pointer to the device state structure. * @param fOn New LED state. */ void vpciSetWriteLed(PVPCISTATE pState, bool fOn) { LogFlow(("%s vpciSetWriteLed: %s\n", INSTANCE(pState), fOn?"on":"off")); if (fOn) pState->led.Asserted.s.fWriting = pState->led.Actual.s.fWriting = 1; else pState->led.Actual.s.fWriting = fOn; } /** * Turns on/off the read status LED. * * @returns VBox status code. * @param pState Pointer to the device state structure. * @param fOn New LED state. */ void vpciSetReadLed(PVPCISTATE pState, bool fOn) { LogFlow(("%s vpciSetReadLed: %s\n", INSTANCE(pState), fOn?"on":"off")); if (fOn) pState->led.Asserted.s.fReading = pState->led.Actual.s.fReading = 1; else pState->led.Actual.s.fReading = fOn; } #if 0 /* unused */ /** * Sets 32-bit register in PCI configuration space. * @param refPciDev The PCI device. * @param uOffset The register offset. * @param u32Value The value to store in the register. * @thread EMT */ DECLINLINE(void) vpciCfgSetU32(PDMPCIDEV& refPciDev, uint32_t uOffset, uint32_t u32Value) { Assert(uOffset+sizeof(u32Value) <= sizeof(refPciDev.config)); *(uint32_t*)&refPciDev.config[uOffset] = u32Value; } #endif /* unused */ #ifdef DEBUG static void vpciDumpState(PVPCISTATE pState, const char *pcszCaller) { Log2(("vpciDumpState: (called from %s)\n" " uGuestFeatures = 0x%08x\n" " uQueueSelector = 0x%04x\n" " uStatus = 0x%02x\n" " uISR = 0x%02x\n", pcszCaller, pState->uGuestFeatures, pState->uQueueSelector, pState->uStatus, pState->uISR)); for (unsigned i = 0; i < pState->nQueues; i++) Log2((" %s queue:\n" " VRing.uSize = %u\n" " VRing.addrDescriptors = %p\n" " VRing.addrAvail = %p\n" " VRing.addrUsed = %p\n" " uNextAvailIndex = %u\n" " uNextUsedIndex = %u\n" " uPageNumber = %x\n", pState->Queues[i].pcszName, pState->Queues[i].VRing.uSize, pState->Queues[i].VRing.addrDescriptors, pState->Queues[i].VRing.addrAvail, pState->Queues[i].VRing.addrUsed, pState->Queues[i].uNextAvailIndex, pState->Queues[i].uNextUsedIndex, pState->Queues[i].uPageNumber)); } #else # define vpciDumpState(x, s) do {} while (0) #endif /** * Saves the state of device. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSM The handle to the saved state. */ int vpciSaveExec(PVPCISTATE pState, PSSMHANDLE pSSM) { int rc; vpciDumpState(pState, "vpciSaveExec"); rc = SSMR3PutU32(pSSM, pState->uGuestFeatures); AssertRCReturn(rc, rc); rc = SSMR3PutU16(pSSM, pState->uQueueSelector); AssertRCReturn(rc, rc); rc = SSMR3PutU8( pSSM, pState->uStatus); AssertRCReturn(rc, rc); rc = SSMR3PutU8( pSSM, pState->uISR); AssertRCReturn(rc, rc); /* Save queue states */ rc = SSMR3PutU32(pSSM, pState->nQueues); AssertRCReturn(rc, rc); for (unsigned i = 0; i < pState->nQueues; i++) { rc = SSMR3PutU16(pSSM, pState->Queues[i].VRing.uSize); AssertRCReturn(rc, rc); rc = SSMR3PutU32(pSSM, pState->Queues[i].uPageNumber); AssertRCReturn(rc, rc); rc = SSMR3PutU16(pSSM, pState->Queues[i].uNextAvailIndex); AssertRCReturn(rc, rc); rc = SSMR3PutU16(pSSM, pState->Queues[i].uNextUsedIndex); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Loads a saved device state. * * @returns VBox status code. * @param pDevIns The device instance. * @param pSSM The handle to the saved state. * @param uVersion The data unit version number. * @param uPass The data pass. */ int vpciLoadExec(PVPCISTATE pState, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass, uint32_t nQueues) { int rc; if (uPass == SSM_PASS_FINAL) { /* Restore state data */ rc = SSMR3GetU32(pSSM, &pState->uGuestFeatures); AssertRCReturn(rc, rc); rc = SSMR3GetU16(pSSM, &pState->uQueueSelector); AssertRCReturn(rc, rc); rc = SSMR3GetU8( pSSM, &pState->uStatus); AssertRCReturn(rc, rc); rc = SSMR3GetU8( pSSM, &pState->uISR); AssertRCReturn(rc, rc); /* Restore queues */ if (uVersion > VIRTIO_SAVEDSTATE_VERSION_3_1_BETA1) { rc = SSMR3GetU32(pSSM, &pState->nQueues); AssertRCReturn(rc, rc); } else pState->nQueues = nQueues; for (unsigned i = 0; i < pState->nQueues; i++) { rc = SSMR3GetU16(pSSM, &pState->Queues[i].VRing.uSize); AssertRCReturn(rc, rc); rc = SSMR3GetU32(pSSM, &pState->Queues[i].uPageNumber); AssertRCReturn(rc, rc); if (pState->Queues[i].uPageNumber) vqueueInit(&pState->Queues[i], pState->Queues[i].uPageNumber); rc = SSMR3GetU16(pSSM, &pState->Queues[i].uNextAvailIndex); AssertRCReturn(rc, rc); rc = SSMR3GetU16(pSSM, &pState->Queues[i].uNextUsedIndex); AssertRCReturn(rc, rc); } } vpciDumpState(pState, "vpciLoadExec"); return VINF_SUCCESS; } /** * Set PCI configuration space registers. * * @param pci Reference to PCI device structure. * @param uDeviceId VirtiO Device Id * @param uClass Class of PCI device (network, etc) * @thread EMT */ static DECLCALLBACK(void) vpciConfigure(PDMPCIDEV& pci, uint16_t uDeviceId, uint16_t uClass) { /* Configure PCI Device, assume 32-bit mode ******************************/ PCIDevSetVendorId(&pci, DEVICE_PCI_VENDOR_ID); PCIDevSetDeviceId(&pci, DEVICE_PCI_BASE_ID + uDeviceId); PDMPciDevSetWord(&pci, VBOX_PCI_SUBSYSTEM_VENDOR_ID, DEVICE_PCI_SUBSYSTEM_VENDOR_ID); PDMPciDevSetWord(&pci, VBOX_PCI_SUBSYSTEM_ID, DEVICE_PCI_SUBSYSTEM_BASE_ID + uDeviceId); /* ABI version, must be equal 0 as of 2.6.30 kernel. */ PDMPciDevSetByte(&pci, VBOX_PCI_REVISION_ID, 0x00); /* Ethernet adapter */ PDMPciDevSetByte(&pci, VBOX_PCI_CLASS_PROG, 0x00); PDMPciDevSetWord(&pci, VBOX_PCI_CLASS_DEVICE, uClass); /* Interrupt Pin: INTA# */ PDMPciDevSetByte(&pci, VBOX_PCI_INTERRUPT_PIN, 0x01); #ifdef VBOX_WITH_MSI_DEVICES PCIDevSetCapabilityList(&pci, 0x80); PCIDevSetStatus( &pci, VBOX_PCI_STATUS_CAP_LIST); #endif } #ifdef VBOX_WITH_STATISTICS /* WARNING! This function must never be used in multithreaded context! */ static const char *vpciCounter(const char *pszDevFmt, const char *pszCounter) { static char s_szCounterName[80]; RTStrPrintf(s_szCounterName, sizeof(s_szCounterName), "/Devices/%s/%s", pszDevFmt, pszCounter); return s_szCounterName; } #endif /// @todo header int vpciConstruct(PPDMDEVINS pDevIns, VPCISTATE *pState, int iInstance, const char *pcszNameFmt, uint16_t uDeviceId, uint16_t uClass, uint32_t nQueues) { /* Init handles and log related stuff. */ RTStrPrintf(pState->szInstance, sizeof(pState->szInstance), pcszNameFmt, iInstance); pState->pDevInsR3 = pDevIns; pState->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns); pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); pState->led.u32Magic = PDMLED_MAGIC; pState->ILeds.pfnQueryStatusLed = vpciQueryStatusLed; /* Initialize critical section. */ int rc = PDMDevHlpCritSectInit(pDevIns, &pState->cs, RT_SRC_POS, "%s", pState->szInstance); if (RT_FAILURE(rc)) return rc; /* Set PCI config registers */ vpciConfigure(pState->pciDevice, uDeviceId, uClass); /* Register PCI device */ rc = PDMDevHlpPCIRegister(pDevIns, &pState->pciDevice); if (RT_FAILURE(rc)) return rc; #ifdef VBOX_WITH_MSI_DEVICES #if 0 { PDMMSIREG aMsiReg; RT_ZERO(aMsiReg); aMsiReg.cMsixVectors = 1; aMsiReg.iMsixCapOffset = 0x80; aMsiReg.iMsixNextOffset = 0x0; aMsiReg.iMsixBar = 0; rc = PDMDevHlpPCIRegisterMsi(pDevIns, &aMsiReg); if (RT_FAILURE (rc)) PCIDevSetCapabilityList(&pState->pciDevice, 0x0); } #endif #endif /* Status driver */ PPDMIBASE pBase; rc = PDMDevHlpDriverAttach(pDevIns, PDM_STATUS_LUN, &pState->IBase, &pBase, "Status Port"); if (RT_FAILURE(rc)) return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to attach the status LUN")); pState->pLedsConnector = PDMIBASE_QUERY_INTERFACE(pBase, PDMILEDCONNECTORS); pState->nQueues = nQueues; #if defined(VBOX_WITH_STATISTICS) PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in GC", vpciCounter(pcszNameFmt, "IO/ReadGC"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOReadHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO reads in HC", vpciCounter(pcszNameFmt, "IO/ReadHC"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in GC", vpciCounter(pcszNameFmt, "IO/WriteGC"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIOWriteHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling IO writes in HC", vpciCounter(pcszNameFmt, "IO/WriteHC"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsRaised, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of raised interrupts", vpciCounter(pcszNameFmt, "Interrupts/Raised"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatIntsSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped interrupts", vpciCounter(pcszNameFmt, "Interrupts/Skipped"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatCsGC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling CS wait in GC", vpciCounter(pcszNameFmt, "Cs/CsGC"), iInstance); PDMDevHlpSTAMRegisterF(pDevIns, &pState->StatCsHC, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "Profiling CS wait in HC", vpciCounter(pcszNameFmt, "Cs/CsHC"), iInstance); #endif /* VBOX_WITH_STATISTICS */ return rc; } /** * Destruct PCI-related part of device. * * We need to free non-VM resources only. * * @returns VBox status code. * @param pState The device state structure. */ int vpciDestruct(VPCISTATE* pState) { Log(("%s Destroying PCI instance\n", INSTANCE(pState))); if (PDMCritSectIsInitialized(&pState->cs)) PDMR3CritSectDelete(&pState->cs); return VINF_SUCCESS; } /** * Device relocation callback. * * When this callback is called the device instance data, and if the * device have a GC component, is being relocated, or/and the selectors * have been changed. The device must use the chance to perform the * necessary pointer relocations and data updates. * * Before the GC code is executed the first time, this function will be * called with a 0 delta so GC pointer calculations can be one in one place. * * @param pDevIns Pointer to the device instance. * @param offDelta The relocation delta relative to the old location. * * @remark A relocation CANNOT fail. */ void vpciRelocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta) { RT_NOREF(offDelta); VPCISTATE *pState = PDMINS_2_DATA(pDevIns, VPCISTATE*); pState->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns); // TBD } PVQUEUE vpciAddQueue(VPCISTATE* pState, unsigned uSize, PFNVPCIQUEUECALLBACK pfnCallback, const char *pcszName) { PVQUEUE pQueue = NULL; /* Find an empty queue slot */ for (unsigned i = 0; i < pState->nQueues; i++) { if (pState->Queues[i].VRing.uSize == 0) { pQueue = &pState->Queues[i]; break; } } if (!pQueue) { Log(("%s Too many queues being added, no empty slots available!\n", INSTANCE(pState))); } else { pQueue->VRing.uSize = uSize; pQueue->VRing.addrDescriptors = 0; pQueue->uPageNumber = 0; pQueue->pfnCallback = pfnCallback; pQueue->pcszName = pcszName; } return pQueue; } #endif /* IN_RING3 */ #endif /* VBOX_DEVICE_STRUCT_TESTCASE */