/** @file * * VBox frontends: VBoxManage (command-line interface): * VBoxInternalManage * * VBoxInternalManage used to be a second CLI for doing special tricks, * not intended for general usage, only for assisting VBox developers. * It is now integrated into VBoxManage. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "VBoxManage.h" /* Includes for the raw disk stuff. */ #ifdef RT_OS_WINDOWS #include #include #elif defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) #include #include #include #include #include #include #endif #ifdef RT_OS_LINUX #include #include #include #endif /* RT_OS_LINUX */ #ifdef RT_OS_DARWIN #include #endif /* RT_OS_DARWIN */ #ifdef RT_OS_SOLARIS #include #include #include #endif /* RT_OS_SOLARIS */ using namespace com; /** Macro for checking whether a partition is of extended type or not. */ #define PARTTYPE_IS_EXTENDED(x) ((x) == 0x05 || (x) == 0x0f || (x) == 0x85) /* Maximum number of partitions we can deal with. Ridiculously large number, * but the memory consumption is rather low so who cares about never using * most entries. */ #define HOSTPARTITION_MAX 100 typedef struct HOSTPARTITION { unsigned uIndex; unsigned uType; unsigned uStartCylinder; unsigned uStartHead; unsigned uStartSector; unsigned uEndCylinder; unsigned uEndHead; unsigned uEndSector; uint64_t uStart; uint64_t uSize; uint64_t uPartDataStart; uint64_t cPartDataSectors; } HOSTPARTITION, *PHOSTPARTITION; typedef struct HOSTPARTITIONS { unsigned cPartitions; HOSTPARTITION aPartitions[HOSTPARTITION_MAX]; } HOSTPARTITIONS, *PHOSTPARTITIONS; /** flag whether we're in internal mode */ bool g_fInternalMode; /** * Print the usage info. */ void printUsageInternal(USAGECATEGORY u64Cmd) { RTPrintf("Usage: VBoxManage internalcommands [command arguments]\n" "\n" "Commands:\n" "\n" "%s%s%s%s%s%s%s%s" "WARNING: This is a development tool and shall only be used to analyse\n" " problems. It is completely unsupported and will change in\n" " incompatible ways without warning.\n", (u64Cmd & USAGE_LOADSYMS) ? " loadsyms | [delta] [module] [module address]\n" " This will instruct DBGF to load the given symbolfile\n" " during initialization.\n" "\n" : "", (u64Cmd & USAGE_UNLOADSYMS) ? " unloadsyms | \n" " Removes from the list of symbol files that\n" " should be loaded during DBF initialization.\n" "\n" : "", (u64Cmd & USAGE_SETVDIUUID) ? " setvdiuuid \n" " Assigns a new UUID to the given VDI file. This way, multiple copies\n" " of VDI containers can be registered.\n" "\n" : "", (u64Cmd & USAGE_LISTPARTITIONS) ? " listpartitions -rawdisk \n" " Lists all partitions on .\n" "\n" : "", (u64Cmd & USAGE_CREATERAWVMDK) ? " createrawvmdk -filename -rawdisk \n" " [-partitions [-mbr ] ]\n" " [-register] [-relative]\n" " Creates a new VMDK image which gives access to an entite host disk (if\n" " the parameter -partitions is not specified) or some partitions of a\n" " host disk. If access to individual partitions is granted, then the\n" " parameter -mbr can be used to specify an alternative MBR to be used\n" " (the partitioning information in the MBR file is ignored).\n" " The diskname is on Linux e.g. /dev/sda, and on Windows e.g.\n" " \\\\.\\PhysicalDrive0).\n" " On Linux host the parameter -relative causes a VMDK file to be created\n" " which refers to individual partitions instead to the entire disk.\n" " Optionally the created image can be immediately registered.\n" " The necessary partition numbers can be queried with\n" " VBoxManage internalcommands listpartitions\n" "\n" : "", (u64Cmd & USAGE_RENAMEVMDK) ? " renamevmdk -from -to \n" " Renames an existing VMDK image, including the base file and all its extents.\n" "\n" : "", (u64Cmd & USAGE_CONVERTTORAW) ? " converttoraw [-format ] " #ifdef ENABLE_CONVERT_RAW_TO_STDOUT "|stdout" #endif /* ENABLE_CONVERT_RAW_TO_STDOUT */ "\n" " Convert image to raw, writing to file" #ifdef ENABLE_CONVERT_RAW_TO_STDOUT " or stdout" #endif /* ENABLE_CONVERT_RAW_TO_STDOUT */ ".\n" "\n" : "", (u64Cmd & USAGE_CONVERTDISK) ? " convertdisk [-srcformat ] [-dstformat ] " "\n" " Convert image to another image format.\n" "\n" : "", #ifdef RT_OS_WINDOWS (u64Cmd & USAGE_MODINSTALL) ? " modinstall\n" " Installs the neccessary driver for the host OS\n" "\n" : "", (u64Cmd & USAGE_MODUNINSTALL) ? " moduninstall\n" " Deinstalls the driver\n" "\n" : "" #else "", "" #endif ); } /** @todo this is no longer necessary, we can enumerate extra data */ /** * Finds a new unique key name. * * I don't think this is 100% race condition proof, but we assumes * the user is not trying to push this point. * * @returns Result from the insert. * @param pMachine The Machine object. * @param pszKeyBase The base key. * @param rKey Reference to the string object in which we will return the key. */ static HRESULT NewUniqueKey(ComPtr pMachine, const char *pszKeyBase, Utf8Str &rKey) { Bstr Keys; HRESULT hrc = pMachine->GetExtraData(Bstr(pszKeyBase), Keys.asOutParam()); if (FAILED(hrc)) return hrc; /* if there are no keys, it's simple. */ if (Keys.isEmpty()) { rKey = "1"; return pMachine->SetExtraData(Bstr(pszKeyBase), Bstr("1")); } /* find a unique number - brute force rulez. */ Utf8Str KeysUtf8(Keys); const char *pszKeys = RTStrStripL(KeysUtf8.raw()); for (unsigned i = 1; i < 1000000; i++) { char szKey[32]; size_t cchKey = RTStrPrintf(szKey, sizeof(szKey), "%#x", i); const char *psz = strstr(pszKeys, szKey); while (psz) { if ( ( psz == pszKeys || psz[-1] == ' ') && ( psz[cchKey] == ' ' || !psz[cchKey]) ) break; psz = strstr(psz + cchKey, szKey); } if (!psz) { rKey = szKey; Utf8StrFmt NewKeysUtf8("%s %s", pszKeys, szKey); return pMachine->SetExtraData(Bstr(pszKeyBase), Bstr(NewKeysUtf8)); } } RTPrintf("Error: Cannot find unique key for '%s'!\n", pszKeyBase); return E_FAIL; } #if 0 /** * Remove a key. * * I don't think this isn't 100% race condition proof, but we assumes * the user is not trying to push this point. * * @returns Result from the insert. * @param pMachine The machine object. * @param pszKeyBase The base key. * @param pszKey The key to remove. */ static HRESULT RemoveKey(ComPtr pMachine, const char *pszKeyBase, const char *pszKey) { Bstr Keys; HRESULT hrc = pMachine->GetExtraData(Bstr(pszKeyBase), Keys.asOutParam()); if (FAILED(hrc)) return hrc; /* if there are no keys, it's simple. */ if (Keys.isEmpty()) return S_OK; char *pszKeys; int rc = RTUtf16ToUtf8(Keys.raw(), &pszKeys); if (RT_SUCCESS(rc)) { /* locate it */ size_t cchKey = strlen(pszKey); char *psz = strstr(pszKeys, pszKey); while (psz) { if ( ( psz == pszKeys || psz[-1] == ' ') && ( psz[cchKey] == ' ' || !psz[cchKey]) ) break; psz = strstr(psz + cchKey, pszKey); } if (psz) { /* remove it */ char *pszNext = RTStrStripL(psz + cchKey); if (*pszNext) memmove(psz, pszNext, strlen(pszNext) + 1); else *psz = '\0'; psz = RTStrStrip(pszKeys); /* update */ hrc = pMachine->SetExtraData(Bstr(pszKeyBase), Bstr(psz)); } RTStrFree(pszKeys); return hrc; } else RTPrintf("error: failed to delete key '%s' from '%s', string conversion error %Vrc!\n", pszKey, pszKeyBase, rc); return E_FAIL; } #endif /** * Sets a key value, does necessary error bitching. * * @returns COM status code. * @param pMachine The Machine object. * @param pszKeyBase The key base. * @param pszKey The key. * @param pszAttribute The attribute name. * @param pszValue The string value. */ static HRESULT SetString(ComPtr pMachine, const char *pszKeyBase, const char *pszKey, const char *pszAttribute, const char *pszValue) { HRESULT hrc = pMachine->SetExtraData(Bstr(Utf8StrFmt("%s/%s/%s", pszKeyBase, pszKey, pszAttribute)), Bstr(pszValue)); if (FAILED(hrc)) RTPrintf("error: Failed to set '%s/%s/%s' to '%s'! hrc=%#x\n", pszKeyBase, pszKey, pszAttribute, pszValue, hrc); return hrc; } /** * Sets a key value, does necessary error bitching. * * @returns COM status code. * @param pMachine The Machine object. * @param pszKeyBase The key base. * @param pszKey The key. * @param pszAttribute The attribute name. * @param u64Value The value. */ static HRESULT SetUInt64(ComPtr pMachine, const char *pszKeyBase, const char *pszKey, const char *pszAttribute, uint64_t u64Value) { char szValue[64]; RTStrPrintf(szValue, sizeof(szValue), "%#RX64", u64Value); return SetString(pMachine, pszKeyBase, pszKey, pszAttribute, szValue); } /** * Sets a key value, does necessary error bitching. * * @returns COM status code. * @param pMachine The Machine object. * @param pszKeyBase The key base. * @param pszKey The key. * @param pszAttribute The attribute name. * @param i64Value The value. */ static HRESULT SetInt64(ComPtr pMachine, const char *pszKeyBase, const char *pszKey, const char *pszAttribute, int64_t i64Value) { char szValue[64]; RTStrPrintf(szValue, sizeof(szValue), "%RI64", i64Value); return SetString(pMachine, pszKeyBase, pszKey, pszAttribute, szValue); } /** * Identical to the 'loadsyms' command. */ static int CmdLoadSyms(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { HRESULT rc; /* * Get the VM */ ComPtr machine; /* assume it's a UUID */ rc = aVirtualBox->GetMachine(Guid(argv[0]), machine.asOutParam()); if (FAILED(rc) || !machine) { /* must be a name */ CHECK_ERROR_RET(aVirtualBox, FindMachine(Bstr(argv[0]), machine.asOutParam()), 1); } /* * Parse the command. */ const char *pszFilename; int64_t offDelta = 0; const char *pszModule = NULL; uint64_t ModuleAddress = ~0; uint64_t ModuleSize = 0; /* filename */ if (argc < 2) return errorArgument("Missing the filename argument!\n"); pszFilename = argv[1]; /* offDelta */ if (argc >= 3) { int rc = RTStrToInt64Ex(argv[2], NULL, 0, &offDelta); if (VBOX_FAILURE(rc)) return errorArgument(argv[0], "Failed to read delta '%s', rc=%Vrc\n", argv[2], rc); } /* pszModule */ if (argc >= 4) pszModule = argv[3]; /* ModuleAddress */ if (argc >= 5) { int rc = RTStrToUInt64Ex(argv[4], NULL, 0, &ModuleAddress); if (VBOX_FAILURE(rc)) return errorArgument(argv[0], "Failed to read module address '%s', rc=%Vrc\n", argv[4], rc); } /* ModuleSize */ if (argc >= 6) { int rc = RTStrToUInt64Ex(argv[5], NULL, 0, &ModuleSize); if (VBOX_FAILURE(rc)) return errorArgument(argv[0], "Failed to read module size '%s', rc=%Vrc\n", argv[5], rc); } /* * Add extra data. */ Utf8Str KeyStr; HRESULT hrc = NewUniqueKey(machine, "VBoxInternal/DBGF/loadsyms", KeyStr); if (SUCCEEDED(hrc)) hrc = SetString(machine, "VBoxInternal/DBGF/loadsyms", KeyStr, "Filename", pszFilename); if (SUCCEEDED(hrc) && argc >= 3) hrc = SetInt64(machine, "VBoxInternal/DBGF/loadsyms", KeyStr, "Delta", offDelta); if (SUCCEEDED(hrc) && argc >= 4) hrc = SetString(machine, "VBoxInternal/DBGF/loadsyms", KeyStr, "Module", pszModule); if (SUCCEEDED(hrc) && argc >= 5) hrc = SetUInt64(machine, "VBoxInternal/DBGF/loadsyms", KeyStr, "ModuleAddress", ModuleAddress); if (SUCCEEDED(hrc) && argc >= 6) hrc = SetUInt64(machine, "VBoxInternal/DBGF/loadsyms", KeyStr, "ModuleSize", ModuleSize); return FAILED(hrc); } static int handleSetVDIUUID(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { /* we need exactly one parameter: the vdi file */ if (argc != 1) { return errorSyntax(USAGE_SETVDIUUID, "Not enough parameters"); } /* generate a new UUID */ Guid uuid; uuid.create(); /* just try it */ int rc = VDISetImageUUIDs(argv[0], uuid.raw(), NULL, NULL, NULL); if (VBOX_FAILURE(rc)) { RTPrintf("Error while setting a new UUID: %Vrc (%d)\n", rc, rc); } else { RTPrintf("UUID changed to: %s\n", uuid.toString().raw()); } return 0; } static DECLCALLBACK(void) handleVDError(void *pvUser, int rc, RT_SRC_POS_DECL, const char *pszFormat, va_list va) { RTPrintf("ERROR: "); RTPrintfV(pszFormat, va); RTPrintf("\n"); RTPrintf("Error code %Vrc at %s(%u) in function %s\n", rc, RT_SRC_POS_ARGS); } static int partRead(RTFILE File, PHOSTPARTITIONS pPart) { uint8_t aBuffer[512]; int rc; pPart->cPartitions = 0; memset(pPart->aPartitions, '\0', sizeof(pPart->aPartitions)); rc = RTFileReadAt(File, 0, &aBuffer, sizeof(aBuffer), NULL); if (VBOX_FAILURE(rc)) return rc; if (aBuffer[510] != 0x55 || aBuffer[511] != 0xaa) return VERR_INVALID_PARAMETER; unsigned uExtended = (unsigned)-1; for (unsigned i = 0; i < 4; i++) { uint8_t *p = &aBuffer[0x1be + i * 16]; if (p[4] == 0) continue; PHOSTPARTITION pCP = &pPart->aPartitions[pPart->cPartitions++]; pCP->uIndex = i + 1; pCP->uType = p[4]; pCP->uStartCylinder = (uint32_t)p[3] + ((uint32_t)(p[2] & 0xc0) << 2); pCP->uStartHead = p[1]; pCP->uStartSector = p[2] & 0x3f; pCP->uEndCylinder = (uint32_t)p[7] + ((uint32_t)(p[6] & 0xc0) << 2); pCP->uEndHead = p[5]; pCP->uEndSector = p[6] & 0x3f; pCP->uStart = RT_MAKE_U32_FROM_U8(p[8], p[9], p[10], p[11]); pCP->uSize = RT_MAKE_U32_FROM_U8(p[12], p[13], p[14], p[15]); pCP->uPartDataStart = 0; /* will be filled out later properly. */ pCP->cPartDataSectors = 0; if (PARTTYPE_IS_EXTENDED(p[4])) { if (uExtended == (unsigned)-1) uExtended = pCP - pPart->aPartitions; else { RTPrintf("More than one extended partition. Aborting\n"); return VERR_INVALID_PARAMETER; } } } if (uExtended != (unsigned)-1) { unsigned uIndex = 5; uint64_t uStart = pPart->aPartitions[uExtended].uStart; uint64_t uOffset = 0; if (!uStart) { RTPrintf("Inconsistency for logical partition start. Aborting\n"); return VERR_INVALID_PARAMETER; } do { rc = RTFileReadAt(File, (uStart + uOffset) * 512, &aBuffer, sizeof(aBuffer), NULL); if (VBOX_FAILURE(rc)) return rc; if (aBuffer[510] != 0x55 || aBuffer[511] != 0xaa) { RTPrintf("Logical partition without magic. Aborting\n"); return VERR_INVALID_PARAMETER; } uint8_t *p = &aBuffer[0x1be]; if (p[4] == 0) { RTPrintf("Logical partition with type 0 encountered. Aborting\n"); return VERR_INVALID_PARAMETER; } PHOSTPARTITION pCP = &pPart->aPartitions[pPart->cPartitions++]; pCP->uIndex = uIndex; pCP->uType = p[4]; pCP->uStartCylinder = (uint32_t)p[3] + ((uint32_t)(p[2] & 0xc0) << 2); pCP->uStartHead = p[1]; pCP->uStartSector = p[2] & 0x3f; pCP->uEndCylinder = (uint32_t)p[7] + ((uint32_t)(p[6] & 0xc0) << 2); pCP->uEndHead = p[5]; pCP->uEndSector = p[6] & 0x3f; uint32_t uStartOffset = RT_MAKE_U32_FROM_U8(p[8], p[9], p[10], p[11]); if (!uStartOffset) { RTPrintf("Invalid partition start offset. Aborting\n"); return VERR_INVALID_PARAMETER; } pCP->uStart = uStart + uOffset + uStartOffset; pCP->uSize = RT_MAKE_U32_FROM_U8(p[12], p[13], p[14], p[15]); /* Fill out partitioning location info for EBR. */ pCP->uPartDataStart = uStart + uOffset; pCP->cPartDataSectors = uStartOffset; p += 16; if (p[4] == 0) uExtended = (unsigned)-1; else if (PARTTYPE_IS_EXTENDED(p[4])) { uExtended = uIndex++; uOffset = RT_MAKE_U32_FROM_U8(p[8], p[9], p[10], p[11]); } else { RTPrintf("Logical partition chain broken. Aborting\n"); return VERR_INVALID_PARAMETER; } } while (uExtended != (unsigned)-1); } /* Sort partitions in ascending order of start sector, plus a trivial * bit of consistency checking. */ for (unsigned i = 0; i < pPart->cPartitions-1; i++) { unsigned uMinIdx = i; uint64_t uMinVal = pPart->aPartitions[i].uStart; for (unsigned j = i + 1; j < pPart->cPartitions; j++) { if (pPart->aPartitions[j].uStart < uMinVal) { uMinIdx = j; uMinVal = pPart->aPartitions[j].uStart; } else if (pPart->aPartitions[j].uStart == uMinVal) { RTPrintf("Two partitions start at the same place. Aborting\n"); return VERR_INVALID_PARAMETER; } else if (pPart->aPartitions[j].uStart == 0) { RTPrintf("Partition starts at sector 0. Aborting\n"); return VERR_INVALID_PARAMETER; } } if (uMinIdx != i) { /* Swap entries at index i and uMinIdx. */ memcpy(&pPart->aPartitions[pPart->cPartitions], &pPart->aPartitions[i], sizeof(HOSTPARTITION)); memcpy(&pPart->aPartitions[i], &pPart->aPartitions[uMinIdx], sizeof(HOSTPARTITION)); memcpy(&pPart->aPartitions[uMinIdx], &pPart->aPartitions[pPart->cPartitions], sizeof(HOSTPARTITION)); } } /* Now do a lot of consistency checking. */ uint64_t uPrevEnd = 0; for (unsigned i = 0; i < pPart->cPartitions-1; i++) { if (pPart->aPartitions[i].cPartDataSectors) { if (pPart->aPartitions[i].uPartDataStart < uPrevEnd) { RTPrintf("Overlapping partition description areas. Aborting\n"); return VERR_INVALID_PARAMETER; } uPrevEnd = pPart->aPartitions[i].uPartDataStart + pPart->aPartitions[i].cPartDataSectors; } if (pPart->aPartitions[i].uStart < uPrevEnd) { RTPrintf("Overlapping partitions. Aborting\n"); return VERR_INVALID_PARAMETER; } if (!PARTTYPE_IS_EXTENDED(pPart->aPartitions[i].uType)) uPrevEnd = pPart->aPartitions[i].uStart + pPart->aPartitions[i].uSize; } /* Fill out partitioning location info for MBR. */ pPart->aPartitions[0].uPartDataStart = 0; pPart->aPartitions[0].cPartDataSectors = pPart->aPartitions[0].uStart; return VINF_SUCCESS; } static int CmdListPartitions(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { Utf8Str rawdisk; /* let's have a closer look at the arguments */ for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "-rawdisk") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; rawdisk = argv[i]; } else { return errorSyntax(USAGE_LISTPARTITIONS, "Invalid parameter '%s'", Utf8Str(argv[i]).raw()); } } if (rawdisk.isEmpty()) return errorSyntax(USAGE_LISTPARTITIONS, "Mandatory parameter -rawdisk missing"); RTFILE RawFile; int vrc = RTFileOpen(&RawFile, rawdisk.raw(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_WRITE); if (VBOX_FAILURE(vrc)) { RTPrintf("Error opening the raw disk: %Vrc\n", vrc); return vrc; } HOSTPARTITIONS partitions; vrc = partRead(RawFile, &partitions); if (VBOX_FAILURE(vrc)) return vrc; RTPrintf("Number Type StartCHS EndCHS Size (MiB) Start (Sect)\n"); for (unsigned i = 0; i < partitions.cPartitions; i++) { /* Suppress printing the extended partition. Otherwise people * might add it to the list of partitions for raw partition * access (which is not good). */ if (PARTTYPE_IS_EXTENDED(partitions.aPartitions[i].uType)) continue; RTPrintf("%-7u %#04x %-4u/%-3u/%-2u %-4u/%-3u/%-2u %10llu %10llu\n", partitions.aPartitions[i].uIndex, partitions.aPartitions[i].uType, partitions.aPartitions[i].uStartCylinder, partitions.aPartitions[i].uStartHead, partitions.aPartitions[i].uStartSector, partitions.aPartitions[i].uEndCylinder, partitions.aPartitions[i].uEndHead, partitions.aPartitions[i].uEndSector, partitions.aPartitions[i].uSize / 2048, partitions.aPartitions[i].uStart); } return 0; } static int CmdCreateRawVMDK(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { HRESULT rc = S_OK; Bstr filename; const char *pszMBRFilename = NULL; Utf8Str rawdisk; const char *pszPartitions = NULL; bool fRegister = false; bool fRelative = false; uint64_t cbSize = 0; PVBOXHDD pDisk = NULL; VBOXHDDRAW RawDescriptor; HOSTPARTITIONS partitions; uint32_t uPartitions = 0; PVDINTERFACE pVDIfs = NULL; /* let's have a closer look at the arguments */ for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "-filename") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; filename = argv[i]; } else if (strcmp(argv[i], "-mbr") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; pszMBRFilename = argv[i]; } else if (strcmp(argv[i], "-rawdisk") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; rawdisk = argv[i]; } else if (strcmp(argv[i], "-partitions") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; pszPartitions = argv[i]; } else if (strcmp(argv[i], "-register") == 0) { fRegister = true; } #ifdef RT_OS_LINUX else if (strcmp(argv[i], "-relative") == 0) { fRelative = true; } #endif /* RT_OS_LINUX */ else { return errorSyntax(USAGE_CREATERAWVMDK, "Invalid parameter '%s'", Utf8Str(argv[i]).raw()); } } if (filename.isEmpty()) return errorSyntax(USAGE_CREATERAWVMDK, "Mandatory parameter -filename missing"); if (rawdisk.isEmpty()) return errorSyntax(USAGE_CREATERAWVMDK, "Mandatory parameter -rawdisk missing"); if (!pszPartitions && pszMBRFilename) return errorSyntax(USAGE_CREATERAWVMDK, "The parameter -mbr is only valid when the parameter -partitions is also present"); RTFILE RawFile; int vrc = RTFileOpen(&RawFile, rawdisk.raw(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_WRITE); if (VBOX_FAILURE(vrc)) { RTPrintf("Error opening the raw disk '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } #ifdef RT_OS_WINDOWS /* Windows NT has no IOCTL_DISK_GET_LENGTH_INFORMATION ioctl. This was * added to Windows XP, so we have to use the available info from DriveGeo. * Note that we cannot simply use IOCTL_DISK_GET_DRIVE_GEOMETRY as it * yields a slightly different result than IOCTL_DISK_GET_LENGTH_INFO. * We call IOCTL_DISK_GET_DRIVE_GEOMETRY first as we need to check the media * type anyway, and if IOCTL_DISK_GET_LENGTH_INFORMATION is supported * we will later override cbSize. */ DISK_GEOMETRY DriveGeo; DWORD cbDriveGeo; if (DeviceIoControl((HANDLE)RawFile, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &DriveGeo, sizeof(DriveGeo), &cbDriveGeo, NULL)) { if ( DriveGeo.MediaType == FixedMedia || DriveGeo.MediaType == RemovableMedia) { cbSize = DriveGeo.Cylinders.QuadPart * DriveGeo.TracksPerCylinder * DriveGeo.SectorsPerTrack * DriveGeo.BytesPerSector; } else { RTPrintf("File '%s' is no fixed/removable medium device\n", rawdisk.raw()); vrc = VERR_INVALID_PARAMETER; goto out; } GET_LENGTH_INFORMATION DiskLenInfo; DWORD junk; if (DeviceIoControl((HANDLE)RawFile, IOCTL_DISK_GET_LENGTH_INFO, NULL, 0, &DiskLenInfo, sizeof(DiskLenInfo), &junk, (LPOVERLAPPED)NULL)) { /* IOCTL_DISK_GET_LENGTH_INFO is supported -- override cbSize. */ cbSize = DiskLenInfo.Length.QuadPart; } } else { vrc = RTErrConvertFromWin32(GetLastError()); RTPrintf("Error getting the geometry of the raw disk '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } #elif defined(RT_OS_LINUX) struct stat DevStat; if (!fstat(RawFile, &DevStat) && S_ISBLK(DevStat.st_mode)) { #ifdef BLKGETSIZE64 /* BLKGETSIZE64 is broken up to 2.4.17 and in many 2.5.x. In 2.6.0 * it works without problems. */ struct utsname utsname; if ( uname(&utsname) == 0 && ( (strncmp(utsname.release, "2.5.", 4) == 0 && atoi(&utsname.release[4]) >= 18) || (strncmp(utsname.release, "2.", 2) == 0 && atoi(&utsname.release[2]) >= 6))) { uint64_t cbBlk; if (!ioctl(RawFile, BLKGETSIZE64, &cbBlk)) cbSize = cbBlk; } #endif /* BLKGETSIZE64 */ if (!cbSize) { long cBlocks; if (!ioctl(RawFile, BLKGETSIZE, &cBlocks)) cbSize = (uint64_t)cBlocks << 9; else { vrc = RTErrConvertFromErrno(errno); RTPrintf("Error getting the size of the raw disk '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } } } else { RTPrintf("File '%s' is no block device\n", rawdisk.raw()); vrc = VERR_INVALID_PARAMETER; goto out; } #elif defined(RT_OS_DARWIN) struct stat DevStat; if (!fstat(RawFile, &DevStat) && S_ISBLK(DevStat.st_mode)) { uint64_t cBlocks; uint32_t cbBlock; if (!ioctl(RawFile, DKIOCGETBLOCKCOUNT, &cBlocks)) { if (!ioctl(RawFile, DKIOCGETBLOCKSIZE, &cbBlock)) cbSize = cBlocks * cbBlock; else { RTPrintf("Cannot get the block size for file '%s': %Vrc", rawdisk.raw(), vrc); vrc = RTErrConvertFromErrno(errno); goto out; } } else { vrc = RTErrConvertFromErrno(errno); RTPrintf("Cannot get the block count for file '%s': %Vrc", rawdisk.raw(), vrc); goto out; } } else { RTPrintf("File '%s' is no block device\n", rawdisk.raw()); vrc = VERR_INVALID_PARAMETER; goto out; } #elif defined(RT_OS_SOLARIS) struct stat DevStat; if (!fstat(RawFile, &DevStat) && ( S_ISBLK(DevStat.st_mode) || S_ISCHR(DevStat.st_mode))) { struct dk_minfo mediainfo; if (!ioctl(RawFile, DKIOCGMEDIAINFO, &mediainfo)) cbSize = mediainfo.dki_capacity * mediainfo.dki_lbsize; else { vrc = RTErrConvertFromErrno(errno); RTPrintf("Error getting the size of the raw disk '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } } else { RTPrintf("File '%s' is no block or char device\n", rawdisk.raw()); vrc = VERR_INVALID_PARAMETER; goto out; } #else /* all unrecognized OSes */ /* Hopefully this works on all other hosts. If it doesn't, it'll just fail * creating the VMDK, so no real harm done. */ vrc = RTFileGetSize(RawFile, &cbSize); if (VBOX_FAILURE(vrc)) { RTPrintf("Error getting the size of the raw disk '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } #endif /* Check whether cbSize is actually sensible. */ if (!cbSize || cbSize % 512) { RTPrintf("Detected size of raw disk '%s' is %s, an invalid value\n", rawdisk.raw(), cbSize); vrc = VERR_INVALID_PARAMETER; goto out; } RawDescriptor.szSignature[0] = 'R'; RawDescriptor.szSignature[1] = 'A'; RawDescriptor.szSignature[2] = 'W'; RawDescriptor.szSignature[3] = '\0'; if (!pszPartitions) { RawDescriptor.fRawDisk = true; RawDescriptor.pszRawDisk = rawdisk.raw(); } else { RawDescriptor.fRawDisk = false; RawDescriptor.pszRawDisk = NULL; RawDescriptor.cPartitions = 0; const char *p = pszPartitions; char *pszNext; uint32_t u32; while (*p != '\0') { vrc = RTStrToUInt32Ex(p, &pszNext, 0, &u32); if (VBOX_FAILURE(vrc)) { RTPrintf("Incorrect value in partitions parameter\n"); goto out; } uPartitions |= RT_BIT(u32); p = pszNext; if (*p == ',') p++; else if (*p != '\0') { RTPrintf("Incorrect separator in partitions parameter\n"); vrc = VERR_INVALID_PARAMETER; goto out; } } vrc = partRead(RawFile, &partitions); if (VBOX_FAILURE(vrc)) { RTPrintf("Error reading the partition information from '%s'\n", rawdisk.raw()); goto out; } for (unsigned i = 0; i < partitions.cPartitions; i++) { if ( uPartitions & RT_BIT(partitions.aPartitions[i].uIndex) && PARTTYPE_IS_EXTENDED(partitions.aPartitions[i].uType)) { /* Some ignorant user specified an extended partition. * Bad idea, as this would trigger an overlapping * partitions error later during VMDK creation. So warn * here and ignore what the user requested. */ RTPrintf("Warning: it is not possible (and necessary) to explicitly give access to the\n" " extended partition %u. If required, enable access to all logical\n" " partitions inside this extended partition.\n", partitions.aPartitions[i].uIndex); uPartitions &= ~RT_BIT(partitions.aPartitions[i].uIndex); } } RawDescriptor.cPartitions = partitions.cPartitions; RawDescriptor.pPartitions = (PVBOXHDDRAWPART)RTMemAllocZ(partitions.cPartitions * sizeof(VBOXHDDRAWPART)); if (!RawDescriptor.pPartitions) { RTPrintf("Out of memory allocating the partition list for '%s'\n", rawdisk.raw()); vrc = VERR_NO_MEMORY; goto out; } for (unsigned i = 0; i < partitions.cPartitions; i++) { if (uPartitions & RT_BIT(partitions.aPartitions[i].uIndex)) { if (fRelative) { #ifdef RT_OS_LINUX /* Refer to the correct partition and use offset 0. */ char *pszRawName; vrc = RTStrAPrintf(&pszRawName, "%s%u", rawdisk.raw(), partitions.aPartitions[i].uIndex); if (VBOX_FAILURE(vrc)) { RTPrintf("Error creating reference to individual partition %u, rc=%Vrc\n", partitions.aPartitions[i].uIndex, vrc); goto out; } RawDescriptor.pPartitions[i].pszRawDevice = pszRawName; RawDescriptor.pPartitions[i].uPartitionStartOffset = 0; RawDescriptor.pPartitions[i].uPartitionStart = partitions.aPartitions[i].uStart * 512; #else /** @todo not implemented yet for Windows host. Treat just * like not specified (this code is actually never reached). */ RawDescriptor.pPartitions[i].pszRawDevice = rawdisk.raw(); RawDescriptor.pPartitions[i].uPartitionStartOffset = partitions.aPartitions[i].uStart * 512; RawDescriptor.pPartitions[i].uPartitionStart = partitions.aPartitions[i].uStart * 512; #endif } else { /* This is the "everything refers to the base raw device" * variant. This requires opening the base device in RW * mode even for creation. */ RawDescriptor.pPartitions[i].pszRawDevice = rawdisk.raw(); RawDescriptor.pPartitions[i].uPartitionStartOffset = partitions.aPartitions[i].uStart * 512; RawDescriptor.pPartitions[i].uPartitionStart = partitions.aPartitions[i].uStart * 512; } } else { /* Suppress access to this partition. */ RawDescriptor.pPartitions[i].pszRawDevice = NULL; RawDescriptor.pPartitions[i].uPartitionStartOffset = 0; /* This is used in the plausibility check in the creation * code. In theory it's a dummy, but I don't want to make * the VMDK creatiion any more complicated than what it needs * to be. */ RawDescriptor.pPartitions[i].uPartitionStart = partitions.aPartitions[i].uStart * 512; } if (PARTTYPE_IS_EXTENDED(partitions.aPartitions[i].uType)) { /* Suppress exporting the actual extended partition. Only * logical partitions should be processed. However completely * ignoring it leads to leaving out the MBR data. */ RawDescriptor.pPartitions[i].cbPartition = 0; } else RawDescriptor.pPartitions[i].cbPartition = partitions.aPartitions[i].uSize * 512; RawDescriptor.pPartitions[i].uPartitionDataStart = partitions.aPartitions[i].uPartDataStart * 512; RawDescriptor.pPartitions[i].cbPartitionData = partitions.aPartitions[i].cPartDataSectors * 512; if (RawDescriptor.pPartitions[i].cbPartitionData) { Assert (RawDescriptor.pPartitions[i].cbPartitionData - (size_t)RawDescriptor.pPartitions[i].cbPartitionData == 0); void *pPartData = RTMemAlloc((size_t)RawDescriptor.pPartitions[i].cbPartitionData); if (!pPartData) { RTPrintf("Out of memory allocating the partition descriptor for '%s'\n", rawdisk.raw()); vrc = VERR_NO_MEMORY; goto out; } vrc = RTFileReadAt(RawFile, partitions.aPartitions[i].uPartDataStart * 512, pPartData, (size_t)RawDescriptor.pPartitions[i].cbPartitionData, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Cannot read partition data from raw device '%s': %Vrc\n", rawdisk.raw(), vrc); goto out; } /* Splice in the replacement MBR code if specified. */ if ( partitions.aPartitions[i].uPartDataStart == 0 && pszMBRFilename) { RTFILE MBRFile; vrc = RTFileOpen(&MBRFile, pszMBRFilename, RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_WRITE); if (VBOX_FAILURE(vrc)) { RTPrintf("Cannot open replacement MBR file '%s' specified with -mbr: %Vrc\n", pszMBRFilename, vrc); goto out; } vrc = RTFileReadAt(MBRFile, 0, pPartData, 0x1be, NULL); RTFileClose(MBRFile); if (VBOX_FAILURE(vrc)) { RTPrintf("Cannot read replacement MBR file '%s': %Vrc\n", pszMBRFilename, vrc); goto out; } } RawDescriptor.pPartitions[i].pvPartitionData = pPartData; } } } RTFileClose(RawFile); VDINTERFACE vdInterfaceError; VDINTERFACEERROR vdInterfaceErrorCallbacks; vdInterfaceErrorCallbacks.cbSize = sizeof(VDINTERFACEERROR); vdInterfaceErrorCallbacks.enmInterface = VDINTERFACETYPE_ERROR; vdInterfaceErrorCallbacks.pfnError = handleVDError; vrc = VDInterfaceAdd(&vdInterfaceError, "VBoxManage_IError", VDINTERFACETYPE_ERROR, &vdInterfaceErrorCallbacks, NULL, &pVDIfs); AssertRC(vrc); vrc = VDCreate(&vdInterfaceError, &pDisk); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the virtual disk container: %Vrc\n", vrc); goto out; } Assert(RT_MIN(cbSize / 512 / 16 / 63, 16383) - (unsigned int)RT_MIN(cbSize / 512 / 16 / 63, 16383) == 0); PDMMEDIAGEOMETRY PCHS, LCHS; PCHS.cCylinders = (unsigned int)RT_MIN(cbSize / 512 / 16 / 63, 16383); PCHS.cHeads = 16; PCHS.cSectors = 63; LCHS.cCylinders = 0; LCHS.cHeads = 0; LCHS.cSectors = 0; vrc = VDCreateBase(pDisk, "VMDK", Utf8Str(filename).raw(), VD_IMAGE_TYPE_FIXED, cbSize, VD_VMDK_IMAGE_FLAGS_RAWDISK, (char *)&RawDescriptor, &PCHS, &LCHS, NULL, VD_OPEN_FLAGS_NORMAL, NULL, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the raw disk VMDK: %Vrc\n", vrc); goto out; } RTPrintf("RAW host disk access VMDK file %s created successfully.\n", Utf8Str(filename).raw()); VDCloseAll(pDisk); /* Clean up allocated memory etc. */ if (pszPartitions) { for (unsigned i = 0; i < partitions.cPartitions; i++) { if (uPartitions & RT_BIT(partitions.aPartitions[i].uIndex)) { if (fRelative) { #ifdef RT_OS_LINUX /* Free memory allocated above. */ RTStrFree((char *)(void *)RawDescriptor.pPartitions[i].pszRawDevice); #endif /* RT_OS_LINUX */ } } } } if (fRegister) { ComPtr hardDisk; CHECK_ERROR(aVirtualBox, OpenHardDisk(filename, hardDisk.asOutParam())); if (SUCCEEDED(rc) && hardDisk) { CHECK_ERROR(aVirtualBox, RegisterHardDisk(hardDisk)); } } return SUCCEEDED(rc) ? 0 : 1; out: RTPrintf("The raw disk vmdk file was not created\n"); return VBOX_SUCCESS(vrc) ? 0 : 1; } static int CmdRenameVMDK(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { Bstr src; Bstr dst; /* Parse the arguments. */ for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "-from") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; src = argv[i]; } else if (strcmp(argv[i], "-to") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; dst = argv[i]; } else { return errorSyntax(USAGE_RENAMEVMDK, "Invalid parameter '%s'", Utf8Str(argv[i]).raw()); } } if (src.isEmpty()) return errorSyntax(USAGE_RENAMEVMDK, "Mandatory parameter -from missing"); if (dst.isEmpty()) return errorSyntax(USAGE_RENAMEVMDK, "Mandatory parameter -to missing"); PVBOXHDD pDisk = NULL; PVDINTERFACE pVDIfs = NULL; VDINTERFACE vdInterfaceError; VDINTERFACEERROR vdInterfaceErrorCallbacks; vdInterfaceErrorCallbacks.cbSize = sizeof(VDINTERFACEERROR); vdInterfaceErrorCallbacks.enmInterface = VDINTERFACETYPE_ERROR; vdInterfaceErrorCallbacks.pfnError = handleVDError; int vrc = VDInterfaceAdd(&vdInterfaceError, "VBoxManage_IError", VDINTERFACETYPE_ERROR, &vdInterfaceErrorCallbacks, NULL, &pVDIfs); AssertRC(vrc); vrc = VDCreate(&vdInterfaceError, &pDisk); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the virtual disk container: %Vrc\n", vrc); return vrc; } else { vrc = VDOpen(pDisk, "VMDK", Utf8Str(src).raw(), VD_OPEN_FLAGS_NORMAL, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while opening the source image: %Vrc\n", vrc); } else { vrc = VDCopy(pDisk, 0, pDisk, "VMDK", Utf8Str(dst).raw(), true, 0, NULL, NULL, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while renaming the image: %Vrc\n", vrc); } } } VDCloseAll(pDisk); return vrc; } static int CmdConvertToRaw(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { Bstr srcformat; Bstr src; Bstr dst; bool fWriteToStdOut = false; /* Parse the arguments. */ for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "-format") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; srcformat = argv[i]; } else if (src.isEmpty()) { src = argv[i]; } else if (dst.isEmpty()) { dst = argv[i]; #ifdef ENABLE_CONVERT_RAW_TO_STDOUT if (!strcmp(argv[i], "stdout")) fWriteToStdOut = true; #endif /* ENABLE_CONVERT_RAW_TO_STDOUT */ } else { return errorSyntax(USAGE_CONVERTTORAW, "Invalid parameter '%s'", Utf8Str(argv[i]).raw()); } } if (src.isEmpty()) return errorSyntax(USAGE_CONVERTTORAW, "Mandatory filename parameter missing"); if (dst.isEmpty()) return errorSyntax(USAGE_CONVERTTORAW, "Mandatory outputfile parameter missing"); PVBOXHDD pDisk = NULL; PVDINTERFACE pVDIfs = NULL; VDINTERFACE vdInterfaceError; VDINTERFACEERROR vdInterfaceErrorCallbacks; vdInterfaceErrorCallbacks.cbSize = sizeof(VDINTERFACEERROR); vdInterfaceErrorCallbacks.enmInterface = VDINTERFACETYPE_ERROR; vdInterfaceErrorCallbacks.pfnError = handleVDError; int vrc = VDInterfaceAdd(&vdInterfaceError, "VBoxManage_IError", VDINTERFACETYPE_ERROR, &vdInterfaceErrorCallbacks, NULL, &pVDIfs); AssertRC(vrc); vrc = VDCreate(&vdInterfaceError, &pDisk); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the virtual disk container: %Vrc\n", vrc); return 1; } /* Open raw output file. */ RTFILE outFile; vrc = VINF_SUCCESS; if (fWriteToStdOut) outFile = 1; else vrc = RTFileOpen(&outFile, Utf8Str(dst).raw(), RTFILE_O_OPEN | RTFILE_O_CREATE | RTFILE_O_WRITE | RTFILE_O_DENY_ALL); if (VBOX_FAILURE(vrc)) { VDCloseAll(pDisk); RTPrintf("Error while creating destination file \"%s\": %Vrc\n", Utf8Str(dst).raw(), vrc); return 1; } if (srcformat.isEmpty()) { char *pszFormat = NULL; vrc = VDGetFormat(Utf8Str(src).raw(), &pszFormat); if (VBOX_FAILURE(vrc)) { VDCloseAll(pDisk); if (!fWriteToStdOut) { RTFileClose(outFile); RTFileDelete(Utf8Str(dst).raw()); } RTPrintf("No file format specified and autodetect failed - please specify format: %Vrc\n", vrc); return 1; } srcformat = pszFormat; RTStrFree(pszFormat); } vrc = VDOpen(pDisk, Utf8Str(srcformat).raw(), Utf8Str(src).raw(), VD_OPEN_FLAGS_READONLY, NULL); if (VBOX_FAILURE(vrc)) { VDCloseAll(pDisk); if (!fWriteToStdOut) { RTFileClose(outFile); RTFileDelete(Utf8Str(dst).raw()); } RTPrintf("Error while opening the source image: %Vrc\n", vrc); return 1; } uint64_t cbSize = VDGetSize(pDisk, VD_LAST_IMAGE); uint64_t offFile = 0; #define RAW_BUFFER_SIZE _128K uint64_t cbBuf = RAW_BUFFER_SIZE; void *pvBuf = RTMemAlloc(cbBuf); if (pvBuf) { RTPrintf("Converting image \"%s\" with size %RU64 bytes (%RU64MB) to raw...\n", Utf8Str(src).raw(), cbSize, (cbSize + _1M - 1) / _1M); while (offFile < cbSize) { size_t cb = cbSize - offFile >= (uint64_t)cbBuf ? cbBuf : (size_t)(cbSize - offFile); vrc = VDRead(pDisk, offFile, pvBuf, cb); if (VBOX_FAILURE(vrc)) break; vrc = RTFileWrite(outFile, pvBuf, cb, NULL); if (VBOX_FAILURE(vrc)) break; offFile += cb; } if (VBOX_FAILURE(vrc)) { VDCloseAll(pDisk); if (!fWriteToStdOut) { RTFileClose(outFile); RTFileDelete(Utf8Str(dst).raw()); } RTPrintf("Error copying image data: %Vrc\n", vrc); return 1; } } else { vrc = VERR_NO_MEMORY; VDCloseAll(pDisk); if (!fWriteToStdOut) { RTFileClose(outFile); RTFileDelete(Utf8Str(dst).raw()); } RTPrintf("Error allocating read buffer: %Vrc\n", vrc); return 1; } if (!fWriteToStdOut) RTFileClose(outFile); VDCloseAll(pDisk); return 0; } static int CmdConvertDisk(int argc, char **argv, ComPtr aVirtualBox, ComPtr aSession) { Bstr srcformat; Bstr dstformat; Bstr src; Bstr dst; int vrc; PVBOXHDD pSrcDisk = NULL; PVBOXHDD pDstDisk = NULL; /* Parse the arguments. */ for (int i = 0; i < argc; i++) { if (strcmp(argv[i], "-srcformat") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; srcformat = argv[i]; } else if (strcmp(argv[i], "-dstformat") == 0) { if (argc <= i + 1) { return errorArgument("Missing argument to '%s'", argv[i]); } i++; dstformat = argv[i]; } else if (src.isEmpty()) { src = argv[i]; } else if (dst.isEmpty()) { dst = argv[i]; } else { return errorSyntax(USAGE_CONVERTDISK, "Invalid parameter '%s'", Utf8Str(argv[i]).raw()); } } if (src.isEmpty()) return errorSyntax(USAGE_CONVERTDISK, "Mandatory input image parameter missing"); if (dst.isEmpty()) return errorSyntax(USAGE_CONVERTDISK, "Mandatory output image parameter missing"); PVDINTERFACE pVDIfs = NULL; VDINTERFACE vdInterfaceError; VDINTERFACEERROR vdInterfaceErrorCallbacks; vdInterfaceErrorCallbacks.cbSize = sizeof(VDINTERFACEERROR); vdInterfaceErrorCallbacks.enmInterface = VDINTERFACETYPE_ERROR; vdInterfaceErrorCallbacks.pfnError = handleVDError; vrc = VDInterfaceAdd(&vdInterfaceError, "VBoxManage_IError", VDINTERFACETYPE_ERROR, &vdInterfaceErrorCallbacks, NULL, &pVDIfs); AssertRC(vrc); /* Try to determine input image format */ if (srcformat.isEmpty()) { char *pszFormat = NULL; vrc = VDGetFormat(Utf8Str(src).raw(), &pszFormat); if (VBOX_FAILURE(vrc)) { RTPrintf("No file format specified and autodetect failed - please specify format: %Vrc\n", vrc); goto cleanup; } srcformat = pszFormat; RTStrFree(pszFormat); } vrc = VDCreate(&vdInterfaceError, &pSrcDisk); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the source virtual disk container: %Vrc\n", vrc); goto cleanup; } /* Open the input image */ vrc = VDOpen(pSrcDisk, Utf8Str(srcformat).raw(), Utf8Str(src).raw(), VD_OPEN_FLAGS_READONLY, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while opening the source image: %Vrc\n", vrc); goto cleanup; } /* Output format defaults to VDI */ if (dstformat.isEmpty()) dstformat = "VDI"; vrc = VDCreate(&vdInterfaceError, &pDstDisk); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while creating the destination virtual disk container: %Vrc\n", vrc); goto cleanup; } uint64_t cbSize = VDGetSize(pSrcDisk, VD_LAST_IMAGE); RTPrintf("Converting image \"%s\" with size %RU64 bytes (%RU64MB)...\n", Utf8Str(src).raw(), cbSize, (cbSize + _1M - 1) / _1M); /* Create the output image */ vrc = VDCopy(pSrcDisk, VD_LAST_IMAGE, pDstDisk, Utf8Str(dstformat).raw(), Utf8Str(dst).raw(), false, 0, NULL, NULL, NULL); if (VBOX_FAILURE(vrc)) { RTPrintf("Error while copying the image: %Vrc\n", vrc); } cleanup: if (pDstDisk) VDCloseAll(pDstDisk); if (pSrcDisk) VDCloseAll(pSrcDisk); return VBOX_SUCCESS(vrc) ? 0 : 1; } /** * Unloads the neccessary driver. * * @returns VBox status code */ int CmdModUninstall(void) { int rc; rc = SUPUninstall(); if (RT_SUCCESS(rc)) return 0; if (rc == VERR_NOT_IMPLEMENTED) return 0; return E_FAIL; } /** * Loads the neccessary driver. * * @returns VBox status code */ int CmdModInstall(void) { int rc; rc = SUPInstall(); if (RT_SUCCESS(rc)) return 0; if (rc == VERR_NOT_IMPLEMENTED) return 0; return E_FAIL; } /** * Wrapper for handling internal commands */ int handleInternalCommands(int argc, char *argv[], ComPtr aVirtualBox, ComPtr aSession) { g_fInternalMode = true; /* at least a command is required */ if (argc < 1) return errorSyntax(USAGE_ALL, "Command missing"); /* * The 'string switch' on command name. */ const char *pszCmd = argv[0]; if (!strcmp(pszCmd, "loadsyms")) return CmdLoadSyms(argc - 1, &argv[1], aVirtualBox, aSession); //if (!strcmp(pszCmd, "unloadsyms")) // return CmdUnloadSyms(argc - 1 , &argv[1]); if (!strcmp(pszCmd, "setvdiuuid")) return handleSetVDIUUID(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "listpartitions")) return CmdListPartitions(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "createrawvmdk")) return CmdCreateRawVMDK(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "renamevmdk")) return CmdRenameVMDK(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "converttoraw")) return CmdConvertToRaw(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "convertdisk")) return CmdConvertDisk(argc - 1, &argv[1], aVirtualBox, aSession); if (!strcmp(pszCmd, "modinstall")) return CmdModInstall(); if (!strcmp(pszCmd, "moduninstall")) return CmdModUninstall(); /* default: */ return errorSyntax(USAGE_ALL, "Invalid command '%s'", Utf8Str(argv[0]).raw()); }