/* $Id: SUPDrvGip.cpp 57358 2015-08-14 15:16:38Z vboxsync $ */ /** @file * VBoxDrv - The VirtualBox Support Driver - Common code for GIP. */ /* * Copyright (C) 2006-2015 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_SUP_DRV #define SUPDRV_AGNOSTIC #include "SUPDrvInternal.h" #ifndef PAGE_SHIFT # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD) # include # include #endif #include #include #include #include #include #if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN) # include "dtrace/SUPDrv.h" #else /* ... */ #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The frequency by which we recalculate the u32UpdateHz and * u32UpdateIntervalNS GIP members. The value must be a power of 2. * * Warning: Bumping this too high might overflow u32UpdateIntervalNS. */ #define GIP_UPDATEHZ_RECALC_FREQ 0x800 /** A reserved TSC value used for synchronization as well as measurement of * TSC deltas. */ #define GIP_TSC_DELTA_RSVD UINT64_MAX /** The number of TSC delta measurement loops in total (includes primer and * read-time loops). */ #define GIP_TSC_DELTA_LOOPS 96 /** The number of cache primer loops. */ #define GIP_TSC_DELTA_PRIMER_LOOPS 4 /** The number of loops until we keep computing the minumum read time. */ #define GIP_TSC_DELTA_READ_TIME_LOOPS 24 /** The TSC frequency refinement period in seconds. * The timer fires after 200ms, then every second, this value just says when * to stop it after that. */ #define GIP_TSC_REFINE_PERIOD_IN_SECS 12 /** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */ #define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32 /** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */ #define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448 /** The TSC delta value for the initial GIP master - 0 in regular builds. * To test the delta code this can be set to a non-zero value. */ #if 0 # define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */ #else # define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0) #endif AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS); AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS); /** @def VBOX_SVN_REV * The makefile should define this if it can. */ #ifndef VBOX_SVN_REV # define VBOX_SVN_REV 0 #endif #if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */ # define DO_NOT_START_GIP #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick); static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick); static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask); static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz); static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas); #ifdef SUPDRV_USE_TSC_DELTA_THREAD static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt); static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt); static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll); #else static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt); static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker); #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL; /* * * Misc Common GIP Code * Misc Common GIP Code * Misc Common GIP Code * * */ /** * Finds the GIP CPU index corresponding to @a idCpu. * * @returns GIP CPU array index, UINT32_MAX if not found. * @param pGip The GIP. * @param idCpu The CPU ID. */ static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu) { uint32_t i; for (i = 0; i < pGip->cCpus; i++) if (pGip->aCPUs[i].idCpu == idCpu) return i; return UINT32_MAX; } /* * * GIP Mapping and Unmapping Related Code. * GIP Mapping and Unmapping Related Code. * GIP Mapping and Unmapping Related Code. * * */ /** * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP * updating. * * @param pGip Pointer to the GIP. * @param pGipCpu The per CPU structure for this CPU. * @param u64NanoTS The current time. */ static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS) { /* * Here we don't really care about applying the TSC delta. The re-initialization of this * value is not relevant especially while (re)starting the GIP as the first few ones will * be ignored anyway, see supdrvGipDoUpdateCpu(). */ pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC; pGipCpu->u64NanoTS = u64NanoTS; } /** * Set the current TSC and NanoTS value for the CPU. * * @param idCpu The CPU ID. Unused - we have to use the APIC ID. * @param pvUser1 Pointer to the ring-0 GIP mapping. * @param pvUser2 Pointer to the variable holding the current time. */ static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1; unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()]; if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu)) supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2); NOREF(pvUser2); NOREF(idCpu); } /** * State structure for supdrvGipDetectGetGipCpuCallback. */ typedef struct SUPDRVGIPDETECTGETCPU { /** Bitmap of APIC IDs that has been seen (initialized to zero). * Used to detect duplicate APIC IDs (paranoia). */ uint8_t volatile bmApicId[256 / 8]; /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set * initially). The callback clears the methods not detected. */ uint32_t volatile fSupported; /** The first callback detecting any kind of range issues (initialized to * NIL_RTCPUID). */ RTCPUID volatile idCpuProblem; } SUPDRVGIPDETECTGETCPU; /** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */ typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU; /** * Checks for alternative ways of getting the CPU ID. * * This also checks the APIC ID, CPU ID and CPU set index values against the * GIP tables. * * @param idCpu The CPU ID. Unused - we have to use the APIC ID. * @param pvUser1 Pointer to the state structure. * @param pvUser2 Pointer to the GIP. */ static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1; PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2; uint32_t fSupported = 0; uint16_t idApic; int iCpuSet; AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */ /* * Check that the CPU ID and CPU set index are interchangable. */ iCpuSet = RTMpCpuIdToSetIndex(idCpu); if ((RTCPUID)iCpuSet == idCpu) { AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS)); if ( iCpuSet >= 0 && iCpuSet < RTCPUSET_MAX_CPUS && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS)) { /* * Check whether the IDTR.LIMIT contains a CPU number. */ #ifdef RT_ARCH_X86 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256; #else uint16_t const cbIdt = sizeof(X86DESCGATE) * 256; #endif RTIDTR Idtr; ASMGetIDTR(&Idtr); if (Idtr.cbIdt >= cbIdt) { uint32_t uTmp = Idtr.cbIdt - cbIdt; uTmp &= RTCPUSET_MAX_CPUS - 1; if (uTmp == idCpu) { RTIDTR Idtr2; ASMGetIDTR(&Idtr2); if (Idtr2.cbIdt == Idtr.cbIdt) fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS; } } /* * Check whether RDTSCP is an option. */ if (ASMHasCpuId()) { if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000))) && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) ) { uint32_t uAux; ASMReadTscWithAux(&uAux); if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu) { ASMNopPause(); ASMReadTscWithAux(&uAux); if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu) fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS; } } } } } /* * Check that the APIC ID is unique. */ idApic = ASMGetApicId(); if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId) && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic))) fSupported |= SUPGIPGETCPU_APIC_ID; else { AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId)); ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID); LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n", idCpu, iCpuSet, idApic)); } /* * Check that the iCpuSet is within the expected range. */ if (RT_UNLIKELY( iCpuSet < 0 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx))) { ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID); LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n", idCpu, iCpuSet, idApic)); } else { RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet); if (RT_UNLIKELY(idCpu2 != idCpu)) { ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID); LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n", idCpu, iCpuSet, idApic, idCpu2)); } } /* * Update the supported feature mask before we return. */ ASMAtomicAndU32(&pState->fSupported, fSupported); NOREF(pvUser2); } /** * Increase the timer freqency on hosts where this is possible (NT). * * The idea is that more interrupts is better for us... Also, it's better than * we increase the timer frequence, because we might end up getting inaccurate * callbacks if someone else does it. * * @param pDevExt Sets u32SystemTimerGranularityGrant if increased. */ static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt) { if (pDevExt->u32SystemTimerGranularityGrant == 0) { uint32_t u32SystemResolution; if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution)) || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution)) || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution)) || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution)) ) { Assert(RTTimerGetSystemGranularity() <= u32SystemResolution); pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution; } } } /** * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem. * * @param pDevExt Clears u32SystemTimerGranularityGrant. */ static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt) { if (pDevExt->u32SystemTimerGranularityGrant) { int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant); AssertRC(rc2); pDevExt->u32SystemTimerGranularityGrant = 0; } } /** * Maps the GIP into userspace and/or get the physical address of the GIP. * * @returns IPRT status code. * @param pSession Session to which the GIP mapping should belong. * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional) * @param pHCPhysGip Where to store the physical address. (optional) * * @remark There is no reference counting on the mapping, so one call to this function * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP * and remove the session as a GIP user. */ SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip) { int rc; PSUPDRVDEVEXT pDevExt = pSession->pDevExt; RTR3PTR pGipR3 = NIL_RTR3PTR; RTHCPHYS HCPhys = NIL_RTHCPHYS; LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip)); /* * Validate */ AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER); AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER); AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER); #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT); #else RTSemFastMutexRequest(pDevExt->mtxGip); #endif if (pDevExt->pGip) { /* * Map it? */ rc = VINF_SUCCESS; if (ppGipR3) { if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ) rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ, RTR0ProcHandleSelf()); if (RT_SUCCESS(rc)) pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3); } /* * Get physical address. */ if (pHCPhysGip && RT_SUCCESS(rc)) HCPhys = pDevExt->HCPhysGip; /* * Reference globally. */ if (!pSession->fGipReferenced && RT_SUCCESS(rc)) { pSession->fGipReferenced = 1; pDevExt->cGipUsers++; if (pDevExt->cGipUsers == 1) { PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip; uint64_t u64NanoTS; /* * GIP starts/resumes updating again. On windows we bump the * host timer frequency to make sure we don't get stuck in guest * mode and to get better timer (and possibly clock) accuracy. */ LogFlow(("SUPR0GipMap: Resumes GIP updating\n")); supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt); /* * document me */ if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */) { unsigned i; for (i = 0; i < pGipR0->cCpus; i++) ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId, (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2) & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1)); ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0); } /* * document me */ u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS; if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC || RTMpGetOnlineCount() == 1) supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS); else RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS); /* * Detect alternative ways to figure the CPU ID in ring-3 and * raw-mode context. Check the sanity of the APIC IDs, CPU IDs, * and CPU set indexes while we're at it. */ if (RT_SUCCESS(rc)) { SUPDRVGIPDETECTGETCPU DetectState; RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId)); DetectState.fSupported = UINT32_MAX; DetectState.idCpuProblem = NIL_RTCPUID; rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0); if (DetectState.idCpuProblem == NIL_RTCPUID) { if ( DetectState.fSupported != UINT32_MAX && DetectState.fSupported != 0) { if (pGipR0->fGetGipCpu != DetectState.fSupported) { pGipR0->fGetGipCpu = DetectState.fSupported; LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported)); } } else { LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n", DetectState.fSupported)); rc = VERR_UNSUPPORTED_CPU; } } else { LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n", DetectState.idCpuProblem, DetectState.idCpuProblem)); rc = VERR_INVALID_CPU_ID; } } /* * Start the GIP timer if all is well.. */ if (RT_SUCCESS(rc)) { #ifndef DO_NOT_START_GIP rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc); #endif rc = VINF_SUCCESS; } /* * Bail out on error. */ if (RT_FAILURE(rc)) { LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc)); pDevExt->cGipUsers = 0; pSession->fGipReferenced = 0; if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ) { int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2); if (RT_SUCCESS(rc2)) pSession->GipMapObjR3 = NIL_RTR0MEMOBJ; } HCPhys = NIL_RTHCPHYS; pGipR3 = NIL_RTR3PTR; } } } } else { rc = VERR_GENERAL_FAILURE; Log(("SUPR0GipMap: GIP is not available!\n")); } #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRelease(pDevExt->mtxGip); #else RTSemFastMutexRelease(pDevExt->mtxGip); #endif /* * Write returns. */ if (pHCPhysGip) *pHCPhysGip = HCPhys; if (ppGipR3) *ppGipR3 = pGipR3; #ifdef DEBUG_DARWIN_GIP OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3)); #else LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3)); #endif return rc; } /** * Unmaps any user mapping of the GIP and terminates all GIP access * from this session. * * @returns IPRT status code. * @param pSession Session to which the GIP mapping should belong. */ SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession) { int rc = VINF_SUCCESS; PSUPDRVDEVEXT pDevExt = pSession->pDevExt; #ifdef DEBUG_DARWIN_GIP OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n", pSession, pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL, pSession->GipMapObjR3)); #else LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession)); #endif AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER); #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT); #else RTSemFastMutexRequest(pDevExt->mtxGip); #endif /* * GIP test-mode session? */ if ( pSession->fGipTestMode && pDevExt->pGip) { supdrvGipSetFlags(pDevExt, pSession, 0, ~SUPGIP_FLAGS_TESTING_ENABLE); Assert(!pSession->fGipTestMode); } /* * Unmap anything? */ if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ) { rc = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc); if (RT_SUCCESS(rc)) pSession->GipMapObjR3 = NIL_RTR0MEMOBJ; } /* * Dereference global GIP. */ if (pSession->fGipReferenced && !rc) { pSession->fGipReferenced = 0; if ( pDevExt->cGipUsers > 0 && !--pDevExt->cGipUsers) { LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n")); #ifndef DO_NOT_START_GIP rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS; #endif supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt); } } #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRelease(pDevExt->mtxGip); #else RTSemFastMutexRelease(pDevExt->mtxGip); #endif return rc; } /** * Gets the GIP pointer. * * @returns Pointer to the GIP or NULL. */ SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void) { return g_pSUPGlobalInfoPage; } /* * * * GIP Initialization, Termination and CPU Offline / Online Related Code. * GIP Initialization, Termination and CPU Offline / Online Related Code. * GIP Initialization, Termination and CPU Offline / Online Related Code. * * */ /** * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq * to update the TSC frequency related GIP variables. * * @param pGip The GIP. * @param nsElapsed The number of nanoseconds elapsed. * @param cElapsedTscTicks The corresponding number of TSC ticks. * @param iTick The tick number for debugging. */ static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks, uint32_t iTick) { /* * Calculate the frequency. */ uint64_t uCpuHz; if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC && nsElapsed < UINT32_MAX) uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed); else { RTUINT128U CpuHz, Tmp, Divisor; CpuHz.s.Lo = CpuHz.s.Hi = 0; RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64); RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed)); uCpuHz = CpuHz.s.Lo; } /* * Update the GIP. */ ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz); if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) { ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz); /* For inspecting the frequency calcs using tstGIP-2, debugger or similar. */ if (iTick + 1 < pGip->cCpus) ASMAtomicWriteU64(&pGip->aCPUs[iTick + 1].u64CpuHz, uCpuHz); } } /** * Timer callback function for TSC frequency refinement in invariant GIP mode. * * This is started during driver init and fires once * GIP_TSC_REFINE_PERIOD_IN_SECS seconds later. * * @param pTimer The timer. * @param pvUser Opaque pointer to the device instance data. * @param iTick The timer tick. */ static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; RTCPUID idCpu; uint64_t cNsElapsed; uint64_t cTscTicksElapsed; uint64_t nsNow; uint64_t uTsc; RTCCUINTREG fEFlags; /* Paranoia. */ AssertReturnVoid(pGip); AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC); /* * If we got a power event, stop the refinement process. */ if (pDevExt->fInvTscRefinePowerEvent) { int rc = RTTimerStop(pTimer); AssertRC(rc); return; } /* * Read the TSC and time, noting which CPU we are on. * * Don't bother spinning until RTTimeSystemNanoTS changes, since on * systems where it matters we're in a context where we cannot waste that * much time (DPC watchdog, called from clock interrupt). */ fEFlags = ASMIntDisableFlags(); uTsc = ASMReadTSC(); nsNow = RTTimeSystemNanoTS(); idCpu = RTMpCpuId(); ASMSetFlags(fEFlags); cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine; cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine; /* * If the above measurement was taken on a different CPU than the one we * started the process on, cTscTicksElapsed will need to be adjusted with * the TSC deltas of both the CPUs. * * We ASSUME that the delta calculation process takes less time than the * TSC frequency refinement timer. If it doesn't, we'll complain and * drop the frequency refinement. * * Note! We cannot entirely trust enmUseTscDelta here because it's * downgraded after each delta calculation. */ if ( idCpu != pDevExt->idCpuInvarTscRefine && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine); uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu); uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX; uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX; int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX; int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX; if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX)) { if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO) { /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */ cTscTicksElapsed += iStartTscDelta - iStopTscDelta; } } /* * Allow 5 times the refinement period to elapse before we give up on the TSC delta * calculations. */ else if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * 5 * RT_NS_1SEC_64) { SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n", (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PERIOD_IN_SECS); SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n", iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta); int rc = RTTimerStop(pTimer); AssertRC(rc); return; } } /* * Calculate and update the CPU frequency variables in GIP. * * If there is a GIP user already and we've already refined the frequency * a couple of times, don't update it as we want a stable frequency value * for all VMs. */ if ( pDevExt->cGipUsers == 0 || cNsElapsed < RT_NS_1SEC * 2) { supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed, (uint32_t)iTick); /* * Stop the timer once we've reached the defined refinement period. */ if (cNsElapsed > GIP_TSC_REFINE_PERIOD_IN_SECS * RT_NS_1SEC_64) { int rc = RTTimerStop(pTimer); AssertRC(rc); } } else { int rc = RTTimerStop(pTimer); AssertRC(rc); } } /** * @callback_method_impl{FNRTPOWERNOTIFICATION} */ static DECLCALLBACK(void) supdrvGipPowerNotificationCallback(RTPOWEREVENT enmEvent, void *pvUser) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; /* * If the TSC frequency refinement timer is running, we need to cancel it so it * doesn't screw up the frequency after a long suspend. * * Recalculate all TSC-deltas on host resume as it may have changed, seen * on Windows 7 running on the Dell Optiplex Intel Core i5-3570. */ if (enmEvent == RTPOWEREVENT_RESUME) { ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true); if ( RT_LIKELY(pGip) && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED && !supdrvOSAreCpusOfflinedOnSuspend()) { #ifdef SUPDRV_USE_TSC_DELTA_THREAD supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */); #else RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet); supdrvMeasureInitialTscDeltas(pDevExt); #endif } } else if (enmEvent == RTPOWEREVENT_SUSPEND) ASMAtomicWriteBool(&pDevExt->fInvTscRefinePowerEvent, true); } /** * Start the TSC-frequency refinment timer for the invariant TSC GIP mode. * * We cannot use this in the synchronous and asynchronous tsc GIP modes because * the CPU may change the TSC frequence between now and when the timer fires * (supdrvInitAsyncRefineTscTimer). * * @param pDevExt Pointer to the device instance data. * @param pGip Pointer to the GIP. */ static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip) { uint64_t u64NanoTS; RTCCUINTREG fEFlags; int rc; /* * Register a power management callback. */ pDevExt->fInvTscRefinePowerEvent = false; rc = RTPowerNotificationRegister(supdrvGipPowerNotificationCallback, pDevExt); AssertRC(rc); /* ignore */ /* * Record the TSC and NanoTS as the starting anchor point for refinement * of the TSC. We try get as close to a clock tick as possible on systems * which does not provide high resolution time. */ u64NanoTS = RTTimeSystemNanoTS(); while (RTTimeSystemNanoTS() == u64NanoTS) ASMNopPause(); fEFlags = ASMIntDisableFlags(); pDevExt->uTscStartInvarTscRefine = ASMReadTSC(); pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS(); pDevExt->idCpuInvarTscRefine = RTMpCpuId(); ASMSetFlags(fEFlags); /* * Create a timer that runs on the same CPU so we won't have a depencency * on the TSC-delta and can run in parallel to it. On systems that does not * implement CPU specific timers we'll apply deltas in the timer callback, * just like we do for CPUs going offline. * * The longer the refinement interval the better the accuracy, at least in * theory. If it's too long though, ring-3 may already be starting its * first VMs before we're done. On most systems we will be loading the * support driver during boot and VMs won't be started for a while yet, * it is really only a problem during development (especially with * on-demand driver starting on windows). * * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq() call * to calculate the frequency during driver loading, the timer is set * to fire after 200 ms the first time. It will then reschedule itself * to fire every second until GIP_TSC_REFINE_PERIOD_IN_SECS has been * reached or it notices that there is a user land client with GIP * mapped (we want a stable frequency for all VMs). */ rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)), supdrvInitRefineInvariantTscFreqTimer, pDevExt); if (RT_SUCCESS(rc)) { rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS); if (RT_SUCCESS(rc)) return; RTTimerDestroy(pDevExt->pInvarTscRefineTimer); } if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED) { rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, RT_NS_1SEC, RTTIMER_FLAGS_CPU_ANY, supdrvInitRefineInvariantTscFreqTimer, pDevExt); if (RT_SUCCESS(rc)) { rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS); if (RT_SUCCESS(rc)) return; RTTimerDestroy(pDevExt->pInvarTscRefineTimer); } } pDevExt->pInvarTscRefineTimer = NULL; OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc)); } /** * @callback_method_impl{PFNRTMPWORKER, * RTMpOnSpecific callback for reading TSC and time on the CPU we started * the measurements on.} */ DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { RTCCUINTREG fEFlags = ASMIntDisableFlags(); uint64_t *puTscStop = (uint64_t *)pvUser1; uint64_t *pnsStop = (uint64_t *)pvUser2; *puTscStop = ASMReadTSC(); *pnsStop = RTTimeSystemNanoTS(); ASMSetFlags(fEFlags); } /** * Measures the TSC frequency of the system. * * The TSC frequency can vary on systems which are not reported as invariant. * On such systems the object of this function is to find out what the nominal, * maximum TSC frequency under 'normal' CPU operation. * * @returns VBox status code. * @param pDevExt Pointer to the device instance. * @param pGip Pointer to the GIP. * @param fRough Set if we're doing the rough calculation that the * TSC measuring code needs, where accuracy isn't all * that important (too high is better than too low). * When clear we try for best accuracy that we can * achieve in reasonably short time. */ static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough) { uint32_t nsTimerIncr = RTTimerGetSystemGranularity(); int cTriesLeft = fRough ? 4 : 2; while (cTriesLeft-- > 0) { RTCCUINTREG fEFlags; uint64_t nsStart; uint64_t nsStop; uint64_t uTscStart; uint64_t uTscStop; RTCPUID idCpuStart; RTCPUID idCpuStop; /* * Synchronize with the host OS clock tick on systems without high * resolution time API (older Windows version for example). */ nsStart = RTTimeSystemNanoTS(); while (RTTimeSystemNanoTS() == nsStart) ASMNopPause(); /* * Read the TSC and current time, noting which CPU we're on. */ fEFlags = ASMIntDisableFlags(); uTscStart = ASMReadTSC(); nsStart = RTTimeSystemNanoTS(); idCpuStart = RTMpCpuId(); ASMSetFlags(fEFlags); /* * Delay for a while. */ if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC) { /* * Sleep-wait since the TSC frequency is constant, it eases host load. * Shorter interval produces more variance in the frequency (esp. Windows). */ uint64_t msElapsed = 0; uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US ) / RT_NS_1MS; do { RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed)); nsStop = RTTimeSystemNanoTS(); msElapsed = (nsStop - nsStart) / RT_NS_1MS; } while (msElapsed < msDelay); while (RTTimeSystemNanoTS() == nsStop) ASMNopPause(); } else { /* * Busy-wait keeping the frequency up. */ do { ASMNopPause(); nsStop = RTTimeSystemNanoTS(); } while (nsStop - nsStart < RT_NS_100MS); } /* * Read the TSC and time again. */ fEFlags = ASMIntDisableFlags(); uTscStop = ASMReadTSC(); nsStop = RTTimeSystemNanoTS(); idCpuStop = RTMpCpuId(); ASMSetFlags(fEFlags); /* * If the CPU changes, things get a bit complicated and what we * can get away with depends on the GIP mode / TSC reliability. */ if (idCpuStop != idCpuStart) { bool fDoXCall = false; /* * Synchronous TSC mode: we're probably fine as it's unlikely * that we were rescheduled because of TSC throttling or power * management reasons, so just go ahead. */ if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC) { /* Probably ok, maybe we should retry once?. */ Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE); } /* * If we're just doing the rough measurement, do the cross call and * get on with things (we don't have deltas!). */ else if (fRough) fDoXCall = true; /* * Invariant TSC mode: It doesn't matter if we have delta available * for both CPUs. That is not something we can assume at this point. * * Note! We cannot necessarily trust enmUseTscDelta here because it's * downgraded after each delta calculation and the delta * calculations may not be complete yet. */ else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC) { /** @todo This section of code is never reached atm, consider dropping it later on... */ if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart); uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop); uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX; uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX; int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX; int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX; if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopTscDelta != INT64_MAX)) { if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO) { uTscStart -= iStartTscDelta; uTscStop -= iStopTscDelta; } } /* * Invalid CPU indexes are not caused by online/offline races, so * we have to trigger driver load failure if that happens as GIP * and IPRT assumptions are busted on this system. */ else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus) { SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n"); SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n", iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta); return VERR_INVALID_CPU_INDEX; } /* * No valid deltas. We retry, if we're on our last retry * we do the cross call instead just to get a result. The * frequency will be refined in a few seconds anyway. */ else if (cTriesLeft > 0) continue; else fDoXCall = true; } } /* * Asynchronous TSC mode: This is bad, as the reason we usually * use this mode is to deal with variable TSC frequencies and * deltas. So, we need to get the TSC from the same CPU as * started it, we also need to keep that CPU busy. So, retry * and fall back to the cross call on the last attempt. */ else { Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC); if (cTriesLeft > 0) continue; fDoXCall = true; } if (fDoXCall) { /* * Try read the TSC and timestamp on the start CPU. */ int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop); if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0)) continue; } } /* * Calculate the TSC frequency and update it (shared with the refinement timer). */ supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart, 0); return VINF_SUCCESS; } Assert(!fRough); return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED; } /** * Finds our (@a idCpu) entry, or allocates a new one if not found. * * @returns Index of the CPU in the cache set. * @param pGip The GIP. * @param idCpu The CPU ID. */ static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu) { uint32_t i, cTries; /* * ASSUMES that CPU IDs are constant. */ for (i = 0; i < pGip->cCpus; i++) if (pGip->aCPUs[i].idCpu == idCpu) return i; cTries = 0; do { for (i = 0; i < pGip->cCpus; i++) { bool fRc; ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc); if (fRc) return i; } } while (cTries++ < 32); AssertReleaseFailed(); return i - 1; } /** * The calling CPU should be accounted as online, update GIP accordingly. * * This is used by supdrvGipCreate() as well as supdrvGipMpEvent(). * * @param pDevExt The device extension. * @param idCpu The CPU ID. */ static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu) { int iCpuSet = 0; uint16_t idApic = UINT16_MAX; uint32_t i = 0; uint64_t u64NanoTS = 0; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; AssertPtrReturnVoid(pGip); Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); AssertRelease(idCpu == RTMpCpuId()); Assert(pGip->cPossibleCpus == RTMpGetCount()); /* * Do this behind a spinlock with interrupts disabled as this can fire * on all CPUs simultaneously, see @bugref{6110}. */ RTSpinlockAcquire(pDevExt->hGipSpinlock); /* * Update the globals. */ ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount()); ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount()); iCpuSet = RTMpCpuIdToSetIndex(idCpu); if (iCpuSet >= 0) { Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet)); RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet); RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet); } /* * Update the entry. */ u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS; i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu); supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz); idApic = ASMGetApicId(); ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic); ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet); ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu); /* * Update the APIC ID and CPU set index mappings. */ ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i); ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i); /* Add this CPU to this set of CPUs we need to calculate the TSC-delta for. */ RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, RTMpCpuIdToSetIndex(idCpu)); /* Update the Mp online/offline counter. */ ASMAtomicIncU32(&pDevExt->cMpOnOffEvents); /* Commit it. */ ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE); RTSpinlockRelease(pDevExt->hGipSpinlock); } /** * RTMpOnSpecific callback wrapper for supdrvGipMpEventOnlineOrInitOnCpu(). * * @param idCpu The CPU ID we are running on. * @param pvUser1 Opaque pointer to the device instance data. * @param pvUser2 Not used. */ static DECLCALLBACK(void) supdrvGipMpEventOnlineCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser1; NOREF(pvUser2); supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu); } /** * The CPU should be accounted as offline, update the GIP accordingly. * * This is used by supdrvGipMpEvent. * * @param pDevExt The device extension. * @param idCpu The CPU ID. */ static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu) { PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; int iCpuSet; unsigned i; AssertPtrReturnVoid(pGip); RTSpinlockAcquire(pDevExt->hGipSpinlock); iCpuSet = RTMpCpuIdToSetIndex(idCpu); AssertReturnVoid(iCpuSet >= 0); i = pGip->aiCpuFromCpuSetIdx[iCpuSet]; AssertReturnVoid(i < pGip->cCpus); AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu); Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet)); RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet); /* Update the Mp online/offline counter. */ ASMAtomicIncU32(&pDevExt->cMpOnOffEvents); if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { /* Reset the TSC delta, we will recalculate it lazily. */ ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX); /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */ RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet); } /* Commit it. */ ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE); RTSpinlockRelease(pDevExt->hGipSpinlock); } /** * Multiprocessor event notification callback. * * This is used to make sure that the GIP master gets passed on to * another CPU. It also updates the associated CPU data. * * @param enmEvent The event. * @param idCpu The cpu it applies to. * @param pvUser Pointer to the device extension. */ static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; if (pGip) { RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; switch (enmEvent) { case RTMPEVENT_ONLINE: { RTThreadPreemptDisable(&PreemptState); if (idCpu == RTMpCpuId()) { supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu); RTThreadPreemptRestore(&PreemptState); } else { RTThreadPreemptRestore(&PreemptState); RTMpOnSpecific(idCpu, supdrvGipMpEventOnlineCallback, pDevExt, NULL /* pvUser2 */); } /* * Recompute TSC-delta for the newly online'd CPU. */ if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { #ifdef SUPDRV_USE_TSC_DELTA_THREAD supdrvTscDeltaThreadStartMeasurement(pDevExt, false /* fForceAll */); #else uint32_t iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu); supdrvMeasureTscDeltaOne(pDevExt, iCpu); #endif } break; } case RTMPEVENT_OFFLINE: supdrvGipMpEventOffline(pDevExt, idCpu); break; } } /* * Make sure there is a master GIP. */ if (enmEvent == RTMPEVENT_OFFLINE) { RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster); if (idGipMaster == idCpu) { /* * The GIP master is going offline, find a new one. */ bool fIgnored; unsigned i; RTCPUID idNewGipMaster = NIL_RTCPUID; RTCPUSET OnlineCpus; RTMpGetOnlineSet(&OnlineCpus); for (i = 0; i < RTCPUSET_MAX_CPUS; i++) if (RTCpuSetIsMemberByIndex(&OnlineCpus, i)) { RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i); if (idCurCpu != idGipMaster) { idNewGipMaster = idCurCpu; break; } } Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster)); ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored); NOREF(fIgnored); } } } /** * On CPU initialization callback for RTMpOnAll. * * @param idCpu The CPU ID. * @param pvUser1 The device extension. * @param pvUser2 The GIP. */ static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { /* This is good enough, even though it will update some of the globals a bit to much. */ supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu); } /** * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU. * * @param idCpu Ignored. * @param pvUser1 Where to put the TSC. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2) { Assert(RTMpCpuIdToSetIndex(idCpu) == (intptr_t)pvUser2); ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC()); } /** * Determine if Async GIP mode is required because of TSC drift. * * When using the default/normal timer code it is essential that the time stamp counter * (TSC) runs never backwards, that is, a read operation to the counter should return * a bigger value than any previous read operation. This is guaranteed by the latest * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other * case we have to choose the asynchronous timer mode. * * @param poffMin Pointer to the determined difference between different * cores (optional, can be NULL). * @return false if the time stamp counters appear to be synchronized, true otherwise. */ static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin) { /* * Just iterate all the cpus 8 times and make sure that the TSC is * ever increasing. We don't bother taking TSC rollover into account. */ int iEndCpu = RTMpGetArraySize(); int iCpu; int cLoops = 8; bool fAsync = false; int rc = VINF_SUCCESS; uint64_t offMax = 0; uint64_t offMin = ~(uint64_t)0; uint64_t PrevTsc = ASMReadTSC(); while (cLoops-- > 0) { for (iCpu = 0; iCpu < iEndCpu; iCpu++) { uint64_t CurTsc; rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker, &CurTsc, (void *)(uintptr_t)iCpu); if (RT_SUCCESS(rc)) { if (CurTsc <= PrevTsc) { fAsync = true; offMin = offMax = PrevTsc - CurTsc; Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n", iCpu, cLoops, CurTsc, PrevTsc)); break; } /* Gather statistics (except the first time). */ if (iCpu != 0 || cLoops != 7) { uint64_t off = CurTsc - PrevTsc; if (off < offMin) offMin = off; if (off > offMax) offMax = off; Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off)); } /* Next */ PrevTsc = CurTsc; } else if (rc == VERR_NOT_SUPPORTED) break; else AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc)); } /* broke out of the loop. */ if (iCpu < iEndCpu) break; } if (poffMin) *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */ Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n", fAsync, iEndCpu, rc, offMin, offMax)); #if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS) OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax)); #endif return fAsync; } /** * supdrvGipInit() worker that determines the GIP TSC mode. * * @returns The most suitable TSC mode. * @param pDevExt Pointer to the device instance data. */ static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt) { uint64_t u64DiffCoresIgnored; uint32_t uEAX, uEBX, uECX, uEDX; /* * Establish whether the CPU advertises TSC as invariant, we need that in * a couple of places below. */ bool fInvariantTsc = false; if (ASMHasCpuId()) { uEAX = ASMCpuId_EAX(0x80000000); if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007) { uEDX = ASMCpuId_EDX(0x80000007); if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) fInvariantTsc = true; } } /* * On single CPU systems, we don't need to consider ASYNC mode. */ if (RTMpGetCount() <= 1) return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC; /* * Allow the user and/or OS specific bits to force async mode. */ if (supdrvOSGetForcedAsyncTscMode(pDevExt)) return SUPGIPMODE_ASYNC_TSC; /* * Use invariant mode if the CPU says TSC is invariant. */ if (fInvariantTsc) return SUPGIPMODE_INVARIANT_TSC; /* * TSC is not invariant and we're on SMP, this presents two problems: * * (1) There might be a skew between the CPU, so that cpu0 * returns a TSC that is slightly different from cpu1. * This screw may be due to (2), bad TSC initialization * or slightly different TSC rates. * * (2) Power management (and other things) may cause the TSC * to run at a non-constant speed, and cause the speed * to be different on the cpus. This will result in (1). * * If any of the above is detected, we will have to use ASYNC mode. */ /* (1). Try check for current differences between the cpus. */ if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored)) return SUPGIPMODE_ASYNC_TSC; /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */ ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX); if ( ASMIsValidStdRange(uEAX) && ASMIsAmdCpuEx(uEBX, uECX, uEDX)) { /* Check for APM support. */ uEAX = ASMCpuId_EAX(0x80000000); if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007) { uEDX = ASMCpuId_EDX(0x80000007); if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */ return SUPGIPMODE_ASYNC_TSC; } } return SUPGIPMODE_SYNC_TSC; } /** * Initializes per-CPU GIP information. * * @param pGip Pointer to the GIP. * @param pCpu Pointer to which GIP CPU to initialize. * @param u64NanoTS The current nanosecond timestamp. * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know. */ static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz) { pCpu->u32TransactionId = 2; pCpu->u64NanoTS = u64NanoTS; pCpu->u64TSC = ASMReadTSC(); pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD; pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0; ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID); ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID); ASMAtomicWriteS16(&pCpu->iCpuSet, -1); ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX); /* * The first time we're called, we don't have a CPU frequency handy, * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get * called again and at that point we have a more plausible CPU frequency * value handy. The frequency history will also be adjusted again on * the 2nd timer callout (maybe we can skip that now?). */ if (!uCpuHz) { pCpu->u64CpuHz = _4G - 1; pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz); } else { pCpu->u64CpuHz = uCpuHz; pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz); } pCpu->au32TSCHistory[0] = pCpu->au32TSCHistory[1] = pCpu->au32TSCHistory[2] = pCpu->au32TSCHistory[3] = pCpu->au32TSCHistory[4] = pCpu->au32TSCHistory[5] = pCpu->au32TSCHistory[6] = pCpu->au32TSCHistory[7] = pCpu->u32UpdateIntervalTSC; } /** * Initializes the GIP data. * * @param pDevExt Pointer to the device instance data. * @param pGip Pointer to the read-write kernel mapping of the GIP. * @param HCPhys The physical address of the GIP. * @param u64NanoTS The current nanosecond timestamp. * @param uUpdateHz The update frequency. * @param uUpdateIntervalNS The update interval in nanoseconds. * @param cCpus The CPU count. */ static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys, uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus) { size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE); unsigned i; #ifdef DEBUG_DARWIN_GIP OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus)); #else LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus)); #endif /* * Initialize the structure. */ memset(pGip, 0, cbGip); pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC; pGip->u32Version = SUPGLOBALINFOPAGE_VERSION; pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt); if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */) pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */ ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */; else pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE; pGip->cCpus = (uint16_t)cCpus; pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE); pGip->u32UpdateHz = uUpdateHz; pGip->u32UpdateIntervalNS = uUpdateIntervalNS; pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID; RTCpuSetEmpty(&pGip->OnlineCpuSet); RTCpuSetEmpty(&pGip->PresentCpuSet); RTMpGetSet(&pGip->PossibleCpuSet); pGip->cOnlineCpus = RTMpGetOnlineCount(); pGip->cPresentCpus = RTMpGetPresentCount(); pGip->cPossibleCpus = RTMpGetCount(); pGip->idCpuMax = RTMpGetMaxCpuId(); for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++) pGip->aiCpuFromApicId[i] = UINT16_MAX; for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++) pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX; for (i = 0; i < cCpus; i++) supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/); /* * Link it to the device extension. */ pDevExt->pGip = pGip; pDevExt->HCPhysGip = HCPhys; pDevExt->cGipUsers = 0; } /** * Creates the GIP. * * @returns VBox status code. * @param pDevExt Instance data. GIP stuff may be updated. */ int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt) { PSUPGLOBALINFOPAGE pGip; RTHCPHYS HCPhysGip; uint32_t u32SystemResolution; uint32_t u32Interval; uint32_t u32MinInterval; uint32_t uMod; unsigned cCpus; int rc; LogFlow(("supdrvGipCreate:\n")); /* * Assert order. */ Assert(pDevExt->u32SystemTimerGranularityGrant == 0); Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ); Assert(!pDevExt->pGipTimer); #ifdef SUPDRV_USE_MUTEX_FOR_GIP Assert(pDevExt->mtxGip != NIL_RTSEMMUTEX); Assert(pDevExt->mtxTscDelta != NIL_RTSEMMUTEX); #else Assert(pDevExt->mtxGip != NIL_RTSEMFASTMUTEX); Assert(pDevExt->mtxTscDelta != NIL_RTSEMFASTMUTEX); #endif /* * Check the CPU count. */ cCpus = RTMpGetArraySize(); if ( cCpus > RTCPUSET_MAX_CPUS || cCpus > 256 /* ApicId is used for the mappings */) { SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256)); return VERR_TOO_MANY_CPUS; } /* * Allocate a contiguous set of pages with a default kernel mapping. */ rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/); if (RT_FAILURE(rc)) { OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc)); return rc; } pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip); HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS); /* * Find a reasonable update interval and initialize the structure. */ supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt); /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs. * See @bugref{6710}. */ u32MinInterval = RT_NS_10MS; u32SystemResolution = RTTimerGetSystemGranularity(); u32Interval = u32MinInterval; uMod = u32MinInterval % u32SystemResolution; if (uMod) u32Interval += u32SystemResolution - uMod; supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus); /* * Important sanity check... */ if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC && !supdrvOSGetForcedAsyncTscMode(pDevExt))) { OSDBGPRINT(("supdrvGipCreate: Host-OS/user claims the TSC-deltas are zero but we detected async. TSC! Bad.\n")); return VERR_INTERNAL_ERROR_2; } /* It doesn't make sense to do TSC-delta detection on systems we detect as async. */ AssertReturn( pGip->u32Mode != SUPGIPMODE_ASYNC_TSC || pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED, VERR_INTERNAL_ERROR_3); /* * Do the TSC frequency measurements. * * If we're in invariant TSC mode, just to a quick preliminary measurement * that the TSC-delta measurement code can use to yield cross calls. * * If we're in any of the other two modes, neither which require MP init, * notifications or deltas for the job, do the full measurement now so * that supdrvGipInitOnCpu() can populate the TSC interval and history * array with more reasonable values. */ if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC) { rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */ supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip); } else rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/); if (RT_SUCCESS(rc)) { /* * Start TSC-delta measurement thread before we start getting MP * events that will try kick it into action (includes the * RTMpOnAll/supdrvGipInitOnCpu call below). */ RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet); RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet); #ifdef SUPDRV_USE_TSC_DELTA_THREAD if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) rc = supdrvTscDeltaThreadInit(pDevExt); #endif if (RT_SUCCESS(rc)) { rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt); if (RT_SUCCESS(rc)) { /* * Do GIP initialization on all online CPUs. Wake up the * TSC-delta thread afterwards. */ rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip); if (RT_SUCCESS(rc)) { #ifdef SUPDRV_USE_TSC_DELTA_THREAD supdrvTscDeltaThreadStartMeasurement(pDevExt, true /* fForceAll */); #else uint16_t iCpu; if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { /* * Measure the TSC deltas now that we have MP notifications. */ int cTries = 5; do { rc = supdrvMeasureInitialTscDeltas(pDevExt); if ( rc != VERR_TRY_AGAIN && rc != VERR_CPU_OFFLINE) break; } while (--cTries > 0); for (iCpu = 0; iCpu < pGip->cCpus; iCpu++) Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta)); } else { for (iCpu = 0; iCpu < pGip->cCpus; iCpu++) AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode)); } if (RT_SUCCESS(rc)) #endif { /* * Create the timer. * If CPU_ALL isn't supported we'll have to fall back to synchronous mode. */ if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC) { rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL, supdrvGipAsyncTimer, pDevExt); if (rc == VERR_NOT_SUPPORTED) { OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n")); pGip->u32Mode = SUPGIPMODE_SYNC_TSC; } } if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */, supdrvGipSyncAndInvariantTimer, pDevExt); if (RT_SUCCESS(rc)) { /* * We're good. */ Log(("supdrvGipCreate: %u ns interval.\n", u32Interval)); supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt); g_pSUPGlobalInfoPage = pGip; return VINF_SUCCESS; } OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc)); Assert(!pDevExt->pGipTimer); } } else OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc)); } else OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc)); } else OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc)); } else OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc)); /* Releases timer frequency increase too. */ supdrvGipDestroy(pDevExt); return rc; } /** * Invalidates the GIP data upon termination. * * @param pGip Pointer to the read-write kernel mapping of the GIP. */ static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip) { unsigned i; pGip->u32Magic = 0; for (i = 0; i < pGip->cCpus; i++) { pGip->aCPUs[i].u64NanoTS = 0; pGip->aCPUs[i].u64TSC = 0; pGip->aCPUs[i].iTSCHistoryHead = 0; pGip->aCPUs[i].u64TSCSample = 0; pGip->aCPUs[i].i64TSCDelta = INT64_MAX; } } /** * Terminates the GIP. * * @param pDevExt Instance data. GIP stuff may be updated. */ void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt) { int rc; #ifdef DEBUG_DARWIN_GIP OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt, pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL, pDevExt->pGipTimer, pDevExt->GipMemObj)); #endif /* * Stop receiving MP notifications before tearing anything else down. */ RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt); #ifdef SUPDRV_USE_TSC_DELTA_THREAD /* * Terminate the TSC-delta measurement thread and resources. */ supdrvTscDeltaTerm(pDevExt); #endif /* * Destroy the TSC-refinement timer. */ if (pDevExt->pInvarTscRefineTimer) { RTTimerDestroy(pDevExt->pInvarTscRefineTimer); pDevExt->pInvarTscRefineTimer = NULL; } /* * Invalid the GIP data. */ if (pDevExt->pGip) { supdrvGipTerm(pDevExt->pGip); pDevExt->pGip = NULL; } g_pSUPGlobalInfoPage = NULL; /* * Destroy the timer and free the GIP memory object. */ if (pDevExt->pGipTimer) { rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc); pDevExt->pGipTimer = NULL; } if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ) { rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc); pDevExt->GipMemObj = NIL_RTR0MEMOBJ; } /* * Finally, make sure we've release the system timer resolution request * if one actually succeeded and is still pending. */ supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt); } /* * * * GIP Update Timer Related Code * GIP Update Timer Related Code * GIP Update Timer Related Code * * */ /** * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that * updates all the per cpu data except the transaction id. * * @param pDevExt The device extension. * @param pGipCpu Pointer to the per cpu data. * @param u64NanoTS The current time stamp. * @param u64TSC The current TSC. * @param iTick The current timer tick. * * @remarks Can be called with interrupts disabled! */ static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick) { uint64_t u64TSCDelta; bool fUpdateCpuHz; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; AssertPtrReturnVoid(pGip); /* Delta between this and the previous update. */ ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS)); /* * Update the NanoTS. */ ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS); /* * Calc TSC delta. */ u64TSCDelta = u64TSC - pGipCpu->u64TSC; ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC); /* * Determine if we need to update the CPU (TSC) frequency calculation. * * We don't need to keep recalculating the frequency when it's invariant, * unless the special tstGIP-2 testing mode is enabled. */ fUpdateCpuHz = pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC; if (!(pGip->fFlags & SUPGIP_FLAGS_TESTING)) { /* likely*/ } else { uint32_t fGipFlags = pGip->fFlags; if (fGipFlags & (SUPGIP_FLAGS_TESTING_ENABLE | SUPGIP_FLAGS_TESTING_START)) { if (fGipFlags & SUPGIP_FLAGS_TESTING_START) { /* Cache the TSC frequency before forcing updates due to test mode. */ if (!fUpdateCpuHz) pDevExt->uGipTestModeInvariantCpuHz = pGip->aCPUs[0].u64CpuHz; ASMAtomicAndU32(&pGip->fFlags, ~SUPGIP_FLAGS_TESTING_START); } fUpdateCpuHz = true; } else if (fGipFlags & SUPGIP_FLAGS_TESTING_STOP) { /* Restore the cached TSC frequency if any. */ if (!fUpdateCpuHz) { Assert(pDevExt->uGipTestModeInvariantCpuHz); ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, pDevExt->uGipTestModeInvariantCpuHz); } ASMAtomicAndU32(&pGip->fFlags, ~(SUPGIP_FLAGS_TESTING_STOP | SUPGIP_FLAGS_TESTING)); } } /* * Calculate the CPU (TSC) frequency if necessary. */ if (fUpdateCpuHz) { uint64_t u64CpuHz; uint32_t u32UpdateIntervalTSC; uint32_t u32UpdateIntervalTSCSlack; uint32_t u32TransactionId; unsigned iTSCHistoryHead; if (u64TSCDelta >> 32) { u64TSCDelta = pGipCpu->u32UpdateIntervalTSC; pGipCpu->cErrors++; } /* * On the 2nd and 3rd callout, reset the history with the current TSC * interval since the values entered by supdrvGipInit are totally off. * The interval on the 1st callout completely unreliable, the 2nd is a bit * better, while the 3rd should be most reliable. */ /** @todo Could we drop this now that we initializes the history * with nominal TSC frequency values? */ u32TransactionId = pGipCpu->u32TransactionId; if (RT_UNLIKELY( ( u32TransactionId == 5 || u32TransactionId == 7) && ( iTick == 2 || iTick == 3) )) { unsigned i; for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++) ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta); } /* * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%. * Wait until we have at least one full history since the above history reset. The * assumption is that the majority of the previous history values will be tolerable. * See @bugref{6710#c67}. */ /** @todo Could we drop the fudging there now that we initializes the history * with nominal TSC frequency values? */ if ( u32TransactionId > 23 /* 7 + (8 * 2) */ && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) { uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200; if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold) { uint32_t u32; u32 = pGipCpu->au32TSCHistory[0]; u32 += pGipCpu->au32TSCHistory[1]; u32 += pGipCpu->au32TSCHistory[2]; u32 += pGipCpu->au32TSCHistory[3]; u32 >>= 2; u64TSCDelta = pGipCpu->au32TSCHistory[4]; u64TSCDelta += pGipCpu->au32TSCHistory[5]; u64TSCDelta += pGipCpu->au32TSCHistory[6]; u64TSCDelta += pGipCpu->au32TSCHistory[7]; u64TSCDelta >>= 2; u64TSCDelta += u32; u64TSCDelta >>= 1; } } /* * TSC History. */ Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8); iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7; ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead); ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta); /* * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ. * * On Windows, we have an occasional (but recurring) sour value that messed up * the history but taking only 1 interval reduces the precision overall. */ if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC || pGip->u32UpdateHz >= 1000) { uint32_t u32; u32 = pGipCpu->au32TSCHistory[0]; u32 += pGipCpu->au32TSCHistory[1]; u32 += pGipCpu->au32TSCHistory[2]; u32 += pGipCpu->au32TSCHistory[3]; u32 >>= 2; u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4]; u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5]; u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6]; u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7]; u32UpdateIntervalTSC >>= 2; u32UpdateIntervalTSC += u32; u32UpdateIntervalTSC >>= 1; /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */ u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14; } else if (pGip->u32UpdateHz >= 90) { u32UpdateIntervalTSC = (uint32_t)u64TSCDelta; u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7]; u32UpdateIntervalTSC >>= 1; /* value chosen on a 2GHz thinkpad running windows */ u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7; } else { u32UpdateIntervalTSC = (uint32_t)u64TSCDelta; /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */ u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6; } ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack); /* * CpuHz. */ u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC); u64CpuHz /= pGip->u32UpdateIntervalNS; ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz); } } /** * Updates the GIP. * * @param pDevExt The device extension. * @param u64NanoTS The current nanosecond timestamp. * @param u64TSC The current TSC timestamp. * @param idCpu The CPU ID. * @param iTick The current timer tick. * * @remarks Can be called with interrupts disabled! */ static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick) { /* * Determine the relevant CPU data. */ PSUPGIPCPU pGipCpu; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; AssertPtrReturnVoid(pGip); if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) pGipCpu = &pGip->aCPUs[0]; else { unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()]; if (RT_UNLIKELY(iCpu >= pGip->cCpus)) return; pGipCpu = &pGip->aCPUs[iCpu]; if (RT_UNLIKELY(pGipCpu->idCpu != idCpu)) return; } /* * Start update transaction. */ if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1)) { /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */ AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId)); ASMAtomicIncU32(&pGipCpu->u32TransactionId); pGipCpu->cErrors++; return; } /* * Recalc the update frequency every 0x800th time. */ if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariant hosts. */ && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2))) { if (pGip->u64NanoTSLastUpdateHz) { #ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */ uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz; uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta); if (u32UpdateHz <= 2000 && u32UpdateHz >= 30) { /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency * calculation on non-invariant hosts if it changes the history decision * taken in supdrvGipDoUpdateCpu(). */ uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ; ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz); ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval); } #endif } ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1); } /* * Update the data. */ supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick); /* * Complete transaction. */ ASMAtomicIncU32(&pGipCpu->u32TransactionId); } /** * Updates the per cpu GIP data for the calling cpu. * * @param pDevExt The device extension. * @param u64NanoTS The current nanosecond timestamp. * @param u64TSC The current TSC timesaver. * @param idCpu The CPU ID. * @param idApic The APIC id for the CPU index. * @param iTick The current timer tick. * * @remarks Can be called with interrupts disabled! */ static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint8_t idApic, uint64_t iTick) { uint32_t iCpu; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; /* * Avoid a potential race when a CPU online notification doesn't fire on * the onlined CPU but the tick creeps in before the event notification is * run. */ if (RT_UNLIKELY(iTick == 1)) { iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu); if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE) supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu); } iCpu = pGip->aiCpuFromApicId[idApic]; if (RT_LIKELY(iCpu < pGip->cCpus)) { PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu]; if (pGipCpu->idCpu == idCpu) { /* * Start update transaction. */ if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1)) { AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId)); ASMAtomicIncU32(&pGipCpu->u32TransactionId); pGipCpu->cErrors++; return; } /* * Update the data. */ supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick); /* * Complete transaction. */ ASMAtomicIncU32(&pGipCpu->u32TransactionId); } } } /** * Timer callback function for the sync and invariant GIP modes. * * @param pTimer The timer. * @param pvUser Opaque pointer to the device extension. * @param iTick The timer tick. */ static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */ uint64_t u64TSC = ASMReadTSC(); uint64_t u64NanoTS = RTTimeSystemNanoTS(); if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO) { /* * The calculations in supdrvGipUpdate() is somewhat timing sensitive, * missing timer ticks is not an option for GIP because the GIP users * will end up incrementing the time in 1ns per time getter call until * there is a complete timer update. So, if the delta has yet to be * calculated, we just pretend it is zero for now (the GIP users * probably won't have it for a wee while either and will do the same). * * We could maybe on some platforms try cross calling a CPU with a * working delta here, but it's not worth the hassle since the * likelihood of this happening is really low. On Windows, Linux, and * Solaris timers fire on the CPU they were registered/started on. * Darwin timers doesn't necessarily (they are high priority threads). */ uint32_t iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId()); uint16_t iGipCpu = RT_LIKELY(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)) ? pGip->aiCpuFromCpuSetIdx[iCpuSet] : UINT16_MAX; Assert(!ASMIntAreEnabled()); if (RT_LIKELY(iGipCpu < pGip->cCpus)) { int64_t iTscDelta = pGip->aCPUs[iGipCpu].i64TSCDelta; if (iTscDelta != INT64_MAX) u64TSC -= iTscDelta; } } supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick); ASMSetFlags(fEFlags); } /** * Timer callback function for async GIP mode. * @param pTimer The timer. * @param pvUser Opaque pointer to the device extension. * @param iTick The timer tick. */ static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; RTCCUINTREG fEFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */ RTCPUID idCpu = RTMpCpuId(); uint64_t u64TSC = ASMReadTSC(); uint64_t NanoTS = RTTimeSystemNanoTS(); /** @todo reset the transaction number and whatnot when iTick == 1. */ if (pDevExt->idGipMaster == idCpu) supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick); else supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick); ASMSetFlags(fEFlags); } /* * * * TSC Delta Measurements And Related Code * TSC Delta Measurements And Related Code * TSC Delta Measurements And Related Code * * */ /* * Select TSC delta measurement algorithm. */ #if 0 # define GIP_TSC_DELTA_METHOD_1 #else # define GIP_TSC_DELTA_METHOD_2 #endif /** For padding variables to keep them away from other cache lines. Better too * large than too small! * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims * that NetBurst had 128 byte cache lines while the 486 thru Pentium * III had 32 bytes cache lines. */ #define GIP_TSC_DELTA_CACHE_LINE_SIZE 128 /** * TSC delta measurement algorithm \#2 result entry. */ typedef struct SUPDRVTSCDELTAMETHOD2ENTRY { uint32_t iSeqMine; uint32_t iSeqOther; uint64_t uTsc; } SUPDRVTSCDELTAMETHOD2ENTRY; /** * TSC delta measurement algorithm \#2 Data. */ typedef struct SUPDRVTSCDELTAMETHOD2 { /** Padding to make sure the iCurSeqNo is in its own cache line. */ uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)]; /** The current sequence number of this worker. */ uint32_t volatile iCurSeqNo; /** Padding to make sure the iCurSeqNo is in its own cache line. */ uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1]; /** Result table. */ SUPDRVTSCDELTAMETHOD2ENTRY aResults[64]; } SUPDRVTSCDELTAMETHOD2; /** Pointer to the data for TSC delta measurement algorithm \#2 .*/ typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2; /** * The TSC delta synchronization struct, version 2. * * The synchronization variable is completely isolated in its own cache line * (provided our max cache line size estimate is correct). */ typedef struct SUPTSCDELTASYNC2 { /** Padding to make sure the uVar1 is in its own cache line. */ uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)]; /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */ volatile uint32_t uSyncVar; /** Sequence synchronizing variable used for post 'GO' synchronization. */ volatile uint32_t uSyncSeq; /** Padding to make sure the uVar1 is in its own cache line. */ uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2]; /** Start RDTSC value. Put here mainly to save stack space. */ uint64_t uTscStart; /** Copy of SUPDRVGIPTSCDELTARGS::cMaxTscTicks. */ uint64_t cMaxTscTicks; } SUPTSCDELTASYNC2; AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t)); typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2; /** Prestart wait. */ #define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0x0ffe) /** Prestart aborted. */ #define GIP_TSC_DELTA_SYNC2_PRESTART_ABORT UINT32_C(0x0fff) /** Ready (on your mark). */ #define GIP_TSC_DELTA_SYNC2_READY UINT32_C(0x1000) /** Steady (get set). */ #define GIP_TSC_DELTA_SYNC2_STEADY UINT32_C(0x1001) /** Go! */ #define GIP_TSC_DELTA_SYNC2_GO UINT32_C(0x1002) /** Used by the verification test. */ #define GIP_TSC_DELTA_SYNC2_GO_GO UINT32_C(0x1003) /** We reached the time limit. */ #define GIP_TSC_DELTA_SYNC2_TIMEOUT UINT32_C(0x1ffe) /** The other party won't touch the sync struct ever again. */ #define GIP_TSC_DELTA_SYNC2_FINAL UINT32_C(0x1fff) /** * Argument package/state passed by supdrvMeasureTscDeltaOne() to the RTMpOn * callback worker. * @todo add */ typedef struct SUPDRVGIPTSCDELTARGS { /** The device extension. */ PSUPDRVDEVEXT pDevExt; /** Pointer to the GIP CPU array entry for the worker. */ PSUPGIPCPU pWorker; /** Pointer to the GIP CPU array entry for the master. */ PSUPGIPCPU pMaster; /** The maximum number of ticks to spend in supdrvMeasureTscDeltaCallback. * (This is what we need a rough TSC frequency for.) */ uint64_t cMaxTscTicks; /** Used to abort synchronization setup. */ bool volatile fAbortSetup; /** Padding to make sure the master variables live in its own cache lines. */ uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)]; /** @name Master * @{ */ /** The time the master spent in the MP worker. */ uint64_t cElapsedMasterTscTicks; /** The iTry value when stopped at. */ uint32_t iTry; /** Set if the run timed out. */ bool volatile fTimedOut; /** Pointer to the master's synchronization struct (on stack). */ PSUPTSCDELTASYNC2 volatile pSyncMaster; /** Master data union. */ union { /** Data (master) for delta verification. */ struct { /** Verification test TSC values for the master. */ uint64_t volatile auTscs[32]; } Verify; /** Data (master) for measurement method \#2. */ struct { /** Data and sequence number. */ SUPDRVTSCDELTAMETHOD2 Data; /** The lag setting for the next run. */ bool fLag; /** Number of hits. */ uint32_t cHits; } M2; } uMaster; /** The verifier verdict, VINF_SUCCESS if ok, VERR_OUT_OF_RANGE if not, * VERR_TRY_AGAIN on timeout. */ int32_t rcVerify; #ifdef TSCDELTA_VERIFY_WITH_STATS /** The maximum difference between TSC read during delta verification. */ int64_t cMaxVerifyTscTicks; /** The minimum difference between two TSC reads during verification. */ int64_t cMinVerifyTscTicks; /** The bad TSC diff, worker relative to master (= worker - master). * Negative value means the worker is behind the master. */ int64_t iVerifyBadTscDiff; #endif /** @} */ /** Padding to make sure the worker variables live is in its own cache line. */ uint64_t au64CacheLinePaddingBetween[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)]; /** @name Proletarian * @{ */ /** Pointer to the worker's synchronization struct (on stack). */ PSUPTSCDELTASYNC2 volatile pSyncWorker; /** The time the worker spent in the MP worker. */ uint64_t cElapsedWorkerTscTicks; /** Worker data union. */ union { /** Data (worker) for delta verification. */ struct { /** Verification test TSC values for the worker. */ uint64_t volatile auTscs[32]; } Verify; /** Data (worker) for measurement method \#2. */ struct { /** Data and sequence number. */ SUPDRVTSCDELTAMETHOD2 Data; /** The lag setting for the next run (set by master). */ bool fLag; } M2; } uWorker; /** @} */ /** Padding to make sure the above is in its own cache line. */ uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)]; } SUPDRVGIPTSCDELTARGS; typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS; /** @name Macros that implements the basic synchronization steps common to * the algorithms. * * Must be used from loop as the timeouts are implemented via 'break' statements * at the moment. * * @{ */ #if defined(DEBUG_bird) /* || defined(VBOX_STRICT) */ # define TSCDELTA_DBG_VARS() uint32_t iDbgCounter # define TSCDELTA_DBG_START_LOOP() do { iDbgCounter = 0; } while (0) # define TSCDELTA_DBG_CHECK_LOOP() \ do { iDbgCounter++; if ((iDbgCounter & UINT32_C(0x01ffffff)) == 0) RT_BREAKPOINT(); } while (0) #else # define TSCDELTA_DBG_VARS() ((void)0) # define TSCDELTA_DBG_START_LOOP() ((void)0) # define TSCDELTA_DBG_CHECK_LOOP() ((void)0) #endif #if 0 # define TSCDELTA_DBG_SYNC_MSG(a_Args) SUPR0Printf a_Args #else # define TSCDELTA_DBG_SYNC_MSG(a_Args) ((void)0) #endif #if 0 # define TSCDELTA_DBG_SYNC_MSG2(a_Args) SUPR0Printf a_Args #else # define TSCDELTA_DBG_SYNC_MSG2(a_Args) ((void)0) #endif #if 0 # define TSCDELTA_DBG_SYNC_MSG9(a_Args) SUPR0Printf a_Args #else # define TSCDELTA_DBG_SYNC_MSG9(a_Args) ((void)0) #endif static bool supdrvTscDeltaSync2_Before(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, PRTCCUINTREG pfEFlags, PSUPDRVGIPTSCDELTARGS pArgs) { uint32_t iMySeq = fIsMaster ? 0 : 256; uint32_t const iMaxSeq = iMySeq + 16; /* For the last loop, darn linux/freebsd C-ishness. */ uint32_t u32Tmp; uint32_t iSync2Loops = 0; RTCCUINTREG fEFlags; TSCDELTA_DBG_VARS(); *pfEFlags = X86_EFL_IF | X86_EFL_1; /* should shut up most nagging compilers. */ /* * The master tells the worker to get on it's mark. */ if (fIsMaster) { if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY))) { /* likely*/ } else { TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #1 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar)); return false; } } /* * Wait for the on your mark signal (ack in the master case). We process timeouts here. */ ASMAtomicWriteU32(&(pMySync)->uSyncSeq, 0); for (;;) { fEFlags = ASMIntDisableFlags(); u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar); if (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY) break; ASMSetFlags(fEFlags); ASMNopPause(); /* Abort? */ if (u32Tmp != GIP_TSC_DELTA_SYNC2_READY) { TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #2 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp)); return false; } /* Check for timeouts every so often (not every loop in case RDTSC is trapping or something). Must check the first time around. */ #if 0 /* For debugging the timeout paths. */ static uint32_t volatile xxx; #endif if ( ( (iSync2Loops & 0x3ff) == 0 && ASMReadTSC() - pMySync->uTscStart > pMySync->cMaxTscTicks) #if 0 /* This is crazy, I know, but enable this code and the results are markedly better when enabled on the 1.4GHz AMD (debug). */ || (!fIsMaster && (++xxx & 0xf) == 0) #endif ) { /* Try switch our own state into timeout mode so the master cannot tell us to 'GO', ignore the timeout if we've got the go ahead already (simpler). */ if (ASMAtomicCmpXchgU32(&pMySync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_READY)) { TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: timeout\n", fIsMaster ? "master" : "worker")); ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_TIMEOUT, GIP_TSC_DELTA_SYNC2_STEADY); ASMAtomicWriteBool(&pArgs->fTimedOut, true); return false; } } iSync2Loops++; } /* * Interrupts are now disabled and will remain disabled until we do * TSCDELTA_MASTER_SYNC_AFTER / TSCDELTA_OTHER_SYNC_AFTER. */ *pfEFlags = fEFlags; /* * The worker tells the master that it is on its mark and that the master * need to get into position as well. */ if (!fIsMaster) { if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_STEADY, GIP_TSC_DELTA_SYNC2_READY))) { /* likely */ } else { ASMSetFlags(fEFlags); TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #3 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar)); return false; } } /* * The master sends the 'go' to the worker and wait for ACK. */ if (fIsMaster) { if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY))) { /* likely */ } else { ASMSetFlags(fEFlags); TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #4 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar)); return false; } } /* * Wait for the 'go' signal (ack in the master case). */ TSCDELTA_DBG_START_LOOP(); for (;;) { u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar); if (u32Tmp == GIP_TSC_DELTA_SYNC2_GO) break; if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY)) { /* likely */ } else { ASMSetFlags(fEFlags); TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #5 u32Tmp=%#x\n", fIsMaster ? "master" : "worker", u32Tmp)); return false; } TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } /* * The worker acks the 'go' (shouldn't fail). */ if (!fIsMaster) { if (RT_LIKELY(ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO, GIP_TSC_DELTA_SYNC2_STEADY))) { /* likely */ } else { ASMSetFlags(fEFlags); TSCDELTA_DBG_SYNC_MSG(("sync/before/%s: #6 uSyncVar=%#x\n", fIsMaster ? "master" : "worker", pOtherSync->uSyncVar)); return false; } } /* * Try enter mostly lockstep execution with it. */ for (;;) { uint32_t iOtherSeq1, iOtherSeq2; ASMCompilerBarrier(); ASMSerializeInstruction(); ASMAtomicWriteU32(&pMySync->uSyncSeq, iMySeq); ASMNopPause(); iOtherSeq1 = ASMAtomicXchgU32(&pOtherSync->uSyncSeq, iMySeq); ASMNopPause(); iOtherSeq2 = ASMAtomicReadU32(&pMySync->uSyncSeq); ASMCompilerBarrier(); if (iOtherSeq1 == iOtherSeq2) return true; /* Did the other guy give up? Should we give up? */ if ( iOtherSeq1 == UINT32_MAX || iOtherSeq2 == UINT32_MAX) return true; if (++iMySeq >= iMaxSeq) { ASMAtomicWriteU32(&pMySync->uSyncSeq, UINT32_MAX); return true; } ASMNopPause(); } } #define TSCDELTA_MASTER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \ if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_pfEFlags, a_pArgs))) \ { /*likely*/ } \ else if (true) \ { \ TSCDELTA_DBG_SYNC_MSG9(("sync/before/master: #89\n")); \ break; \ } else do {} while (0) #define TSCDELTA_OTHER_SYNC_BEFORE(a_pMySync, a_pOtherSync, a_pfEFlags, a_pArgs) \ if (RT_LIKELY(supdrvTscDeltaSync2_Before(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_pfEFlags, a_pArgs))) \ { /*likely*/ } \ else if (true) \ { \ TSCDELTA_DBG_SYNC_MSG9(("sync/before/other: #89\n")); \ break; \ } else do {} while (0) static bool supdrvTscDeltaSync2_After(PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, RTCCUINTREG fEFlags) { TSCDELTA_DBG_VARS(); /* * Wait for the 'ready' signal. In the master's case, this means the * worker has completed its data collection, while in the worker's case it * means the master is done processing the data and it's time for the next * loop iteration (or whatever). */ ASMSetFlags(fEFlags); TSCDELTA_DBG_START_LOOP(); for (;;) { uint32_t u32Tmp = ASMAtomicReadU32(&pMySync->uSyncVar); if ( u32Tmp == GIP_TSC_DELTA_SYNC2_READY || (u32Tmp == GIP_TSC_DELTA_SYNC2_STEADY && !fIsMaster) /* kicked twice => race */ ) return true; ASMNopPause(); if (RT_LIKELY(u32Tmp == GIP_TSC_DELTA_SYNC2_GO)) { /* likely */} else { TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #1 u32Tmp=%#x\n", u32Tmp)); return false; /* shouldn't ever happen! */ } TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } } #define TSCDELTA_MASTER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \ if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, true /*fIsMaster*/, a_fEFlags))) \ { /* likely */ } \ else if (true) \ { \ TSCDELTA_DBG_SYNC_MSG9(("sync/after/master: #97\n")); \ break; \ } else do {} while (0) #define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pMySync, a_pOtherSync) \ /* \ * Tell the worker that we're done processing the data and ready for the next round. \ */ \ if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \ { /* likely */ } \ else if (true)\ { \ TSCDELTA_DBG_SYNC_MSG(("sync/after/master: #99 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \ break; \ } else do {} while (0) #define TSCDELTA_OTHER_SYNC_AFTER(a_pMySync, a_pOtherSync, a_fEFlags) \ if (true) { \ /* \ * Tell the master that we're done collecting data and wait for the next round to start. \ */ \ if (RT_LIKELY(ASMAtomicCmpXchgU32(&(a_pOtherSync)->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_GO))) \ { /* likely */ } \ else \ { \ ASMSetFlags(a_fEFlags); \ TSCDELTA_DBG_SYNC_MSG(("sync/after/other: #0 uSyncVar=%#x\n", (a_pOtherSync)->uSyncVar)); \ break; \ } \ if (RT_LIKELY(supdrvTscDeltaSync2_After(a_pMySync, a_pOtherSync, false /*fIsMaster*/, a_fEFlags))) \ { /* likely */ } \ else \ { \ TSCDELTA_DBG_SYNC_MSG9(("sync/after/other: #98\n")); \ break; \ } \ } else do {} while (0) /** @} */ #ifdef GIP_TSC_DELTA_METHOD_1 /** * TSC delta measurement algorithm \#1 (GIP_TSC_DELTA_METHOD_1). * * * We ignore the first few runs of the loop in order to prime the * cache. Also, we need to be careful about using 'pause' instruction * in critical busy-wait loops in this code - it can cause undesired * behaviour with hyperthreading. * * We try to minimize the measurement error by computing the minimum * read time of the compare statement in the worker by taking TSC * measurements across it. * * It must be noted that the computed minimum read time is mostly to * eliminate huge deltas when the worker is too early and doesn't by * itself help produce more accurate deltas. We allow two times the * computed minimum as an arbitrary acceptable threshold. Therefore, * it is still possible to get negative deltas where there are none * when the worker is earlier. As long as these occasional negative * deltas are lower than the time it takes to exit guest-context and * the OS to reschedule EMT on a different CPU, we won't expose a TSC * that jumped backwards. It is due to the existence of the negative * deltas that we don't recompute the delta with the master and * worker interchanged to eliminate the remaining measurement error. * * * @param pArgs The argument/state data. * @param pMySync My synchronization structure. * @param pOtherSync My partner's synchronization structure. * @param fIsMaster Set if master, clear if worker. * @param iTry The attempt number. */ static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, uint32_t iTry) { PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; PSUPGIPCPU pGipCpuMaster = pArgs->pMaster; uint64_t uMinCmpReadTime = UINT64_MAX; unsigned iLoop; NOREF(iTry); for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++) { RTCCUINTREG fEFlags; if (fIsMaster) { /* * The master. */ AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD, ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n", pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster)); TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); do { ASMSerializeInstruction(); ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC()); } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD); TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); /* Process the data. */ if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS) { if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD) { int64_t iDelta = pGipCpuWorker->u64TSCSample - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta); if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE ? iDelta < pGipCpuWorker->i64TSCDelta : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX) pGipCpuWorker->i64TSCDelta = iDelta; } } /* Reset our TSC sample and tell the worker to move on. */ ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD); TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync); } else { /* * The worker. */ uint64_t uTscWorker; uint64_t uTscWorkerFlushed; uint64_t uCmpReadTime; ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */ TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); /* * Keep reading the TSC until we notice that the master has read his. Reading * the TSC -after- the master has updated the memory is way too late. We thus * compensate by trying to measure how long it took for the worker to notice * the memory flushed from the master. */ do { ASMSerializeInstruction(); uTscWorker = ASMReadTSC(); } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD); ASMSerializeInstruction(); uTscWorkerFlushed = ASMReadTSC(); uCmpReadTime = uTscWorkerFlushed - uTscWorker; if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS) { /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */ if (uCmpReadTime < (uMinCmpReadTime << 1)) { ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker); if (uCmpReadTime < uMinCmpReadTime) uMinCmpReadTime = uCmpReadTime; } else ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD); } else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS) { if (uCmpReadTime < uMinCmpReadTime) uMinCmpReadTime = uCmpReadTime; } TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); } } TSCDELTA_DBG_SYNC_MSG9(("sync/method1loop/%s: #92 iLoop=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iLoop, pMySync->uSyncVar)); /* * We must reset the worker TSC sample value in case it gets picked as a * GIP master later on (it's trashed above, naturally). */ if (!fIsMaster) ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD); } #endif /* GIP_TSC_DELTA_METHOD_1 */ #ifdef GIP_TSC_DELTA_METHOD_2 /* * TSC delta measurement algorithm \#2 configuration and code - Experimental!! */ # define GIP_TSC_DELTA_M2_LOOPS (7 + GIP_TSC_DELTA_M2_PRIMER_LOOPS) # define GIP_TSC_DELTA_M2_PRIMER_LOOPS 0 static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop) { int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta; int64_t iBestDelta = pArgs->pWorker->i64TSCDelta; uint32_t idxResult; uint32_t cHits = 0; /* * Look for matching entries in the master and worker tables. */ for (idxResult = 0; idxResult < RT_ELEMENTS(pArgs->uMaster.M2.Data.aResults); idxResult++) { uint32_t idxOther = pArgs->uMaster.M2.Data.aResults[idxResult].iSeqOther; if (idxOther & 1) { idxOther >>= 1; if (idxOther < RT_ELEMENTS(pArgs->uWorker.M2.Data.aResults)) { if (pArgs->uWorker.M2.Data.aResults[idxOther].iSeqOther == pArgs->uMaster.M2.Data.aResults[idxResult].iSeqMine) { int64_t iDelta; iDelta = pArgs->uWorker.M2.Data.aResults[idxOther].uTsc - (pArgs->uMaster.M2.Data.aResults[idxResult].uTsc - iMasterTscDelta); if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE ? iDelta < iBestDelta : iDelta > iBestDelta || iBestDelta == INT64_MAX) iBestDelta = iDelta; cHits++; } } } } /* * Save the results. */ if (cHits > 2) pArgs->pWorker->i64TSCDelta = iBestDelta; pArgs->uMaster.M2.cHits += cHits; } /** * The core function of the 2nd TSC delta measurement algorithm. * * The idea here is that we have the two CPUs execute the exact same code * collecting a largish set of TSC samples. The code has one data dependency on * the other CPU which intention it is to synchronize the execution as well as * help cross references the two sets of TSC samples (the sequence numbers). * * The @a fLag parameter is used to modify the execution a tiny bit on one or * both of the CPUs. When @a fLag differs between the CPUs, it is thought that * it will help with making the CPUs enter lock step execution occasionally. * */ static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag) { SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0]; uint32_t cLeft = RT_ELEMENTS(pMyData->aResults); ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0); ASMSerializeInstruction(); while (cLeft-- > 0) { uint64_t uTsc; uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo); uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo); ASMCompilerBarrier(); ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */ uTsc = ASMReadTSC(); ASMAtomicIncU32(&pMyData->iCurSeqNo); ASMCompilerBarrier(); ASMSerializeInstruction(); pEntry->iSeqMine = iSeqMine; pEntry->iSeqOther = iSeqOther; pEntry->uTsc = uTsc; pEntry++; ASMSerializeInstruction(); if (fLag) ASMNopPause(); } } /** * TSC delta measurement algorithm \#2 (GIP_TSC_DELTA_METHOD_2). * * See supdrvTscDeltaMethod2CollectData for algorithm details. * * @param pArgs The argument/state data. * @param pMySync My synchronization structure. * @param pOtherSync My partner's synchronization structure. * @param fIsMaster Set if master, clear if worker. * @param iTry The attempt number. */ static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, uint32_t iTry) { unsigned iLoop; for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++) { RTCCUINTREG fEFlags; if (fIsMaster) { /* * Adjust the loop lag fudge. */ # if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS) { /* Lag during the priming to be nice to everyone.. */ pArgs->uMaster.M2.fLag = true; pArgs->uWorker.M2.fLag = true; } else # endif if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4) { /* 25 % of the body without lagging. */ pArgs->uMaster.M2.fLag = false; pArgs->uWorker.M2.fLag = false; } else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2) { /* 25 % of the body with both lagging. */ pArgs->uMaster.M2.fLag = true; pArgs->uWorker.M2.fLag = true; } else { /* 50% of the body with alternating lag. */ pArgs->uMaster.M2.fLag = (iLoop & 1) == 0; pArgs->uWorker.M2.fLag= (iLoop & 1) == 1; } /* * Sync up with the worker and collect data. */ TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); supdrvTscDeltaMethod2CollectData(&pArgs->uMaster.M2.Data, &pArgs->uWorker.M2.Data.iCurSeqNo, pArgs->uMaster.M2.fLag); TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); /* * Process the data. */ # if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS) # endif supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop); TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync); } else { /* * The worker. */ TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); supdrvTscDeltaMethod2CollectData(&pArgs->uWorker.M2.Data, &pArgs->uMaster.M2.Data.iCurSeqNo, pArgs->uWorker.M2.fLag); TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); } } } #endif /* GIP_TSC_DELTA_METHOD_2 */ static int supdrvTscDeltaVerify(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, PSUPTSCDELTASYNC2 pOtherSync, bool fIsMaster, int64_t iWorkerTscDelta) { /*PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; - unused */ PSUPGIPCPU pGipCpuMaster = pArgs->pMaster; uint32_t i; TSCDELTA_DBG_VARS(); for (;;) { RTCCUINTREG fEFlags; AssertCompile((RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) & 1) == 0); AssertCompile(RT_ELEMENTS(pArgs->uMaster.Verify.auTscs) == RT_ELEMENTS(pArgs->uWorker.Verify.auTscs)); if (fIsMaster) { uint64_t uTscWorker; TSCDELTA_MASTER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); /* * Collect TSC, master goes first. */ for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i += 2) { /* Read, kick & wait #1. */ uint64_t register uTsc = ASMReadTSC(); ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO); ASMSerializeInstruction(); pArgs->uMaster.Verify.auTscs[i] = uTsc; TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO) { TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } /* Read, kick & wait #2. */ uTsc = ASMReadTSC(); ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO); ASMSerializeInstruction(); pArgs->uMaster.Verify.auTscs[i + 1] = uTsc; TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO) { TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } } TSCDELTA_MASTER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); /* * Process the data. */ #ifdef TSCDELTA_VERIFY_WITH_STATS pArgs->cMaxVerifyTscTicks = INT64_MIN; pArgs->cMinVerifyTscTicks = INT64_MAX; pArgs->iVerifyBadTscDiff = 0; #endif ASMAtomicWriteS32(&pArgs->rcVerify, VINF_SUCCESS); uTscWorker = 0; for (i = 0; i < RT_ELEMENTS(pArgs->uMaster.Verify.auTscs); i++) { /* Master vs previous worker entry. */ uint64_t uTscMaster = pArgs->uMaster.Verify.auTscs[i] - pGipCpuMaster->i64TSCDelta; int64_t iDiff; if (i > 0) { iDiff = uTscMaster - uTscWorker; #ifdef TSCDELTA_VERIFY_WITH_STATS if (iDiff > pArgs->cMaxVerifyTscTicks) pArgs->cMaxVerifyTscTicks = iDiff; if (iDiff < pArgs->cMinVerifyTscTicks) pArgs->cMinVerifyTscTicks = iDiff; #endif if (iDiff < 0) { #ifdef TSCDELTA_VERIFY_WITH_STATS pArgs->iVerifyBadTscDiff = -iDiff; #endif ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE); break; } } /* Worker vs master. */ uTscWorker = pArgs->uWorker.Verify.auTscs[i] - iWorkerTscDelta; iDiff = uTscWorker - uTscMaster; #ifdef TSCDELTA_VERIFY_WITH_STATS if (iDiff > pArgs->cMaxVerifyTscTicks) pArgs->cMaxVerifyTscTicks = iDiff; if (iDiff < pArgs->cMinVerifyTscTicks) pArgs->cMinVerifyTscTicks = iDiff; #endif if (iDiff < 0) { #ifdef TSCDELTA_VERIFY_WITH_STATS pArgs->iVerifyBadTscDiff = iDiff; #endif ASMAtomicWriteS32(&pArgs->rcVerify, VERR_OUT_OF_RANGE); break; } } /* Done. */ TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pMySync, pOtherSync); } else { /* * The worker, master leads. */ TSCDELTA_OTHER_SYNC_BEFORE(pMySync, pOtherSync, &fEFlags, pArgs); for (i = 0; i < RT_ELEMENTS(pArgs->uWorker.Verify.auTscs); i += 2) { uint64_t register uTsc; /* Wait, Read and Kick #1. */ TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO) { TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } uTsc = ASMReadTSC(); ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO_GO); ASMSerializeInstruction(); pArgs->uWorker.Verify.auTscs[i] = uTsc; /* Wait, Read and Kick #2. */ TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&pMySync->uSyncVar) == GIP_TSC_DELTA_SYNC2_GO_GO) { TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } uTsc = ASMReadTSC(); ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_GO); ASMSerializeInstruction(); pArgs->uWorker.Verify.auTscs[i + 1] = uTsc; } TSCDELTA_OTHER_SYNC_AFTER(pMySync, pOtherSync, fEFlags); } return pArgs->rcVerify; } /* * Timed out, please retry. */ ASMAtomicWriteS32(&pArgs->rcVerify, VERR_TRY_AGAIN); return VERR_TIMEOUT; } /** * Handles the special abort procedure during synchronization setup in * supdrvMeasureTscDeltaCallbackUnwrapped(). * * @returns 0 (dummy, ignored) * @param pArgs Pointer to argument/state data. * @param pMySync Pointer to my sync structure. * @param fIsMaster Set if we're the master, clear if worker. * @param fTimeout Set if it's a timeout. */ DECL_NO_INLINE(static, int) supdrvMeasureTscDeltaCallbackAbortSyncSetup(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC2 pMySync, bool fIsMaster, bool fTimeout) { PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker; PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster; TSCDELTA_DBG_VARS(); /* * Clear our sync pointer and make sure the abort flag is set. */ ASMAtomicWriteNullPtr(ppMySync); ASMAtomicWriteBool(&pArgs->fAbortSetup, true); if (fTimeout) ASMAtomicWriteBool(&pArgs->fTimedOut, true); /* * Make sure the other party is out of there and won't be touching our * sync state again (would cause stack corruption). */ TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2) != NULL) { ASMNopPause(); ASMNopPause(); ASMNopPause(); TSCDELTA_DBG_CHECK_LOOP(); } return 0; } /** * This is used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs * and compute the delta between them. * * To reduce code size a good when timeout handling was added, a dummy return * value had to be added (saves 1-3 lines per timeout case), thus this * 'Unwrapped' function and the dummy 0 return value. * * @returns 0 (dummy, ignored) * @param idCpu The CPU we are current scheduled on. * @param pArgs Pointer to a parameter package. * * @remarks Measuring TSC deltas between the CPUs is tricky because we need to * read the TSC at exactly the same time on both the master and the * worker CPUs. Due to DMA, bus arbitration, cache locality, * contention, SMI, pipelining etc. there is no guaranteed way of * doing this on x86 CPUs. */ static int supdrvMeasureTscDeltaCallbackUnwrapped(RTCPUID idCpu, PSUPDRVGIPTSCDELTARGS pArgs) { PSUPDRVDEVEXT pDevExt = pArgs->pDevExt; PSUPGIPCPU pGipCpuWorker = pArgs->pWorker; PSUPGIPCPU pGipCpuMaster = pArgs->pMaster; bool const fIsMaster = idCpu == pGipCpuMaster->idCpu; uint32_t iTry; PSUPTSCDELTASYNC2 volatile *ppMySync = fIsMaster ? &pArgs->pSyncMaster : &pArgs->pSyncWorker; PSUPTSCDELTASYNC2 volatile *ppOtherSync = fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster; SUPTSCDELTASYNC2 MySync; PSUPTSCDELTASYNC2 pOtherSync; int rc; TSCDELTA_DBG_VARS(); /* A bit of paranoia first. */ if (!pGipCpuMaster || !pGipCpuWorker) return 0; /* * If the CPU isn't part of the measurement, return immediately. */ if ( !fIsMaster && idCpu != pGipCpuWorker->idCpu) return 0; /* * Set up my synchronization stuff and wait for the other party to show up. * * We don't wait forever since the other party may be off fishing (offline, * spinning with ints disables, whatever), we must play nice to the rest of * the system as this context generally isn't one in which we will get * preempted and we may hold up a number of lower priority interrupts. */ ASMAtomicWriteU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT); ASMAtomicWritePtr(ppMySync, &MySync); MySync.uTscStart = ASMReadTSC(); MySync.cMaxTscTicks = pArgs->cMaxTscTicks; /* Look for the partner, might not be here yet... Special abort considerations. */ iTry = 0; TSCDELTA_DBG_START_LOOP(); while ((pOtherSync = ASMAtomicReadPtrT(ppOtherSync, PSUPTSCDELTASYNC2)) == NULL) { ASMNopPause(); if ( ASMAtomicReadBool(&pArgs->fAbortSetup) || !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu) ) return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/); if ( (iTry++ & 0xff) == 0 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks) return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/); TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } /* I found my partner, waiting to be found... Special abort considerations. */ if (fIsMaster) if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* parnaoia */ return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/); iTry = 0; TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&MySync.uSyncVar) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT) { ASMNopPause(); if (ASMAtomicReadBool(&pArgs->fAbortSetup)) return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/); if ( (iTry++ & 0xff) == 0 && ASMReadTSC() - MySync.uTscStart > pArgs->cMaxTscTicks) { if ( fIsMaster && !ASMAtomicCmpXchgU32(&MySync.uSyncVar, GIP_TSC_DELTA_SYNC2_PRESTART_ABORT, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) break; /* race #1: slave has moved on, handle timeout in loop instead. */ return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, true /*fTimeout*/); } TSCDELTA_DBG_CHECK_LOOP(); } if (!fIsMaster) if (!ASMAtomicCmpXchgU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_READY, GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)) /* race #1 */ return supdrvMeasureTscDeltaCallbackAbortSyncSetup(pArgs, &MySync, fIsMaster, false /*fTimeout*/); /** @todo Add a resumable state to pArgs so we don't waste time if we time * out or something. Timeouts are legit, any of the two CPUs may get * interrupted. */ /* * Start by seeing if we have a zero delta between the two CPUs. * This should normally be the case. */ rc = supdrvTscDeltaVerify(pArgs, &MySync, pOtherSync, fIsMaster, GIP_TSC_DELTA_INITIAL_MASTER_VALUE); if (RT_SUCCESS(rc)) { if (fIsMaster) { ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE); RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet); RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet); } } /* * If the verification didn't time out, do regular delta measurements. * We retry this until we get a reasonable value. */ else if (rc != VERR_TIMEOUT) { Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX); for (iTry = 0; iTry < 12; iTry++) { /* * Check the state before we start. */ uint32_t u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar); if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ ) { TSCDELTA_DBG_SYNC_MSG(("sync/loop/%s: #0 iTry=%u MyState=%#x\n", fIsMaster ? "master" : "worker", iTry, u32Tmp)); break; } /* * Do the measurements. */ #ifdef GIP_TSC_DELTA_METHOD_1 supdrvTscDeltaMethod1Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry); #elif defined(GIP_TSC_DELTA_METHOD_2) supdrvTscDeltaMethod2Loop(pArgs, &MySync, pOtherSync, fIsMaster, iTry); #else # error "huh??" #endif /* * Check the state. */ u32Tmp = ASMAtomicReadU32(&MySync.uSyncVar); if ( u32Tmp != GIP_TSC_DELTA_SYNC2_READY && (fIsMaster || u32Tmp != GIP_TSC_DELTA_SYNC2_STEADY) /* worker may be late prepping for the next round */ ) { if (fIsMaster) TSCDELTA_DBG_SYNC_MSG(("sync/loop/master: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp)); else TSCDELTA_DBG_SYNC_MSG2(("sync/loop/worker: #1 iTry=%u MyState=%#x\n", iTry, u32Tmp)); break; } /* * Success? If so, stop trying. Master decides. */ if (fIsMaster) { if (pGipCpuWorker->i64TSCDelta != INT64_MAX) { RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet); RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet); TSCDELTA_DBG_SYNC_MSG2(("sync/loop/master: #9 iTry=%u MyState=%#x\n", iTry, MySync.uSyncVar)); break; } } } if (fIsMaster) pArgs->iTry = iTry; } /* * End the synchronization dance. We tell the other that we're done, * then wait for the same kind of reply. */ ASMAtomicWriteU32(&pOtherSync->uSyncVar, GIP_TSC_DELTA_SYNC2_FINAL); ASMAtomicWriteNullPtr(ppMySync); iTry = 0; TSCDELTA_DBG_START_LOOP(); while (ASMAtomicReadU32(&MySync.uSyncVar) != GIP_TSC_DELTA_SYNC2_FINAL) { iTry++; if ( iTry == 0 && !RTMpIsCpuOnline(fIsMaster ? pGipCpuWorker->idCpu : pGipCpuWorker->idCpu)) break; /* this really shouldn't happen. */ TSCDELTA_DBG_CHECK_LOOP(); ASMNopPause(); } /* * Collect some runtime stats. */ if (fIsMaster) pArgs->cElapsedMasterTscTicks = ASMReadTSC() - MySync.uTscStart; else pArgs->cElapsedWorkerTscTicks = ASMReadTSC() - MySync.uTscStart; return 0; } /** * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs * and compute the delta between them. * * @param idCpu The CPU we are current scheduled on. * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS). * @param pvUser2 Unused. */ static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { supdrvMeasureTscDeltaCallbackUnwrapped(idCpu, (PSUPDRVGIPTSCDELTARGS)pvUser1); } /** * Measures the TSC delta between the master GIP CPU and one specified worker * CPU. * * @returns VBox status code. * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement * failure. * @param pDevExt Pointer to the device instance data. * @param idxWorker The index of the worker CPU from the GIP's array of * CPUs. * * @remarks This must be called with preemption enabled! */ static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker) { int rc; int rc2; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; RTCPUID idMaster = pDevExt->idGipMaster; PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker]; PSUPGIPCPU pGipCpuMaster; uint32_t iGipCpuMaster; uint32_t u32Tmp; /* Validate input a bit. */ AssertReturn(pGip, VERR_INVALID_PARAMETER); Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED); Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD)); /* * Don't attempt measuring the delta for the GIP master. */ if (pGipCpuWorker->idCpu == idMaster) { if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */ ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE); return VINF_SUCCESS; } /* * One measurement at a time, at least for now. We might be using * broadcast IPIs so, so be nice to the rest of the system. */ #ifdef SUPDRV_USE_MUTEX_FOR_GIP rc = RTSemMutexRequest(pDevExt->mtxTscDelta, RT_INDEFINITE_WAIT); #else rc = RTSemFastMutexRequest(pDevExt->mtxTscDelta); #endif if (RT_FAILURE(rc)) return rc; /* * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent, * try pick a different master. (This fudge only works with multi core systems.) * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core. * * We skip this on AMDs for now as their HTT is different from Intel's and * it doesn't seem to have any favorable effect on the results. * * If the master is offline, we need a new master too, so share the code. */ iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster); AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID); pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster]; if ( ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1) && pGip->cOnlineCpus > 2 && ASMHasCpuId() && ASMIsValidStdRange(ASMCpuId_EAX(0)) && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT) && ( !ASMIsAmdCpu() || ASMGetCpuFamily(u32Tmp = ASMCpuId_EAX(1)) > 0x15 || ( ASMGetCpuFamily(u32Tmp) == 0x15 /* Piledriver+, not bulldozer (FX-4150 didn't like it). */ && ASMGetCpuModelAMD(u32Tmp) >= 0x02) ) ) || !RTMpIsCpuOnline(idMaster) ) { uint32_t i; for (i = 0; i < pGip->cCpus; i++) if ( i != iGipCpuMaster && i != idxWorker && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE && pGip->aCPUs[i].i64TSCDelta != INT64_MAX && pGip->aCPUs[i].idCpu != NIL_RTCPUID && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */ && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic && RTMpIsCpuOnline(pGip->aCPUs[i].idCpu)) { iGipCpuMaster = i; pGipCpuMaster = &pGip->aCPUs[i]; idMaster = pGipCpuMaster->idCpu; break; } } if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet)) { /* * Initialize data package for the RTMpOnPair callback. */ PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)RTMemAllocZ(sizeof(*pArgs)); if (pArgs) { pArgs->pWorker = pGipCpuWorker; pArgs->pMaster = pGipCpuMaster; pArgs->pDevExt = pDevExt; pArgs->pSyncMaster = NULL; pArgs->pSyncWorker = NULL; pArgs->cMaxTscTicks = ASMAtomicReadU64(&pGip->u64CpuHz) / 512; /* 1953 us */ /* * Do the RTMpOnPair call. We reset i64TSCDelta first so we * and supdrvMeasureTscDeltaCallback can use it as a success check. */ /** @todo Store the i64TSCDelta result in pArgs first? Perhaps deals with * that when doing the restart loop reorg. */ ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX); rc = RTMpOnPair(pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, RTMPON_F_CONCURRENT_EXEC, supdrvMeasureTscDeltaCallback, pArgs, NULL); if (RT_SUCCESS(rc)) { #if 0 SUPR0Printf("mponpair ticks: %9llu %9llu max: %9llu iTry: %u%s\n", pArgs->cElapsedMasterTscTicks, pArgs->cElapsedWorkerTscTicks, pArgs->cMaxTscTicks, pArgs->iTry, pArgs->fTimedOut ? " timed out" :""); #endif #if 0 SUPR0Printf("rcVerify=%d iVerifyBadTscDiff=%lld cMinVerifyTscTicks=%lld cMaxVerifyTscTicks=%lld\n", pArgs->rcVerify, pArgs->iVerifyBadTscDiff, pArgs->cMinVerifyTscTicks, pArgs->cMaxVerifyTscTicks); #endif if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX)) { /* * Work the TSC delta applicability rating. It starts * optimistic in supdrvGipInit, we downgrade it here. */ SUPGIPUSETSCDELTA enmRating; if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO) enmRating = SUPGIPUSETSCDELTA_NOT_ZERO; else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO) enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO; else enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO; if (pGip->enmUseTscDelta < enmRating) { AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t)); ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating); } } else rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED; } /** @todo return try-again if we get an offline CPU error. */ RTMemFree(pArgs); } else rc = VERR_NO_MEMORY; } else rc = VERR_CPU_OFFLINE; /* * We're done now. */ #ifdef SUPDRV_USE_MUTEX_FOR_GIP rc2 = RTSemMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2); #else rc2 = RTSemFastMutexRelease(pDevExt->mtxTscDelta); AssertRC(rc2); #endif return rc; } /** * Resets the TSC-delta related TSC samples and optionally the deltas * themselves. * * @param pDevExt Pointer to the device instance data. * @param fResetTscDeltas Whether the TSC-deltas are also to be reset. * * @remarks This might be called while holding a spinlock! */ static void supdrvTscResetSamples(PSUPDRVDEVEXT pDevExt, bool fResetTscDeltas) { unsigned iCpu; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; for (iCpu = 0; iCpu < pGip->cCpus; iCpu++) { PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu]; ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD); if (fResetTscDeltas) { RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpu->iCpuSet); ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX); } } } /** * Picks an online CPU as the master TSC for TSC-delta computations. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * @param pidxMaster Where to store the CPU array index of the chosen * master. Optional, can be NULL. */ static int supdrvTscPickMaster(PSUPDRVDEVEXT pDevExt, uint32_t *pidxMaster) { /* * Pick the first CPU online as the master TSC and make it the new GIP master based * on the APIC ID. * * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP * master as this point since the sync/async timer isn't created yet. */ unsigned iCpu; uint32_t idxMaster = UINT32_MAX; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++) { uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu]; if (idxCpu != UINT16_MAX) { PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu]; if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet)) { idxMaster = idxCpu; pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE; ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpu->idCpu); if (pidxMaster) *pidxMaster = idxMaster; return VINF_SUCCESS; } } } return VERR_CPU_OFFLINE; } /** * Performs the initial measurements of the TSC deltas between CPUs. * * This is called by supdrvGipCreate(), supdrvGipPowerNotificationCallback() or * triggered by it if threaded. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses * idCpu, GIP's online CPU set which are populated in * supdrvGipInitOnCpu(). */ static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt) { PSUPGIPCPU pGipCpuMaster; unsigned iCpu; unsigned iOddEven; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; uint32_t idxMaster = UINT32_MAX; uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents); Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED); supdrvTscResetSamples(pDevExt, true /* fClearDeltas */); int rc = supdrvTscPickMaster(pDevExt, &idxMaster); if (RT_FAILURE(rc)) { SUPR0Printf("Failed to pick a CPU master for TSC-delta measurements rc=%Rrc\n", rc); return rc; } AssertReturn(idxMaster < pGip->cCpus, VERR_INVALID_CPU_INDEX); pGipCpuMaster = &pGip->aCPUs[idxMaster]; Assert(pDevExt->idGipMaster == pGipCpuMaster->idCpu); /* * If there is only a single CPU online we have nothing to do. */ if (pGip->cOnlineCpus <= 1) { AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5); return VINF_SUCCESS; } /* * Loop thru the GIP CPU array and get deltas for each CPU (except the * master). We do the CPUs with the even numbered APIC IDs first so that * we've got alternative master CPUs to pick from on hyper-threaded systems. */ for (iOddEven = 0; iOddEven < 2; iOddEven++) { for (iCpu = 0; iCpu < pGip->cCpus; iCpu++) { PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu]; if ( iCpu != idxMaster && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0) && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet)) { rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu); if (RT_FAILURE(rc)) { SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu, pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu); break; } if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents) { SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n"); rc = VERR_TRY_AGAIN; break; } } } } return rc; } #ifdef SUPDRV_USE_TSC_DELTA_THREAD /** * Switches the TSC-delta measurement thread into the butchered state. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not. * @param pszFailed An error message to log. * @param rcFailed The error code to exit the thread with. */ static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed) { if (!fSpinlockHeld) RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed)); return rcFailed; } /** * The TSC-delta measurement thread. * * @returns VBox status code. * @param hThread The thread handle. * @param pvUser Opaque pointer to the device instance data. */ static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser) { PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser; uint32_t cConsecutiveTimeouts = 0; int rc = VERR_INTERNAL_ERROR_2; for (;;) { /* * Switch on the current state. */ SUPDRVTSCDELTATHREADSTATE enmState; RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); enmState = pDevExt->enmTscDeltaThreadState; switch (enmState) { case kTscDeltaThreadState_Creating: { pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening; rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); if (RT_FAILURE(rc)) return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc); /* fall thru */ } case kTscDeltaThreadState_Listening: { RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); /* * Linux counts uninterruptible sleeps as load, hence we shall do a * regular, interruptible sleep here and ignore wake ups due to signals. * See task_contributes_to_load() in include/linux/sched.h in the Linux sources. */ rc = RTThreadUserWaitNoResume(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout); if ( RT_FAILURE(rc) && rc != VERR_TIMEOUT && rc != VERR_INTERRUPTED) return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc); RTThreadUserReset(pDevExt->hTscDeltaThread); break; } case kTscDeltaThreadState_WaitAndMeasure: { pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring; rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */ if (RT_FAILURE(rc)) return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc); RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); RTThreadSleep(1); /* fall thru */ } case kTscDeltaThreadState_Measuring: { cConsecutiveTimeouts = 0; if (pDevExt->fTscThreadRecomputeAllDeltas) { int cTries = 8; int cMsWaitPerTry = 10; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; Assert(pGip); do { RTCpuSetCopy(&pDevExt->TscDeltaCpuSet, &pGip->OnlineCpuSet); rc = supdrvMeasureInitialTscDeltas(pDevExt); if ( RT_SUCCESS(rc) || ( RT_FAILURE(rc) && rc != VERR_TRY_AGAIN && rc != VERR_CPU_OFFLINE)) { break; } RTThreadSleep(cMsWaitPerTry); } while (cTries-- > 0); pDevExt->fTscThreadRecomputeAllDeltas = false; } else { PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; unsigned iCpu; /* Measure TSC-deltas only for the CPUs that are in the set. */ rc = VINF_SUCCESS; for (iCpu = 0; iCpu < pGip->cCpus; iCpu++) { PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu]; if (RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet)) { if (pGipCpuWorker->i64TSCDelta == INT64_MAX) { int rc2 = supdrvMeasureTscDeltaOne(pDevExt, iCpu); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } else { /* * The thread/someone must've called SUPR0TscDeltaMeasureBySetIndex(), * mark the delta as fine to get the timer thread off our back. */ RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet); RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet); } } } } RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring) pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as init value, see supdrvTscDeltaThreadInit(). */ ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc); break; } case kTscDeltaThreadState_Terminating: pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); return VINF_SUCCESS; case kTscDeltaThreadState_Butchered: default: return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE); } } return rc; } /** * Waits for the TSC-delta measurement thread to respond to a state change. * * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time, * other error code on internal error. * * @param pThis Pointer to the grant service instance data. * @param enmCurState The current state. * @param enmNewState The new state we're waiting for it to enter. */ static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState, SUPDRVTSCDELTATHREADSTATE enmNewState) { /* * Wait a short while for the expected state transition. */ int rc; RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC); RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); if (pDevExt->enmTscDeltaThreadState == enmNewState) { RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); rc = VINF_SUCCESS; } else if (pDevExt->enmTscDeltaThreadState == enmCurState) { /* * Wait longer if the state has not yet transitioned to the one we want. */ RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC); if ( RT_SUCCESS(rc) || rc == VERR_TIMEOUT) { /* * Check the state whether we've succeeded. */ SUPDRVTSCDELTATHREADSTATE enmState; RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); enmState = pDevExt->enmTscDeltaThreadState; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); if (enmState == enmNewState) rc = VINF_SUCCESS; else if (enmState == enmCurState) { rc = VERR_TIMEOUT; OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState, enmNewState)); } else { rc = VERR_INTERNAL_ERROR; OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState, enmState, enmNewState)); } } else OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc)); } else { RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState)); rc = VERR_INTERNAL_ERROR; } return rc; } /** * Signals the TSC-delta thread to start measuring TSC-deltas. * * @param pDevExt Pointer to the device instance data. * @param fForceAll Force re-calculating TSC-deltas on all CPUs. */ static void supdrvTscDeltaThreadStartMeasurement(PSUPDRVDEVEXT pDevExt, bool fForceAll) { if (pDevExt->hTscDeltaThread != NIL_RTTHREAD) { RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring) { pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure; if (fForceAll) pDevExt->fTscThreadRecomputeAllDeltas = true; } else if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_WaitAndMeasure && fForceAll) pDevExt->fTscThreadRecomputeAllDeltas = true; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); RTThreadUserSignal(pDevExt->hTscDeltaThread); } } /** * Terminates the actual thread running supdrvTscDeltaThread(). * * This is an internal worker function for supdrvTscDeltaThreadInit() and * supdrvTscDeltaTerm(). * * @param pDevExt Pointer to the device instance data. */ static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt) { int rc; RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); RTThreadUserSignal(pDevExt->hTscDeltaThread); rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */); if (RT_FAILURE(rc)) { /* Signal a few more times before giving up. */ int cTriesLeft = 5; while (--cTriesLeft > 0) { RTThreadUserSignal(pDevExt->hTscDeltaThread); rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */); if (rc != VERR_TIMEOUT) break; } } } /** * Initializes and spawns the TSC-delta measurement thread. * * A thread is required for servicing re-measurement requests from events like * CPUs coming online, suspend/resume etc. as it cannot be done synchronously * under all contexts on all OSs. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * * @remarks Must only be called -after- initializing GIP and setting up MP * notifications! */ static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt) { int rc; Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED); rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck"); if (RT_SUCCESS(rc)) { rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent); if (RT_SUCCESS(rc)) { pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating; pDevExt->cMsTscDeltaTimeout = 60000; rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread"); if (RT_SUCCESS(rc)) { rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening); if (RT_SUCCESS(rc)) { ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE); return rc; } OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc)); supdrvTscDeltaThreadTerminate(pDevExt); } else OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc)); RTSemEventDestroy(pDevExt->hTscDeltaEvent); pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT; } else OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc)); RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock); pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK; } else OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc)); return rc; } /** * Terminates the TSC-delta measurement thread and cleanup. * * @param pDevExt Pointer to the device instance data. */ static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt) { if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT) { supdrvTscDeltaThreadTerminate(pDevExt); } if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK) { RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock); pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK; } if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT) { RTSemEventDestroy(pDevExt->hTscDeltaEvent); pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT; } ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE); } #endif /* SUPDRV_USE_TSC_DELTA_THREAD */ /** * Measure the TSC delta for the CPU given by its CPU set index. * * @returns VBox status code. * @retval VERR_INTERRUPTED if interrupted while waiting. * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a * measurement. * @retval VERR_CPU_OFFLINE if the specified CPU is offline. * * @param pSession The caller's session. GIP must've been mapped. * @param iCpuSet The CPU set index of the CPU to measure. * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX. * @param cMsWaitRetry Number of milliseconds to wait between each retry. * @param cMsWaitThread Number of milliseconds to wait for the thread to get * ready. * @param cTries Number of times to try, pass 0 for the default. */ SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags, RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries) { PSUPDRVDEVEXT pDevExt; PSUPGLOBALINFOPAGE pGip; uint16_t iGipCpu; int rc; #ifdef SUPDRV_USE_TSC_DELTA_THREAD uint64_t msTsStartWait; uint32_t iWaitLoop; #endif /* * Validate and adjust the input. */ AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER); if (!pSession->fGipReferenced) return VERR_WRONG_ORDER; pDevExt = pSession->pDevExt; AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER); pGip = pDevExt->pGip; AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2); AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX); AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX); iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]; AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX); if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK) return VERR_INVALID_FLAGS; /* * The request is a noop if the TSC delta isn't being used. */ if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED) return VINF_SUCCESS; if (cTries == 0) cTries = 12; else if (cTries > 256) cTries = 256; if (cMsWaitRetry == 0) cMsWaitRetry = 2; else if (cMsWaitRetry > 1000) cMsWaitRetry = 1000; #ifdef SUPDRV_USE_TSC_DELTA_THREAD /* * Has the TSC already been measured and we're not forced to redo it? */ if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)) return VINF_SUCCESS; /* * Asynchronous request? Forward it to the thread, no waiting. */ if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC) { /** @todo Async. doesn't implement options like retries, waiting. We'll need * to pass those options to the thread somehow and implement it in the * thread. Check if anyone uses/needs fAsync before implementing this. */ RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet); if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring) { pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure; rc = VINF_SUCCESS; } else if (pDevExt->enmTscDeltaThreadState != kTscDeltaThreadState_WaitAndMeasure) rc = VERR_THREAD_IS_DEAD; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); RTThreadUserSignal(pDevExt->hTscDeltaThread); return VINF_SUCCESS; } /* * If a TSC-delta measurement request is already being serviced by the thread, * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy. */ msTsStartWait = RTTimeSystemMilliTS(); for (iWaitLoop = 0;; iWaitLoop++) { uint64_t cMsElapsed; SUPDRVTSCDELTATHREADSTATE enmState; RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock); enmState = pDevExt->enmTscDeltaThreadState; RTSpinlockRelease(pDevExt->hTscDeltaSpinlock); if (enmState == kTscDeltaThreadState_Measuring) { /* Must wait, the thread is busy. */ } else if (enmState == kTscDeltaThreadState_WaitAndMeasure) { /* Must wait, this state only says what will happen next. */ } else if (enmState == kTscDeltaThreadState_Terminating) { /* Must wait, this state only says what should happen next. */ } else break; /* All other states, the thread is either idly listening or dead. */ /* Wait or fail. */ if (cMsWaitThread == 0) return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY; cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait; if (cMsElapsed >= cMsWaitThread) return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY; rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10))); if (rc == VERR_INTERRUPTED) return rc; } #endif /* SUPDRV_USE_TSC_DELTA_THREAD */ /* * Try measure the TSC delta the given number of times. */ for (;;) { /* Unless we're forced to measure the delta, check whether it's done already. */ if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE) && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX) { rc = VINF_SUCCESS; break; } /* Measure it. */ rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu); if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED) { Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc)); break; } /* Retry? */ if (cTries <= 1) break; cTries--; /* Always delay between retries (be nice to the rest of the system and avoid the BSOD hounds). */ rc = RTThreadSleep(cMsWaitRetry); if (rc == VERR_INTERRUPTED) break; } return rc; } /** * Service a TSC-delta measurement request. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * @param pSession The support driver session. * @param pReq Pointer to the TSC-delta measurement request. */ int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq) { uint32_t cTries; uint32_t iCpuSet; uint32_t fFlags; RTMSINTERVAL cMsWaitRetry; /* * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex. */ AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */ if (pReq->u.In.idCpu == NIL_RTCPUID) return VERR_INVALID_CPU_ID; iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu); if (iCpuSet >= RTCPUSET_MAX_CPUS) return VERR_INVALID_CPU_ID; cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1; cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5); fFlags = 0; if (pReq->u.In.fAsync) fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC; if (pReq->u.In.fForce) fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE; return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry, cTries == 0 ? 5 * RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/, cTries); } /** * Reads TSC with delta applied. * * Will try to resolve delta value INT64_MAX before applying it. This is the * main purpose of this function, to handle the case where the delta needs to be * determined. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * @param pSession The support driver session. * @param pReq Pointer to the TSC-read request. */ int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq) { PSUPGLOBALINFOPAGE pGip; int rc; /* * Validate. We require the client to have mapped GIP (no asserting on * ring-3 preconditions). */ AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */ if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ) return VERR_WRONG_ORDER; pGip = pDevExt->pGip; AssertReturn(pGip, VERR_INTERNAL_ERROR_2); /* * We're usually here because we need to apply delta, but we shouldn't be * upset if the GIP is some different mode. */ if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED) { uint32_t cTries = 0; for (;;) { /* * Start by gathering the data, using CLI for disabling preemption * while we do that. */ RTCCUINTREG fEFlags = ASMIntDisableFlags(); int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId()); int iGipCpu; if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus )) { int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta; pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic; pReq->u.Out.u64AdjustedTsc = ASMReadTSC(); ASMSetFlags(fEFlags); /* * If we're lucky we've got a delta, but no predictions here * as this I/O control is normally only used when the TSC delta * is set to INT64_MAX. */ if (i64Delta != INT64_MAX) { pReq->u.Out.u64AdjustedTsc -= i64Delta; rc = VINF_SUCCESS; break; } /* Give up after a few times. */ if (cTries >= 4) { rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED; break; } /* Need to measure the delta an try again. */ rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu); Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc)); /** @todo should probably delay on failure... dpc watchdogs */ } else { /* This really shouldn't happen. */ AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet)); pReq->u.Out.idApic = ASMGetApicId(); pReq->u.Out.u64AdjustedTsc = ASMReadTSC(); ASMSetFlags(fEFlags); rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */ break; } } } else { /* * No delta to apply. Easy. Deal with preemption the lazy way. */ RTCCUINTREG fEFlags = ASMIntDisableFlags(); int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId()); int iGipCpu; if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx) && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus )) pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic; else pReq->u.Out.idApic = ASMGetApicId(); pReq->u.Out.u64AdjustedTsc = ASMReadTSC(); ASMSetFlags(fEFlags); rc = VINF_SUCCESS; } return rc; } /** * Worker for supdrvIOCtl_GipSetFlags. * * @returns VBox status code. * @retval VERR_WRONG_ORDER if an enable-once-per-session flag is set again for * a session. * * @param pDevExt Pointer to the device instance data. * @param pSession The support driver session. * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX. * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX. * * @remarks Caller must own the GIP mutex. * * @remarks This function doesn't validate any of the flags. */ static int supdrvGipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask) { uint32_t cRefs; PSUPGLOBALINFOPAGE pGip = pDevExt->pGip; AssertMsg((fOrMask & fAndMask) == fOrMask, ("%#x & %#x\n", fOrMask, fAndMask)); /* ASSUMED by code below */ /* * Compute GIP test-mode flags. */ if (fOrMask & SUPGIP_FLAGS_TESTING_ENABLE) { if (!pSession->fGipTestMode) { Assert(pDevExt->cGipTestModeRefs < _64K); pSession->fGipTestMode = true; cRefs = ++pDevExt->cGipTestModeRefs; if (cRefs == 1) { fOrMask |= SUPGIP_FLAGS_TESTING | SUPGIP_FLAGS_TESTING_START; fAndMask &= ~SUPGIP_FLAGS_TESTING_STOP; } } else { LogRelMax(10, ("supdrvGipSetFlags: SUPGIP_FLAGS_TESTING_ENABLE already set for this session\n")); return VERR_WRONG_ORDER; } } else if ( !(fAndMask & SUPGIP_FLAGS_TESTING_ENABLE) && pSession->fGipTestMode) { Assert(pDevExt->cGipTestModeRefs > 0); Assert(pDevExt->cGipTestModeRefs < _64K); pSession->fGipTestMode = false; cRefs = --pDevExt->cGipTestModeRefs; if (!cRefs) fOrMask |= SUPGIP_FLAGS_TESTING_STOP; else fAndMask |= SUPGIP_FLAGS_TESTING_ENABLE; } /* * Commit the flags. This should be done as atomically as possible * since the flag consumers won't be holding the GIP mutex. */ ASMAtomicOrU32(&pGip->fFlags, fOrMask); ASMAtomicAndU32(&pGip->fFlags, fAndMask); return VINF_SUCCESS; } /** * Sets GIP test mode parameters. * * @returns VBox status code. * @param pDevExt Pointer to the device instance data. * @param pSession The support driver session. * @param fOrMask The OR mask of the GIP flags, see SUPGIP_FLAGS_XXX. * @param fAndMask The AND mask of the GIP flags, see SUPGIP_FLAGS_XXX. */ int VBOXCALL supdrvIOCtl_GipSetFlags(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, uint32_t fOrMask, uint32_t fAndMask) { PSUPGLOBALINFOPAGE pGip; int rc; /* * Validate. We require the client to have mapped GIP (no asserting on * ring-3 preconditions). */ AssertPtr(pDevExt); AssertPtr(pSession); /* paranoia^2 */ if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ) return VERR_WRONG_ORDER; pGip = pDevExt->pGip; AssertReturn(pGip, VERR_INTERNAL_ERROR_3); if (fOrMask & ~SUPGIP_FLAGS_VALID_MASK) return VERR_INVALID_PARAMETER; if ((fAndMask & ~SUPGIP_FLAGS_VALID_MASK) != ~SUPGIP_FLAGS_VALID_MASK) return VERR_INVALID_PARAMETER; /* * Don't confuse supdrvGipSetFlags or anyone else by both setting * and clearing the same flags. AND takes precedence. */ fOrMask &= fAndMask; /* * Take the loader lock to avoid having to think about races between two * clients changing the flags at the same time (state is not simple). */ #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT); #else RTSemFastMutexRequest(pDevExt->mtxGip); #endif rc = supdrvGipSetFlags(pDevExt, pSession, fOrMask, fAndMask); #ifdef SUPDRV_USE_MUTEX_FOR_GIP RTSemMutexRelease(pDevExt->mtxGip); #else RTSemFastMutexRelease(pDevExt->mtxGip); #endif return rc; }