1 | /* Copyright (c) 2001, Stanford University
|
---|
2 | * All rights reserved
|
---|
3 | *
|
---|
4 | * See the file LICENSE.txt for information on redistributing this software.
|
---|
5 | */
|
---|
6 |
|
---|
7 | /*
|
---|
8 | * This code contributed by Karl Rasche <[email protected]>
|
---|
9 | */
|
---|
10 |
|
---|
11 |
|
---|
12 | #include <math.h>
|
---|
13 | #include "cr_server.h"
|
---|
14 | #include "cr_mem.h"
|
---|
15 | #include "server.h"
|
---|
16 |
|
---|
17 |
|
---|
18 | static void
|
---|
19 | __find_intersection(double *s, double *e, double *clp, double *clp_next,
|
---|
20 | double *intr)
|
---|
21 | {
|
---|
22 | double v1[2], v2[2];
|
---|
23 | double A, B, T;
|
---|
24 |
|
---|
25 | v1[0] = e[0] - s[0];
|
---|
26 | v1[1] = e[1] - s[1];
|
---|
27 | v2[0] = clp_next[0] - clp[0];
|
---|
28 | v2[1] = clp_next[1] - clp[1];
|
---|
29 |
|
---|
30 | if ((v1[1]) && (v2[0]))
|
---|
31 | {
|
---|
32 | A = (clp[1]-s[1])/v1[1] + (v2[1]/v1[1])*(s[0]-clp[0])/v2[0];
|
---|
33 | B = 1.-(v2[1]/v1[1])*(v1[0]/v2[0]);
|
---|
34 | if (B)
|
---|
35 | T = A/B;
|
---|
36 | else
|
---|
37 | {
|
---|
38 | T = 0;
|
---|
39 | }
|
---|
40 |
|
---|
41 | intr[0] = s[0]+T*v1[0];
|
---|
42 | intr[1] = s[1]+T*v1[1];
|
---|
43 | }
|
---|
44 | else
|
---|
45 | if (v1[1])
|
---|
46 | {
|
---|
47 | /* clp -> clp_next is vertical */
|
---|
48 | T = (clp[0]-s[0])/v1[0];
|
---|
49 |
|
---|
50 | intr[0] = s[0]+T*v1[0];
|
---|
51 | intr[1] = s[1]+T*v1[1];
|
---|
52 | }
|
---|
53 | else
|
---|
54 | {
|
---|
55 | /* s -> e is horizontal */
|
---|
56 | T = (s[1]-clp[1])/v2[1];
|
---|
57 |
|
---|
58 | intr[0] = clp[0]+T*v2[0];
|
---|
59 | intr[1] = clp[1]+T*v2[1];
|
---|
60 | }
|
---|
61 |
|
---|
62 | }
|
---|
63 |
|
---|
64 | static void
|
---|
65 | __clip_one_side(double *poly, int npnts, double *clp, double *clp_next,
|
---|
66 | double *norm,
|
---|
67 | double **new_poly_in, int *new_npnts_in,
|
---|
68 | double **new_poly_out, int *new_npnts_out)
|
---|
69 | {
|
---|
70 | int a, sin, ein;
|
---|
71 | double *s, *e, intr[2];
|
---|
72 |
|
---|
73 | *new_poly_in = (double *)crAlloc(2*npnts*2*sizeof(double));
|
---|
74 | *new_npnts_in = 0;
|
---|
75 |
|
---|
76 | *new_poly_out = (double *)crAlloc(2*npnts*2*sizeof(double));
|
---|
77 | *new_npnts_out = 0;
|
---|
78 |
|
---|
79 | s = poly;
|
---|
80 |
|
---|
81 | for (a=0; a<npnts; a++)
|
---|
82 | {
|
---|
83 | e = poly+2*((a+1)%npnts);
|
---|
84 |
|
---|
85 | if (((e[0]-clp[0])*norm[0]) + ((e[1]-clp[1])*norm[1]) >= 0)
|
---|
86 | ein = 0;
|
---|
87 | else
|
---|
88 | ein = 1;
|
---|
89 |
|
---|
90 | if (((s[0]-clp[0])*norm[0]) + ((s[1]-clp[1])*norm[1]) >= 0)
|
---|
91 | sin = 0;
|
---|
92 | else
|
---|
93 | sin = 1;
|
---|
94 |
|
---|
95 | if (sin && ein)
|
---|
96 | {
|
---|
97 | /* case 1: */
|
---|
98 | crMemcpy(*new_poly_in+2*(*new_npnts_in), e, 2*sizeof(double));
|
---|
99 | (*new_npnts_in)++;
|
---|
100 | }
|
---|
101 | else
|
---|
102 | if (sin && (!ein))
|
---|
103 | {
|
---|
104 | /* case 2: */
|
---|
105 |
|
---|
106 | __find_intersection(s, e, clp, clp_next, intr);
|
---|
107 |
|
---|
108 | crMemcpy(*new_poly_in+2*(*new_npnts_in), intr, 2*sizeof(double));
|
---|
109 | (*new_npnts_in)++;
|
---|
110 |
|
---|
111 | crMemcpy(*new_poly_out+2*(*new_npnts_out), intr, 2*sizeof(double));
|
---|
112 | (*new_npnts_out)++;
|
---|
113 | crMemcpy(*new_poly_out+2*(*new_npnts_out), e, 2*sizeof(double));
|
---|
114 | (*new_npnts_out)++;
|
---|
115 | }
|
---|
116 | else
|
---|
117 | if ((!sin) && ein)
|
---|
118 | {
|
---|
119 | /* case 4: */
|
---|
120 | __find_intersection(s, e, clp, clp_next, intr);
|
---|
121 |
|
---|
122 | crMemcpy((*new_poly_in)+2*(*new_npnts_in), intr, 2*sizeof(double));
|
---|
123 | (*new_npnts_in)++;
|
---|
124 | crMemcpy((*new_poly_in)+2*(*new_npnts_in), e, 2*sizeof(double));
|
---|
125 | (*new_npnts_in)++;
|
---|
126 |
|
---|
127 | crMemcpy(*new_poly_out+2*(*new_npnts_out), intr, 2*sizeof(double));
|
---|
128 | (*new_npnts_out)++;
|
---|
129 | }
|
---|
130 | else
|
---|
131 | {
|
---|
132 | crMemcpy(*new_poly_out+2*(*new_npnts_out), e, 2*sizeof(double));
|
---|
133 | (*new_npnts_out)++;
|
---|
134 | }
|
---|
135 |
|
---|
136 | s = e;
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | /*
|
---|
141 | * Sutherland/Hodgman clipping for interior & exterior regions.
|
---|
142 | * length_of((*new_vert_out)[a]) == nclip_to_vert
|
---|
143 | */
|
---|
144 | static void
|
---|
145 | __clip(double *poly, int nvert, double *clip_to_poly, int nclip_to_vert,
|
---|
146 | double **new_vert_in, int *nnew_vert_in,
|
---|
147 | double ***new_vert_out, int **nnew_vert_out)
|
---|
148 | {
|
---|
149 | int a, side, *nout;
|
---|
150 | double *clip_normals, *s, *e, *n, *new_vert_src;
|
---|
151 | double *norm, *clp, *clp_next;
|
---|
152 | double **out;
|
---|
153 |
|
---|
154 | *new_vert_out = (double **)crAlloc(nclip_to_vert*sizeof(double *));
|
---|
155 | *nnew_vert_out = (int *)crAlloc(nclip_to_vert*sizeof(int));
|
---|
156 |
|
---|
157 | /*
|
---|
158 | * First, compute normals for the clip poly. This
|
---|
159 | * breaks for multiple (3+) adjacent colinear vertices
|
---|
160 | */
|
---|
161 | clip_normals = (double *)crAlloc(nclip_to_vert*2*sizeof(double));
|
---|
162 | for (a=0; a<nclip_to_vert; a++)
|
---|
163 | {
|
---|
164 | s = clip_to_poly+2*a;
|
---|
165 | e = clip_to_poly+2*((a+1)%nclip_to_vert);
|
---|
166 | n = clip_to_poly+2*((a+2)%nclip_to_vert);
|
---|
167 |
|
---|
168 | norm = clip_normals+2*a;
|
---|
169 | norm[0] = e[1]-s[1];
|
---|
170 | norm[1] = -1*(e[0]-s[0]);
|
---|
171 |
|
---|
172 | /*
|
---|
173 | * if dot(norm, n-e) > 0), the normals are backwards,
|
---|
174 | * assuming the clip region is convex
|
---|
175 | */
|
---|
176 | if (norm[0]*(n[0]-e[0]) + norm[1]*(n[1]-e[1]) > 0)
|
---|
177 | {
|
---|
178 | norm[0] *= -1;
|
---|
179 | norm[1] *= -1;
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | new_vert_src = (double *)crAlloc(nvert*nclip_to_vert*2*sizeof(double));
|
---|
184 | crMemcpy(new_vert_src, poly, 2*nvert*sizeof(double));
|
---|
185 |
|
---|
186 | for (side=0; side<nclip_to_vert; side++)
|
---|
187 | {
|
---|
188 | clp = clip_to_poly+2*side;
|
---|
189 | clp_next = clip_to_poly+2*((side+1)%nclip_to_vert);
|
---|
190 | norm = clip_normals+2*side;
|
---|
191 | *nnew_vert_in = 0;
|
---|
192 |
|
---|
193 | nout = (*nnew_vert_out)+side;
|
---|
194 | out = (*new_vert_out)+side;
|
---|
195 |
|
---|
196 | __clip_one_side(new_vert_src, nvert, clp, clp_next, norm,
|
---|
197 | new_vert_in, nnew_vert_in,
|
---|
198 | out, nout);
|
---|
199 |
|
---|
200 | crMemcpy(new_vert_src, (*new_vert_in), 2*(*nnew_vert_in)*sizeof(double));
|
---|
201 | if (side != nclip_to_vert-1)
|
---|
202 | crFree(*new_vert_in);
|
---|
203 | nvert = *nnew_vert_in;
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Given a bitmap and a group of 'base' polygons [the quads we are testing],
|
---|
209 | * perform the unions and differences specified by the map and return
|
---|
210 | * the resulting geometry
|
---|
211 | */
|
---|
212 | static void
|
---|
213 | __execute_combination(CRPoly **base, int n, int *mask, CRPoly **head)
|
---|
214 | {
|
---|
215 | int a, b, got_intr;
|
---|
216 | int nin, *nout, last;
|
---|
217 | double *in, **out;
|
---|
218 | CRPoly *intr, *diff, *p;
|
---|
219 |
|
---|
220 | *head = NULL;
|
---|
221 |
|
---|
222 | intr = (CRPoly *)crAlloc(sizeof(CRPoly));
|
---|
223 | intr->next = NULL;
|
---|
224 |
|
---|
225 | got_intr = 0;
|
---|
226 |
|
---|
227 | /* first, intersect the first 2 polys marked */
|
---|
228 | for (a=0; a<n; a++)
|
---|
229 | if (mask[a]) break;
|
---|
230 | for (b=a+1; b<n; b++)
|
---|
231 | if (mask[b]) break;
|
---|
232 |
|
---|
233 | __clip(base[a]->points, base[a]->npoints,
|
---|
234 | base[b]->points, base[b]->npoints,
|
---|
235 | &in, &nin, &out, &nout);
|
---|
236 | last = b;
|
---|
237 |
|
---|
238 | crFree (nout);
|
---|
239 | for (a=0; a<base[last]->npoints; a++)
|
---|
240 | if (out[a])
|
---|
241 | crFree(out[a]);
|
---|
242 | crFree(out);
|
---|
243 |
|
---|
244 |
|
---|
245 | if (nin)
|
---|
246 | {
|
---|
247 | intr->npoints = nin;
|
---|
248 | intr->points = in;
|
---|
249 | got_intr = 1;
|
---|
250 | }
|
---|
251 |
|
---|
252 | while (1)
|
---|
253 | {
|
---|
254 | for (a=last+1; a<n; a++)
|
---|
255 | if (mask[a]) break;
|
---|
256 |
|
---|
257 | if (a == n) break;
|
---|
258 |
|
---|
259 | if (got_intr)
|
---|
260 | {
|
---|
261 | __clip(base[a]->points, base[a]->npoints,
|
---|
262 | intr->points, intr->npoints,
|
---|
263 | &in, &nin, &out, &nout);
|
---|
264 |
|
---|
265 | crFree (nout);
|
---|
266 | for (b=0; b<intr->npoints; b++)
|
---|
267 | if (out[b])
|
---|
268 | crFree(out[b]);
|
---|
269 | crFree(out);
|
---|
270 |
|
---|
271 | if (nin)
|
---|
272 | {
|
---|
273 | intr->npoints = nin;
|
---|
274 | intr->points = in;
|
---|
275 | }
|
---|
276 | else
|
---|
277 | {
|
---|
278 | got_intr = 0;
|
---|
279 | break;
|
---|
280 | }
|
---|
281 | }
|
---|
282 | else
|
---|
283 | {
|
---|
284 | __clip(base[a]->points, base[a]->npoints,
|
---|
285 | base[last]->points, base[last]->npoints,
|
---|
286 | &in, &nin, &out, &nout);
|
---|
287 |
|
---|
288 | crFree (nout);
|
---|
289 | for (b=0; b<base[last]->npoints; b++)
|
---|
290 | {
|
---|
291 | if (out[b])
|
---|
292 | crFree(out[b]);
|
---|
293 | }
|
---|
294 | crFree(out);
|
---|
295 |
|
---|
296 |
|
---|
297 | if (nin)
|
---|
298 | {
|
---|
299 | intr->npoints = nin;
|
---|
300 | intr->points = in;
|
---|
301 | got_intr = 1;
|
---|
302 | }
|
---|
303 | }
|
---|
304 |
|
---|
305 | last = a;
|
---|
306 | if (a == n) break;
|
---|
307 | }
|
---|
308 |
|
---|
309 | /* can't subtract something from nothing! */
|
---|
310 | if (got_intr)
|
---|
311 | *head = intr;
|
---|
312 | else
|
---|
313 | return;
|
---|
314 |
|
---|
315 | /* find the first item to subtract */
|
---|
316 | for (a=0; a<n; a++)
|
---|
317 | if (!mask[a]) break;
|
---|
318 |
|
---|
319 | if (a == n) return;
|
---|
320 | last = a;
|
---|
321 |
|
---|
322 | /* and subtract it */
|
---|
323 | diff = NULL;
|
---|
324 | __clip(intr->points, intr->npoints,
|
---|
325 | base[last]->points, base[last]->npoints,
|
---|
326 | &in, &nin, &out, &nout);
|
---|
327 |
|
---|
328 | crFree(in);
|
---|
329 |
|
---|
330 | for (a=0; a<base[last]->npoints; a++)
|
---|
331 | {
|
---|
332 | if (!nout[a]) continue;
|
---|
333 |
|
---|
334 | p = (CRPoly *)crAlloc(sizeof(CRPoly));
|
---|
335 | p->npoints = nout[a];
|
---|
336 | p->points = out[a];
|
---|
337 | p->next = diff;
|
---|
338 | diff = p;
|
---|
339 | }
|
---|
340 | *head = diff;
|
---|
341 |
|
---|
342 | while (1)
|
---|
343 | {
|
---|
344 | intr = diff;
|
---|
345 | diff = NULL;
|
---|
346 |
|
---|
347 | for (a=last+1; a<n; a++)
|
---|
348 | if (!mask[a]) break;
|
---|
349 | if (a == n) return;
|
---|
350 |
|
---|
351 | last = a;
|
---|
352 |
|
---|
353 | /* subtract mask[a] from everything in intr and
|
---|
354 | * plop it into diff */
|
---|
355 | while (intr)
|
---|
356 | {
|
---|
357 | __clip(intr->points, intr->npoints,
|
---|
358 | base[last]->points, base[last]->npoints,
|
---|
359 | &in, &nin, &out, &nout);
|
---|
360 |
|
---|
361 | crFree(in);
|
---|
362 |
|
---|
363 | for (a=0; a<base[last]->npoints; a++)
|
---|
364 | {
|
---|
365 | if (!nout[a]) continue;
|
---|
366 |
|
---|
367 | p = (CRPoly *)crAlloc(sizeof(CRPoly));
|
---|
368 | p->npoints = nout[a];
|
---|
369 | p->points = out[a];
|
---|
370 | p->next = diff;
|
---|
371 | diff = p;
|
---|
372 | }
|
---|
373 |
|
---|
374 | intr = intr->next;
|
---|
375 | }
|
---|
376 |
|
---|
377 | *head = diff;
|
---|
378 | }
|
---|
379 |
|
---|
380 | }
|
---|
381 |
|
---|
382 | /*
|
---|
383 | * Here we generate all valid bitmaps to represent union/difference
|
---|
384 | * combinations. Each bitmap is N elements long, where N is the
|
---|
385 | * number of polys [quads] that we are testing for overlap
|
---|
386 | */
|
---|
387 | static void
|
---|
388 | __generate_masks(int n, int ***mask, int *nmasks)
|
---|
389 | {
|
---|
390 | int a, b, c, d, e;
|
---|
391 | int i, idx, isec_size, add;
|
---|
392 |
|
---|
393 | *mask = (int **)crAlloc((unsigned int)pow(2, n)*sizeof(int));
|
---|
394 | for (a=0; a<pow(2, n); a++)
|
---|
395 | (*mask)[a] = (int *)crAlloc(n*sizeof(int));
|
---|
396 |
|
---|
397 | /* compute combinations */
|
---|
398 | idx = 0;
|
---|
399 | for (isec_size=1; isec_size<n; isec_size++)
|
---|
400 | {
|
---|
401 | for (a=0; a<n; a++)
|
---|
402 | {
|
---|
403 | for (b=a+1; b<n; b++)
|
---|
404 | {
|
---|
405 | crMemset((*mask)[idx], 0, n*sizeof(int));
|
---|
406 | (*mask)[idx][a] = 1;
|
---|
407 |
|
---|
408 | add = 1;
|
---|
409 | for (c=0; c<isec_size; c++)
|
---|
410 | {
|
---|
411 | i = (b+c) % n;
|
---|
412 | if (i == a) add = 0;
|
---|
413 |
|
---|
414 | (*mask)[idx][i] = 1;
|
---|
415 | }
|
---|
416 |
|
---|
417 | /* dup check */
|
---|
418 | if ((add) && (idx))
|
---|
419 | {
|
---|
420 | for (d=0; d<idx; d++)
|
---|
421 | {
|
---|
422 | add = 0;
|
---|
423 | for (e=0; e<n; e++)
|
---|
424 | {
|
---|
425 | if ((*mask)[idx][e] != (*mask)[d][e])
|
---|
426 | add = 1;
|
---|
427 | }
|
---|
428 |
|
---|
429 | if (!add)
|
---|
430 | break;
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | if (add)
|
---|
435 | idx++;
|
---|
436 | }
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | *nmasks = idx;
|
---|
441 | }
|
---|
442 |
|
---|
443 | /*
|
---|
444 | * To compute the overlap between a series of quads (This should work
|
---|
445 | * for n-gons, but we'll only need quads..), first generate a series of
|
---|
446 | * bitmaps that represent which elements to union together, and which
|
---|
447 | * to difference. This goes into 'mask'. We then evaluate each bitmap with
|
---|
448 | * Sutherland-Hodgman clipping to find the interior (union) and exterior
|
---|
449 | * (difference) regions.
|
---|
450 | *
|
---|
451 | * In the map, 1 == union, 0 == difference
|
---|
452 | *
|
---|
453 | * (*res)[a] is the head of a poly list for all the polys that convert
|
---|
454 | * regions of overlap between a+1 polys ((*res)[0] == NULL)
|
---|
455 | */
|
---|
456 | void
|
---|
457 | crComputeOverlapGeom(double *quads, int nquad, CRPoly ***res)
|
---|
458 | {
|
---|
459 | int a, b, idx, isec_size, **mask;
|
---|
460 | CRPoly *p, *next, **base;
|
---|
461 |
|
---|
462 | base = (CRPoly **)crAlloc(nquad*sizeof(CRPoly *));
|
---|
463 | for (a=0; a<nquad; a++)
|
---|
464 | {
|
---|
465 | p = (CRPoly *)crAlloc(sizeof(CRPoly));
|
---|
466 | p->npoints = 4;
|
---|
467 | p->points = (double *)crAlloc(8*sizeof(double));
|
---|
468 | for (b=0; b<8; b++)
|
---|
469 | {
|
---|
470 | p->points[b] = quads[8*a+b];
|
---|
471 | }
|
---|
472 | p->next = NULL;
|
---|
473 | base[a] = p;
|
---|
474 | }
|
---|
475 |
|
---|
476 | *res = (CRPoly **)crAlloc(nquad*sizeof(CRPoly *));
|
---|
477 | for (a=0; a<nquad; a++)
|
---|
478 | (*res)[a] = NULL;
|
---|
479 |
|
---|
480 | __generate_masks(nquad, &mask, &idx);
|
---|
481 |
|
---|
482 | for (a=0; a<idx; a++)
|
---|
483 | {
|
---|
484 | isec_size = 0;
|
---|
485 | for (b=0; b<nquad; b++)
|
---|
486 | if (mask[a][b]) isec_size++;
|
---|
487 | isec_size--;
|
---|
488 |
|
---|
489 | __execute_combination(base, nquad, mask[a], &p);
|
---|
490 |
|
---|
491 | while (p)
|
---|
492 | {
|
---|
493 | next = p->next;
|
---|
494 |
|
---|
495 | p->next = (*res)[isec_size];
|
---|
496 | (*res)[isec_size] = p;
|
---|
497 |
|
---|
498 | p = next;
|
---|
499 | }
|
---|
500 | }
|
---|
501 |
|
---|
502 | for (a=0; a<nquad; a++)
|
---|
503 | {
|
---|
504 | crFree(base[a]->points);
|
---|
505 | crFree(base[a]);
|
---|
506 | }
|
---|
507 | crFree(base);
|
---|
508 |
|
---|
509 | }
|
---|
510 |
|
---|
511 | /*
|
---|
512 | * This is similar to ComputeOverlapGeom above, but for "knockout"
|
---|
513 | * edge blending.
|
---|
514 | *
|
---|
515 | * my_quad_idx is an index of quads indicating which display tile
|
---|
516 | * we are computing geometry for. From this, we either generate
|
---|
517 | * geometry, or not, such that all geometry can be drawn in black
|
---|
518 | * and only one tile will show through the blend as non-black.
|
---|
519 | *
|
---|
520 | * To add a combination to our set of geom, we must test that:
|
---|
521 | * + mask[a][my_quad_idx] is set
|
---|
522 | * + mask[a][my_quad_idx] is not the first element set in
|
---|
523 | * mask[a].
|
---|
524 | * If these conditions hold, execute mask[a] and draw the resulting
|
---|
525 | * geometry in black
|
---|
526 | *
|
---|
527 | * Unlike ComputeOverlapGeom, res is just a list of polys to draw in black
|
---|
528 | */
|
---|
529 | void
|
---|
530 | crComputeKnockoutGeom(double *quads, int nquad, int my_quad_idx, CRPoly **res)
|
---|
531 | {
|
---|
532 | int a, b, idx, first, **mask;
|
---|
533 | CRPoly *p, *next, **base;
|
---|
534 |
|
---|
535 | base = (CRPoly **) crAlloc(nquad*sizeof(CRPoly *));
|
---|
536 | for (a=0; a<nquad; a++)
|
---|
537 | {
|
---|
538 | p = (CRPoly *) crAlloc(sizeof(CRPoly));
|
---|
539 | p->npoints = 4;
|
---|
540 | p->points = (double *) crAlloc(8*sizeof(double));
|
---|
541 | for (b=0; b<8; b++)
|
---|
542 | {
|
---|
543 | p->points[b] = quads[8*a+b];
|
---|
544 | }
|
---|
545 | p->next = NULL;
|
---|
546 | base[a] = p;
|
---|
547 | }
|
---|
548 |
|
---|
549 | (*res) = NULL;
|
---|
550 |
|
---|
551 | __generate_masks(nquad, &mask, &idx);
|
---|
552 |
|
---|
553 | for (a=0; a<idx; a++)
|
---|
554 | {
|
---|
555 | /* test for above conditions */
|
---|
556 | if (!mask[a][my_quad_idx]) continue;
|
---|
557 |
|
---|
558 | first = -1;
|
---|
559 | for (b=0; b<nquad; b++)
|
---|
560 | if (mask[a][b])
|
---|
561 | {
|
---|
562 | first = b;
|
---|
563 | break;
|
---|
564 | }
|
---|
565 | if (first == my_quad_idx) continue;
|
---|
566 |
|
---|
567 |
|
---|
568 | __execute_combination(base, nquad, mask[a], &p);
|
---|
569 |
|
---|
570 | while (p)
|
---|
571 | {
|
---|
572 | next = p->next;
|
---|
573 |
|
---|
574 | p->next = *res;
|
---|
575 | *res = p;
|
---|
576 |
|
---|
577 | p = next;
|
---|
578 | }
|
---|
579 | }
|
---|
580 |
|
---|
581 | for (a=0; a<nquad; a++)
|
---|
582 | {
|
---|
583 | crFree(base[a]->points);
|
---|
584 | crFree(base[a]);
|
---|
585 | }
|
---|
586 | crFree(base);
|
---|
587 | }
|
---|