/** @file * * Remote Desktop Protocol client: * USB Channel Process Functions * */ /* * Copyright (C) 2006-2011 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /* DEBUG is defined in ../rdesktop.h */ #ifdef DEBUG # define VBOX_DEBUG DEBUG #endif #include "../rdesktop.h" #undef DEBUG #ifdef VBOX_DEBUG # define DEBUG VBOX_DEBUG #endif #include "vrdpusb.h" #include "USBProxyDevice.h" #include "USBGetDevices.h" #include #include #include #include #include #include #include #define RDPUSB_REQ_OPEN (0) #define RDPUSB_REQ_CLOSE (1) #define RDPUSB_REQ_RESET (2) #define RDPUSB_REQ_SET_CONFIG (3) #define RDPUSB_REQ_CLAIM_INTERFACE (4) #define RDPUSB_REQ_RELEASE_INTERFACE (5) #define RDPUSB_REQ_INTERFACE_SETTING (6) #define RDPUSB_REQ_QUEUE_URB (7) #define RDPUSB_REQ_REAP_URB (8) #define RDPUSB_REQ_CLEAR_HALTED_EP (9) #define RDPUSB_REQ_CANCEL_URB (10) #define RDPUSB_REQ_DEVICE_LIST (11) #define RDPUSB_REQ_NEGOTIATE (12) static VCHANNEL *rdpusb_channel; /** Well-known locations for the Linux Usbfs virtual file system */ static const struct { /** Expected mount location for Usbfs */ const char *pcszRoot; /** Expected location of the "devices" file */ const char *pcszDevices; } g_usbfsPaths[] = { { "/proc/bus/usb", "/proc/bus/usb/devices" }, { "/dev/bus/usb", "/dev/bus/usb/devices" } }; /** Location at which the USB device tree was found. NULL means not * found. */ static const char *g_pcszDevicesRoot = NULL; static bool g_fUseSysfs = false; static PUSBDEVICE g_pUsbDevices = NULL; /* A device list entry */ #pragma pack (1) typedef struct _DevListEntry { uint16_t oNext; /* Offset of the next structure. 0 if last. */ uint32_t id; /* Identifier of the device assigned by the client. */ uint16_t bcdUSB; /* USB verion number. */ uint8_t bDeviceClass; /* Device class. */ uint8_t bDeviceSubClass; /* Device subclass. */ uint8_t bDeviceProtocol; /* Device protocol. */ uint16_t idVendor; /* Vendor id. */ uint16_t idProduct; /* Product id. */ uint16_t bcdRev; /* Revision. */ uint16_t oManufacturer; /* Offset of manufacturer string. */ uint16_t oProduct; /* Offset of product string. */ uint16_t oSerialNumber; /* Offset of serial string. */ uint16_t idPort; /* Physical USB port the device is connected to. */ } DevListEntry; #pragma pack () /** * @returns VBox status code. */ static inline int op_usbproxy_back_open(PUSBPROXYDEV p, const char *pszAddress) { return g_USBProxyDeviceHost.pfnOpen (p, pszAddress, NULL); } static inline void op_usbproxy_back_close(PUSBPROXYDEV pDev) { return g_USBProxyDeviceHost.pfnClose (pDev); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_reset(PUSBPROXYDEV pDev) { return g_USBProxyDeviceHost.pfnReset (pDev, false); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_set_config(PUSBPROXYDEV pDev, int cfg) { return g_USBProxyDeviceHost.pfnSetConfig (pDev, cfg); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_claim_interface(PUSBPROXYDEV pDev, int ifnum) { return g_USBProxyDeviceHost.pfnClaimInterface (pDev, ifnum); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_release_interface(PUSBPROXYDEV pDev, int ifnum) { return g_USBProxyDeviceHost.pfnReleaseInterface (pDev, ifnum); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_interface_setting(PUSBPROXYDEV pDev, int ifnum, int setting) { return g_USBProxyDeviceHost.pfnSetInterface (pDev, ifnum, setting); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_queue_urb(PUSBPROXYDEV pDev, PVUSBURB pUrb) { return g_USBProxyDeviceHost.pfnUrbQueue(pDev, pUrb); } static inline PVUSBURB op_usbproxy_back_reap_urb(PUSBPROXYDEV pDev, unsigned cMillies) { return g_USBProxyDeviceHost.pfnUrbReap (pDev, cMillies); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_clear_halted_ep(PUSBPROXYDEV pDev, unsigned EndPoint) { return g_USBProxyDeviceHost.pfnClearHaltedEndpoint (pDev, EndPoint); } /** * @returns VBox status code. */ static inline int op_usbproxy_back_cancel_urb(PUSBPROXYDEV pDev, PVUSBURB pUrb) { return g_USBProxyDeviceHost.pfnUrbCancel (pDev, pUrb); } /** Count the USB devices in a linked list of PUSBDEVICE structures. */ unsigned countUSBDevices(PUSBDEVICE pDevices) { unsigned i = 0; for (; pDevices; pDevices = pDevices->pNext) ++i; return i; } enum { /** The space we set aside for the USB strings. Should always be enough, * as a USB device contains up to 256 characters of UTF-16 string data. */ MAX_STRINGS_LEN = 1024, /** The space we reserve for each wire format device entry */ DEV_ENTRY_SIZE = sizeof(DevListEntry) + MAX_STRINGS_LEN }; /** * Add a string to the end of a wire format device entry. * @param pBuf the start of the buffer containing the entry * @param iBuf the index into the buffer to add the string at * @param pcsz the string to add - optional * @param piString where to write back @a iBuf or zero if there is no string * @param piNext where to write back the index where the next string may * start */ static void addStringToEntry(char *pBuf, uint16_t iBuf, const char *pcsz, uint16_t *piString, uint16_t *piNext) { size_t cch; *piString = 0; *piNext = iBuf; if (!pcsz) return; cch = strlen(pcsz) + 1; if (cch > DEV_ENTRY_SIZE - iBuf) return; strcpy(pBuf + iBuf, pcsz); *piString = iBuf; *piNext = iBuf + cch; } /** Fill in a device list entry in wire format from a PUSBDEVICE and return an * index to where the next string should start */ static void fillWireListEntry(char *pBuf, PUSBDEVICE pDevice, uint16_t *piNext) { DevListEntry *pEntry; uint16_t iNextString = sizeof(DevListEntry); pEntry = (DevListEntry *)pBuf; pEntry->id = (pDevice->bPort << 8) + pDevice->bBus; pEntry->bcdUSB = pDevice->bcdUSB; pEntry->bDeviceClass = pDevice->bDeviceClass; pEntry->bDeviceSubClass = pDevice->bDeviceSubClass; pEntry->idVendor = pDevice->idVendor; pEntry->idProduct = pDevice->idProduct; pEntry->bcdRev = pDevice->bcdDevice; pEntry->idPort = pDevice->bPort; addStringToEntry(pBuf, iNextString, pDevice->pszManufacturer, &pEntry->oManufacturer, &iNextString); addStringToEntry(pBuf, iNextString, pDevice->pszProduct, &pEntry->oProduct, &iNextString); addStringToEntry(pBuf, iNextString, pDevice->pszSerialNumber, &pEntry->oSerialNumber, &pEntry->oNext); *piNext = pEntry->oNext; } /** Allocate (and return) a buffer for a device list in VRDP wire format, * and populate from a PUSBDEVICE linked list. @a pLen takes the length of * the new list. * See @a Console::processRemoteUSBDevices for the receiving end. */ static void *buildWireListFromDevices(PUSBDEVICE pDevices, int *pLen) { char *pBuf; unsigned cDevs, cbBuf, iCurrent; uint16_t iNext; PUSBDEVICE pCurrent; cDevs = countUSBDevices(pDevices); cbBuf = cDevs * DEV_ENTRY_SIZE + 2; pBuf = (char *)xmalloc(cbBuf); memset(pBuf, 0, cbBuf); for (pCurrent = pDevices, iCurrent = 0; pCurrent; pCurrent = pCurrent->pNext, iCurrent += iNext, --cDevs) { unsigned i, cZeros; AssertReturnStmt(iCurrent + DEV_ENTRY_SIZE + 2 <= cbBuf, free(pBuf), NULL); fillWireListEntry(pBuf + iCurrent, pCurrent, &iNext); DevListEntry *pEntry = (DevListEntry *)(pBuf + iCurrent); /* Sanity tests */ for (i = iCurrent + sizeof(DevListEntry), cZeros = 0; i < iCurrent + iNext; ++i) if (pBuf[i] == 0) ++cZeros; AssertReturnStmt(cZeros == RT_BOOL(pEntry->oManufacturer) + RT_BOOL(pEntry->oProduct) + RT_BOOL(pEntry->oSerialNumber), free(pBuf), NULL); Assert(pEntry->oManufacturer == 0 || pBuf[iCurrent + pEntry->oManufacturer] != '\0'); Assert(pEntry->oProduct == 0 || pBuf[iCurrent + pEntry->oProduct] != '\0'); Assert(pEntry->oSerialNumber == 0 || pBuf[iCurrent + pEntry->oSerialNumber] != '\0'); AssertReturnStmt(cZeros == 0 || pBuf[iCurrent + iNext - 1] == '\0', free(pBuf), NULL); } *pLen = iCurrent + iNext + 2; Assert(cDevs == 0); Assert(*pLen <= cbBuf); return pBuf; } /** Build a list of the usable USB devices currently connected to the client * system using the VRDP wire protocol. The structure returned must be freed * using free(3) when it is no longer needed; returns NULL and sets *pLen to * zero on failure. */ static void *build_device_list (int *pLen) { void *pvDeviceList; Log(("RDPUSB build_device_list")); *pLen = 0; if (g_pUsbDevices) deviceListFree(&g_pUsbDevices); g_pUsbDevices = USBProxyLinuxGetDevices(g_pcszDevicesRoot, g_fUseSysfs); if (!g_pUsbDevices) return NULL; pvDeviceList = buildWireListFromDevices(g_pUsbDevices, pLen); return pvDeviceList; } static STREAM rdpusb_init_packet(uint32 len, uint8 code) { STREAM s; s = channel_init(rdpusb_channel, len + 5); out_uint32_le (s, len + sizeof (code)); /* The length of data after the 'len' field. */ out_uint8(s, code); return s; } static void rdpusb_send(STREAM s) { #ifdef RDPUSB_DEBUG Log(("RDPUSB send:\n")); hexdump(s->channel_hdr + 8, s->end - s->channel_hdr - 8); #endif channel_send(s, rdpusb_channel); } static void rdpusb_send_reply (uint8_t code, uint8_t status, uint32_t devid) { STREAM s = rdpusb_init_packet(5, code); out_uint8(s, status); out_uint32_le(s, devid); s_mark_end(s); rdpusb_send(s); } static void rdpusb_send_access_denied (uint8_t code, uint32_t devid) { rdpusb_send_reply (code, VRDP_USB_STATUS_ACCESS_DENIED, devid); } static inline int vrdp_usb_status (int rc, VUSBDEV *pdev) { if (!rc || usbProxyFromVusbDev(pdev)->fDetached) { return VRDP_USB_STATUS_DEVICE_REMOVED; } return VRDP_USB_STATUS_SUCCESS; } static PUSBPROXYDEV g_proxies = NULL; static PUSBPROXYDEV devid2proxy (uint32_t devid) { PUSBPROXYDEV proxy = g_proxies; while (proxy && proxy->idVrdp != devid) { proxy = proxy->pNext; } return proxy; } static void rdpusb_reap_urbs (void) { STREAM s; PVUSBURB pUrb = NULL; PUSBPROXYDEV proxy = g_proxies; while (proxy) { pUrb = op_usbproxy_back_reap_urb(proxy, 0); if (pUrb) { int datalen = 0; Log(("RDPUSB: rdpusb_reap_urbs: cbData = %d, enmStatus = %d\n", pUrb->cbData, pUrb->enmStatus)); if (pUrb->enmDir == VUSB_DIRECTION_IN) { datalen = pUrb->cbData; } s = rdpusb_init_packet(14 + datalen, RDPUSB_REQ_REAP_URB); out_uint32_le(s, proxy->idVrdp); out_uint8(s, VRDP_USB_REAP_FLAG_LAST); out_uint8(s, pUrb->enmStatus); out_uint32_le(s, pUrb->handle); out_uint32_le(s, pUrb->cbData); if (datalen) { out_uint8a (s, pUrb->abData, datalen); } s_mark_end(s); rdpusb_send(s); if (pUrb->pPrev || pUrb->pNext || pUrb == proxy->pUrbs) { /* Remove the URB from list. */ if (pUrb->pPrev) { pUrb->pPrev->pNext = pUrb->pNext; } else { proxy->pUrbs = pUrb->pNext; } if (pUrb->pNext) { pUrb->pNext->pPrev = pUrb->pPrev; } } #ifdef RDPUSB_DEBUG Log(("Going to free %p\n", pUrb)); #endif xfree (pUrb); #ifdef RDPUSB_DEBUG Log(("freed %p\n", pUrb)); #endif } proxy = proxy->pNext; } return; } static void rdpusb_process(STREAM s) { int rc; uint32 len; uint8 code; uint32 devid; PUSBPROXYDEV proxy = NULL; #ifdef RDPUSB_DEBUG Log(("RDPUSB recv:\n")); hexdump(s->p, s->end - s->p); #endif in_uint32_le (s, len); if (len > s->end - s->p) { error("RDPUSB: not enough data len = %d, bytes left %d\n", len, s->end - s->p); return; } in_uint8(s, code); Log(("RDPUSB recv: len = %d, code = %d\n", len, code)); switch (code) { case RDPUSB_REQ_OPEN: { PUSBDEVICE pDevice; in_uint32_le(s, devid); proxy = (PUSBPROXYDEV )xmalloc (sizeof (USBPROXYDEV)); if (!proxy) { error("RDPUSB: Out of memory allocating proxy backend data\n"); return; } memset (proxy, 0, sizeof (USBPROXYDEV)); proxy->pvInstanceDataR3 = xmalloc(g_USBProxyDeviceHost.cbBackend); if (!proxy->pvInstanceDataR3) { xfree (proxy); error("RDPUSB: Out of memory allocating proxy backend data\n"); return; } proxy->Dev.pszName = "Remote device"; proxy->idVrdp = devid; for (pDevice = g_pUsbDevices; pDevice; pDevice = pDevice->pNext) if ((pDevice->bPort << 8) + pDevice->bBus == devid) break; rc = pDevice ? op_usbproxy_back_open(proxy, pDevice->pszAddress) : VERR_NOT_FOUND; if (rc != VINF_SUCCESS) { rdpusb_send_access_denied (code, devid); xfree (proxy); proxy = NULL; } else { if (g_proxies) { g_proxies->pPrev = proxy; } proxy->pNext = g_proxies; g_proxies = proxy; } } break; case RDPUSB_REQ_CLOSE: { in_uint32_le(s, devid); proxy = devid2proxy (devid); if (proxy) { op_usbproxy_back_close(proxy); if (proxy->pPrev) { proxy->pPrev->pNext = proxy->pNext; } else { g_proxies = proxy->pNext; } if (proxy->pNext) { proxy->pNext->pPrev = proxy->pPrev; } xfree (proxy->pvInstanceDataR3); xfree (proxy); proxy = NULL; } /* No reply. */ } break; case RDPUSB_REQ_RESET: { in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } rc = op_usbproxy_back_reset(proxy); if (rc != VINF_SUCCESS) { rdpusb_send_reply (code, vrdp_usb_status (!rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_SET_CONFIG: { uint8 cfg; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint8(s, cfg); rc = op_usbproxy_back_set_config(proxy, cfg); if (RT_FAILURE(rc)) { rdpusb_send_reply (code, vrdp_usb_status (rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_CLAIM_INTERFACE: { uint8 ifnum; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint8(s, ifnum); in_uint8(s, ifnum); rc = op_usbproxy_back_claim_interface(proxy, ifnum); if (RT_FAILURE(rc)) { rdpusb_send_reply (code, vrdp_usb_status (rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_RELEASE_INTERFACE: { uint8 ifnum; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint8(s, ifnum); rc = op_usbproxy_back_release_interface(proxy, ifnum); if (RT_FAILURE(rc)) { rdpusb_send_reply (code, vrdp_usb_status (rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_INTERFACE_SETTING: { uint8 ifnum; uint8 setting; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint8(s, ifnum); in_uint8(s, setting); rc = op_usbproxy_back_interface_setting(proxy, ifnum, setting); if (RT_FAILURE(rc)) { rdpusb_send_reply (code, vrdp_usb_status (rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_QUEUE_URB: { uint32 handle; uint8 type; uint8 ep; uint8 dir; uint32 urblen; uint32 datalen; PVUSBURB pUrb; // struct vusb_urb *urb; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { /* No reply. */ break; } in_uint32(s, handle); in_uint8(s, type); in_uint8(s, ep); in_uint8(s, dir); in_uint32(s, urblen); in_uint32(s, datalen); /* Allocate a single block for URB description and data buffer */ pUrb = (PVUSBURB)xmalloc (sizeof (VUSBURB) + (urblen <= sizeof (pUrb->abData)? 0: urblen - sizeof (pUrb->abData)) ); memset (pUrb, 0, sizeof (VUSBURB)); pUrb->pDev = &proxy->Dev; pUrb->handle = handle; pUrb->enmType = type; pUrb->enmStatus = 0; pUrb->EndPt = ep; pUrb->enmDir = dir; pUrb->cbData = urblen; Log(("RDPUSB: queued URB handle = %d\n", handle)); if (datalen) { in_uint8a (s, pUrb->abData, datalen); } rc = op_usbproxy_back_queue_urb(proxy, pUrb); /* No reply required. */ if (RT_SUCCESS(rc)) { if (proxy->pUrbs) { proxy->pUrbs->pPrev = pUrb; } pUrb->pNext = proxy->pUrbs; proxy->pUrbs = pUrb; } else { xfree (pUrb); } } break; case RDPUSB_REQ_REAP_URB: { rdpusb_reap_urbs (); } break; case RDPUSB_REQ_CLEAR_HALTED_EP: { uint8 ep; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint8(s, ep); rc = op_usbproxy_back_clear_halted_ep(proxy, ep); if (RT_FAILURE(rc)) { rdpusb_send_reply (code, vrdp_usb_status (rc, &proxy->Dev), devid); } } break; case RDPUSB_REQ_CANCEL_URB: { uint32 handle; PVUSBURB pUrb = NULL; in_uint32_le(s, devid); proxy = devid2proxy (devid); if (!proxy) { rdpusb_send_access_denied (code, devid); break; } in_uint32_le(s, handle); pUrb = proxy->pUrbs; while (pUrb && pUrb->handle != handle) { pUrb = pUrb->pNext; } if (pUrb) { op_usbproxy_back_cancel_urb(proxy, pUrb); /* No reply required. */ /* Remove URB from list. */ if (pUrb->pPrev) { pUrb->pPrev->pNext = pUrb->pNext; } else { proxy->pUrbs = pUrb->pNext; } if (pUrb->pNext) { pUrb->pNext->pPrev = pUrb->pPrev; } pUrb->pNext = pUrb->pPrev = NULL; Log(("Cancelled URB %p\n", pUrb)); // xfree (pUrb); } } break; case RDPUSB_REQ_DEVICE_LIST: { void *buf = NULL; int len = 0; buf = build_device_list (&len); s = rdpusb_init_packet(len? len: 2, code); if (len) { out_uint8p (s, buf, len); } else { out_uint16_le(s, 0); } s_mark_end(s); rdpusb_send(s); if (buf) { free (buf); } } break; case RDPUSB_REQ_NEGOTIATE: { s = rdpusb_init_packet(1, code); out_uint8(s, VRDP_USB_CAPS_FLAG_ASYNC); s_mark_end(s); rdpusb_send(s); } break; default: unimpl("RDPUSB code %d\n", code); break; } } void rdpusb_add_fds(int *n, fd_set * rfds, fd_set * wfds) { PUSBPROXYDEV proxy = g_proxies; // Log(("RDPUSB: rdpusb_add_fds: begin *n = %d\n", *n)); while (proxy) { int fd = USBProxyDeviceLinuxGetFD(proxy); if (fd != -1) { // Log(("RDPUSB: rdpusb_add_fds: adding %d\n", proxy->priv.File)); FD_SET(fd, rfds); FD_SET(fd, wfds); *n = MAX(*n, fd); } proxy = proxy->pNext; } // Log(("RDPUSB: rdpusb_add_fds: end *n = %d\n", *n)); return; } void rdpusb_check_fds(fd_set * rfds, fd_set * wfds) { PUSBPROXYDEV proxy = g_proxies; unsigned found = 0; while (proxy) { int fd = USBProxyDeviceLinuxGetFD(proxy); if (fd != -1) { if (FD_ISSET(fd, rfds)) found = 1; if (FD_ISSET(fd, wfds)) found = 1; } proxy = proxy->pNext; } // Log(("RDPUSB: rdpusb_check_fds: begin\n")); if (found) rdpusb_reap_urbs (); // Log(("RDPUSB: rdpusb_check_fds: end\n")); return; } RD_BOOL rdpusb_init(void) { bool fUseUsbfs; if (RT_SUCCESS(USBProxyLinuxChooseMethod(&fUseUsbfs, &g_pcszDevicesRoot))) { g_fUseSysfs = !fUseUsbfs; rdpusb_channel = channel_register("vrdpusb", CHANNEL_OPTION_INITIALIZED | CHANNEL_OPTION_ENCRYPT_RDP, rdpusb_process); return (rdpusb_channel != NULL); } return false; } void rdpusb_close (void) { PUSBPROXYDEV proxy = g_proxies; while (proxy) { PUSBPROXYDEV pNext = proxy->pNext; Log(("RDPUSB: closing proxy %p\n", proxy)); op_usbproxy_back_close(proxy); xfree (proxy); proxy = pNext; } return; }