/* $Id: alt-sha1.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * IPRT - SHA-1 hash functions, Alternative Implementation. */ /* * Copyright (C) 2009-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The SHA-1 block size (in bytes). */ #define RTSHA1_BLOCK_SIZE 64U /** Enables the unrolled code. */ #define RTSHA1_UNROLLED 1 /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include /** Our private context structure. */ typedef struct RTSHA1ALTPRIVATECTX { /** The W array. * Buffering happens in the first 16 words, converted from big endian to host * endian immediately before processing. The amount of buffered data is kept * in the 6 least significant bits of cbMessage. */ uint32_t auW[80]; /** The message length (in bytes). */ uint64_t cbMessage; /** The 5 hash values. */ uint32_t auH[5]; } RTSHA1ALTPRIVATECTX; #define RT_SHA1_PRIVATE_ALT_CONTEXT #include AssertCompile(RT_SIZEOFMEMB(RTSHA1CONTEXT, abPadding) >= RT_SIZEOFMEMB(RTSHA1CONTEXT, AltPrivate)); AssertCompileMemberSize(RTSHA1ALTPRIVATECTX, auH, RTSHA1_HASH_SIZE); RTDECL(void) RTSha1Init(PRTSHA1CONTEXT pCtx) { pCtx->AltPrivate.cbMessage = 0; pCtx->AltPrivate.auH[0] = UINT32_C(0x67452301); pCtx->AltPrivate.auH[1] = UINT32_C(0xefcdab89); pCtx->AltPrivate.auH[2] = UINT32_C(0x98badcfe); pCtx->AltPrivate.auH[3] = UINT32_C(0x10325476); pCtx->AltPrivate.auH[4] = UINT32_C(0xc3d2e1f0); } RT_EXPORT_SYMBOL(RTSha1Init); /** * Initializes the auW array from the specfied input block. * * @param pCtx The SHA1 context. * @param pbBlock The block. Must be 32-bit aligned. */ DECLINLINE(void) rtSha1BlockInit(PRTSHA1CONTEXT pCtx, uint8_t const *pbBlock) { #ifdef RTSHA1_UNROLLED uint32_t const *puSrc = (uint32_t const *)pbBlock; uint32_t *puW = &pCtx->AltPrivate.auW[0]; Assert(!((uintptr_t)puSrc & 3)); Assert(!((uintptr_t)puW & 3)); /* Copy and byte-swap the block. Initializing the rest of the Ws are done in the processing loop. */ # ifdef RT_LITTLE_ENDIAN *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); *puW++ = ASMByteSwapU32(*puSrc++); # else memcpy(puW, puSrc, RTSHA1_BLOCK_SIZE); # endif #else /* !RTSHA1_UNROLLED */ uint32_t const *pu32Block = (uint32_t const *)pbBlock; Assert(!((uintptr_t)pu32Block & 3)); unsigned iWord; for (iWord = 0; iWord < 16; iWord++) pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pu32Block[iWord]); for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint32_t u32 = pCtx->AltPrivate.auW[iWord - 16]; u32 ^= pCtx->AltPrivate.auW[iWord - 14]; u32 ^= pCtx->AltPrivate.auW[iWord - 8]; u32 ^= pCtx->AltPrivate.auW[iWord - 3]; pCtx->AltPrivate.auW[iWord] = ASMRotateLeftU32(u32, 1); } #endif /* !RTSHA1_UNROLLED */ } /** * Initializes the auW array from data buffered in the first part of the array. * * @param pCtx The SHA1 context. */ DECLINLINE(void) rtSha1BlockInitBuffered(PRTSHA1CONTEXT pCtx) { #ifdef RTSHA1_UNROLLED uint32_t *puW = &pCtx->AltPrivate.auW[0]; Assert(!((uintptr_t)puW & 3)); /* Do the byte swap if necessary. Initializing the rest of the Ws are done in the processing loop. */ # ifdef RT_LITTLE_ENDIAN *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; *puW = ASMByteSwapU32(*puW); puW++; # endif #else /* !RTSHA1_UNROLLED_INIT */ unsigned iWord; for (iWord = 0; iWord < 16; iWord++) pCtx->AltPrivate.auW[iWord] = RT_BE2H_U32(pCtx->AltPrivate.auW[iWord]); for (; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint32_t u32 = pCtx->AltPrivate.auW[iWord - 16]; u32 ^= pCtx->AltPrivate.auW[iWord - 14]; u32 ^= pCtx->AltPrivate.auW[iWord - 8]; u32 ^= pCtx->AltPrivate.auW[iWord - 3]; pCtx->AltPrivate.auW[iWord] = ASMRotateLeftU32(u32, 1); } #endif /* !RTSHA1_UNROLLED_INIT */ } /** Function 4.1, Ch(x,y,z). */ DECL_FORCE_INLINE(uint32_t) rtSha1Ch(uint32_t uX, uint32_t uY, uint32_t uZ) { #if 1 /* Optimization that saves one operation and probably a temporary variable. */ uint32_t uResult = uY; uResult ^= uZ; uResult &= uX; uResult ^= uZ; return uResult; #else /* The original. */ uint32_t uResult = uX & uY; uResult ^= ~uX & uZ; return uResult; #endif } /** Function 4.1, Parity(x,y,z). */ DECL_FORCE_INLINE(uint32_t) rtSha1Parity(uint32_t uX, uint32_t uY, uint32_t uZ) { uint32_t uResult = uX; uResult ^= uY; uResult ^= uZ; return uResult; } /** Function 4.1, Maj(x,y,z). */ DECL_FORCE_INLINE(uint32_t) rtSha1Maj(uint32_t uX, uint32_t uY, uint32_t uZ) { #if 1 /* Optimization that save one operation and probably a temporary variable. */ uint32_t uResult = uY; uResult ^= uZ; uResult &= uX; uResult ^= uY & uZ; return uResult; #else /* The original. */ uint32_t uResult = (uX & uY); uResult |= (uX & uZ); uResult |= (uY & uZ); return uResult; #endif } /** * Process the current block. * * Requires one of the rtSha1BlockInit functions to be called first. * * @param pCtx The SHA1 context. */ static void rtSha1BlockProcess(PRTSHA1CONTEXT pCtx) { uint32_t uA = pCtx->AltPrivate.auH[0]; uint32_t uB = pCtx->AltPrivate.auH[1]; uint32_t uC = pCtx->AltPrivate.auH[2]; uint32_t uD = pCtx->AltPrivate.auH[3]; uint32_t uE = pCtx->AltPrivate.auH[4]; #ifdef RTSHA1_UNROLLED /* This fully unrolled version will avoid the variable rotation by embedding it into the loop unrolling. */ uint32_t *puW = &pCtx->AltPrivate.auW[0]; # define SHA1_BODY(a_iWord, a_uK, a_fnFt, a_uA, a_uB, a_uC, a_uD, a_uE) \ do { \ if (a_iWord < 16) \ a_uE += *puW++; \ else \ { \ uint32_t u32 = puW[-16]; \ u32 ^= puW[-14]; \ u32 ^= puW[-8]; \ u32 ^= puW[-3]; \ u32 = ASMRotateLeftU32(u32, 1); \ *puW++ = u32; \ a_uE += u32; \ } \ a_uE += (a_uK); \ a_uE += ASMRotateLeftU32(a_uA, 5); \ a_uE += a_fnFt(a_uB, a_uC, a_uD); \ a_uB = ASMRotateLeftU32(a_uB, 30); \ } while (0) # define FIVE_ITERATIONS(a_iFirst, a_uK, a_fnFt) \ do { \ SHA1_BODY(a_iFirst + 0, a_uK, a_fnFt, uA, uB, uC, uD, uE); \ SHA1_BODY(a_iFirst + 1, a_uK, a_fnFt, uE, uA, uB, uC, uD); \ SHA1_BODY(a_iFirst + 2, a_uK, a_fnFt, uD, uE, uA, uB, uC); \ SHA1_BODY(a_iFirst + 3, a_uK, a_fnFt, uC, uD, uE, uA, uB); \ SHA1_BODY(a_iFirst + 4, a_uK, a_fnFt, uB, uC, uD, uE, uA); \ } while (0) # define TWENTY_ITERATIONS(a_iStart, a_uK, a_fnFt) \ do { \ FIVE_ITERATIONS(a_iStart + 0, a_uK, a_fnFt); \ FIVE_ITERATIONS(a_iStart + 5, a_uK, a_fnFt); \ FIVE_ITERATIONS(a_iStart + 10, a_uK, a_fnFt); \ FIVE_ITERATIONS(a_iStart + 15, a_uK, a_fnFt); \ } while (0) TWENTY_ITERATIONS( 0, UINT32_C(0x5a827999), rtSha1Ch); TWENTY_ITERATIONS(20, UINT32_C(0x6ed9eba1), rtSha1Parity); TWENTY_ITERATIONS(40, UINT32_C(0x8f1bbcdc), rtSha1Maj); TWENTY_ITERATIONS(60, UINT32_C(0xca62c1d6), rtSha1Parity); #elif 1 /* Version avoiding the constant selection. */ unsigned iWord = 0; # define TWENTY_ITERATIONS(a_iWordStop, a_uK, a_uExprBCD) \ for (; iWord < a_iWordStop; iWord++) \ { \ uint32_t uTemp = ASMRotateLeftU32(uA, 5); \ uTemp += (a_uExprBCD); \ uTemp += uE; \ uTemp += pCtx->AltPrivate.auW[iWord]; \ uTemp += (a_uK); \ \ uE = uD; \ uD = uC; \ uC = ASMRotateLeftU32(uB, 30); \ uB = uA; \ uA = uTemp; \ } do { } while (0) TWENTY_ITERATIONS(20, UINT32_C(0x5a827999), rtSha1Ch(uB, uC, uD)); TWENTY_ITERATIONS(40, UINT32_C(0x6ed9eba1), rtSha1Parity(uB, uC, uD)); TWENTY_ITERATIONS(60, UINT32_C(0x8f1bbcdc), rtSha1Maj(uB, uC, uD)); TWENTY_ITERATIONS(80, UINT32_C(0xca62c1d6), rtSha1Parity(uB, uC, uD)); #else /* Dead simple implementation. */ for (unsigned iWord = 0; iWord < RT_ELEMENTS(pCtx->AltPrivate.auW); iWord++) { uint32_t uTemp = ASMRotateLeftU32(uA, 5); uTemp += uE; uTemp += pCtx->AltPrivate.auW[iWord]; if (iWord <= 19) { uTemp += (uB & uC) | (~uB & uD); uTemp += UINT32_C(0x5a827999); } else if (iWord <= 39) { uTemp += uB ^ uC ^ uD; uTemp += UINT32_C(0x6ed9eba1); } else if (iWord <= 59) { uTemp += (uB & uC) | (uB & uD) | (uC & uD); uTemp += UINT32_C(0x8f1bbcdc); } else { uTemp += uB ^ uC ^ uD; uTemp += UINT32_C(0xca62c1d6); } uE = uD; uD = uC; uC = ASMRotateLeftU32(uB, 30); uB = uA; uA = uTemp; } #endif pCtx->AltPrivate.auH[0] += uA; pCtx->AltPrivate.auH[1] += uB; pCtx->AltPrivate.auH[2] += uC; pCtx->AltPrivate.auH[3] += uD; pCtx->AltPrivate.auH[4] += uE; } RTDECL(void) RTSha1Update(PRTSHA1CONTEXT pCtx, const void *pvBuf, size_t cbBuf) { Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 2); uint8_t const *pbBuf = (uint8_t const *)pvBuf; /* * Deal with buffered bytes first. */ size_t cbBuffered = (size_t)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U); if (cbBuffered) { size_t cbMissing = RTSHA1_BLOCK_SIZE - cbBuffered; if (cbBuf >= cbMissing) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbMissing); pCtx->AltPrivate.cbMessage += cbMissing; pbBuf += cbMissing; cbBuf -= cbMissing; rtSha1BlockInitBuffered(pCtx); rtSha1BlockProcess(pCtx); } else { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, pbBuf, cbBuf); pCtx->AltPrivate.cbMessage += cbBuf; return; } } if (!((uintptr_t)pbBuf & 3)) { /* * Process full blocks directly from the input buffer. */ while (cbBuf >= RTSHA1_BLOCK_SIZE) { rtSha1BlockInit(pCtx, pbBuf); rtSha1BlockProcess(pCtx); pCtx->AltPrivate.cbMessage += RTSHA1_BLOCK_SIZE; pbBuf += RTSHA1_BLOCK_SIZE; cbBuf -= RTSHA1_BLOCK_SIZE; } } else { /* * Unaligned input, so buffer it. */ while (cbBuf >= RTSHA1_BLOCK_SIZE) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, RTSHA1_BLOCK_SIZE); rtSha1BlockInitBuffered(pCtx); rtSha1BlockProcess(pCtx); pCtx->AltPrivate.cbMessage += RTSHA1_BLOCK_SIZE; pbBuf += RTSHA1_BLOCK_SIZE; cbBuf -= RTSHA1_BLOCK_SIZE; } } /* * Stash any remaining bytes into the context buffer. */ if (cbBuf > 0) { memcpy((uint8_t *)&pCtx->AltPrivate.auW[0], pbBuf, cbBuf); pCtx->AltPrivate.cbMessage += cbBuf; } } RT_EXPORT_SYMBOL(RTSha1Update); static void rtSha1FinalInternal(PRTSHA1CONTEXT pCtx) { Assert(pCtx->AltPrivate.cbMessage < UINT64_MAX / 2); /* * Complete the message by adding a single bit (0x80), padding till * the next 448-bit boundrary, the add the message length. */ uint64_t const cMessageBits = pCtx->AltPrivate.cbMessage * 8; unsigned cbMissing = RTSHA1_BLOCK_SIZE - ((unsigned)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U)); static uint8_t const s_abSingleBitAndSomePadding[12] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; if (cbMissing < 1U + 8U) /* Less than 64+8 bits left in the current block, force a new block. */ RTSha1Update(pCtx, &s_abSingleBitAndSomePadding, sizeof(s_abSingleBitAndSomePadding)); else RTSha1Update(pCtx, &s_abSingleBitAndSomePadding, 1); unsigned cbBuffered = (unsigned)pCtx->AltPrivate.cbMessage & (RTSHA1_BLOCK_SIZE - 1U); cbMissing = RTSHA1_BLOCK_SIZE - cbBuffered; Assert(cbMissing >= 8); memset((uint8_t *)&pCtx->AltPrivate.auW[0] + cbBuffered, 0, cbMissing - 8); *(uint64_t *)&pCtx->AltPrivate.auW[14] = RT_H2BE_U64(cMessageBits); /* * Process the last buffered block constructed/completed above. */ rtSha1BlockInitBuffered(pCtx); rtSha1BlockProcess(pCtx); /* * Convert the byte order of the hash words and we're done. */ pCtx->AltPrivate.auH[0] = RT_H2BE_U32(pCtx->AltPrivate.auH[0]); pCtx->AltPrivate.auH[1] = RT_H2BE_U32(pCtx->AltPrivate.auH[1]); pCtx->AltPrivate.auH[2] = RT_H2BE_U32(pCtx->AltPrivate.auH[2]); pCtx->AltPrivate.auH[3] = RT_H2BE_U32(pCtx->AltPrivate.auH[3]); pCtx->AltPrivate.auH[4] = RT_H2BE_U32(pCtx->AltPrivate.auH[4]); } DECLINLINE(void) rtSha1WipeCtx(PRTSHA1CONTEXT pCtx) { RT_ZERO(pCtx->AltPrivate); pCtx->AltPrivate.cbMessage = UINT64_MAX; } RTDECL(void) RTSha1Final(PRTSHA1CONTEXT pCtx, uint8_t pabDigest[RTSHA1_HASH_SIZE]) { rtSha1FinalInternal(pCtx); memcpy(pabDigest, &pCtx->AltPrivate.auH[0], RTSHA1_HASH_SIZE); rtSha1WipeCtx(pCtx); } RT_EXPORT_SYMBOL(RTSha1Final); RTDECL(void) RTSha1(const void *pvBuf, size_t cbBuf, uint8_t pabDigest[RTSHA1_HASH_SIZE]) { RTSHA1CONTEXT Ctx; RTSha1Init(&Ctx); RTSha1Update(&Ctx, pvBuf, cbBuf); RTSha1Final(&Ctx, pabDigest); } RT_EXPORT_SYMBOL(RTSha1); RTDECL(bool) RTSha1Check(const void *pvBuf, size_t cbBuf, uint8_t const pabHash[RTSHA1_HASH_SIZE]) { RTSHA1CONTEXT Ctx; RTSha1Init(&Ctx); RTSha1Update(&Ctx, pvBuf, cbBuf); rtSha1FinalInternal(&Ctx); bool fRet = memcmp(pabHash, &Ctx.AltPrivate.auH[0], RTSHA1_HASH_SIZE) == 0; rtSha1WipeCtx(&Ctx); return fRet; } RT_EXPORT_SYMBOL(RTSha1Check);