/* $Id: pkix-signature-rsa.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * IPRT - Crypto - Public Key Signature Schema Algorithm, RSA Providers. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "internal/iprt.h" #include #include #include #include #include #include #include #include "rsa-internal.h" #include "pkix-signature-builtin.h" #include "key-internal.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * RSA signature provider instance. */ typedef struct RTCRPKIXSIGNATURERSA { /** Set if we're signing, clear if verifying. */ bool fSigning; /** Temporary big number for use when signing or verifiying. */ RTBIGNUM TmpBigNum1; /** Temporary big number for use when signing or verifiying. */ RTBIGNUM TmpBigNum2; /** Scratch space for decoding the key. */ union { /** Public key. */ RTCRRSAPUBLICKEY PublicKey; /** Private key. */ RTCRRSAPRIVATEKEY PrivateKey; /** Scratch area where we assemble the signature. */ uint8_t abSignature[RTCRRSA_MAX_MODULUS_BITS / 8 * 2]; } Scratch; } RTCRPKIXSIGNATURERSA; /** Pointer to an RSA signature provider instance. */ typedef RTCRPKIXSIGNATURERSA *PRTCRPKIXSIGNATURERSA; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** @name Pre-encoded DigestInfo DER sequences. * @{ */ static const uint8_t g_abMd2[] = {/* { { 1.2.840.113549.2.2 (MD2), NULL }, hash octet-string } */ 0x30,0x20, 0x30,0x0c, 0x06,0x08,0x2a,0x86,0x48,0x86,0xf7,0x0d,0x02,0x02, 0x05,0x00, 0x04,0x10 }; static const uint8_t g_abMd4[] = {/* { { 1.2.840.113549.2.4 (MD4), NULL }, hash octet-string } */ 0x30,0x20, 0x30,0x0c, 0x06,0x08,0x2a,0x86,0x48,0x86,0xf7,0x0d,0x02,0x04, 0x05,0x00, 0x04,0x10 }; static const uint8_t g_abMd5[] = {/* { { 1.2.840.113549.2.5 (MD5), NULL }, hash octet-string } */ 0x30,0x20, 0x30,0x0c, 0x06,0x08,0x2a,0x86,0x48,0x86,0xf7,0x0d,0x02,0x05, 0x05,0x00, 0x04,0x10 }; static const uint8_t g_abSha1[] = {/* { { 1.3.14.3.2.26 (SHA-1), NULL }, hash octet-string } */ 0x30,0x21, 0x30,0x09, 0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a, 0x05,0x00, 0x04,0x14 }; static const uint8_t g_abSha256[] = {/* { { 2.16.840.1.101.3.4.2.1 (SHA-256), NULL }, hash octet-string } */ 0x30,0x31, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, 0x05,0x00, 0x04,0x20 }; static const uint8_t g_abSha384[] = {/* { { 2.16.840.1.101.3.4.2.2 (SHA-384), NULL }, hash octet-string } */ 0x30,0x41, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x02, 0x05,0x00, 0x04,0x30 }; static const uint8_t g_abSha512[] = {/* { { 2.16.840.1.101.3.4.2.3 (SHA-512), NULL }, hash octet-string } */ 0x30,0x51, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03, 0x05,0x00, 0x04,0x40 }; static const uint8_t g_abSha224[] = {/* { { 2.16.840.1.101.3.4.2.4 (SHA-224), NULL }, hash octet-string } */ 0x30,0x2d, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x04, 0x05,0x00, 0x04,0x1c }; static const uint8_t g_abSha512t224[] = {/* { { 2.16.840.1.101.3.4.2.5 (SHA-512T224), NULL }, hash octet-string } */ 0x30,0x2d, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x05, 0x05,0x00, 0x04,0x1c }; static const uint8_t g_abSha512t256[] = {/* { { 2.16.840.1.101.3.4.2.6 (SHA-512T256), NULL }, hash octet-string } */ 0x30,0x31, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x06, 0x05,0x00, 0x04,0x20 }; static const uint8_t g_abSha3t224[] = {/* { { 2.16.840.1.101.3.4.2.7 (SHA3-224), NULL }, hash octet-string } */ 0x30,0x2d, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x07, 0x05,0x00, 0x04,0x1c }; static const uint8_t g_abSha3t256[] = {/* { { 2.16.840.1.101.3.4.2.8 (SHA3-256), NULL }, hash octet-string } */ 0x30,0x31, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x08, 0x05,0x00, 0x04,0x20 }; static const uint8_t g_abSha3t384[] = {/* { { 2.16.840.1.101.3.4.2.9 (SHA3-384), NULL }, hash octet-string } */ 0x30,0x41, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x09, 0x05,0x00, 0x04,0x30 }; static const uint8_t g_abSha3t512[] = {/* { { 2.16.840.1.101.3.4.2.10 (SHA3-512), NULL }, hash octet-string } */ 0x30,0x51, 0x30,0x0d, 0x06,0x09,0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x0a, 0x05,0x00, 0x04,0x40 }; /** @} */ /** Lookup array for the pre-encoded DigestInfo DER sequences. */ static struct { RTDIGESTTYPE enmDigest; const uint8_t *pb; size_t cb; } const g_aDigestInfos[] = { { RTDIGESTTYPE_SHA1, g_abSha1, sizeof(g_abSha1) }, { RTDIGESTTYPE_SHA256, g_abSha256, sizeof(g_abSha256) }, { RTDIGESTTYPE_SHA512, g_abSha512, sizeof(g_abSha512) }, { RTDIGESTTYPE_MD2, g_abMd2, sizeof(g_abMd2) }, { RTDIGESTTYPE_MD4, g_abMd4, sizeof(g_abMd4) }, { RTDIGESTTYPE_MD5, g_abMd5, sizeof(g_abMd5) }, { RTDIGESTTYPE_SHA384, g_abSha384, sizeof(g_abSha384) }, { RTDIGESTTYPE_SHA224, g_abSha224, sizeof(g_abSha224) }, { RTDIGESTTYPE_SHA512T224, g_abSha512t224, sizeof(g_abSha512t224)}, { RTDIGESTTYPE_SHA512T256, g_abSha512t256, sizeof(g_abSha512t256)}, { RTDIGESTTYPE_SHA3_224, g_abSha3t224, sizeof(g_abSha3t224) }, { RTDIGESTTYPE_SHA3_256, g_abSha3t256, sizeof(g_abSha3t256) }, { RTDIGESTTYPE_SHA3_384, g_abSha3t384, sizeof(g_abSha3t384) }, { RTDIGESTTYPE_SHA3_512, g_abSha3t512, sizeof(g_abSha3t512) }, }; /** @impl_interface_method{RTCRPKIXSIGNATUREDESC,pfnInit} */ static DECLCALLBACK(int) rtCrPkixSignatureRsa_Init(PCRTCRPKIXSIGNATUREDESC pDesc, void *pvState, void *pvOpaque, bool fSigning, RTCRKEY hKey, PCRTASN1DYNTYPE pParams) { RT_NOREF_PV(pDesc); RT_NOREF_PV(pvState); RT_NOREF_PV(pvOpaque); if ( !pParams || pParams->enmType == RTASN1TYPE_NULL || pParams->enmType == RTASN1TYPE_NOT_PRESENT) { /* likely */ } else return VERR_CR_PKIX_SIGNATURE_TAKES_NO_PARAMETERS; RTCRKEYTYPE enmKeyType = RTCrKeyGetType(hKey); if (fSigning) AssertReturn(enmKeyType == RTCRKEYTYPE_RSA_PRIVATE, VERR_CR_PKIX_NOT_RSA_PRIVATE_KEY); else AssertReturn(enmKeyType == RTCRKEYTYPE_RSA_PUBLIC, VERR_CR_PKIX_NOT_RSA_PUBLIC_KEY); PRTCRPKIXSIGNATURERSA pThis = (PRTCRPKIXSIGNATURERSA)pvState; pThis->fSigning = fSigning; return VINF_SUCCESS; } /** @impl_interface_method{RTCRPKIXSIGNATUREDESC,pfnReset} */ static DECLCALLBACK(int) rtCrPkixSignatureRsa_Reset(PCRTCRPKIXSIGNATUREDESC pDesc, void *pvState, bool fSigning) { PRTCRPKIXSIGNATURERSA pThis = (PRTCRPKIXSIGNATURERSA)pvState; RT_NOREF_PV(fSigning); RT_NOREF_PV(pDesc); Assert(pThis->fSigning == fSigning); NOREF(pThis); return VINF_SUCCESS; } /** @impl_interface_method{RTCRPKIXSIGNATUREDESC,pfnDelete} */ static DECLCALLBACK(void) rtCrPkixSignatureRsa_Delete(PCRTCRPKIXSIGNATUREDESC pDesc, void *pvState, bool fSigning) { PRTCRPKIXSIGNATURERSA pThis = (PRTCRPKIXSIGNATURERSA)pvState; RT_NOREF_PV(fSigning); RT_NOREF_PV(pDesc); Assert(pThis->fSigning == fSigning); NOREF(pThis); } /** * Common worker for rtCrPkixSignatureRsa_Verify and * rtCrPkixSignatureRsa_Sign that encodes an EMSA-PKCS1-V1_5 signature in * the scratch area. * * This function is referred to as EMSA-PKCS1-v1_5-ENCODE(M,k) in RFC-3447 and * is described in section 9.2 * * @returns IPRT status code. * @param pThis The RSA signature provider instance. * @param hDigest The digest which hash to turn into a signature. * @param cbEncodedMsg The desired encoded message length. * @param fNoDigestInfo If true, skip the DigestInfo and encode the digest * without any prefix like described in v1.5 (RFC-2313) * and observed with RSA+MD5 signed timestamps. If * false, include the prefix like v2.0 (RFC-2437) * describes in step in section 9.2.1 * (EMSA-PKCS1-v1_5) * * @remarks Must preserve informational status codes! */ static int rtCrPkixSignatureRsa_EmsaPkcs1V15Encode(PRTCRPKIXSIGNATURERSA pThis, RTCRDIGEST hDigest, size_t cbEncodedMsg, bool fNoDigestInfo) { AssertReturn(cbEncodedMsg * 2 <= sizeof(pThis->Scratch), VERR_CR_PKIX_INTERNAL_ERROR); /* * Figure out which hash and select the associate prebaked DigestInfo. */ RTDIGESTTYPE const enmDigest = RTCrDigestGetType(hDigest); AssertReturn(enmDigest != RTDIGESTTYPE_INVALID && enmDigest != RTDIGESTTYPE_UNKNOWN, VERR_CR_PKIX_UNKNOWN_DIGEST_TYPE); uint8_t const *pbDigestInfoStart = NULL; size_t cbDigestInfoStart = 0; for (uint32_t i = 0; i < RT_ELEMENTS(g_aDigestInfos); i++) if (g_aDigestInfos[i].enmDigest == enmDigest) { pbDigestInfoStart = g_aDigestInfos[i].pb; cbDigestInfoStart = g_aDigestInfos[i].cb; break; } if (!pbDigestInfoStart) return VERR_CR_PKIX_UNKNOWN_DIGEST_TYPE; /* * Get the hash size and verify that it matches what we've got in the * precooked DigestInfo. ASSUMES less that 256 bytes of hash. */ uint32_t const cbHash = RTCrDigestGetHashSize(hDigest); AssertReturn(cbHash > 0 && cbHash < _16K, VERR_OUT_OF_RANGE); AssertReturn(cbHash == pbDigestInfoStart[cbDigestInfoStart - 1], VERR_CR_PKIX_INTERNAL_ERROR); if (fNoDigestInfo) cbDigestInfoStart = 0; if (cbDigestInfoStart + cbHash + 11 > cbEncodedMsg) return VERR_CR_PKIX_HASH_TOO_LONG_FOR_KEY; /* * Encode the message the first part of the scratch area. */ uint8_t *pbDst = &pThis->Scratch.abSignature[0]; pbDst[0] = 0x00; pbDst[1] = 0x01; /* BT - block type, see RFC-2313. */ size_t cbFFs = cbEncodedMsg - cbHash - cbDigestInfoStart - 3; memset(&pbDst[2], 0xff, cbFFs); pbDst += cbFFs + 2; *pbDst++ = 0x00; memcpy(pbDst, pbDigestInfoStart, cbDigestInfoStart); pbDst += cbDigestInfoStart; /* Note! Must preserve informational status codes from this call . */ int rc = RTCrDigestFinal(hDigest, pbDst, cbHash); if (RT_SUCCESS(rc)) { pbDst += cbHash; Assert((size_t)(pbDst - &pThis->Scratch.abSignature[0]) == cbEncodedMsg); } return rc; } /** @impl_interface_method{RTCRPKIXSIGNATUREDESC,pfnVerify} */ static DECLCALLBACK(int) rtCrPkixSignatureRsa_Verify(PCRTCRPKIXSIGNATUREDESC pDesc, void *pvState, RTCRKEY hKey, RTCRDIGEST hDigest, void const *pvSignature, size_t cbSignature) { PRTCRPKIXSIGNATURERSA pThis = (PRTCRPKIXSIGNATURERSA)pvState; RT_NOREF_PV(pDesc); Assert(!pThis->fSigning); if (cbSignature > sizeof(pThis->Scratch) / 2) return VERR_CR_PKIX_SIGNATURE_TOO_LONG; /* * Get the key bits we need. */ Assert(RTCrKeyGetType(hKey) == RTCRKEYTYPE_RSA_PUBLIC); PRTBIGNUM pModulus = &hKey->u.RsaPublic.Modulus; PRTBIGNUM pExponent = &hKey->u.RsaPublic.Exponent; /* * 8.2.2.1 - Length check. (RFC-3447) */ if (cbSignature != RTBigNumByteWidth(pModulus)) return VERR_CR_PKIX_INVALID_SIGNATURE_LENGTH; /* * 8.2.2.2 - RSA verification / Decrypt the signature. */ /* a) s = OS2IP(S) -- Convert signature to integer. */ int rc = RTBigNumInit(&pThis->TmpBigNum1, RTBIGNUMINIT_F_ENDIAN_BIG | RTBIGNUMINIT_F_UNSIGNED, pvSignature, cbSignature); if (RT_FAILURE(rc)) return rc; /* b) RSAVP1 - 5.2.2.2: Range check (0 <= s < n). */ if (RTBigNumCompare(&pThis->TmpBigNum1, pModulus) < 0) { if (RTBigNumCompareWithU64(&pThis->TmpBigNum1, 0) >= 0) { /* b) RSAVP1 - 5.2.2.3: s^e mod n */ rc = RTBigNumInitZero(&pThis->TmpBigNum2, 0); if (RT_SUCCESS(rc)) { rc = RTBigNumModExp(&pThis->TmpBigNum2, &pThis->TmpBigNum1, pExponent, pModulus); if (RT_SUCCESS(rc)) { /* c) EM' = I2OSP(m, k) -- Convert the result to bytes. */ uint32_t cbDecrypted = RTBigNumByteWidth(&pThis->TmpBigNum2) + 1; /* 1 = leading zero byte */ if (cbDecrypted <= sizeof(pThis->Scratch) / 2) { uint8_t *pbDecrypted = &pThis->Scratch.abSignature[sizeof(pThis->Scratch) / 2]; rc = RTBigNumToBytesBigEndian(&pThis->TmpBigNum2, pbDecrypted, cbDecrypted); if (RT_SUCCESS(rc)) { /* * 8.2.2.3 - Build a hopefully identical signature using hDigest. */ rc = rtCrPkixSignatureRsa_EmsaPkcs1V15Encode(pThis, hDigest, cbDecrypted, false /* fNoDigestInfo */); if (RT_SUCCESS(rc)) { /* * 8.2.2.4 - Compare the two. */ if (memcmp(&pThis->Scratch.abSignature[0], pbDecrypted, cbDecrypted) == 0) { /* No rc = VINF_SUCCESS here, mustpreserve informational status codes from digest. */ } else { /* * Try again without digestinfo. This style signing has been * observed in Vista timestamp counter signatures (Thawte). */ rc = rtCrPkixSignatureRsa_EmsaPkcs1V15Encode(pThis, hDigest, cbDecrypted, true /* fNoDigestInfo */); if (RT_SUCCESS(rc)) { if (memcmp(&pThis->Scratch.abSignature[0], pbDecrypted, cbDecrypted) == 0) { /* No rc = VINF_SUCCESS here, mustpreserve informational status codes from digest. */ } else rc = VERR_CR_PKIX_SIGNATURE_MISMATCH; } } } } } else rc = VERR_CR_PKIX_SIGNATURE_TOO_LONG; } RTBigNumDestroy(&pThis->TmpBigNum2); } } else rc = VERR_CR_PKIX_SIGNATURE_NEGATIVE; } else rc = VERR_CR_PKIX_SIGNATURE_GE_KEY; RTBigNumDestroy(&pThis->TmpBigNum1); return rc; } /** @impl_interface_method{RTCRPKIXSIGNATUREDESC,pfnSign} */ static DECLCALLBACK(int) rtCrPkixSignatureRsa_Sign(PCRTCRPKIXSIGNATUREDESC pDesc, void *pvState, RTCRKEY hKey, RTCRDIGEST hDigest, void *pvSignature, size_t *pcbSignature) { PRTCRPKIXSIGNATURERSA pThis = (PRTCRPKIXSIGNATURERSA)pvState; RT_NOREF_PV(pDesc); Assert(pThis->fSigning); /* * Get the key bits we need. */ Assert(RTCrKeyGetType(hKey) == RTCRKEYTYPE_RSA_PRIVATE); PRTBIGNUM pModulus = &hKey->u.RsaPrivate.Modulus; PRTBIGNUM pExponent = &hKey->u.RsaPrivate.PrivateExponent; /* * Calc signature length and return if destination buffer isn't big enough. */ size_t const cbDst = *pcbSignature; size_t const cbEncodedMsg = RTBigNumByteWidth(pModulus); *pcbSignature = cbEncodedMsg; if (cbEncodedMsg > sizeof(pThis->Scratch) / 2) return VERR_CR_PKIX_SIGNATURE_TOO_LONG; if (!pvSignature || cbDst < cbEncodedMsg) return VERR_BUFFER_OVERFLOW; /* * 8.1.1.1 - EMSA-PSS encoding. (RFC-3447) */ int rcRetSuccess; int rc = rcRetSuccess = rtCrPkixSignatureRsa_EmsaPkcs1V15Encode(pThis, hDigest, cbEncodedMsg, false /* fNoDigestInfo */); if (RT_SUCCESS(rc)) { /* * 8.1.1.2 - RSA signature. */ /* a) m = OS2IP(EM) -- Convert the encoded message (EM) to integer. */ rc = RTBigNumInit(&pThis->TmpBigNum1, RTBIGNUMINIT_F_ENDIAN_BIG | RTBIGNUMINIT_F_UNSIGNED, pThis->Scratch.abSignature, cbEncodedMsg); if (RT_SUCCESS(rc)) { /* b) s = RSASP1(K, m = EM) - 5.2.1.1: Range check (0 <= m < n). */ if (RTBigNumCompare(&pThis->TmpBigNum1, pModulus) < 0) { /* b) s = RSAVP1(K, m = EM) - 5.2.1.2.a: s = m^d mod n */ rc = RTBigNumInitZero(&pThis->TmpBigNum2, 0); if (RT_SUCCESS(rc)) { rc = RTBigNumModExp(&pThis->TmpBigNum2, &pThis->TmpBigNum1, pExponent, pModulus); if (RT_SUCCESS(rc)) { /* c) S = I2OSP(s, k) -- Convert the result to bytes. */ rc = RTBigNumToBytesBigEndian(&pThis->TmpBigNum2, pvSignature, cbEncodedMsg); AssertStmt(RT_SUCCESS(rc) || rc != VERR_BUFFER_OVERFLOW, rc = VERR_CR_PKIX_INTERNAL_ERROR); /* Make sure we return the informational status code from the digest on success. */ if (rc == VINF_SUCCESS && rcRetSuccess != VINF_SUCCESS) rc = rcRetSuccess; } RTBigNumDestroy(&pThis->TmpBigNum2); } } else rc = VERR_CR_PKIX_SIGNATURE_GE_KEY; RTBigNumDestroy(&pThis->TmpBigNum1); } } return rc; } /** RSA alias ODIs. */ static const char * const g_apszHashWithRsaAliases[] = { RTCR_PKCS1_MD2_WITH_RSA_OID, RTCR_PKCS1_MD4_WITH_RSA_OID, RTCR_PKCS1_MD5_WITH_RSA_OID, RTCR_PKCS1_SHA1_WITH_RSA_OID, RTCR_PKCS1_SHA256_WITH_RSA_OID, RTCR_PKCS1_SHA384_WITH_RSA_OID, RTCR_PKCS1_SHA512_WITH_RSA_OID, RTCR_PKCS1_SHA224_WITH_RSA_OID, RTCR_PKCS1_SHA512T224_WITH_RSA_OID, RTCR_PKCS1_SHA512T256_WITH_RSA_OID, RTCR_NIST_SHA3_224_WITH_RSA_OID, RTCR_NIST_SHA3_256_WITH_RSA_OID, RTCR_NIST_SHA3_384_WITH_RSA_OID, RTCR_NIST_SHA3_512_WITH_RSA_OID, /* Note: Note quite sure about these OIW oddballs. */ "1.3.14.3.2.11" /* OIW rsaSignature */, "1.3.14.3.2.14" /* OIW mdc2WithRSASignature */, "1.3.14.3.2.15" /* OIW shaWithRSASignature */, "1.3.14.3.2.24" /* OIW md2WithRSASignature */, "1.3.14.3.2.25" /* OIW md5WithRSASignature */, "1.3.14.3.2.29" /* OIW sha1WithRSASignature */, NULL }; /** RSA descriptor. */ DECL_HIDDEN_CONST(RTCRPKIXSIGNATUREDESC const) g_rtCrPkixSigningHashWithRsaDesc = { "RSASSA-PKCS1-v1_5", RTCR_PKCS1_RSA_OID, g_apszHashWithRsaAliases, sizeof(RTCRPKIXSIGNATURERSA), 0, 0, rtCrPkixSignatureRsa_Init, rtCrPkixSignatureRsa_Reset, rtCrPkixSignatureRsa_Delete, rtCrPkixSignatureRsa_Verify, rtCrPkixSignatureRsa_Sign, }; /** * Worker for RTCrRsaPublicKey_CanHandleDigestType and * RTCrRsaPrivateKey_CanHandleDigestType. * * We implement these two functions here because we've already got the * DigestInfo sizes nicely lined up here. */ static bool rtCrRsa_CanHandleDigestType(int32_t cModulusBits, RTDIGESTTYPE enmDigestType, PRTERRINFO pErrInfo) { /* * ASSUME EMSA-PKCS1-v1_5 padding scheme (RFC-8017 section 9.2): * - 11 byte padding prefix (00, 01, 8 times ff) * - digest info der sequence for rsaWithXxxxEncryption * - the hash value. */ for (uint32_t i = 0; i < RT_ELEMENTS(g_aDigestInfos); i++) if (g_aDigestInfos[i].enmDigest == enmDigestType) { size_t const cbHash = RTCrDigestTypeToHashSize(enmDigestType); AssertBreak(cbHash > 0); size_t cbMsg = 11 + g_aDigestInfos[i].cb + cbHash; if ((ssize_t)cbMsg <= cModulusBits / 8) return true; RTErrInfoSetF(pErrInfo, VERR_CR_PKIX_INVALID_SIGNATURE_LENGTH, "cModulusBits=%d cbMsg=%u", cModulusBits, cbMsg); return false; } RTErrInfoSetF(pErrInfo, VERR_CR_PKIX_UNKNOWN_DIGEST_TYPE, "%s", RTCrDigestTypeToName(enmDigestType)); return false; } RTDECL(bool) RTCrRsaPublicKey_CanHandleDigestType(PCRTCRRSAPUBLICKEY pRsaPublicKey, RTDIGESTTYPE enmDigestType, PRTERRINFO pErrInfo) { if (RTCrRsaPublicKey_IsPresent(pRsaPublicKey)) return rtCrRsa_CanHandleDigestType(RTAsn1Integer_UnsignedLastBit(&pRsaPublicKey->Modulus) + 1, enmDigestType, pErrInfo); return false; } RTDECL(bool) RTCrRsaPrivateKey_CanHandleDigestType(PCRTCRRSAPRIVATEKEY pRsaPrivateKey, RTDIGESTTYPE enmDigestType, PRTERRINFO pErrInfo) { if (RTCrRsaPrivateKey_IsPresent(pRsaPrivateKey)) return rtCrRsa_CanHandleDigestType(RTAsn1Integer_UnsignedLastBit(&pRsaPrivateKey->Modulus) + 1, enmDigestType, pErrInfo); return false; }