/* $Id: ldrELFRelocatable.cpp.h 69111 2017-10-17 14:26:02Z vboxsync $ */ /** @file * IPRT - Binary Image Loader, Template for ELF Relocatable Images. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #if ELF_MODE == 32 #define RTLDRELF_NAME(name) rtldrELF32##name #define RTLDRELF_SUFF(name) name##32 #define RTLDRELF_MID(pre,suff) pre##32##suff #define FMT_ELF_ADDR "%08RX32" #define FMT_ELF_HALF "%04RX16" #define FMT_ELF_OFF "%08RX32" #define FMT_ELF_SIZE "%08RX32" #define FMT_ELF_SWORD "%RI32" #define FMT_ELF_WORD "%08RX32" #define FMT_ELF_XWORD "%08RX32" #define FMT_ELF_SXWORD "%RI32" #elif ELF_MODE == 64 #define RTLDRELF_NAME(name) rtldrELF64##name #define RTLDRELF_SUFF(name) name##64 #define RTLDRELF_MID(pre,suff) pre##64##suff #define FMT_ELF_ADDR "%016RX64" #define FMT_ELF_HALF "%04RX16" #define FMT_ELF_SHALF "%RI16" #define FMT_ELF_OFF "%016RX64" #define FMT_ELF_SIZE "%016RX64" #define FMT_ELF_SWORD "%RI32" #define FMT_ELF_WORD "%08RX32" #define FMT_ELF_XWORD "%016RX64" #define FMT_ELF_SXWORD "%RI64" #endif #define Elf_Ehdr RTLDRELF_MID(Elf,_Ehdr) #define Elf_Phdr RTLDRELF_MID(Elf,_Phdr) #define Elf_Shdr RTLDRELF_MID(Elf,_Shdr) #define Elf_Sym RTLDRELF_MID(Elf,_Sym) #define Elf_Rel RTLDRELF_MID(Elf,_Rel) #define Elf_Rela RTLDRELF_MID(Elf,_Rela) #define Elf_Nhdr RTLDRELF_MID(Elf,_Nhdr) #define Elf_Dyn RTLDRELF_MID(Elf,_Dyn) #define Elf_Addr RTLDRELF_MID(Elf,_Addr) #define Elf_Half RTLDRELF_MID(Elf,_Half) #define Elf_Off RTLDRELF_MID(Elf,_Off) #define Elf_Size RTLDRELF_MID(Elf,_Size) #define Elf_Sword RTLDRELF_MID(Elf,_Sword) #define Elf_Word RTLDRELF_MID(Elf,_Word) #define RTLDRMODELF RTLDRELF_MID(RTLDRMODELF,RT_NOTHING) #define PRTLDRMODELF RTLDRELF_MID(PRTLDRMODELF,RT_NOTHING) #define ELF_R_SYM(info) RTLDRELF_MID(ELF,_R_SYM)(info) #define ELF_R_TYPE(info) RTLDRELF_MID(ELF,_R_TYPE)(info) #define ELF_R_INFO(sym, type) RTLDRELF_MID(ELF,_R_INFO)(sym, type) #define ELF_ST_BIND(info) RTLDRELF_MID(ELF,_ST_BIND)(info) /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The ELF loader structure. */ typedef struct RTLDRMODELF { /** Core module structure. */ RTLDRMODINTERNAL Core; /** Pointer to readonly mapping of the image bits. * This mapping is provided by the pReader. */ const void *pvBits; /** The ELF header. */ Elf_Ehdr Ehdr; /** Pointer to our copy of the section headers with sh_addr as RVAs. * The virtual addresses in this array is the 0 based assignments we've given the image. * Not valid if the image is DONE. */ Elf_Shdr *paShdrs; /** Unmodified section headers (allocated after paShdrs, so no need to free). * Not valid if the image is DONE. */ Elf_Shdr const *paOrgShdrs; /** The size of the loaded image. */ size_t cbImage; /** The image base address if it's an EXEC or DYN image. */ Elf_Addr LinkAddress; /** The symbol section index. */ unsigned iSymSh; /** Number of symbols in the table. */ unsigned cSyms; /** Pointer to symbol table within RTLDRMODELF::pvBits. */ const Elf_Sym *paSyms; /** The string section index. */ unsigned iStrSh; /** Size of the string table. */ unsigned cbStr; /** Pointer to string table within RTLDRMODELF::pvBits. */ const char *pStr; /** Size of the section header string table. */ unsigned cbShStr; /** Pointer to section header string table within RTLDRMODELF::pvBits. */ const char *pShStr; } RTLDRMODELF, *PRTLDRMODELF; /** * Maps the image bits into memory and resolve pointers into it. * * @returns iprt status code. * @param pModElf The ELF loader module instance data. * @param fNeedsBits Set if we actually need the pvBits member. * If we don't, we can simply read the string and symbol sections, thus saving memory. */ static int RTLDRELF_NAME(MapBits)(PRTLDRMODELF pModElf, bool fNeedsBits) { NOREF(fNeedsBits); if (pModElf->pvBits) return VINF_SUCCESS; int rc = pModElf->Core.pReader->pfnMap(pModElf->Core.pReader, &pModElf->pvBits); if (RT_SUCCESS(rc)) { const uint8_t *pu8 = (const uint8_t *)pModElf->pvBits; if (pModElf->iSymSh != ~0U) pModElf->paSyms = (const Elf_Sym *)(pu8 + pModElf->paShdrs[pModElf->iSymSh].sh_offset); if (pModElf->iStrSh != ~0U) pModElf->pStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->iStrSh].sh_offset); pModElf->pShStr = (const char *)(pu8 + pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset); } return rc; } /* * * EXEC & DYN. * EXEC & DYN. * EXEC & DYN. * EXEC & DYN. * EXEC & DYN. * */ /** * Applies the fixups for a section in an executable image. * * @returns iprt status code. * @param pModElf The ELF loader module instance data. * @param BaseAddr The base address which the module is being fixedup to. * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals). * @param pvUser User argument to pass to the callback. * @param SecAddr The section address. This is the address the relocations are relative to. * @param cbSec The section size. The relocations must be inside this. * @param pu8SecBaseR Where we read section bits from. * @param pu8SecBaseW Where we write section bits to. * @param pvRelocs Pointer to where we read the relocations from. * @param cbRelocs Size of the relocations. */ static int RTLDRELF_NAME(RelocateSectionExecDyn)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser, const Elf_Addr SecAddr, Elf_Size cbSec, const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW, const void *pvRelocs, Elf_Size cbRelocs) { #if ELF_MODE != 32 NOREF(pu8SecBaseR); #endif /* * Iterate the relocations. * The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section. */ const Elf_Addr offDelta = BaseAddr - pModElf->LinkAddress; const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs; const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0])); AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])), VERR_IMAGE_TOO_BIG); for (unsigned iRel = 0; iRel < iRelMax; iRel++) { /* * Skip R_XXX_NONE entries early to avoid confusion in the symbol * getter code. */ #if ELF_MODE == 32 if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE) continue; #elif ELF_MODE == 64 if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE) continue; #endif /* * Validate and find the symbol, resolve undefined ones. */ Elf_Size iSym = ELF_R_SYM(paRels[iRel].r_info); if (iSym >= pModElf->cSyms) { AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym)); return VERR_LDRELF_INVALID_SYMBOL_INDEX; } const Elf_Sym *pSym = &pModElf->paSyms[iSym]; if (pSym->st_name >= pModElf->cbStr) { AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr)); return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET; } Elf_Addr SymValue = 0; if (pSym->st_shndx == SHN_UNDEF) { /* Try to resolve the symbol. */ const char *pszName = ELF_STR(pModElf, pSym->st_name); RTUINTPTR ExtValue; int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0U, &ExtValue, pvUser); AssertMsgRCReturn(rc, ("Failed to resolve '%s' rc=%Rrc\n", pszName, rc), rc); SymValue = (Elf_Addr)ExtValue; AssertMsgReturn((RTUINTPTR)SymValue == ExtValue, ("Symbol value overflowed! '%s'\n", pszName), VERR_SYMBOL_VALUE_TOO_BIG); Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, SymValue, pszName)); } else { AssertMsgReturn(pSym->st_shndx < pModElf->Ehdr.e_shnum || pSym->st_shndx == SHN_ABS, ("%#x\n", pSym->st_shndx), VERR_LDRELF_INVALID_RELOCATION_OFFSET); #if ELF_MODE == 64 SymValue = pSym->st_value; #endif } #if ELF_MODE == 64 /* Calc the value (indexes checked above; assumes SHN_UNDEF == 0). */ Elf_Addr Value; if (pSym->st_shndx < pModElf->Ehdr.e_shnum) Value = SymValue + offDelta; else /* SHN_ABS: */ Value = SymValue + paRels[iRel].r_addend; #endif /* * Apply the fixup. */ AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET); #if ELF_MODE == 32 const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */ #endif Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */ switch (ELF_R_TYPE(paRels[iRel].r_info)) { #if ELF_MODE == 32 /* * Absolute addressing. */ case R_386_32: { Elf_Addr Value; if (pSym->st_shndx < pModElf->Ehdr.e_shnum) Value = *pAddrR + offDelta; /* Simplified. */ else if (pSym->st_shndx == SHN_ABS) continue; /* Internal fixup, no need to apply it. */ else if (pSym->st_shndx == SHN_UNDEF) Value = SymValue + *pAddrR; else AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */ *(uint32_t *)pAddrW = Value; Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value)); break; } /* * PC relative addressing. */ case R_386_PC32: { Elf_Addr Value; if (pSym->st_shndx < pModElf->Ehdr.e_shnum) continue; /* Internal fixup, no need to apply it. */ else if (pSym->st_shndx == SHN_ABS) Value = *pAddrR + offDelta; /* Simplified. */ else if (pSym->st_shndx == SHN_UNDEF) { const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */ Value = SymValue + *(uint32_t *)pAddrR - SourceAddr; *(uint32_t *)pAddrW = Value; } else AssertFailedReturn(VERR_LDR_GENERAL_FAILURE); /** @todo SHN_COMMON */ Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value)); break; } #elif ELF_MODE == 64 /* * Absolute addressing */ case R_X86_64_64: { *(uint64_t *)pAddrW = Value; Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); break; } /* * Truncated 32-bit value (zero-extendedable to the 64-bit value). */ case R_X86_64_32: { *(uint32_t *)pAddrW = (uint32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == SymValue, ("Value=" FMT_ELF_ADDR "\n", SymValue), VERR_SYMBOL_VALUE_TOO_BIG); break; } /* * Truncated 32-bit value (sign-extendedable to the 64-bit value). */ case R_X86_64_32S: { *(int32_t *)pAddrW = (int32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */ break; } /* * PC relative addressing. */ case R_X86_64_PC32: { const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */ Value -= SourceAddr; *(int32_t *)pAddrW = (int32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SourceAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */ break; } #endif default: AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n", ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax)); return VERR_LDRELF_RELOCATION_NOT_SUPPORTED; } } return VINF_SUCCESS; } /* * * REL * REL * REL * REL * REL * */ /** * Get the symbol and symbol value. * * @returns iprt status code. * @param pModElf The ELF loader module instance data. * @param BaseAddr The base address which the module is being fixedup to. * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals). * @param pvUser User argument to pass to the callback. * @param iSym The symbol to get. * @param ppSym Where to store the symbol pointer on success. (read only) * @param pSymValue Where to store the symbol value on success. */ static int RTLDRELF_NAME(Symbol)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser, Elf_Size iSym, const Elf_Sym **ppSym, Elf_Addr *pSymValue) { /* * Validate and find the symbol. */ if (iSym >= pModElf->cSyms) { AssertMsgFailed(("iSym=%d is an invalid symbol index!\n", iSym)); return VERR_LDRELF_INVALID_SYMBOL_INDEX; } const Elf_Sym *pSym = &pModElf->paSyms[iSym]; *ppSym = pSym; if (pSym->st_name >= pModElf->cbStr) { AssertMsgFailed(("iSym=%d st_name=%d str sh_size=%d\n", iSym, pSym->st_name, pModElf->cbStr)); return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET; } const char *pszName = ELF_STR(pModElf, pSym->st_name); /* * Determine the symbol value. * * Symbols needs different treatment depending on which section their are in. * Undefined and absolute symbols goes into special non-existing sections. */ switch (pSym->st_shndx) { /* * Undefined symbol, needs resolving. * * Since ELF has no generic concept of importing from specific module (the OS/2 ELF format * has but that's a OS extension and only applies to programs and dlls), we'll have to ask * the resolver callback to do a global search. */ case SHN_UNDEF: { /* Try to resolve the symbol. */ RTUINTPTR Value; int rc = pfnGetImport(&pModElf->Core, "", pszName, ~0U, &Value, pvUser); if (RT_FAILURE(rc)) { AssertMsgFailed(("Failed to resolve '%s' rc=%Rrc\n", pszName, rc)); return rc; } *pSymValue = (Elf_Addr)Value; if ((RTUINTPTR)*pSymValue != Value) { AssertMsgFailed(("Symbol value overflowed! '%s'\n", pszName)); return VERR_SYMBOL_VALUE_TOO_BIG; } Log2(("rtldrELF: #%-3d - UNDEF " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName)); break; } /* * Absolute symbols needs no fixing since they are, well, absolute. */ case SHN_ABS: *pSymValue = pSym->st_value; Log2(("rtldrELF: #%-3d - ABS " FMT_ELF_ADDR " '%s'\n", iSym, *pSymValue, pszName)); break; /* * All other symbols are addressed relative to their section and need to be fixed up. */ default: if (pSym->st_shndx >= pModElf->Ehdr.e_shnum) { /* what about common symbols? */ AssertMsg(pSym->st_shndx < pModElf->Ehdr.e_shnum, ("iSym=%d st_shndx=%d e_shnum=%d pszName=%s\n", iSym, pSym->st_shndx, pModElf->Ehdr.e_shnum, pszName)); return VERR_BAD_EXE_FORMAT; } *pSymValue = pSym->st_value + pModElf->paShdrs[pSym->st_shndx].sh_addr + BaseAddr; Log2(("rtldrELF: #%-3d - %5d " FMT_ELF_ADDR " '%s'\n", iSym, pSym->st_shndx, *pSymValue, pszName)); break; } return VINF_SUCCESS; } /** * Applies the fixups for a sections. * * @returns iprt status code. * @param pModElf The ELF loader module instance data. * @param BaseAddr The base address which the module is being fixedup to. * @param pfnGetImport The callback function to use to resolve imports (aka unresolved externals). * @param pvUser User argument to pass to the callback. * @param SecAddr The section address. This is the address the relocations are relative to. * @param cbSec The section size. The relocations must be inside this. * @param pu8SecBaseR Where we read section bits from. * @param pu8SecBaseW Where we write section bits to. * @param pvRelocs Pointer to where we read the relocations from. * @param cbRelocs Size of the relocations. */ static int RTLDRELF_NAME(RelocateSection)(PRTLDRMODELF pModElf, Elf_Addr BaseAddr, PFNRTLDRIMPORT pfnGetImport, void *pvUser, const Elf_Addr SecAddr, Elf_Size cbSec, const uint8_t *pu8SecBaseR, uint8_t *pu8SecBaseW, const void *pvRelocs, Elf_Size cbRelocs) { #if ELF_MODE != 32 NOREF(pu8SecBaseR); #endif /* * Iterate the relocations. * The relocations are stored in an array of Elf32_Rel records and covers the entire relocation section. */ const Elf_Reloc *paRels = (const Elf_Reloc *)pvRelocs; const unsigned iRelMax = (unsigned)(cbRelocs / sizeof(paRels[0])); AssertMsgReturn(iRelMax == cbRelocs / sizeof(paRels[0]), (FMT_ELF_SIZE "\n", cbRelocs / sizeof(paRels[0])), VERR_IMAGE_TOO_BIG); for (unsigned iRel = 0; iRel < iRelMax; iRel++) { /* * Skip R_XXX_NONE entries early to avoid confusion in the symbol * getter code. */ #if ELF_MODE == 32 if (ELF_R_TYPE(paRels[iRel].r_info) == R_386_NONE) continue; #elif ELF_MODE == 64 if (ELF_R_TYPE(paRels[iRel].r_info) == R_X86_64_NONE) continue; #endif /* * Get the symbol. */ const Elf_Sym *pSym = NULL; /* shut up gcc */ Elf_Addr SymValue = 0; /* shut up gcc-4 */ int rc = RTLDRELF_NAME(Symbol)(pModElf, BaseAddr, pfnGetImport, pvUser, ELF_R_SYM(paRels[iRel].r_info), &pSym, &SymValue); if (RT_FAILURE(rc)) return rc; Log3(("rtldrELF: " FMT_ELF_ADDR " %02x %06x - " FMT_ELF_ADDR " %3d %02x %s\n", paRels[iRel].r_offset, ELF_R_TYPE(paRels[iRel].r_info), (unsigned)ELF_R_SYM(paRels[iRel].r_info), SymValue, (unsigned)pSym->st_shndx, pSym->st_info, ELF_STR(pModElf, pSym->st_name))); /* * Apply the fixup. */ AssertMsgReturn(paRels[iRel].r_offset < cbSec, (FMT_ELF_ADDR " " FMT_ELF_SIZE "\n", paRels[iRel].r_offset, cbSec), VERR_LDRELF_INVALID_RELOCATION_OFFSET); #if ELF_MODE == 32 const Elf_Addr *pAddrR = (const Elf_Addr *)(pu8SecBaseR + paRels[iRel].r_offset); /* Where to read the addend. */ #endif Elf_Addr *pAddrW = (Elf_Addr *)(pu8SecBaseW + paRels[iRel].r_offset); /* Where to write the fixup. */ switch (ELF_R_TYPE(paRels[iRel].r_info)) { #if ELF_MODE == 32 /* * Absolute addressing. */ case R_386_32: { const Elf_Addr Value = SymValue + *pAddrR; *(uint32_t *)pAddrW = Value; Log4((FMT_ELF_ADDR": R_386_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); break; } /* * PC relative addressing. */ case R_386_PC32: { const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */ const Elf_Addr Value = SymValue + *(uint32_t *)pAddrR - SourceAddr; *(uint32_t *)pAddrW = Value; Log4((FMT_ELF_ADDR": R_386_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SourceAddr, Value, SymValue)); break; } /* ignore */ case R_386_NONE: break; #elif ELF_MODE == 64 /* * Absolute addressing */ case R_X86_64_64: { const Elf_Addr Value = SymValue + paRels[iRel].r_addend; *(uint64_t *)pAddrW = Value; Log4((FMT_ELF_ADDR": R_X86_64_64 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); break; } /* * Truncated 32-bit value (zero-extendedable to the 64-bit value). */ case R_X86_64_32: { const Elf_Addr Value = SymValue + paRels[iRel].r_addend; *(uint32_t *)pAddrW = (uint32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(uint32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); break; } /* * Truncated 32-bit value (sign-extendedable to the 64-bit value). */ case R_X86_64_32S: { const Elf_Addr Value = SymValue + paRels[iRel].r_addend; *(int32_t *)pAddrW = (int32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_32S Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SecAddr + paRels[iRel].r_offset + BaseAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */ break; } /* * PC relative addressing. */ case R_X86_64_PC32: { const Elf_Addr SourceAddr = SecAddr + paRels[iRel].r_offset + BaseAddr; /* Where the source really is. */ const Elf_Addr Value = SymValue + paRels[iRel].r_addend - SourceAddr; *(int32_t *)pAddrW = (int32_t)Value; Log4((FMT_ELF_ADDR": R_X86_64_PC32 Value=" FMT_ELF_ADDR " SymValue=" FMT_ELF_ADDR "\n", SourceAddr, Value, SymValue)); AssertMsgReturn((Elf_Addr)*(int32_t *)pAddrW == Value, ("Value=" FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); /** @todo check the sign-extending here. */ break; } /* ignore */ case R_X86_64_NONE: break; #endif default: AssertMsgFailed(("Unknown relocation type: %d (iRel=%d iRelMax=%d)\n", ELF_R_TYPE(paRels[iRel].r_info), iRel, iRelMax)); return VERR_LDRELF_RELOCATION_NOT_SUPPORTED; } } return VINF_SUCCESS; } /** @copydoc RTLDROPS::pfnClose */ static DECLCALLBACK(int) RTLDRELF_NAME(Close)(PRTLDRMODINTERNAL pMod) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; if (pModElf->paShdrs) { RTMemFree(pModElf->paShdrs); pModElf->paShdrs = NULL; } pModElf->pvBits = NULL; return VINF_SUCCESS; } /** @copydoc RTLDROPS::Done */ static DECLCALLBACK(int) RTLDRELF_NAME(Done)(PRTLDRMODINTERNAL pMod) { NOREF(pMod); /*PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod;*/ /** @todo Have to think more about this .... */ return -1; } /** @copydoc RTLDROPS::EnumSymbols */ static DECLCALLBACK(int) RTLDRELF_NAME(EnumSymbols)(PRTLDRMODINTERNAL pMod, unsigned fFlags, const void *pvBits, RTUINTPTR BaseAddress, PFNRTLDRENUMSYMS pfnCallback, void *pvUser) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; NOREF(pvBits); /* * Validate the input. */ Elf_Addr BaseAddr = (Elf_Addr)BaseAddress; AssertMsgReturn((RTUINTPTR)BaseAddr == BaseAddress, ("%RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH); /* * Make sure we've got the string and symbol tables. (We don't need the pvBits.) */ int rc = RTLDRELF_NAME(MapBits)(pModElf, false); if (RT_FAILURE(rc)) return rc; /* * Enumerate the symbol table. */ const Elf_Sym *paSyms = pModElf->paSyms; unsigned cSyms = pModElf->cSyms; for (unsigned iSym = 1; iSym < cSyms; iSym++) { /* * Skip imports (undefined). */ if (paSyms[iSym].st_shndx != SHN_UNDEF) { /* * Calc value and get name. */ Elf_Addr Value; if (paSyms[iSym].st_shndx == SHN_ABS) /* absolute symbols are not subject to any relocation. */ Value = paSyms[iSym].st_value; else if (paSyms[iSym].st_shndx < pModElf->Ehdr.e_shnum) { if (pModElf->Ehdr.e_type == ET_REL) /* relative to the section. */ Value = BaseAddr + paSyms[iSym].st_value + pModElf->paShdrs[paSyms[iSym].st_shndx].sh_addr; else /* Fixed up for link address. */ Value = BaseAddr + paSyms[iSym].st_value - pModElf->LinkAddress; } else { AssertMsgFailed(("Arg! paSyms[%u].st_shndx=" FMT_ELF_HALF "\n", iSym, paSyms[iSym].st_shndx)); return VERR_BAD_EXE_FORMAT; } const char *pszName = ELF_STR(pModElf, paSyms[iSym].st_name); if ( (pszName && *pszName) && ( (fFlags & RTLDR_ENUM_SYMBOL_FLAGS_ALL) || ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL) ) { /* * Call back. */ AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); rc = pfnCallback(pMod, pszName, ~0U, (RTUINTPTR)Value, pvUser); if (rc) return rc; } } } return VINF_SUCCESS; } /** @copydoc RTLDROPS::GetImageSize */ static DECLCALLBACK(size_t) RTLDRELF_NAME(GetImageSize)(PRTLDRMODINTERNAL pMod) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; return pModElf->cbImage; } /** @copydoc RTLDROPS::GetBits */ static DECLCALLBACK(int) RTLDRELF_NAME(GetBits)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR BaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; /* * This operation is currently only available on relocatable images. */ switch (pModElf->Ehdr.e_type) { case ET_REL: break; case ET_EXEC: Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader))); return VERR_LDRELF_EXEC; case ET_DYN: Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader))); return VERR_LDRELF_DYN; default: AssertFailedReturn(VERR_BAD_EXE_FORMAT); } /* * Load the bits into pvBits. */ const Elf_Shdr *paShdrs = pModElf->paShdrs; for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++) { if (paShdrs[iShdr].sh_flags & SHF_ALLOC) { AssertMsgReturn((size_t)paShdrs[iShdr].sh_size == (size_t)paShdrs[iShdr].sh_size, (FMT_ELF_SIZE "\n", paShdrs[iShdr].sh_size), VERR_IMAGE_TOO_BIG); switch (paShdrs[iShdr].sh_type) { case SHT_NOBITS: memset((uint8_t *)pvBits + paShdrs[iShdr].sh_addr, 0, (size_t)paShdrs[iShdr].sh_size); break; case SHT_PROGBITS: default: { int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, (uint8_t *)pvBits + paShdrs[iShdr].sh_addr, (size_t)paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset); if (RT_FAILURE(rc)) { Log(("RTLdrELF: %s: Read error when reading " FMT_ELF_SIZE " bytes at " FMT_ELF_OFF ", iShdr=%d\n", pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader), paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_offset, iShdr)); return rc; } } } } } /* * Relocate the image. */ return pModElf->Core.pOps->pfnRelocate(pMod, pvBits, BaseAddress, ~(RTUINTPTR)0, pfnGetImport, pvUser); } /** @copydoc RTLDROPS::Relocate */ static DECLCALLBACK(int) RTLDRELF_NAME(Relocate)(PRTLDRMODINTERNAL pMod, void *pvBits, RTUINTPTR NewBaseAddress, RTUINTPTR OldBaseAddress, PFNRTLDRIMPORT pfnGetImport, void *pvUser) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; #ifdef LOG_ENABLED const char *pszLogName = pModElf->Core.pReader->pfnLogName(pModElf->Core.pReader); #endif NOREF(OldBaseAddress); /* * This operation is currently only available on relocatable images. */ switch (pModElf->Ehdr.e_type) { case ET_REL: break; case ET_EXEC: Log(("RTLdrELF: %s: Executable images are not supported yet!\n", pszLogName)); return VERR_LDRELF_EXEC; case ET_DYN: Log(("RTLdrELF: %s: Dynamic images are not supported yet!\n", pszLogName)); return VERR_LDRELF_DYN; default: AssertFailedReturn(VERR_BAD_EXE_FORMAT); } /* * Validate the input. */ Elf_Addr BaseAddr = (Elf_Addr)NewBaseAddress; AssertMsgReturn((RTUINTPTR)BaseAddr == NewBaseAddress, ("%RTptr", NewBaseAddress), VERR_IMAGE_BASE_TOO_HIGH); /* * Map the image bits if not already done and setup pointer into it. */ int rc = RTLDRELF_NAME(MapBits)(pModElf, true); if (RT_FAILURE(rc)) return rc; /* * Iterate the sections looking for interesting SHT_REL[A] sections. * SHT_REL[A] sections have the section index of the section they contain fixups * for in the sh_info member. */ const Elf_Shdr *paShdrs = pModElf->paShdrs; Log2(("rtLdrElf: %s: Fixing up image\n", pszLogName)); for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++) { const Elf_Shdr *pShdrRel = &paShdrs[iShdr]; /* * Skip sections without interest to us. */ #if ELF_MODE == 32 if (pShdrRel->sh_type != SHT_REL) #else if (pShdrRel->sh_type != SHT_RELA) #endif continue; if (pShdrRel->sh_info >= pModElf->Ehdr.e_shnum) continue; const Elf_Shdr *pShdr = &paShdrs[pShdrRel->sh_info]; /* the section to fixup. */ if (!(pShdr->sh_flags & SHF_ALLOC)) continue; /* * Relocate the section. */ Log2(("rtldrELF: %s: Relocation records for #%d [%s] (sh_info=%d sh_link=%d) found in #%d [%s] (sh_info=%d sh_link=%d)\n", pszLogName, (int)pShdrRel->sh_info, ELF_SH_STR(pModElf, pShdr->sh_name), (int)pShdr->sh_info, (int)pShdr->sh_link, iShdr, ELF_SH_STR(pModElf, pShdrRel->sh_name), (int)pShdrRel->sh_info, (int)pShdrRel->sh_link)); /** @todo Make RelocateSection a function pointer so we can select the one corresponding to the machine when opening the image. */ if (pModElf->Ehdr.e_type == ET_REL) rc = RTLDRELF_NAME(RelocateSection)(pModElf, BaseAddr, pfnGetImport, pvUser, pShdr->sh_addr, pShdr->sh_size, (const uint8_t *)pModElf->pvBits + pShdr->sh_offset, (uint8_t *)pvBits + pShdr->sh_addr, (const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset, pShdrRel->sh_size); else rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pModElf, BaseAddr, pfnGetImport, pvUser, pShdr->sh_addr, pShdr->sh_size, (const uint8_t *)pModElf->pvBits + pShdr->sh_offset, (uint8_t *)pvBits + pShdr->sh_addr, (const uint8_t *)pModElf->pvBits + pShdrRel->sh_offset, pShdrRel->sh_size); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Worker for pfnGetSymbolEx. */ static int RTLDRELF_NAME(ReturnSymbol)(PRTLDRMODELF pThis, const Elf_Sym *pSym, Elf_Addr uBaseAddr, PRTUINTPTR pValue) { Elf_Addr Value; if (pSym->st_shndx == SHN_ABS) /* absolute symbols are not subject to any relocation. */ Value = pSym->st_value; else if (pSym->st_shndx < pThis->Ehdr.e_shnum) { if (pThis->Ehdr.e_type == ET_REL) /* relative to the section. */ Value = uBaseAddr + pSym->st_value + pThis->paShdrs[pSym->st_shndx].sh_addr; else /* Fixed up for link address. */ Value = uBaseAddr + pSym->st_value - pThis->LinkAddress; } else { AssertMsgFailed(("Arg! pSym->st_shndx=%d\n", pSym->st_shndx)); return VERR_BAD_EXE_FORMAT; } AssertMsgReturn(Value == (RTUINTPTR)Value, (FMT_ELF_ADDR "\n", Value), VERR_SYMBOL_VALUE_TOO_BIG); *pValue = (RTUINTPTR)Value; return VINF_SUCCESS; } /** @copydoc RTLDROPS::pfnGetSymbolEx */ static DECLCALLBACK(int) RTLDRELF_NAME(GetSymbolEx)(PRTLDRMODINTERNAL pMod, const void *pvBits, RTUINTPTR BaseAddress, uint32_t iOrdinal, const char *pszSymbol, RTUINTPTR *pValue) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; NOREF(pvBits); /* * Validate the input. */ Elf_Addr uBaseAddr = (Elf_Addr)BaseAddress; AssertMsgReturn((RTUINTPTR)uBaseAddr == BaseAddress, ("%RTptr", BaseAddress), VERR_IMAGE_BASE_TOO_HIGH); /* * Map the image bits if not already done and setup pointer into it. */ int rc = RTLDRELF_NAME(MapBits)(pModElf, true); if (RT_FAILURE(rc)) return rc; /* * Calc all kinds of pointers before we start iterating the symbol table. */ const Elf_Sym *paSyms = pModElf->paSyms; unsigned cSyms = pModElf->cSyms; if (iOrdinal == UINT32_MAX) { const char *pStr = pModElf->pStr; for (unsigned iSym = 1; iSym < cSyms; iSym++) { /* Undefined symbols are not exports, they are imports. */ if ( paSyms[iSym].st_shndx != SHN_UNDEF && ( ELF_ST_BIND(paSyms[iSym].st_info) == STB_GLOBAL || ELF_ST_BIND(paSyms[iSym].st_info) == STB_WEAK)) { /* Validate the name string and try match with it. */ if (paSyms[iSym].st_name < pModElf->cbStr) { if (!strcmp(pszSymbol, pStr + paSyms[iSym].st_name)) { /* matched! */ return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iSym], uBaseAddr, pValue); } } else { AssertMsgFailed(("String outside string table! iSym=%d paSyms[iSym].st_name=%#x\n", iSym, paSyms[iSym].st_name)); return VERR_LDRELF_INVALID_SYMBOL_NAME_OFFSET; } } } } else if (iOrdinal < cSyms) { if ( paSyms[iOrdinal].st_shndx != SHN_UNDEF && ( ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_GLOBAL || ELF_ST_BIND(paSyms[iOrdinal].st_info) == STB_WEAK)) return RTLDRELF_NAME(ReturnSymbol)(pModElf, &paSyms[iOrdinal], uBaseAddr, pValue); } return VERR_SYMBOL_NOT_FOUND; } /** @copydoc RTLDROPS::pfnEnumDbgInfo */ static DECLCALLBACK(int) RTLDRELF_NAME(EnumDbgInfo)(PRTLDRMODINTERNAL pMod, const void *pvBits, PFNRTLDRENUMDBG pfnCallback, void *pvUser) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; RT_NOREF_PV(pvBits); /* * Map the image bits if not already done and setup pointer into it. */ int rc = RTLDRELF_NAME(MapBits)(pModElf, true); if (RT_FAILURE(rc)) return rc; /* * Do the enumeration. */ const Elf_Shdr *paShdrs = pModElf->paOrgShdrs; for (unsigned iShdr = 0; iShdr < pModElf->Ehdr.e_shnum; iShdr++) { /* Debug sections are expected to be PROGBITS and not allocated. */ if (paShdrs[iShdr].sh_type != SHT_PROGBITS) continue; if (paShdrs[iShdr].sh_flags & SHF_ALLOC) continue; RTLDRDBGINFO DbgInfo; const char *pszSectName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name); if ( !strncmp(pszSectName, RT_STR_TUPLE(".debug_")) || !strcmp(pszSectName, ".WATCOM_references") ) { RT_ZERO(DbgInfo.u); DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF; DbgInfo.pszExtFile = NULL; DbgInfo.offFile = paShdrs[iShdr].sh_offset; DbgInfo.cb = paShdrs[iShdr].sh_size; DbgInfo.u.Dwarf.pszSection = pszSectName; } else if (!strcmp(pszSectName, ".gnu_debuglink")) { if ((paShdrs[iShdr].sh_size & 3) || paShdrs[iShdr].sh_size < 8) return VERR_BAD_EXE_FORMAT; RT_ZERO(DbgInfo.u); DbgInfo.enmType = RTLDRDBGINFOTYPE_DWARF_DWO; DbgInfo.pszExtFile = (const char *)((uintptr_t)pModElf->pvBits + (uintptr_t)paShdrs[iShdr].sh_offset); if (!RTStrEnd(DbgInfo.pszExtFile, paShdrs[iShdr].sh_size)) return VERR_BAD_EXE_FORMAT; DbgInfo.u.Dwo.uCrc32 = *(uint32_t *)((uintptr_t)DbgInfo.pszExtFile + (uintptr_t)paShdrs[iShdr].sh_size - sizeof(uint32_t)); DbgInfo.offFile = -1; DbgInfo.cb = 0; } else continue; DbgInfo.LinkAddress = NIL_RTLDRADDR; DbgInfo.iDbgInfo = iShdr - 1; rc = pfnCallback(pMod, &DbgInfo, pvUser); if (rc != VINF_SUCCESS) return rc; } return VINF_SUCCESS; } /** * Helper that locates the first allocated section. * * @returns Pointer to the section header if found, NULL if none. * @param pShdr The section header to start searching at. * @param cLeft The number of section headers left to search. Can be 0. */ static const Elf_Shdr *RTLDRELF_NAME(GetFirstAllocatedSection)(const Elf_Shdr *pShdr, unsigned cLeft) { while (cLeft-- > 0) { if (pShdr->sh_flags & SHF_ALLOC) return pShdr; pShdr++; } return NULL; } /** @copydoc RTLDROPS::pfnEnumSegments. */ static DECLCALLBACK(int) RTLDRELF_NAME(EnumSegments)(PRTLDRMODINTERNAL pMod, PFNRTLDRENUMSEGS pfnCallback, void *pvUser) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; /* * Map the image bits if not already done and setup pointer into it. */ int rc = RTLDRELF_NAME(MapBits)(pModElf, true); if (RT_FAILURE(rc)) return rc; /* * Do the enumeration. */ char szName[32]; Elf_Addr uPrevMappedRva = 0; const Elf_Shdr *paShdrs = pModElf->paShdrs; const Elf_Shdr *paOrgShdrs = pModElf->paOrgShdrs; for (unsigned iShdr = 1; iShdr < pModElf->Ehdr.e_shnum; iShdr++) { RTLDRSEG Seg; Seg.pszName = ELF_SH_STR(pModElf, paShdrs[iShdr].sh_name); Seg.cchName = (uint32_t)strlen(Seg.pszName); if (Seg.cchName == 0) { Seg.pszName = szName; Seg.cchName = (uint32_t)RTStrPrintf(szName, sizeof(szName), "UnamedSect%02u", iShdr); } Seg.SelFlat = 0; Seg.Sel16bit = 0; Seg.fFlags = 0; Seg.fProt = RTMEM_PROT_READ; if (paShdrs[iShdr].sh_flags & SHF_WRITE) Seg.fProt |= RTMEM_PROT_WRITE; if (paShdrs[iShdr].sh_flags & SHF_EXECINSTR) Seg.fProt |= RTMEM_PROT_EXEC; Seg.cb = paShdrs[iShdr].sh_size; Seg.Alignment = paShdrs[iShdr].sh_addralign; if (paShdrs[iShdr].sh_flags & SHF_ALLOC) { Seg.LinkAddress = paOrgShdrs[iShdr].sh_addr; Seg.RVA = paShdrs[iShdr].sh_addr; const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&paShdrs[iShdr + 1], pModElf->Ehdr.e_shnum - iShdr - 1); if ( pShdr2 && pShdr2->sh_addr >= paShdrs[iShdr].sh_addr && Seg.RVA >= uPrevMappedRva) Seg.cbMapped = pShdr2->sh_addr - paShdrs[iShdr].sh_addr; else Seg.cbMapped = RT_MAX(paShdrs[iShdr].sh_size, paShdrs[iShdr].sh_addralign); uPrevMappedRva = Seg.RVA; } else { Seg.LinkAddress = NIL_RTLDRADDR; Seg.RVA = NIL_RTLDRADDR; Seg.cbMapped = NIL_RTLDRADDR; } if (paShdrs[iShdr].sh_type != SHT_NOBITS) { Seg.offFile = paShdrs[iShdr].sh_offset; Seg.cbFile = paShdrs[iShdr].sh_size; } else { Seg.offFile = -1; Seg.cbFile = 0; } rc = pfnCallback(pMod, &Seg, pvUser); if (rc != VINF_SUCCESS) return rc; } return VINF_SUCCESS; } /** @copydoc RTLDROPS::pfnLinkAddressToSegOffset. */ static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress, uint32_t *piSeg, PRTLDRADDR poffSeg) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; const Elf_Shdr *pShdrEnd = NULL; unsigned cLeft = pModElf->Ehdr.e_shnum - 1; const Elf_Shdr *pShdr = &pModElf->paOrgShdrs[cLeft]; while (cLeft-- > 0) { if (pShdr->sh_flags & SHF_ALLOC) { RTLDRADDR offSeg = LinkAddress - pShdr->sh_addr; if (offSeg < pShdr->sh_size) { *poffSeg = offSeg; *piSeg = cLeft; return VINF_SUCCESS; } if (offSeg == pShdr->sh_size) pShdrEnd = pShdr; } pShdr--; } if (pShdrEnd) { *poffSeg = pShdrEnd->sh_size; *piSeg = pShdrEnd - pModElf->paOrgShdrs - 1; return VINF_SUCCESS; } return VERR_LDR_INVALID_LINK_ADDRESS; } /** @copydoc RTLDROPS::pfnLinkAddressToRva. */ static DECLCALLBACK(int) RTLDRELF_NAME(LinkAddressToRva)(PRTLDRMODINTERNAL pMod, RTLDRADDR LinkAddress, PRTLDRADDR pRva) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; uint32_t iSeg; RTLDRADDR offSeg; int rc = RTLDRELF_NAME(LinkAddressToSegOffset)(pMod, LinkAddress, &iSeg, &offSeg); if (RT_SUCCESS(rc)) *pRva = pModElf->paShdrs[iSeg + 1].sh_addr + offSeg; return rc; } /** @copydoc RTLDROPS::pfnSegOffsetToRva. */ static DECLCALLBACK(int) RTLDRELF_NAME(SegOffsetToRva)(PRTLDRMODINTERNAL pMod, uint32_t iSeg, RTLDRADDR offSeg, PRTLDRADDR pRva) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; if (iSeg >= pModElf->Ehdr.e_shnum - 1U) return VERR_LDR_INVALID_SEG_OFFSET; iSeg++; /* skip section 0 */ if (offSeg > pModElf->paShdrs[iSeg].sh_size) { const Elf_Shdr *pShdr2 = RTLDRELF_NAME(GetFirstAllocatedSection)(&pModElf->paShdrs[iSeg + 1], pModElf->Ehdr.e_shnum - iSeg - 1); if ( !pShdr2 || offSeg > (pShdr2->sh_addr - pModElf->paShdrs[iSeg].sh_addr)) return VERR_LDR_INVALID_SEG_OFFSET; } if (!(pModElf->paShdrs[iSeg].sh_flags & SHF_ALLOC)) return VERR_LDR_INVALID_SEG_OFFSET; *pRva = pModElf->paShdrs[iSeg].sh_addr; return VINF_SUCCESS; } /** @copydoc RTLDROPS::pfnRvaToSegOffset. */ static DECLCALLBACK(int) RTLDRELF_NAME(RvaToSegOffset)(PRTLDRMODINTERNAL pMod, RTLDRADDR Rva, uint32_t *piSeg, PRTLDRADDR poffSeg) { PRTLDRMODELF pModElf = (PRTLDRMODELF)pMod; Elf_Addr PrevAddr = 0; unsigned cLeft = pModElf->Ehdr.e_shnum - 1; const Elf_Shdr *pShdr = &pModElf->paShdrs[cLeft]; while (cLeft-- > 0) { if (pShdr->sh_flags & SHF_ALLOC) { Elf_Addr cbSeg = PrevAddr ? PrevAddr - pShdr->sh_addr : pShdr->sh_size; RTLDRADDR offSeg = Rva - pShdr->sh_addr; if (offSeg <= cbSeg) { *poffSeg = offSeg; *piSeg = cLeft; return VINF_SUCCESS; } PrevAddr = pShdr->sh_addr; } pShdr--; } return VERR_LDR_INVALID_RVA; } /** @callback_method_impl{FNRTLDRIMPORT, Stub used by ReadDbgInfo.} */ static DECLCALLBACK(int) RTLDRELF_NAME(GetImportStubCallback)(RTLDRMOD hLdrMod, const char *pszModule, const char *pszSymbol, unsigned uSymbol, PRTLDRADDR pValue, void *pvUser) { RT_NOREF_PV(hLdrMod); RT_NOREF_PV(pszModule); RT_NOREF_PV(pszSymbol); RT_NOREF_PV(uSymbol); RT_NOREF_PV(pValue); RT_NOREF_PV(pvUser); return VERR_SYMBOL_NOT_FOUND; } /** @copydoc RTLDROPS::pfnRvaToSegOffset. */ static DECLCALLBACK(int) RTLDRELF_NAME(ReadDbgInfo)(PRTLDRMODINTERNAL pMod, uint32_t iDbgInfo, RTFOFF off, size_t cb, void *pvBuf) { PRTLDRMODELF pThis = (PRTLDRMODELF)pMod; LogFlow(("%s: iDbgInfo=%#x off=%RTfoff cb=%#zu\n", __FUNCTION__, iDbgInfo, off, cb)); /* * Input validation. */ AssertReturn(iDbgInfo < pThis->Ehdr.e_shnum && iDbgInfo + 1 < pThis->Ehdr.e_shnum, VERR_INVALID_PARAMETER); iDbgInfo++; AssertReturn(!(pThis->paShdrs[iDbgInfo].sh_flags & SHF_ALLOC), VERR_INVALID_PARAMETER); AssertReturn(pThis->paShdrs[iDbgInfo].sh_type == SHT_PROGBITS, VERR_INVALID_PARAMETER); AssertReturn(pThis->paShdrs[iDbgInfo].sh_offset == (uint64_t)off, VERR_INVALID_PARAMETER); AssertReturn(pThis->paShdrs[iDbgInfo].sh_size == cb, VERR_INVALID_PARAMETER); RTFOFF cbRawImage = pThis->Core.pReader->pfnSize(pThis->Core.pReader); AssertReturn(cbRawImage >= 0, VERR_INVALID_PARAMETER); AssertReturn(off >= 0 && cb <= (uint64_t)cbRawImage && (uint64_t)off + cb <= (uint64_t)cbRawImage, VERR_INVALID_PARAMETER); /* * Read it from the file and look for fixup sections. */ int rc; if (pThis->pvBits) memcpy(pvBuf, (const uint8_t *)pThis->pvBits + (size_t)off, cb); else { rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pvBuf, cb, off); if (RT_FAILURE(rc)) return rc; } uint32_t iRelocs = iDbgInfo + 1; if ( iRelocs >= pThis->Ehdr.e_shnum || pThis->paShdrs[iRelocs].sh_info != iDbgInfo || ( pThis->paShdrs[iRelocs].sh_type != SHT_REL && pThis->paShdrs[iRelocs].sh_type != SHT_RELA) ) { iRelocs = 0; while ( iRelocs < pThis->Ehdr.e_shnum && ( pThis->paShdrs[iRelocs].sh_info != iDbgInfo || ( pThis->paShdrs[iRelocs].sh_type != SHT_REL && pThis->paShdrs[iRelocs].sh_type != SHT_RELA)) ) iRelocs++; } if ( iRelocs < pThis->Ehdr.e_shnum && pThis->paShdrs[iRelocs].sh_size > 0) { /* * Load the relocations. */ uint8_t *pbRelocsBuf = NULL; const uint8_t *pbRelocs; if (pThis->pvBits) pbRelocs = (const uint8_t *)pThis->pvBits + pThis->paShdrs[iRelocs].sh_offset; else { pbRelocs = pbRelocsBuf = (uint8_t *)RTMemTmpAlloc(pThis->paShdrs[iRelocs].sh_size); if (!pbRelocsBuf) return VERR_NO_TMP_MEMORY; rc = pThis->Core.pReader->pfnRead(pThis->Core.pReader, pbRelocsBuf, pThis->paShdrs[iRelocs].sh_size, pThis->paShdrs[iRelocs].sh_offset); if (RT_FAILURE(rc)) { RTMemTmpFree(pbRelocsBuf); return rc; } } /* * Apply the relocations. */ if (pThis->Ehdr.e_type == ET_REL) rc = RTLDRELF_NAME(RelocateSection)(pThis, pThis->LinkAddress, RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/, pThis->paShdrs[iDbgInfo].sh_addr, pThis->paShdrs[iDbgInfo].sh_size, (const uint8_t *)pvBuf, (uint8_t *)pvBuf, pbRelocs, pThis->paShdrs[iRelocs].sh_size); else rc = RTLDRELF_NAME(RelocateSectionExecDyn)(pThis, pThis->LinkAddress, RTLDRELF_NAME(GetImportStubCallback), NULL /*pvUser*/, pThis->paShdrs[iDbgInfo].sh_addr, pThis->paShdrs[iDbgInfo].sh_size, (const uint8_t *)pvBuf, (uint8_t *)pvBuf, pbRelocs, pThis->paShdrs[iRelocs].sh_size); RTMemTmpFree(pbRelocsBuf); } else rc = VINF_SUCCESS; return rc; } /** * The ELF module operations. */ static RTLDROPS RTLDRELF_MID(s_rtldrElf,Ops) = { #if ELF_MODE == 32 "elf32", #elif ELF_MODE == 64 "elf64", #endif RTLDRELF_NAME(Close), NULL, /* Get Symbol */ RTLDRELF_NAME(Done), RTLDRELF_NAME(EnumSymbols), /* ext: */ RTLDRELF_NAME(GetImageSize), RTLDRELF_NAME(GetBits), RTLDRELF_NAME(Relocate), RTLDRELF_NAME(GetSymbolEx), NULL /*pfnQueryForwarderInfo*/, RTLDRELF_NAME(EnumDbgInfo), RTLDRELF_NAME(EnumSegments), RTLDRELF_NAME(LinkAddressToSegOffset), RTLDRELF_NAME(LinkAddressToRva), RTLDRELF_NAME(SegOffsetToRva), RTLDRELF_NAME(RvaToSegOffset), RTLDRELF_NAME(ReadDbgInfo), NULL /*pfnQueryProp*/, NULL /*pfnVerifySignature*/, NULL /*pfnHashImage*/, 42 }; /** * Validates the ELF header. * * @returns iprt status code. * @param pEhdr Pointer to the ELF header. * @param pszLogName The log name. * @param cbRawImage The size of the raw image. */ static int RTLDRELF_NAME(ValidateElfHeader)(const Elf_Ehdr *pEhdr, const char *pszLogName, uint64_t cbRawImage, PRTLDRARCH penmArch) { Log3(("RTLdrELF: e_ident: %.*Rhxs\n" "RTLdrELF: e_type: " FMT_ELF_HALF "\n" "RTLdrELF: e_version: " FMT_ELF_HALF "\n" "RTLdrELF: e_entry: " FMT_ELF_ADDR "\n" "RTLdrELF: e_phoff: " FMT_ELF_OFF "\n" "RTLdrELF: e_shoff: " FMT_ELF_OFF "\n" "RTLdrELF: e_flags: " FMT_ELF_WORD "\n" "RTLdrELF: e_ehsize: " FMT_ELF_HALF "\n" "RTLdrELF: e_phentsize: " FMT_ELF_HALF "\n" "RTLdrELF: e_phnum: " FMT_ELF_HALF "\n" "RTLdrELF: e_shentsize: " FMT_ELF_HALF "\n" "RTLdrELF: e_shnum: " FMT_ELF_HALF "\n" "RTLdrELF: e_shstrndx: " FMT_ELF_HALF "\n", RT_ELEMENTS(pEhdr->e_ident), &pEhdr->e_ident[0], pEhdr->e_type, pEhdr->e_version, pEhdr->e_entry, pEhdr->e_phoff, pEhdr->e_shoff,pEhdr->e_flags, pEhdr->e_ehsize, pEhdr->e_phentsize, pEhdr->e_phnum, pEhdr->e_shentsize, pEhdr->e_shnum, pEhdr->e_shstrndx)); if ( pEhdr->e_ident[EI_MAG0] != ELFMAG0 || pEhdr->e_ident[EI_MAG1] != ELFMAG1 || pEhdr->e_ident[EI_MAG2] != ELFMAG2 || pEhdr->e_ident[EI_MAG3] != ELFMAG3 ) { Log(("RTLdrELF: %s: Invalid ELF magic (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident)); NOREF(pszLogName); return VERR_BAD_EXE_FORMAT; } if (pEhdr->e_ident[EI_CLASS] != RTLDRELF_SUFF(ELFCLASS)) { Log(("RTLdrELF: %s: Invalid ELF class (%.*Rhxs)\n", pszLogName, sizeof(pEhdr->e_ident), pEhdr->e_ident)); return VERR_BAD_EXE_FORMAT; } if (pEhdr->e_ident[EI_DATA] != ELFDATA2LSB) { Log(("RTLdrELF: %s: ELF endian %x is unsupported\n", pszLogName, pEhdr->e_ident[EI_DATA])); return VERR_LDRELF_ODD_ENDIAN; } if (pEhdr->e_version != EV_CURRENT) { Log(("RTLdrELF: %s: ELF version %x is unsupported\n", pszLogName, pEhdr->e_version)); return VERR_LDRELF_VERSION; } if (sizeof(Elf_Ehdr) != pEhdr->e_ehsize) { Log(("RTLdrELF: %s: Elf header e_ehsize is %d expected %d!\n", pszLogName, pEhdr->e_ehsize, sizeof(Elf_Ehdr))); return VERR_BAD_EXE_FORMAT; } if ( sizeof(Elf_Phdr) != pEhdr->e_phentsize && ( pEhdr->e_phnum != 0 || pEhdr->e_type == ET_DYN)) { Log(("RTLdrELF: %s: Elf header e_phentsize is %d expected %d!\n", pszLogName, pEhdr->e_phentsize, sizeof(Elf_Phdr))); return VERR_BAD_EXE_FORMAT; } if (sizeof(Elf_Shdr) != pEhdr->e_shentsize) { Log(("RTLdrELF: %s: Elf header e_shentsize is %d expected %d!\n", pszLogName, pEhdr->e_shentsize, sizeof(Elf_Shdr))); return VERR_BAD_EXE_FORMAT; } switch (pEhdr->e_type) { case ET_REL: case ET_EXEC: case ET_DYN: break; default: Log(("RTLdrELF: %s: image type %#x is not supported!\n", pszLogName, pEhdr->e_type)); return VERR_BAD_EXE_FORMAT; } switch (pEhdr->e_machine) { #if ELF_MODE == 32 case EM_386: case EM_486: *penmArch = RTLDRARCH_X86_32; break; #elif ELF_MODE == 64 case EM_X86_64: *penmArch = RTLDRARCH_AMD64; break; #endif default: Log(("RTLdrELF: %s: machine type %u is not supported!\n", pszLogName, pEhdr->e_machine)); return VERR_LDRELF_MACHINE; } if ( pEhdr->e_phoff < pEhdr->e_ehsize && !(pEhdr->e_phoff && pEhdr->e_phnum) && pEhdr->e_phnum) { Log(("RTLdrELF: %s: The program headers overlap with the ELF header! e_phoff=" FMT_ELF_OFF "\n", pszLogName, pEhdr->e_phoff)); return VERR_BAD_EXE_FORMAT; } if ( pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize > cbRawImage || pEhdr->e_phoff + pEhdr->e_phnum * pEhdr->e_phentsize < pEhdr->e_phoff) { Log(("RTLdrELF: %s: The program headers extends beyond the file! e_phoff=" FMT_ELF_OFF " e_phnum=" FMT_ELF_HALF "\n", pszLogName, pEhdr->e_phoff, pEhdr->e_phnum)); return VERR_BAD_EXE_FORMAT; } if ( pEhdr->e_shoff < pEhdr->e_ehsize && !(pEhdr->e_shoff && pEhdr->e_shnum)) { Log(("RTLdrELF: %s: The section headers overlap with the ELF header! e_shoff=" FMT_ELF_OFF "\n", pszLogName, pEhdr->e_shoff)); return VERR_BAD_EXE_FORMAT; } if ( pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize > cbRawImage || pEhdr->e_shoff + pEhdr->e_shnum * pEhdr->e_shentsize < pEhdr->e_shoff) { Log(("RTLdrELF: %s: The section headers extends beyond the file! e_shoff=" FMT_ELF_OFF " e_shnum=" FMT_ELF_HALF "\n", pszLogName, pEhdr->e_shoff, pEhdr->e_shnum)); return VERR_BAD_EXE_FORMAT; } if (pEhdr->e_shstrndx == 0 || pEhdr->e_shstrndx > pEhdr->e_shnum) { Log(("RTLdrELF: %s: The section headers string table is out of bounds! e_shstrndx=" FMT_ELF_HALF " e_shnum=" FMT_ELF_HALF "\n", pszLogName, pEhdr->e_shstrndx, pEhdr->e_shnum)); return VERR_BAD_EXE_FORMAT; } return VINF_SUCCESS; } /** * Gets the section header name. * * @returns pszName. * @param pEhdr The elf header. * @param offName The offset of the section header name. * @param pszName Where to store the name. * @param cbName The size of the buffer pointed to by pszName. */ const char *RTLDRELF_NAME(GetSHdrName)(PRTLDRMODELF pModElf, Elf_Word offName, char *pszName, size_t cbName) { RTFOFF off = pModElf->paShdrs[pModElf->Ehdr.e_shstrndx].sh_offset + offName; int rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName, cbName - 1, off); if (RT_FAILURE(rc)) { /* read by for byte. */ for (unsigned i = 0; i < cbName; i++, off++) { rc = pModElf->Core.pReader->pfnRead(pModElf->Core.pReader, pszName + i, 1, off); if (RT_FAILURE(rc)) { pszName[i] = '\0'; break; } } } pszName[cbName - 1] = '\0'; return pszName; } /** * Validates a section header. * * @returns iprt status code. * @param pModElf Pointer to the module structure. * @param iShdr The index of section header which should be validated. * The section headers are found in the pModElf->paShdrs array. * @param pszLogName The log name. * @param cbRawImage The size of the raw image. */ static int RTLDRELF_NAME(ValidateSectionHeader)(PRTLDRMODELF pModElf, unsigned iShdr, const char *pszLogName, RTFOFF cbRawImage) { const Elf_Shdr *pShdr = &pModElf->paShdrs[iShdr]; char szSectionName[80]; NOREF(szSectionName); Log3(("RTLdrELF: Section Header #%d:\n" "RTLdrELF: sh_name: " FMT_ELF_WORD " - %s\n" "RTLdrELF: sh_type: " FMT_ELF_WORD " (%s)\n" "RTLdrELF: sh_flags: " FMT_ELF_XWORD "\n" "RTLdrELF: sh_addr: " FMT_ELF_ADDR "\n" "RTLdrELF: sh_offset: " FMT_ELF_OFF "\n" "RTLdrELF: sh_size: " FMT_ELF_XWORD "\n" "RTLdrELF: sh_link: " FMT_ELF_WORD "\n" "RTLdrELF: sh_info: " FMT_ELF_WORD "\n" "RTLdrELF: sh_addralign: " FMT_ELF_XWORD "\n" "RTLdrELF: sh_entsize: " FMT_ELF_XWORD "\n", iShdr, pShdr->sh_name, RTLDRELF_NAME(GetSHdrName)(pModElf, pShdr->sh_name, szSectionName, sizeof(szSectionName)), pShdr->sh_type, rtldrElfGetShdrType(pShdr->sh_type), pShdr->sh_flags, pShdr->sh_addr, pShdr->sh_offset, pShdr->sh_size, pShdr->sh_link, pShdr->sh_info, pShdr->sh_addralign, pShdr->sh_entsize)); if (iShdr == 0) { if ( pShdr->sh_name != 0 || pShdr->sh_type != SHT_NULL || pShdr->sh_flags != 0 || pShdr->sh_addr != 0 || pShdr->sh_size != 0 || pShdr->sh_offset != 0 || pShdr->sh_link != SHN_UNDEF || pShdr->sh_addralign != 0 || pShdr->sh_entsize != 0 ) { Log(("RTLdrELF: %s: Bad #0 section: %.*Rhxs\n", pszLogName, sizeof(*pShdr), pShdr )); return VERR_BAD_EXE_FORMAT; } return VINF_SUCCESS; } if (pShdr->sh_name >= pModElf->cbShStr) { Log(("RTLdrELF: %s: Shdr #%d: sh_name (%d) is beyond the end of the section header string table (%d)!\n", pszLogName, iShdr, pShdr->sh_name, pModElf->cbShStr)); NOREF(pszLogName); return VERR_BAD_EXE_FORMAT; } if (pShdr->sh_link >= pModElf->Ehdr.e_shnum) { Log(("RTLdrELF: %s: Shdr #%d: sh_link (%d) is beyond the end of the section table (%d)!\n", pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum)); NOREF(pszLogName); return VERR_BAD_EXE_FORMAT; } switch (pShdr->sh_type) { /** @todo find specs and check up which sh_info fields indicates section table entries */ case 12301230: if (pShdr->sh_info >= pModElf->Ehdr.e_shnum) { Log(("RTLdrELF: %s: Shdr #%d: sh_info (%d) is beyond the end of the section table (%d)!\n", pszLogName, iShdr, pShdr->sh_link, pModElf->Ehdr.e_shnum)); return VERR_BAD_EXE_FORMAT; } break; case SHT_NULL: break; case SHT_PROGBITS: case SHT_SYMTAB: case SHT_STRTAB: case SHT_RELA: case SHT_HASH: case SHT_DYNAMIC: case SHT_NOTE: case SHT_NOBITS: case SHT_REL: case SHT_SHLIB: case SHT_DYNSYM: /* * For these types sh_info doesn't have any special meaning, or anything which * we need/can validate now. */ break; default: Log(("RTLdrELF: %s: Warning, unknown type %d!\n", pszLogName, pShdr->sh_type)); break; } if ( pShdr->sh_type != SHT_NOBITS && pShdr->sh_size) { RTFOFF offEnd = pShdr->sh_offset + pShdr->sh_size; if ( offEnd > cbRawImage || offEnd < (RTFOFF)pShdr->sh_offset) { Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD " = %RTfoff) is beyond the end of the file (%RTfoff)!\n", pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size, offEnd, cbRawImage)); return VERR_BAD_EXE_FORMAT; } if (pShdr->sh_offset < sizeof(Elf_Ehdr)) { Log(("RTLdrELF: %s: Shdr #%d: sh_offset (" FMT_ELF_OFF ") + sh_size (" FMT_ELF_XWORD ") is starting in the ELF header!\n", pszLogName, iShdr, pShdr->sh_offset, pShdr->sh_size)); return VERR_BAD_EXE_FORMAT; } } return VINF_SUCCESS; } /** * Opens an ELF image, fixed bitness. * * @returns iprt status code. * @param pReader The loader reader instance which will provide the raw image bits. * @param fFlags Reserved, MBZ. * @param enmArch Architecture specifier. * @param phLdrMod Where to store the handle. */ static int RTLDRELF_NAME(Open)(PRTLDRREADER pReader, uint32_t fFlags, RTLDRARCH enmArch, PRTLDRMOD phLdrMod) { const char *pszLogName = pReader->pfnLogName(pReader); RTFOFF cbRawImage = pReader->pfnSize(pReader); RT_NOREF_PV(fFlags); /* * Create the loader module instance. */ PRTLDRMODELF pModElf = (PRTLDRMODELF)RTMemAllocZ(sizeof(*pModElf)); if (!pModElf) return VERR_NO_MEMORY; pModElf->Core.u32Magic = RTLDRMOD_MAGIC; pModElf->Core.eState = LDR_STATE_INVALID; pModElf->Core.pReader = pReader; pModElf->Core.enmFormat = RTLDRFMT_ELF; pModElf->Core.enmType = RTLDRTYPE_OBJECT; pModElf->Core.enmEndian = RTLDRENDIAN_LITTLE; #if ELF_MODE == 32 pModElf->Core.enmArch = RTLDRARCH_X86_32; #else pModElf->Core.enmArch = RTLDRARCH_AMD64; #endif //pModElf->pvBits = NULL; //pModElf->Ehdr = {0}; //pModElf->paShdrs = NULL; //pModElf->paSyms = NULL; pModElf->iSymSh = ~0U; //pModElf->cSyms = 0; pModElf->iStrSh = ~0U; //pModElf->cbStr = 0; //pModElf->cbImage = 0; //pModElf->LinkAddress = 0; //pModElf->pStr = NULL; //pModElf->cbShStr = 0; //pModElf->pShStr = NULL; /* * Read and validate the ELF header and match up the CPU architecture. */ int rc = pReader->pfnRead(pReader, &pModElf->Ehdr, sizeof(pModElf->Ehdr), 0); if (RT_SUCCESS(rc)) { RTLDRARCH enmArchImage = RTLDRARCH_INVALID; /* shut up gcc */ rc = RTLDRELF_NAME(ValidateElfHeader)(&pModElf->Ehdr, pszLogName, cbRawImage, &enmArchImage); if (RT_SUCCESS(rc)) { if ( enmArch != RTLDRARCH_WHATEVER && enmArch != enmArchImage) rc = VERR_LDR_ARCH_MISMATCH; } } if (RT_SUCCESS(rc)) { /* * Read the section headers, keeping a prestine copy for the module * introspection methods. */ size_t const cbShdrs = pModElf->Ehdr.e_shnum * sizeof(Elf_Shdr); Elf_Shdr *paShdrs = (Elf_Shdr *)RTMemAlloc(cbShdrs * 2); if (paShdrs) { pModElf->paShdrs = paShdrs; rc = pReader->pfnRead(pReader, paShdrs, cbShdrs, pModElf->Ehdr.e_shoff); if (RT_SUCCESS(rc)) { memcpy(&paShdrs[pModElf->Ehdr.e_shnum], paShdrs, cbShdrs); pModElf->paOrgShdrs = &paShdrs[pModElf->Ehdr.e_shnum]; pModElf->cbShStr = paShdrs[pModElf->Ehdr.e_shstrndx].sh_size; /* * Validate the section headers and find relevant sections. */ Elf_Addr uNextAddr = 0; for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++) { rc = RTLDRELF_NAME(ValidateSectionHeader)(pModElf, i, pszLogName, cbRawImage); if (RT_FAILURE(rc)) break; /* We're looking for symbol tables. */ if (paShdrs[i].sh_type == SHT_SYMTAB) { if (pModElf->iSymSh != ~0U) { Log(("RTLdrElf: %s: Multiple symbol tabs! iSymSh=%d i=%d\n", pszLogName, pModElf->iSymSh, i)); rc = VERR_LDRELF_MULTIPLE_SYMTABS; break; } pModElf->iSymSh = i; pModElf->cSyms = (unsigned)(paShdrs[i].sh_size / sizeof(Elf_Sym)); AssertReturn(pModElf->cSyms == paShdrs[i].sh_size / sizeof(Elf_Sym), VERR_IMAGE_TOO_BIG); pModElf->iStrSh = paShdrs[i].sh_link; pModElf->cbStr = (unsigned)paShdrs[pModElf->iStrSh].sh_size; AssertReturn(pModElf->cbStr == paShdrs[pModElf->iStrSh].sh_size, VERR_IMAGE_TOO_BIG); } /* Special checks for the section string table. */ if (i == pModElf->Ehdr.e_shstrndx) { if (paShdrs[i].sh_type != SHT_STRTAB) { Log(("RTLdrElf: Section header string table is not a SHT_STRTAB: %#x\n", paShdrs[i].sh_type)); rc = VERR_BAD_EXE_FORMAT; break; } if (paShdrs[i].sh_size == 0) { Log(("RTLdrElf: Section header string table is empty\n")); rc = VERR_BAD_EXE_FORMAT; break; } } /* Kluge for the .data..percpu segment in 64-bit linux kernels. */ if (paShdrs[i].sh_flags & SHF_ALLOC) { if ( paShdrs[i].sh_addr == 0 && paShdrs[i].sh_addr < uNextAddr) { Elf_Addr uAddr = RT_ALIGN_T(uNextAddr, paShdrs[i].sh_addralign, Elf_Addr); Log(("RTLdrElf: Out of order section #%d; adjusting sh_addr from " FMT_ELF_ADDR " to " FMT_ELF_ADDR "\n", i, paShdrs[i].sh_addr, uAddr)); paShdrs[i].sh_addr = uAddr; } uNextAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size; } } /* for each section header */ /* * Calculate the image base address if the image isn't relocatable. */ if (RT_SUCCESS(rc) && pModElf->Ehdr.e_type != ET_REL) { pModElf->LinkAddress = ~(Elf_Addr)0; for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++) if ( (paShdrs[i].sh_flags & SHF_ALLOC) && paShdrs[i].sh_addr < pModElf->LinkAddress) pModElf->LinkAddress = paShdrs[i].sh_addr; if (pModElf->LinkAddress == ~(Elf_Addr)0) { AssertFailed(); rc = VERR_LDR_GENERAL_FAILURE; } } /* * Perform allocations / RVA calculations, determine the image size. */ if (RT_SUCCESS(rc)) for (unsigned i = 0; i < pModElf->Ehdr.e_shnum; i++) if (paShdrs[i].sh_flags & SHF_ALLOC) { if (pModElf->Ehdr.e_type == ET_REL) paShdrs[i].sh_addr = paShdrs[i].sh_addralign ? RT_ALIGN_T(pModElf->cbImage, paShdrs[i].sh_addralign, Elf_Addr) : (Elf_Addr)pModElf->cbImage; else paShdrs[i].sh_addr -= pModElf->LinkAddress; Elf_Addr EndAddr = paShdrs[i].sh_addr + paShdrs[i].sh_size; if (pModElf->cbImage < EndAddr) { pModElf->cbImage = (size_t)EndAddr; AssertMsgReturn(pModElf->cbImage == EndAddr, (FMT_ELF_ADDR "\n", EndAddr), VERR_IMAGE_TOO_BIG); } Log2(("RTLdrElf: %s: Assigned " FMT_ELF_ADDR " to section #%d\n", pszLogName, paShdrs[i].sh_addr, i)); } Log2(("RTLdrElf: iSymSh=%u cSyms=%u iStrSh=%u cbStr=%u rc=%Rrc cbImage=%#zx LinkAddress=" FMT_ELF_ADDR "\n", pModElf->iSymSh, pModElf->cSyms, pModElf->iStrSh, pModElf->cbStr, rc, pModElf->cbImage, pModElf->LinkAddress)); if (RT_SUCCESS(rc)) { pModElf->Core.pOps = &RTLDRELF_MID(s_rtldrElf,Ops); pModElf->Core.eState = LDR_STATE_OPENED; *phLdrMod = &pModElf->Core; LogFlow(("%s: %s: returns VINF_SUCCESS *phLdrMod=%p\n", __FUNCTION__, pszLogName, *phLdrMod)); return VINF_SUCCESS; } } RTMemFree(paShdrs); } else rc = VERR_NO_MEMORY; } RTMemFree(pModElf); LogFlow(("%s: returns %Rrc\n", __FUNCTION__, rc)); return rc; } /******************************************************************************* * Cleanup Constants And Macros * *******************************************************************************/ #undef RTLDRELF_NAME #undef RTLDRELF_SUFF #undef RTLDRELF_MID #undef FMT_ELF_ADDR #undef FMT_ELF_HALF #undef FMT_ELF_SHALF #undef FMT_ELF_OFF #undef FMT_ELF_SIZE #undef FMT_ELF_SWORD #undef FMT_ELF_WORD #undef FMT_ELF_XWORD #undef FMT_ELF_SXWORD #undef Elf_Ehdr #undef Elf_Phdr #undef Elf_Shdr #undef Elf_Sym #undef Elf_Rel #undef Elf_Rela #undef Elf_Reloc #undef Elf_Nhdr #undef Elf_Dyn #undef Elf_Addr #undef Elf_Half #undef Elf_Off #undef Elf_Size #undef Elf_Sword #undef Elf_Word #undef RTLDRMODELF #undef PRTLDRMODELF #undef ELF_R_SYM #undef ELF_R_TYPE #undef ELF_R_INFO #undef ELF_ST_BIND