/* $Id: bignum.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * IPRT - Big Integer Numbers. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ /*#ifdef IN_RING3 # define RTMEM_WRAP_TO_EF_APIS #endif*/ #include "internal/iprt.h" #include #include #include #include #include #include #include #if RTBIGNUM_ELEMENT_BITS == 64 # include #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** Allocation alignment in elements. */ #ifndef RTMEM_WRAP_TO_EF_APIS # define RTBIGNUM_ALIGNMENT 4U #else # define RTBIGNUM_ALIGNMENT 1U #endif /** The max size (in bytes) of an elements array. */ #define RTBIGNUM_MAX_SIZE _4M /** Assert the validity of a big number structure pointer in strict builds. */ #ifdef RT_STRICT # define RTBIGNUM_ASSERT_VALID(a_pBigNum) \ do { \ AssertPtr(a_pBigNum); \ Assert(!(a_pBigNum)->fCurScrambled); \ Assert( (a_pBigNum)->cUsed == (a_pBigNum)->cAllocated \ || ASMMemIsZero(&(a_pBigNum)->pauElements[(a_pBigNum)->cUsed], \ ((a_pBigNum)->cAllocated - (a_pBigNum)->cUsed) * RTBIGNUM_ELEMENT_SIZE)); \ } while (0) #else # define RTBIGNUM_ASSERT_VALID(a_pBigNum) do {} while (0) #endif /** Enable assembly optimizations. */ #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # define IPRT_BIGINT_WITH_ASM #endif /** @def RTBIGNUM_ZERO_ALIGN * For calculating the rtBigNumEnsureExtraZeroElements argument from cUsed. * This has to do with 64-bit assembly instruction operating as RTBIGNUMELEMENT * was 64-bit on some hosts. */ #if defined(IPRT_BIGINT_WITH_ASM) && ARCH_BITS == 64 && RTBIGNUM_ELEMENT_SIZE == 4 && defined(RT_LITTLE_ENDIAN) # define RTBIGNUM_ZERO_ALIGN(a_cUsed) RT_ALIGN_32(a_cUsed, 2) #elif defined(IPRT_BIGINT_WITH_ASM) # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed) #else # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed) #endif #define RTBIGNUMELEMENT_HALF_MASK ( ((RTBIGNUMELEMENT)1 << (RTBIGNUM_ELEMENT_BITS / 2)) - (RTBIGNUMELEMENT)1) #define RTBIGNUMELEMENT_LO_HALF(a_uElement) ( (RTBIGNUMELEMENT_HALF_MASK) & (a_uElement) ) #define RTBIGNUMELEMENT_HI_HALF(a_uElement) ( (a_uElement) >> (RTBIGNUM_ELEMENT_BITS / 2) ) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** Type the size of two elements. */ #if RTBIGNUM_ELEMENT_BITS == 64 typedef RTUINT128U RTBIGNUMELEMENT2X; #else typedef RTUINT64U RTBIGNUMELEMENT2X; #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed); #ifdef IPRT_BIGINT_WITH_ASM /* bignum-amd64-x86.asm: */ DECLASM(void) rtBigNumMagnitudeSubAssemblyWorker(RTBIGNUMELEMENT *pauResult, RTBIGNUMELEMENT const *pauMinuend, RTBIGNUMELEMENT const *pauSubtrahend, uint32_t cUsed); DECLASM(void) rtBigNumMagnitudeSubThisAssemblyWorker(RTBIGNUMELEMENT *pauMinuendResult, RTBIGNUMELEMENT const *pauSubtrahend, uint32_t cUsed); DECLASM(RTBIGNUMELEMENT) rtBigNumMagnitudeShiftLeftOneAssemblyWorker(RTBIGNUMELEMENT *pauElements, uint32_t cUsed, RTBIGNUMELEMENT uCarry); DECLASM(void) rtBigNumElement2xDiv2xBy1x(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT *puRemainder, RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo, RTBIGNUMELEMENT uDivisor); DECLASM(void) rtBigNumMagnitudeMultiplyAssemblyWorker(PRTBIGNUMELEMENT pauResult, PCRTBIGNUMELEMENT pauMultiplier, uint32_t cMultiplier, PCRTBIGNUMELEMENT pauMultiplicand, uint32_t cMultiplicand); #endif /** @name Functions working on one element. * @{ */ DECLINLINE(uint32_t) rtBigNumElementBitCount(RTBIGNUMELEMENT uElement) { #if RTBIGNUM_ELEMENT_SIZE == 8 if (uElement >> 32) return ASMBitLastSetU32((uint32_t)(uElement >> 32)) + 32; return ASMBitLastSetU32((uint32_t)uElement); #elif RTBIGNUM_ELEMENT_SIZE == 4 return ASMBitLastSetU32(uElement); #else # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif } /** * Does addition with carry. * * This is a candidate for inline assembly on some platforms. * * @returns The result (the sum) * @param uAugend What to add to. * @param uAddend What to add to it. * @param pfCarry Where to read the input carry and return the output * carry. */ DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementAddWithCarry(RTBIGNUMELEMENT uAugend, RTBIGNUMELEMENT uAddend, RTBIGNUMELEMENT *pfCarry) { RTBIGNUMELEMENT uRet = uAugend + uAddend; if (!*pfCarry) *pfCarry = uRet < uAugend; else { uRet += 1; *pfCarry = uRet <= uAugend; } return uRet; } #if !defined(IPRT_BIGINT_WITH_ASM) || defined(RT_STRICT) /** * Does addition with borrow. * * This is a candidate for inline assembly on some platforms. * * @returns The result (the sum) * @param uMinuend What to subtract from. * @param uSubtrahend What to subtract. * @param pfBorrow Where to read the input borrow and return the output * borrow. */ DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementSubWithBorrow(RTBIGNUMELEMENT uMinuend, RTBIGNUMELEMENT uSubtrahend, RTBIGNUMELEMENT *pfBorrow) { RTBIGNUMELEMENT uRet = uMinuend - uSubtrahend - *pfBorrow; /* Figure out if we borrowed. */ *pfBorrow = !*pfBorrow ? uMinuend < uSubtrahend : uMinuend <= uSubtrahend; return uRet; } #endif /** @} */ /** @name Double element primitives. * @{ */ static int rtBigNumElement2xCopyToMagnitude(RTBIGNUMELEMENT2X const *pValue2x, PRTBIGNUM pDst) { int rc; if (pValue2x->s.Hi) { rc = rtBigNumSetUsed(pDst, 2); if (RT_SUCCESS(rc)) { pDst->pauElements[0] = pValue2x->s.Lo; pDst->pauElements[1] = pValue2x->s.Hi; } } else if (pValue2x->s.Lo) { rc = rtBigNumSetUsed(pDst, 1); if (RT_SUCCESS(rc)) pDst->pauElements[0] = pValue2x->s.Lo; } else rc = rtBigNumSetUsed(pDst, 0); return rc; } static void rtBigNumElement2xDiv(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT2X *puRemainder, RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo, RTBIGNUMELEMENT uDivisorHi, RTBIGNUMELEMENT uDivisorLo) { RTBIGNUMELEMENT2X uDividend; uDividend.s.Lo = uDividendLo; uDividend.s.Hi = uDividendHi; RTBIGNUMELEMENT2X uDivisor; uDivisor.s.Lo = uDivisorLo; uDivisor.s.Hi = uDivisorHi; #if RTBIGNUM_ELEMENT_BITS == 64 RTUInt128DivRem(puQuotient, puRemainder, &uDividend, &uDivisor); #else puQuotient->u = uDividend.u / uDivisor.u; puRemainder->u = uDividend.u % uDivisor.u; #endif } #ifndef IPRT_BIGINT_WITH_ASM static void rtBigNumElement2xDiv2xBy1x(RTBIGNUMELEMENT2X *puQuotient, RTBIGNUMELEMENT *puRemainder, RTBIGNUMELEMENT uDividendHi, RTBIGNUMELEMENT uDividendLo, RTBIGNUMELEMENT uDivisor) { RTBIGNUMELEMENT2X uDividend; uDividend.s.Lo = uDividendLo; uDividend.s.Hi = uDividendHi; # if RTBIGNUM_ELEMENT_BITS == 64 RTBIGNUMELEMENT2X uRemainder2x; RTBIGNUMELEMENT2X uDivisor2x; uDivisor2x.s.Hi = 0; uDivisor2x.s.Lo = uDivisor; /** @todo optimize this. */ RTUInt128DivRem(puQuotient, &uRemainder2x, &uDividend, &uDivisor2x); *puRemainder = uRemainder2x.s.Lo; # else puQuotient->u = uDividend.u / uDivisor; puRemainder->u = uDividend.u % uDivisor; # endif } #endif DECLINLINE(void) rtBigNumElement2xDec(RTBIGNUMELEMENT2X *puValue) { #if RTBIGNUM_ELEMENT_BITS == 64 if (puValue->s.Lo-- == 0) puValue->s.Hi--; #else puValue->u -= 1; #endif } #if 0 /* unused */ DECLINLINE(void) rtBigNumElement2xAdd1x(RTBIGNUMELEMENT2X *puValue, RTBIGNUMELEMENT uAdd) { #if RTBIGNUM_ELEMENT_BITS == 64 RTUInt128AssignAddU64(puValue, uAdd); #else puValue->u += uAdd; #endif } #endif /* unused */ /** @} */ /** * Scrambles a big number if required. * * @param pBigNum The big number. */ DECLINLINE(void) rtBigNumScramble(PRTBIGNUM pBigNum) { if (pBigNum->fSensitive) { AssertReturnVoid(!pBigNum->fCurScrambled); if (pBigNum->pauElements) { int rc = RTMemSaferScramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc); pBigNum->fCurScrambled = RT_SUCCESS(rc); } else pBigNum->fCurScrambled = true; } } /** * Unscrambles a big number if required. * * @returns IPRT status code. * @param pBigNum The big number. */ DECLINLINE(int) rtBigNumUnscramble(PRTBIGNUM pBigNum) { if (pBigNum->fSensitive) { AssertReturn(pBigNum->fCurScrambled, VERR_INTERNAL_ERROR_2); if (pBigNum->pauElements) { int rc = RTMemSaferUnscramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc); pBigNum->fCurScrambled = !RT_SUCCESS(rc); return rc; } else pBigNum->fCurScrambled = false; } return VINF_SUCCESS; } /** * Getter function for pauElements which extends the array to infinity. * * @returns The element value. * @param pBigNum The big number. * @param iElement The element index. */ DECLINLINE(RTBIGNUMELEMENT) rtBigNumGetElement(PCRTBIGNUM pBigNum, uint32_t iElement) { if (iElement < pBigNum->cUsed) return pBigNum->pauElements[iElement]; return 0; } /** * Grows the pauElements array so it can fit at least @a cNewUsed entries. * * @returns IPRT status code. * @param pBigNum The big number. * @param cNewUsed The new cUsed value. * @param cMinElements The minimum number of elements. */ static int rtBigNumGrow(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements) { Assert(cMinElements >= cNewUsed); uint32_t const cbOld = pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE; uint32_t const cNew = RT_ALIGN_32(cMinElements, RTBIGNUM_ALIGNMENT); uint32_t const cbNew = cNew * RTBIGNUM_ELEMENT_SIZE; Assert(cbNew > cbOld); if (cbNew <= RTBIGNUM_MAX_SIZE && cbNew > cbOld) { void *pvNew; if (pBigNum->fSensitive) pvNew = RTMemSaferReallocZ(cbOld, pBigNum->pauElements, cbNew); else pvNew = RTMemRealloc(pBigNum->pauElements, cbNew); if (RT_LIKELY(pvNew)) { if (cbNew > cbOld) RT_BZERO((char *)pvNew + cbOld, cbNew - cbOld); if (pBigNum->cUsed > cNewUsed) RT_BZERO((RTBIGNUMELEMENT *)pvNew + cNewUsed, (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE); pBigNum->pauElements = (RTBIGNUMELEMENT *)pvNew; pBigNum->cUsed = cNewUsed; pBigNum->cAllocated = cNew; return VINF_SUCCESS; } return VERR_NO_MEMORY; } return VERR_OUT_OF_RANGE; } /** * Changes the cUsed member, growing the pauElements array if necessary. * * Any elements added to the array will be initialized to zero. * * @returns IPRT status code. * @param pBigNum The big number. * @param cNewUsed The new cUsed value. */ DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed) { if (pBigNum->cAllocated >= cNewUsed) { if (pBigNum->cUsed > cNewUsed) RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE); #ifdef RT_STRICT else if (pBigNum->cUsed != cNewUsed) Assert(ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed], (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE)); #endif pBigNum->cUsed = cNewUsed; return VINF_SUCCESS; } return rtBigNumGrow(pBigNum, cNewUsed, cNewUsed); } /** * Extended version of rtBigNumSetUsed that also allow specifying the number of * zero elements required. * * @returns IPRT status code. * @param pBigNum The big number. * @param cNewUsed The new cUsed value. * @param cMinElements The minimum number of elements allocated. The * difference between @a cNewUsed and @a cMinElements * is initialized to zero because all free elements are * zero. */ DECLINLINE(int) rtBigNumSetUsedEx(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements) { if (pBigNum->cAllocated >= cMinElements) { if (pBigNum->cUsed > cNewUsed) RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE); #ifdef RT_STRICT else if (pBigNum->cUsed != cNewUsed) Assert(ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed], (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE)); #endif pBigNum->cUsed = cNewUsed; return VINF_SUCCESS; } return rtBigNumGrow(pBigNum, cNewUsed, cMinElements); } /** * For ensuring zero padding of pauElements for sub/add with carry assembly * operations. * * @returns IPRT status code. * @param pBigNum The big number. * @param cElements The number of elements that must be in the elements * array array, where those after pBigNum->cUsed must * be zero. */ DECLINLINE(int) rtBigNumEnsureExtraZeroElements(PRTBIGNUM pBigNum, uint32_t cElements) { if (pBigNum->cAllocated >= cElements) { Assert( pBigNum->cAllocated == pBigNum->cUsed || ASMMemIsZero(&pBigNum->pauElements[pBigNum->cUsed], (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE)); return VINF_SUCCESS; } return rtBigNumGrow(pBigNum, pBigNum->cUsed, cElements); } /** * The slow part of rtBigNumEnsureElementPresent where we need to do actual zero * extending. * * @returns IPRT status code. * @param pBigNum The big number. * @param iElement The element we wish to access. */ static int rtBigNumEnsureElementPresentSlow(PRTBIGNUM pBigNum, uint32_t iElement) { uint32_t const cOldUsed = pBigNum->cUsed; int rc = rtBigNumSetUsed(pBigNum, iElement + 1); if (RT_SUCCESS(rc)) { RT_BZERO(&pBigNum->pauElements[cOldUsed], (iElement + 1 - cOldUsed) * RTBIGNUM_ELEMENT_SIZE); return VINF_SUCCESS; } return rc; } /** * Zero extends the element array to make sure a the specified element index is * accessible. * * This is typically used with bit operations and self modifying methods. Any * new elements added will be initialized to zero. The caller is responsible * for there not being any trailing zero elements. * * The number must be unscrambled. * * @returns IPRT status code. * @param pBigNum The big number. * @param iElement The element we wish to access. */ DECLINLINE(int) rtBigNumEnsureElementPresent(PRTBIGNUM pBigNum, uint32_t iElement) { if (iElement < pBigNum->cUsed) return VINF_SUCCESS; return rtBigNumEnsureElementPresentSlow(pBigNum, iElement); } /** * Strips zero elements from the magnitude value. * * @param pBigNum The big number to strip. */ static void rtBigNumStripTrailingZeros(PRTBIGNUM pBigNum) { uint32_t i = pBigNum->cUsed; while (i > 0 && pBigNum->pauElements[i - 1] == 0) i--; pBigNum->cUsed = i; } /** * Initialize the big number to zero. * * @returns @a pBigNum * @param pBigNum The big number. * @param fFlags The flags. * @internal */ DECLINLINE(PRTBIGNUM) rtBigNumInitZeroInternal(PRTBIGNUM pBigNum, uint32_t fFlags) { RT_ZERO(*pBigNum); pBigNum->fSensitive = RT_BOOL(fFlags & RTBIGNUMINIT_F_SENSITIVE); return pBigNum; } /** * Initialize the big number to zero from a template variable. * * @returns @a pBigNum * @param pBigNum The big number. * @param pTemplate The template big number. * @internal */ DECLINLINE(PRTBIGNUM) rtBigNumInitZeroTemplate(PRTBIGNUM pBigNum, PCRTBIGNUM pTemplate) { RT_ZERO(*pBigNum); pBigNum->fSensitive = pTemplate->fSensitive; return pBigNum; } RTDECL(int) RTBigNumInit(PRTBIGNUM pBigNum, uint32_t fFlags, void const *pvRaw, size_t cbRaw) { /* * Validate input. */ AssertPtrReturn(pBigNum, VERR_INVALID_POINTER); AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_BIG) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE), VERR_INVALID_PARAMETER); AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_UNSIGNED) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_SIGNED), VERR_INVALID_PARAMETER); if (cbRaw) AssertPtrReturn(pvRaw, VERR_INVALID_POINTER); /* * Initalize the big number to zero. */ rtBigNumInitZeroInternal(pBigNum, fFlags); /* * Strip the input and figure the sign flag. */ uint8_t const *pb = (uint8_t const *)pvRaw; if (cbRaw) { if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE) { if (fFlags & RTBIGNUMINIT_F_UNSIGNED) { while (cbRaw > 0 && pb[cbRaw - 1] == 0) cbRaw--; } else { if (pb[cbRaw - 1] >> 7) { pBigNum->fNegative = 1; while (cbRaw > 1 && pb[cbRaw - 1] == 0xff) cbRaw--; } else while (cbRaw > 0 && pb[cbRaw - 1] == 0) cbRaw--; } } else { if (fFlags & RTBIGNUMINIT_F_UNSIGNED) { while (cbRaw > 0 && *pb == 0) pb++, cbRaw--; } else { if (*pb >> 7) { pBigNum->fNegative = 1; while (cbRaw > 1 && *pb == 0xff) pb++, cbRaw--; } else while (cbRaw > 0 && *pb == 0) pb++, cbRaw--; } } } /* * Allocate memory for the elements. */ size_t cbAligned = RT_ALIGN_Z(cbRaw, RTBIGNUM_ELEMENT_SIZE); if (RT_UNLIKELY(cbAligned >= RTBIGNUM_MAX_SIZE)) return VERR_OUT_OF_RANGE; pBigNum->cUsed = (uint32_t)cbAligned / RTBIGNUM_ELEMENT_SIZE; if (pBigNum->cUsed) { pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT); if (pBigNum->fSensitive) pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); else pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); if (RT_UNLIKELY(!pBigNum->pauElements)) return VERR_NO_MEMORY; /* * Initialize the array. */ uint32_t i = 0; if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE) { while (cbRaw >= RTBIGNUM_ELEMENT_SIZE) { #if RTBIGNUM_ELEMENT_SIZE == 8 pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[0], pb[1], pb[2], pb[3], pb[4], pb[5], pb[6], pb[7]); #elif RTBIGNUM_ELEMENT_SIZE == 4 pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[0], pb[1], pb[2], pb[3]); #else # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif i++; pb += RTBIGNUM_ELEMENT_SIZE; cbRaw -= RTBIGNUM_ELEMENT_SIZE; } if (cbRaw > 0) { RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0; switch (cbRaw) { default: AssertFailed(); #if RTBIGNUM_ELEMENT_SIZE == 8 RT_FALL_THRU(); case 7: uLast = (uLast << 8) | pb[6]; RT_FALL_THRU(); case 6: uLast = (uLast << 8) | pb[5]; RT_FALL_THRU(); case 5: uLast = (uLast << 8) | pb[4]; RT_FALL_THRU(); case 4: uLast = (uLast << 8) | pb[3]; #endif RT_FALL_THRU(); case 3: uLast = (uLast << 8) | pb[2]; RT_FALL_THRU(); case 2: uLast = (uLast << 8) | pb[1]; RT_FALL_THRU(); case 1: uLast = (uLast << 8) | pb[0]; } pBigNum->pauElements[i] = uLast; } } else { pb += cbRaw; while (cbRaw >= RTBIGNUM_ELEMENT_SIZE) { pb -= RTBIGNUM_ELEMENT_SIZE; #if RTBIGNUM_ELEMENT_SIZE == 8 pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[7], pb[6], pb[5], pb[4], pb[3], pb[2], pb[1], pb[0]); #elif RTBIGNUM_ELEMENT_SIZE == 4 pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[3], pb[2], pb[1], pb[0]); #else # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif i++; cbRaw -= RTBIGNUM_ELEMENT_SIZE; } if (cbRaw > 0) { RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0; pb -= cbRaw; switch (cbRaw) { default: AssertFailed(); #if RTBIGNUM_ELEMENT_SIZE == 8 RT_FALL_THRU(); case 7: uLast = (uLast << 8) | *pb++; RT_FALL_THRU(); case 6: uLast = (uLast << 8) | *pb++; RT_FALL_THRU(); case 5: uLast = (uLast << 8) | *pb++; RT_FALL_THRU(); case 4: uLast = (uLast << 8) | *pb++; #endif RT_FALL_THRU(); case 3: uLast = (uLast << 8) | *pb++; RT_FALL_THRU(); case 2: uLast = (uLast << 8) | *pb++; RT_FALL_THRU(); case 1: uLast = (uLast << 8) | *pb++; } pBigNum->pauElements[i] = uLast; } } /* * If negative, negate it so we get a positive magnitude value in pauElements. */ if (pBigNum->fNegative) { pBigNum->pauElements[0] = 0U - pBigNum->pauElements[0]; for (i = 1; i < pBigNum->cUsed; i++) pBigNum->pauElements[i] = 0U - pBigNum->pauElements[i] - 1U; } /* * Clear unused elements. */ if (pBigNum->cUsed != pBigNum->cAllocated) { RTBIGNUMELEMENT *puUnused = &pBigNum->pauElements[pBigNum->cUsed]; AssertCompile(RTBIGNUM_ALIGNMENT <= 4); switch (pBigNum->cAllocated - pBigNum->cUsed) { default: AssertFailed(); RT_FALL_THRU(); case 3: *puUnused++ = 0; RT_FALL_THRU(); case 2: *puUnused++ = 0; RT_FALL_THRU(); case 1: *puUnused++ = 0; } } RTBIGNUM_ASSERT_VALID(pBigNum); } rtBigNumScramble(pBigNum); return VINF_SUCCESS; } RTDECL(int) RTBigNumInitZero(PRTBIGNUM pBigNum, uint32_t fFlags) { AssertReturn(!(fFlags & ~RTBIGNUMINIT_F_SENSITIVE), VERR_INVALID_PARAMETER); AssertPtrReturn(pBigNum, VERR_INVALID_POINTER); rtBigNumInitZeroInternal(pBigNum, fFlags); rtBigNumScramble(pBigNum); return VINF_SUCCESS; } /** * Internal clone function that assumes the caller takes care of scrambling. * * @returns IPRT status code. * @param pBigNum The target number. * @param pSrc The source number. */ static int rtBigNumCloneInternal(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc) { Assert(!pSrc->fCurScrambled); int rc = VINF_SUCCESS; /* * Copy over the data. */ RT_ZERO(*pBigNum); pBigNum->fNegative = pSrc->fNegative; pBigNum->fSensitive = pSrc->fSensitive; pBigNum->cUsed = pSrc->cUsed; if (pSrc->cUsed) { /* Duplicate the element array. */ pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT); if (pBigNum->fSensitive) pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); else pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); if (RT_LIKELY(pBigNum->pauElements)) { memcpy(pBigNum->pauElements, pSrc->pauElements, pBigNum->cUsed * RTBIGNUM_ELEMENT_SIZE); if (pBigNum->cUsed != pBigNum->cAllocated) RT_BZERO(&pBigNum->pauElements[pBigNum->cUsed], (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE); } else { RT_ZERO(*pBigNum); rc = VERR_NO_MEMORY; } } return rc; } RTDECL(int) RTBigNumClone(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc) { int rc = rtBigNumUnscramble((PRTBIGNUM)pSrc); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pSrc); rc = rtBigNumCloneInternal(pBigNum, pSrc); if (RT_SUCCESS(rc)) rtBigNumScramble(pBigNum); rtBigNumScramble((PRTBIGNUM)pSrc); } return rc; } RTDECL(int) RTBigNumDestroy(PRTBIGNUM pBigNum) { if (pBigNum) { if (pBigNum->pauElements) { Assert(pBigNum->cAllocated > 0); if (!pBigNum->fSensitive) RTMemFree(pBigNum->pauElements); else { RTMemSaferFree(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); RT_ZERO(*pBigNum); } pBigNum->pauElements = NULL; } } return VINF_SUCCESS; } RTDECL(int) RTBigNumAssign(PRTBIGNUM pDst, PCRTBIGNUM pSrc) { AssertReturn(pDst->fSensitive >= pSrc->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pDst); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pDst); rc = rtBigNumUnscramble((PRTBIGNUM)pSrc); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pSrc); if ( pDst->fSensitive == pSrc->fSensitive || pDst->fSensitive) { if (pDst->cAllocated >= pSrc->cUsed) { if (pDst->cUsed > pSrc->cUsed) RT_BZERO(&pDst->pauElements[pSrc->cUsed], (pDst->cUsed - pSrc->cUsed) * RTBIGNUM_ELEMENT_SIZE); pDst->cUsed = pSrc->cUsed; pDst->fNegative = pSrc->fNegative; memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE); } else { rc = rtBigNumGrow(pDst, pSrc->cUsed, pSrc->cUsed); if (RT_SUCCESS(rc)) { pDst->fNegative = pSrc->fNegative; memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE); } } } else rc = VERR_BIGNUM_SENSITIVE_INPUT; rtBigNumScramble((PRTBIGNUM)pSrc); } rtBigNumScramble(pDst); } return rc; } /** * Same as RTBigNumBitWidth, except that it ignore the signed bit. * * The number must be unscrambled. * * @returns The effective width of the magnitude, in bits. Returns 0 if the * value is zero. * @param pBigNum The bit number. */ static uint32_t rtBigNumMagnitudeBitWidth(PCRTBIGNUM pBigNum) { uint32_t idxLast = pBigNum->cUsed; if (idxLast) { idxLast--; RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast); return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS; } return 0; } RTDECL(uint32_t) RTBigNumBitWidth(PCRTBIGNUM pBigNum) { uint32_t idxLast = pBigNum->cUsed; if (idxLast) { idxLast--; rtBigNumUnscramble((PRTBIGNUM)pBigNum); RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast); rtBigNumScramble((PRTBIGNUM)pBigNum); return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS + pBigNum->fNegative; } return 0; } RTDECL(uint32_t) RTBigNumByteWidth(PCRTBIGNUM pBigNum) { uint32_t cBits = RTBigNumBitWidth(pBigNum); return (cBits + 7) / 8; } RTDECL(int) RTBigNumToBytesBigEndian(PCRTBIGNUM pBigNum, void *pvBuf, size_t cbWanted) { AssertPtrReturn(pvBuf, VERR_INVALID_POINTER); AssertReturn(cbWanted > 0, VERR_INVALID_PARAMETER); int rc = rtBigNumUnscramble((PRTBIGNUM)pBigNum); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pBigNum); rc = VINF_SUCCESS; if (pBigNum->cUsed != 0) { uint8_t *pbDst = (uint8_t *)pvBuf; pbDst += cbWanted - 1; for (uint32_t i = 0; i < pBigNum->cUsed; i++) { RTBIGNUMELEMENT uElement = pBigNum->pauElements[i]; if (pBigNum->fNegative) uElement = (RTBIGNUMELEMENT)0 - uElement - (i > 0); if (cbWanted >= sizeof(uElement)) { *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; #if RTBIGNUM_ELEMENT_SIZE == 8 uElement >>= 8; *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; uElement >>= 8; *pbDst-- = (uint8_t)uElement; #elif RTBIGNUM_ELEMENT_SIZE != 4 # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif cbWanted -= sizeof(uElement); } else { uint32_t cBitsLeft = RTBIGNUM_ELEMENT_BITS; while (cbWanted > 0) { *pbDst-- = (uint8_t)uElement; uElement >>= 8; cBitsLeft -= 8; cbWanted--; } Assert(cBitsLeft > 0); Assert(cBitsLeft < RTBIGNUM_ELEMENT_BITS); if ( i + 1 < pBigNum->cUsed || ( !pBigNum->fNegative ? uElement != 0 : uElement != ((RTBIGNUMELEMENT)1 << cBitsLeft) - 1U ) ) rc = VERR_BUFFER_OVERFLOW; break; } } /* Sign extend the number to the desired output size. */ if (cbWanted > 0) memset(pbDst - cbWanted, pBigNum->fNegative ? 0 : 0xff, cbWanted); } else RT_BZERO(pvBuf, cbWanted); rtBigNumScramble((PRTBIGNUM)pBigNum); } return rc; } RTDECL(int) RTBigNumCompare(PRTBIGNUM pLeft, PRTBIGNUM pRight) { int rc = rtBigNumUnscramble(pLeft); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pLeft); rc = rtBigNumUnscramble(pRight); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pRight); if (pLeft->fNegative == pRight->fNegative) { if (pLeft->cUsed == pRight->cUsed) { rc = 0; uint32_t i = pLeft->cUsed; while (i-- > 0) if (pLeft->pauElements[i] != pRight->pauElements[i]) { rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1; break; } if (pLeft->fNegative) rc = -rc; } else rc = !pLeft->fNegative ? pLeft->cUsed < pRight->cUsed ? -1 : 1 : pLeft->cUsed < pRight->cUsed ? 1 : -1; } else rc = pLeft->fNegative ? -1 : 1; rtBigNumScramble(pRight); } rtBigNumScramble(pLeft); } return rc; } RTDECL(int) RTBigNumCompareWithU64(PRTBIGNUM pLeft, uint64_t uRight) { int rc = rtBigNumUnscramble(pLeft); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pLeft); if (!pLeft->fNegative) { if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(uRight)) { if (pLeft->cUsed == 0) rc = uRight == 0 ? 0 : -1; else { #if RTBIGNUM_ELEMENT_SIZE == 8 uint64_t uLeft = rtBigNumGetElement(pLeft, 0); if (uLeft < uRight) rc = -1; else rc = uLeft == uRight ? 0 : 1; #elif RTBIGNUM_ELEMENT_SIZE == 4 uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1); uint32_t uSubRight = uRight >> 32; if (uSubLeft == uSubRight) { uSubLeft = rtBigNumGetElement(pLeft, 0); uSubRight = (uint32_t)uRight; } if (uSubLeft < uSubRight) rc = -1; else rc = uSubLeft == uSubRight ? 0 : 1; #else # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif } } else rc = 1; } else rc = -1; rtBigNumScramble(pLeft); } return rc; } RTDECL(int) RTBigNumCompareWithS64(PRTBIGNUM pLeft, int64_t iRight) { int rc = rtBigNumUnscramble(pLeft); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pLeft); if (pLeft->fNegative == (unsigned)(iRight < 0)) /* (unsigned cast is for MSC weirdness) */ { AssertCompile(RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight)); if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight)) { uint64_t uRightMagn = !pLeft->fNegative ? (uint64_t)iRight : (uint64_t)-iRight; #if RTBIGNUM_ELEMENT_SIZE == 8 uint64_t uLeft = rtBigNumGetElement(pLeft, 0); if (uLeft < uRightMagn) rc = -1; else rc = uLeft == (uint64_t)uRightMagn ? 0 : 1; #elif RTBIGNUM_ELEMENT_SIZE == 4 uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1); uint32_t uSubRight = uRightMagn >> 32; if (uSubLeft == uSubRight) { uSubLeft = rtBigNumGetElement(pLeft, 0); uSubRight = (uint32_t)uRightMagn; } if (uSubLeft < uSubRight) rc = -1; else rc = uSubLeft == uSubRight ? 0 : 1; #else # error "Bad RTBIGNUM_ELEMENT_SIZE value" #endif if (pLeft->fNegative) rc = -rc; } else rc = pLeft->fNegative ? -1 : 1; } else rc = pLeft->fNegative ? -1 : 1; rtBigNumScramble(pLeft); } return rc; } /** * Compares the magnitude values of two big numbers. * * @retval -1 if pLeft is smaller than pRight. * @retval 0 if pLeft is equal to pRight. * @retval 1 if pLeft is larger than pRight. * @param pLeft The left side number. * @param pRight The right side number. */ static int rtBigNumMagnitudeCompare(PCRTBIGNUM pLeft, PCRTBIGNUM pRight) { Assert(!pLeft->fCurScrambled); Assert(!pRight->fCurScrambled); int rc; uint32_t i = pLeft->cUsed; if (i == pRight->cUsed) { rc = 0; while (i-- > 0) if (pLeft->pauElements[i] != pRight->pauElements[i]) { rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1; break; } } else rc = i < pRight->cUsed ? -1 : 1; return rc; } /** * Copies the magnitude of on number (@a pSrc) to another (@a pBigNum). * * The variables must be unscrambled. The sign flag is not considered nor * touched. * * @returns IPRT status code. * @param pDst The destination number. * @param pSrc The source number. */ DECLINLINE(int) rtBigNumMagnitudeCopy(PRTBIGNUM pDst, PCRTBIGNUM pSrc) { int rc = rtBigNumSetUsed(pDst, pSrc->cUsed); if (RT_SUCCESS(rc)) memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE); return rc; } /** * Adds two magnitudes and stores them into a third. * * All variables must be unscrambled. The sign flag is not considered nor * touched. * * @returns IPRT status code. * @param pResult The resultant. * @param pAugend To whom it shall be addede. * @param pAddend The nombre to addede. */ static int rtBigNumMagnitudeAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend) { Assert(!pResult->fCurScrambled); Assert(!pAugend->fCurScrambled); Assert(!pAddend->fCurScrambled); Assert(pResult != pAugend); Assert(pResult != pAddend); uint32_t cElements = RT_MAX(pAugend->cUsed, pAddend->cUsed); int rc = rtBigNumSetUsed(pResult, cElements); if (RT_SUCCESS(rc)) { /* * The primitive way, requires at least two additions for each entry * without machine code help. */ RTBIGNUMELEMENT fCarry = 0; for (uint32_t i = 0; i < cElements; i++) pResult->pauElements[i] = rtBigNumElementAddWithCarry(rtBigNumGetElement(pAugend, i), rtBigNumGetElement(pAddend, i), &fCarry); if (fCarry) { rc = rtBigNumSetUsed(pResult, cElements + 1); if (RT_SUCCESS(rc)) pResult->pauElements[cElements++] = 1; } Assert(pResult->cUsed == cElements || RT_FAILURE_NP(rc)); } return rc; } /** * Substracts a smaller (or equal) magnitude from another one and stores it into * a third. * * All variables must be unscrambled. The sign flag is not considered nor * touched. For this reason, the @a pMinuend must be larger or equal to @a * pSubtrahend. * * @returns IPRT status code. * @param pResult There to store the result. * @param pMinuend What to subtract from. * @param pSubtrahend What to subtract. */ static int rtBigNumMagnitudeSub(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend) { Assert(!pResult->fCurScrambled); Assert(!pMinuend->fCurScrambled); Assert(!pSubtrahend->fCurScrambled); Assert(pResult != pMinuend); Assert(pResult != pSubtrahend); Assert(pMinuend->cUsed >= pSubtrahend->cUsed); int rc; if (pSubtrahend->cUsed) { /* * Resize the result. In the assembly case, ensure that all three arrays * has the same number of used entries, possibly with an extra zero * element on 64-bit systems. */ rc = rtBigNumSetUsedEx(pResult, pMinuend->cUsed, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed)); #ifdef IPRT_BIGINT_WITH_ASM if (RT_SUCCESS(rc)) rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pMinuend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed)); if (RT_SUCCESS(rc)) rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed)); #endif if (RT_SUCCESS(rc)) { #ifdef IPRT_BIGINT_WITH_ASM /* * Call assembly to do the work. */ rtBigNumMagnitudeSubAssemblyWorker(pResult->pauElements, pMinuend->pauElements, pSubtrahend->pauElements, pMinuend->cUsed); # ifdef RT_STRICT RTBIGNUMELEMENT fBorrow = 0; for (uint32_t i = 0; i < pMinuend->cUsed; i++) { RTBIGNUMELEMENT uCorrect = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i], rtBigNumGetElement(pSubtrahend, i), &fBorrow); AssertMsg(pResult->pauElements[i] == uCorrect, ("[%u]=%#x, expected %#x\n", i, pResult->pauElements[i], uCorrect)); } # endif #else /* * The primitive C way. */ RTBIGNUMELEMENT fBorrow = 0; for (uint32_t i = 0; i < pMinuend->cUsed; i++) pResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i], rtBigNumGetElement(pSubtrahend, i), &fBorrow); Assert(fBorrow == 0); #endif /* * Trim the result. */ rtBigNumStripTrailingZeros(pResult); } } /* * Special case: Subtrahend is zero. */ else rc = rtBigNumMagnitudeCopy(pResult, pMinuend); return rc; } /** * Substracts a smaller (or equal) magnitude from another one and stores the * result into the first. * * All variables must be unscrambled. The sign flag is not considered nor * touched. For this reason, the @a pMinuendResult must be larger or equal to * @a pSubtrahend. * * @returns IPRT status code (memory alloc error). * @param pMinuendResult What to subtract from and return as result. * @param pSubtrahend What to subtract. */ static int rtBigNumMagnitudeSubThis(PRTBIGNUM pMinuendResult, PCRTBIGNUM pSubtrahend) { Assert(!pMinuendResult->fCurScrambled); Assert(!pSubtrahend->fCurScrambled); Assert(pMinuendResult != pSubtrahend); Assert(pMinuendResult->cUsed >= pSubtrahend->cUsed); #ifdef IPRT_BIGINT_WITH_ASM /* * Use the assembly worker. Requires same sized element arrays, so zero extend them. */ int rc = rtBigNumEnsureExtraZeroElements(pMinuendResult, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed)); if (RT_SUCCESS(rc)) rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed)); if (RT_FAILURE(rc)) return rc; rtBigNumMagnitudeSubThisAssemblyWorker(pMinuendResult->pauElements, pSubtrahend->pauElements, pMinuendResult->cUsed); #else /* * The primitive way, as usual. */ RTBIGNUMELEMENT fBorrow = 0; for (uint32_t i = 0; i < pMinuendResult->cUsed; i++) pMinuendResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuendResult->pauElements[i], rtBigNumGetElement(pSubtrahend, i), &fBorrow); Assert(fBorrow == 0); #endif /* * Trim the result. */ rtBigNumStripTrailingZeros(pMinuendResult); return VINF_SUCCESS; } RTDECL(int) RTBigNumAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend) { Assert(pResult != pAugend); Assert(pResult != pAddend); AssertReturn(pResult->fSensitive >= (pAugend->fSensitive | pAddend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pAugend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pAugend); rc = rtBigNumUnscramble((PRTBIGNUM)pAddend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pAddend); /* * Same sign: Add magnitude, keep sign. * 1 + 1 = 2 * (-1) + (-1) = -2 */ if (pAugend->fNegative == pAddend->fNegative) { pResult->fNegative = pAugend->fNegative; rc = rtBigNumMagnitudeAdd(pResult, pAugend, pAddend); } /* * Different sign: Subtract smaller from larger, keep sign of larger. * (-5) + 3 = -2 * 5 + (-3) = 2 * (-1) + 3 = 2 * 1 + (-3) = -2 */ else if (rtBigNumMagnitudeCompare(pAugend, pAddend) >= 0) { pResult->fNegative = pAugend->fNegative; rc = rtBigNumMagnitudeSub(pResult, pAugend, pAddend); if (!pResult->cUsed) pResult->fNegative = 0; } else { pResult->fNegative = pAddend->fNegative; rc = rtBigNumMagnitudeSub(pResult, pAddend, pAugend); } rtBigNumScramble((PRTBIGNUM)pAddend); } rtBigNumScramble((PRTBIGNUM)pAugend); } rtBigNumScramble(pResult); } return rc; } RTDECL(int) RTBigNumSubtract(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend) { Assert(pResult != pMinuend); Assert(pResult != pSubtrahend); AssertReturn(pResult->fSensitive >= (pMinuend->fSensitive | pSubtrahend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); if (pMinuend != pSubtrahend) { rc = rtBigNumUnscramble((PRTBIGNUM)pMinuend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pMinuend); rc = rtBigNumUnscramble((PRTBIGNUM)pSubtrahend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pSubtrahend); /* * Different sign: Add magnitude, keep sign of first. * 1 - (-2) == 3 * -1 - 2 == -3 */ if (pMinuend->fNegative != pSubtrahend->fNegative) { pResult->fNegative = pMinuend->fNegative; rc = rtBigNumMagnitudeAdd(pResult, pMinuend, pSubtrahend); } /* * Same sign, minuend has greater or equal absolute value: Subtract, keep sign of first. * 10 - 7 = 3 */ else if (rtBigNumMagnitudeCompare(pMinuend, pSubtrahend) >= 0) { pResult->fNegative = pMinuend->fNegative; rc = rtBigNumMagnitudeSub(pResult, pMinuend, pSubtrahend); } /* * Same sign, subtrahend is larger: Reverse and subtract, invert sign of first. * 7 - 10 = -3 * -1 - (-3) = 2 */ else { pResult->fNegative = !pMinuend->fNegative; rc = rtBigNumMagnitudeSub(pResult, pSubtrahend, pMinuend); } rtBigNumScramble((PRTBIGNUM)pSubtrahend); } rtBigNumScramble((PRTBIGNUM)pMinuend); } } else { /* zero. */ pResult->fNegative = 0; rtBigNumSetUsed(pResult, 0); } rtBigNumScramble(pResult); } return rc; } RTDECL(int) RTBigNumNegateThis(PRTBIGNUM pThis) { pThis->fNegative = !pThis->fNegative; return VINF_SUCCESS; } RTDECL(int) RTBigNumNegate(PRTBIGNUM pResult, PCRTBIGNUM pBigNum) { int rc = RTBigNumAssign(pResult, pBigNum); if (RT_SUCCESS(rc)) rc = RTBigNumNegateThis(pResult); return rc; } /** * Multiplies the magnitudes of two values, letting the caller care about the * sign bit. * * @returns IPRT status code. * @param pResult Where to store the result. * @param pMultiplicand The first value. * @param pMultiplier The second value. */ static int rtBigNumMagnitudeMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier) { Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier); Assert(!pResult->fCurScrambled); Assert(!pMultiplicand->fCurScrambled); Assert(!pMultiplier->fCurScrambled); /* * Multiplication involving zero is zero. */ if (!pMultiplicand->cUsed || !pMultiplier->cUsed) { pResult->fNegative = 0; rtBigNumSetUsed(pResult, 0); return VINF_SUCCESS; } /* * Allocate a result array that is the sum of the two factors, initialize * it to zero. */ uint32_t cMax = pMultiplicand->cUsed + pMultiplier->cUsed; int rc = rtBigNumSetUsed(pResult, cMax); if (RT_SUCCESS(rc)) { RT_BZERO(pResult->pauElements, pResult->cUsed * RTBIGNUM_ELEMENT_SIZE); #ifdef IPRT_BIGINT_WITH_ASM rtBigNumMagnitudeMultiplyAssemblyWorker(pResult->pauElements, pMultiplier->pauElements, pMultiplier->cUsed, pMultiplicand->pauElements, pMultiplicand->cUsed); #else for (uint32_t i = 0; i < pMultiplier->cUsed; i++) { RTBIGNUMELEMENT uMultiplier = pMultiplier->pauElements[i]; for (uint32_t j = 0; j < pMultiplicand->cUsed; j++) { RTBIGNUMELEMENT uHi; RTBIGNUMELEMENT uLo; #if RTBIGNUM_ELEMENT_SIZE == 4 uint64_t u64 = ASMMult2xU32RetU64(pMultiplicand->pauElements[j], uMultiplier); uLo = (uint32_t)u64; uHi = u64 >> 32; #elif RTBIGNUM_ELEMENT_SIZE == 8 uLo = ASMMult2xU64Ret2xU64(pMultiplicand->pauElements[j], uMultiplier, &uHi); #else # error "Invalid RTBIGNUM_ELEMENT_SIZE value" #endif RTBIGNUMELEMENT fCarry = 0; uint64_t k = i + j; pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uLo, &fCarry); k++; pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uHi, &fCarry); while (fCarry) { k++; pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], 0, &fCarry); } Assert(k < cMax); } } #endif /* It's possible we overestimated the output size by 1 element. */ rtBigNumStripTrailingZeros(pResult); } return rc; } RTDECL(int) RTBigNumMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier) { Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier); AssertReturn(pResult->fSensitive >= (pMultiplicand->fSensitive | pMultiplier->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplicand); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pMultiplicand); rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplier); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pMultiplier); /* * The sign values follow XOR rules: * -1 * 1 = -1; 1 ^ 0 = 1 * 1 * -1 = -1; 1 ^ 0 = 1 * -1 * -1 = 1; 1 ^ 1 = 0 * 1 * 1 = 1; 0 ^ 0 = 0 */ pResult->fNegative = pMultiplicand->fNegative ^ pMultiplier->fNegative; rc = rtBigNumMagnitudeMultiply(pResult, pMultiplicand, pMultiplier); rtBigNumScramble((PRTBIGNUM)pMultiplier); } rtBigNumScramble((PRTBIGNUM)pMultiplicand); } rtBigNumScramble(pResult); } return rc; } #if 0 /* unused */ /** * Clears a bit in the magnitude of @a pBigNum. * * The variables must be unscrambled. * * @param pBigNum The big number. * @param iBit The bit to clear (0-based). */ DECLINLINE(void) rtBigNumMagnitudeClearBit(PRTBIGNUM pBigNum, uint32_t iBit) { uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS; if (iElement < pBigNum->cUsed) { iBit &= RTBIGNUM_ELEMENT_BITS - 1; pBigNum->pauElements[iElement] &= ~RTBIGNUM_ELEMENT_BIT(iBit); if (iElement + 1 == pBigNum->cUsed && !pBigNum->pauElements[iElement]) rtBigNumStripTrailingZeros(pBigNum); } } #endif /* unused */ /** * Sets a bit in the magnitude of @a pBigNum. * * The variables must be unscrambled. * * @returns IPRT status code. * @param pBigNum The big number. * @param iBit The bit to clear (0-based). */ DECLINLINE(int) rtBigNumMagnitudeSetBit(PRTBIGNUM pBigNum, uint32_t iBit) { uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS; int rc = rtBigNumEnsureElementPresent(pBigNum, iElement); if (RT_SUCCESS(rc)) { iBit &= RTBIGNUM_ELEMENT_BITS - 1; pBigNum->pauElements[iElement] |= RTBIGNUM_ELEMENT_BIT(iBit); return VINF_SUCCESS; } return rc; } #if 0 /* unused */ /** * Writes a bit in the magnitude of @a pBigNum. * * The variables must be unscrambled. * * @returns IPRT status code. * @param pBigNum The big number. * @param iBit The bit to write (0-based). * @param fValue The bit value. */ DECLINLINE(int) rtBigNumMagnitudeWriteBit(PRTBIGNUM pBigNum, uint32_t iBit, bool fValue) { if (fValue) return rtBigNumMagnitudeSetBit(pBigNum, iBit); rtBigNumMagnitudeClearBit(pBigNum, iBit); return VINF_SUCCESS; } #endif /** * Returns the given magnitude bit. * * The variables must be unscrambled. * * @returns The bit value (1 or 0). * @param pBigNum The big number. * @param iBit The bit to return (0-based). */ DECLINLINE(RTBIGNUMELEMENT) rtBigNumMagnitudeGetBit(PCRTBIGNUM pBigNum, uint32_t iBit) { uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS; if (iElement < pBigNum->cUsed) { iBit &= RTBIGNUM_ELEMENT_BITS - 1; return (pBigNum->pauElements[iElement] >> iBit) & 1; } return 0; } /** * Shifts the magnitude left by one. * * The variables must be unscrambled. * * @returns IPRT status code. * @param pBigNum The big number. * @param uCarry The value to shift in at the bottom. */ DECLINLINE(int) rtBigNumMagnitudeShiftLeftOne(PRTBIGNUM pBigNum, RTBIGNUMELEMENT uCarry) { Assert(uCarry <= 1); /* Do the shifting. */ uint32_t cUsed = pBigNum->cUsed; #ifdef IPRT_BIGINT_WITH_ASM uCarry = rtBigNumMagnitudeShiftLeftOneAssemblyWorker(pBigNum->pauElements, cUsed, uCarry); #else for (uint32_t i = 0; i < cUsed; i++) { RTBIGNUMELEMENT uTmp = pBigNum->pauElements[i]; pBigNum->pauElements[i] = (uTmp << 1) | uCarry; uCarry = uTmp >> (RTBIGNUM_ELEMENT_BITS - 1); } #endif /* If we still carry a bit, we need to increase the size. */ if (uCarry) { int rc = rtBigNumSetUsed(pBigNum, cUsed + 1); AssertRCReturn(rc, rc); pBigNum->pauElements[cUsed] = uCarry; } return VINF_SUCCESS; } /** * Shifts the magnitude left by @a cBits. * * The variables must be unscrambled. * * @returns IPRT status code. * @param pResult Where to store the result. * @param pValue The value to shift. * @param cBits The shift count. */ static int rtBigNumMagnitudeShiftLeft(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits) { int rc; if (cBits) { uint32_t cBitsNew = rtBigNumMagnitudeBitWidth(pValue); if (cBitsNew > 0) { if (cBitsNew + cBits > cBitsNew) { cBitsNew += cBits; rc = rtBigNumSetUsedEx(pResult, 0, RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS); if (RT_SUCCESS(rc)) rc = rtBigNumSetUsed(pResult, RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS); if (RT_SUCCESS(rc)) { uint32_t const cLeft = pValue->cUsed; PCRTBIGNUMELEMENT pauSrc = pValue->pauElements; PRTBIGNUMELEMENT pauDst = pResult->pauElements; Assert(ASMMemIsZero(pauDst, (cBits / RTBIGNUM_ELEMENT_BITS) * RTBIGNUM_ELEMENT_SIZE)); pauDst += cBits / RTBIGNUM_ELEMENT_BITS; cBits &= RTBIGNUM_ELEMENT_BITS - 1; if (cBits) { RTBIGNUMELEMENT uPrev = 0; for (uint32_t i = 0; i < cLeft; i++) { RTBIGNUMELEMENT uCur = pauSrc[i]; pauDst[i] = (uCur << cBits) | (uPrev >> (RTBIGNUM_ELEMENT_BITS - cBits)); uPrev = uCur; } uPrev >>= RTBIGNUM_ELEMENT_BITS - cBits; if (uPrev) pauDst[pValue->cUsed] = uPrev; } else memcpy(pauDst, pauSrc, cLeft * RTBIGNUM_ELEMENT_SIZE); } } else rc = VERR_OUT_OF_RANGE; } /* Shifting zero always yields a zero result. */ else rc = rtBigNumSetUsed(pResult, 0); } else rc = rtBigNumMagnitudeCopy(pResult, pValue); return rc; } RTDECL(int) RTBigNumShiftLeft(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits) { Assert(pResult != pValue); AssertReturn(pResult->fSensitive >= pValue->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pValue); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pValue); pResult->fNegative = pValue->fNegative; rc = rtBigNumMagnitudeShiftLeft(pResult, pValue, cBits); rtBigNumScramble((PRTBIGNUM)pValue); } rtBigNumScramble(pResult); } return rc; } /** * Shifts the magnitude right by @a cBits. * * The variables must be unscrambled. * * @returns IPRT status code. * @param pResult Where to store the result. * @param pValue The value to shift. * @param cBits The shift count. */ static int rtBigNumMagnitudeShiftRight(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits) { int rc; if (cBits) { uint32_t cBitsNew = rtBigNumMagnitudeBitWidth(pValue); if (cBitsNew > cBits) { cBitsNew -= cBits; uint32_t cElementsNew = RT_ALIGN_32(cBitsNew, RTBIGNUM_ELEMENT_BITS) / RTBIGNUM_ELEMENT_BITS; rc = rtBigNumSetUsed(pResult, cElementsNew); if (RT_SUCCESS(rc)) { uint32_t i = cElementsNew; PCRTBIGNUMELEMENT pauSrc = pValue->pauElements; PRTBIGNUMELEMENT pauDst = pResult->pauElements; pauSrc += cBits / RTBIGNUM_ELEMENT_BITS; cBits &= RTBIGNUM_ELEMENT_BITS - 1; if (cBits) { RTBIGNUMELEMENT uPrev = &pauSrc[i] == &pValue->pauElements[pValue->cUsed] ? 0 : pauSrc[i]; while (i-- > 0) { RTBIGNUMELEMENT uCur = pauSrc[i]; pauDst[i] = (uCur >> cBits) | (uPrev << (RTBIGNUM_ELEMENT_BITS - cBits)); uPrev = uCur; } } else memcpy(pauDst, pauSrc, i * RTBIGNUM_ELEMENT_SIZE); } } else rc = rtBigNumSetUsed(pResult, 0); } else rc = rtBigNumMagnitudeCopy(pResult, pValue); return rc; } RTDECL(int) RTBigNumShiftRight(PRTBIGNUM pResult, PCRTBIGNUM pValue, uint32_t cBits) { Assert(pResult != pValue); AssertReturn(pResult->fSensitive >= pValue->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pValue); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pValue); pResult->fNegative = pValue->fNegative; rc = rtBigNumMagnitudeShiftRight(pResult, pValue, cBits); if (!pResult->cUsed) pResult->fNegative = 0; rtBigNumScramble((PRTBIGNUM)pValue); } rtBigNumScramble(pResult); } return rc; } /** * Implements the D3 test for Qhat decrementation. * * @returns True if Qhat should be decremented. * @param puQhat Pointer to Qhat. * @param uRhat The remainder. * @param uDivisorY The penultimate divisor element. * @param uDividendJMinus2 The j-2 dividend element. */ DECLINLINE(bool) rtBigNumKnuthD3_ShouldDecrementQhat(RTBIGNUMELEMENT2X const *puQhat, RTBIGNUMELEMENT uRhat, RTBIGNUMELEMENT uDivisorY, RTBIGNUMELEMENT uDividendJMinus2) { if (puQhat->s.Lo == RTBIGNUM_ELEMENT_MAX && puQhat->s.Hi == 0) return true; #if RTBIGNUM_ELEMENT_BITS == 64 RTBIGNUMELEMENT2X TmpLeft; RTUInt128MulByU64(&TmpLeft, puQhat, uDivisorY); RTBIGNUMELEMENT2X TmpRight; TmpRight.s.Lo = 0; TmpRight.s.Hi = uRhat; RTUInt128AssignAddU64(&TmpRight, uDividendJMinus2); if (RTUInt128Compare(&TmpLeft, &TmpRight) > 0) return true; #else if (puQhat->u * uDivisorY > ((uint64_t)uRhat << 32) + uDividendJMinus2) return true; #endif return false; } /** * C implementation of the D3 step of Knuth's division algorithm. * * This estimates a value Qhat that will be used as quotient "digit" (element) * at the current level of the division (j). * * @returns The Qhat value we've estimated. * @param pauDividendJN Pointer to the j+n (normalized) dividend element. * Will access up to two elements prior to this. * @param uDivZ The last element in the (normalized) divisor. * @param uDivY The penultimate element in the (normalized) divisor. */ DECLINLINE(RTBIGNUMELEMENT) rtBigNumKnuthD3_EstimateQhat(PCRTBIGNUMELEMENT pauDividendJN, RTBIGNUMELEMENT uDivZ, RTBIGNUMELEMENT uDivY) { RTBIGNUMELEMENT2X uQhat; RTBIGNUMELEMENT uRhat; RTBIGNUMELEMENT uDividendJN = pauDividendJN[0]; Assert(uDividendJN <= uDivZ); if (uDividendJN != uDivZ) rtBigNumElement2xDiv2xBy1x(&uQhat, &uRhat, uDividendJN, pauDividendJN[-1], uDivZ); else { /* * This is the case where we end up with an initial Qhat that's all Fs. */ /* Calc the remainder for max Qhat value. */ RTBIGNUMELEMENT2X uTmp1; /* (v[j+n] << bits) + v[J+N-1] */ uTmp1.s.Hi = uDivZ; uTmp1.s.Lo = pauDividendJN[-1]; RTBIGNUMELEMENT2X uTmp2; /* uQhat * uDividendJN */ uTmp2.s.Hi = uDivZ - 1; uTmp2.s.Lo = 0 - uDivZ; #if RTBIGNUM_ELEMENT_BITS == 64 RTUInt128AssignSub(&uTmp1, &uTmp2); #else uTmp1.u -= uTmp2.u; #endif /* If we overflowed the remainder, don't bother trying to adjust. */ if (uTmp1.s.Hi) return RTBIGNUM_ELEMENT_MAX; uRhat = uTmp1.s.Lo; uQhat.s.Lo = RTBIGNUM_ELEMENT_MAX; uQhat.s.Hi = 0; } /* * Adjust Q to eliminate all cases where it's two to large and most cases * where it's one too large. */ while (rtBigNumKnuthD3_ShouldDecrementQhat(&uQhat, uRhat, uDivY, pauDividendJN[-2])) { rtBigNumElement2xDec(&uQhat); uRhat += uDivZ; if (uRhat < uDivZ /* overflow */ || uRhat == RTBIGNUM_ELEMENT_MAX) break; } return uQhat.s.Lo; } #ifdef IPRT_BIGINT_WITH_ASM DECLASM(bool) rtBigNumKnuthD4_MulSub(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor, uint32_t cDivisor, RTBIGNUMELEMENT uQhat); #else /** * C implementation of the D4 step of Knuth's division algorithm. * * This subtracts Divisor * Qhat from the dividend at the current J index. * * @returns true if negative result (unlikely), false if positive. * @param pauDividendJ Pointer to the j-th (normalized) dividend element. * Will access up to two elements prior to this. * @param uDivZ The last element in the (normalized) divisor. * @param uDivY The penultimate element in the (normalized) divisor. */ DECLINLINE(bool) rtBigNumKnuthD4_MulSub(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor, uint32_t cDivisor, RTBIGNUMELEMENT uQhat) { uint32_t i; bool fBorrow = false; RTBIGNUMELEMENT uMulCarry = 0; for (i = 0; i < cDivisor; i++) { RTBIGNUMELEMENT2X uSub; # if RTBIGNUM_ELEMENT_BITS == 64 RTUInt128MulU64ByU64(&uSub, uQhat, pauDivisor[i]); RTUInt128AssignAddU64(&uSub, uMulCarry); # else uSub.u = (uint64_t)uQhat * pauDivisor[i] + uMulCarry; # endif uMulCarry = uSub.s.Hi; RTBIGNUMELEMENT uDividendI = pauDividendJ[i]; if (!fBorrow) { fBorrow = uDividendI < uSub.s.Lo; uDividendI -= uSub.s.Lo; } else { fBorrow = uDividendI <= uSub.s.Lo; uDividendI -= uSub.s.Lo + 1; } pauDividendJ[i] = uDividendI; } /* Carry and borrow into the final dividend element. */ RTBIGNUMELEMENT uDividendI = pauDividendJ[i]; if (!fBorrow) { fBorrow = uDividendI < uMulCarry; pauDividendJ[i] = uDividendI - uMulCarry; } else { fBorrow = uDividendI <= uMulCarry; pauDividendJ[i] = uDividendI - uMulCarry - 1; } return fBorrow; } #endif /* !IPRT_BIGINT_WITH_ASM */ /** * C implementation of the D6 step of Knuth's division algorithm. * * This adds the divisor to the dividend to undo the negative value step D4 * produced. This is not very frequent occurence. * * @param pauDividendJ Pointer to the j-th (normalized) dividend element. * Will access up to two elements prior to this. * @param pauDivisor The last element in the (normalized) divisor. * @param cDivisor The penultimate element in the (normalized) divisor. */ DECLINLINE(void) rtBigNumKnuthD6_AddBack(PRTBIGNUMELEMENT pauDividendJ, PRTBIGNUMELEMENT pauDivisor, uint32_t cDivisor) { RTBIGNUMELEMENT2X uTmp; uTmp.s.Lo = 0; uint32_t i; for (i = 0; i < cDivisor; i++) { uTmp.s.Hi = 0; #if RTBIGNUM_ELEMENT_BITS == 64 RTUInt128AssignAddU64(&uTmp, pauDivisor[i]); RTUInt128AssignAddU64(&uTmp, pauDividendJ[i]); #else uTmp.u += pauDivisor[i]; uTmp.u += pauDividendJ[i]; #endif pauDividendJ[i] = uTmp.s.Lo; uTmp.s.Lo = uTmp.s.Hi; } /* The final dividend entry. */ Assert(pauDividendJ[i] + uTmp.s.Lo < uTmp.s.Lo); pauDividendJ[i] += uTmp.s.Lo; } /** * Knuth's division (core). * * @returns IPRT status code. * @param pQuotient Where to return the quotient. Can be NULL. * @param pRemainder Where to return the remainder. * @param pDividend What to divide. * @param pDivisor What to divide by. */ static int rtBigNumMagnitudeDivideKnuth(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { Assert(pDivisor->cUsed > 1); uint32_t const cDivisor = pDivisor->cUsed; Assert(pDividend->cUsed >= cDivisor); /* * Make sure we've got enough space in the quotient, so we can build it * without any trouble come step D5. */ int rc; if (pQuotient) { rc = rtBigNumSetUsedEx(pQuotient, 0, pDividend->cUsed - cDivisor + 1); if (RT_SUCCESS(rc)) rc = rtBigNumSetUsed(pQuotient, pDividend->cUsed - cDivisor + 1); if (RT_FAILURE(rc)) return rc; } /* * D1. Normalize. The goal here is to make sure the last element in the * divisor is greater than RTBIGNUMELEMENTS_MAX/2. We must also make sure * we can access element pDividend->cUsed of the normalized dividend. */ RTBIGNUM NormDividend; RTBIGNUM NormDivisor; PCRTBIGNUM pNormDivisor = &NormDivisor; rtBigNumInitZeroTemplate(&NormDivisor, pDividend); uint32_t cNormShift = (RTBIGNUM_ELEMENT_BITS - rtBigNumMagnitudeBitWidth(pDivisor)) & (RTBIGNUM_ELEMENT_BITS - 1); if (cNormShift) { rtBigNumInitZeroTemplate(&NormDividend, pDividend); rc = rtBigNumMagnitudeShiftLeft(&NormDividend, pDividend, cNormShift); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeShiftLeft(&NormDivisor, pDivisor, cNormShift); } else { pNormDivisor = pDivisor; rc = rtBigNumCloneInternal(&NormDividend, pDividend); } if (RT_SUCCESS(rc) && pDividend->cUsed == NormDividend.cUsed) rc = rtBigNumEnsureExtraZeroElements(&NormDividend, NormDividend.cUsed + 1); if (RT_SUCCESS(rc)) { /* * D2. Initialize the j index so we can loop thru the elements in the * dividend that makes it larger than the divisor. */ uint32_t j = pDividend->cUsed - cDivisor; RTBIGNUMELEMENT const DivZ = pNormDivisor->pauElements[cDivisor - 1]; RTBIGNUMELEMENT const DivY = pNormDivisor->pauElements[cDivisor - 2]; for (;;) { /* * D3. Estimate a Q' by dividing the j and j-1 dividen elements by * the last divisor element, then adjust against the next elements. */ RTBIGNUMELEMENT uQhat = rtBigNumKnuthD3_EstimateQhat(&NormDividend.pauElements[j + cDivisor], DivZ, DivY); /* * D4. Multiply and subtract. */ bool fNegative = rtBigNumKnuthD4_MulSub(&NormDividend.pauElements[j], pNormDivisor->pauElements, cDivisor, uQhat); /* * D5. Test remainder. * D6. Add back. */ if (fNegative) { //__debugbreak(); rtBigNumKnuthD6_AddBack(&NormDividend.pauElements[j], pNormDivisor->pauElements, cDivisor); uQhat--; } if (pQuotient) pQuotient->pauElements[j] = uQhat; /* * D7. Loop on j. */ if (j == 0) break; j--; } /* * D8. Unnormalize the remainder. */ rtBigNumStripTrailingZeros(&NormDividend); if (cNormShift) rc = rtBigNumMagnitudeShiftRight(pRemainder, &NormDividend, cNormShift); else rc = rtBigNumMagnitudeCopy(pRemainder, &NormDividend); if (pQuotient) rtBigNumStripTrailingZeros(pQuotient); } /* * Delete temporary variables. */ RTBigNumDestroy(&NormDividend); if (pNormDivisor == &NormDivisor) RTBigNumDestroy(&NormDivisor); return rc; } static int rtBigNumMagnitudeDivideSlowLong(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { /* * Do very simple long division. This ain't fast, but it does the trick. */ int rc = VINF_SUCCESS; uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend); while (iBit-- > 0) { rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit)); AssertRCBreak(rc); int iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor); if (iDiff >= 0) { if (iDiff != 0) { rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor); AssertRCBreak(rc); } else rtBigNumSetUsed(pRemainder, 0); rc = rtBigNumMagnitudeSetBit(pQuotient, iBit); AssertRCBreak(rc); } } /* This shouldn't be necessary. */ rtBigNumStripTrailingZeros(pQuotient); rtBigNumStripTrailingZeros(pRemainder); return rc; } /** * Divides the magnitudes of two values, letting the caller care about the sign * bit. * * All variables must be unscrambled. The sign flag is not considered nor * touched, this means the caller have to check for zero outputs. * * @returns IPRT status code. * @param pQuotient Where to return the quotient. * @param pRemainder Where to return the remainder. * @param pDividend What to divide. * @param pDivisor What to divide by. * @param fForceLong Force long division. */ static int rtBigNumMagnitudeDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor, bool fForceLong) { Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient); Assert(!pQuotient->fCurScrambled); Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled); /* * Just set both output values to zero as that's the return for several * special case and the initial state of the general case. */ rtBigNumSetUsed(pQuotient, 0); rtBigNumSetUsed(pRemainder, 0); /* * Dividing something by zero is undefined. * Diving zero by something is zero, unless the divsor is also zero. */ if (!pDivisor->cUsed || !pDividend->cUsed) return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO; /* * Dividing by one? Quotient = dividend, no remainder. */ if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1) return rtBigNumMagnitudeCopy(pQuotient, pDividend); /* * Dividend smaller than the divisor. Zero quotient, all divisor. */ int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor); if (iDiff < 0) return rtBigNumMagnitudeCopy(pRemainder, pDividend); /* * Since we already have done the compare, check if the two values are the * same. The result is 1 and no remainder then. */ if (iDiff == 0) { int rc = rtBigNumSetUsed(pQuotient, 1); if (RT_SUCCESS(rc)) pQuotient->pauElements[0] = 1; return rc; } /* * Sort out special cases before going to the preferred or select algorithm. */ int rc; if (pDividend->cUsed <= 2 && !fForceLong) { if (pDividend->cUsed < 2) { /* * Single element division. */ RTBIGNUMELEMENT uQ = pDividend->pauElements[0] / pDivisor->pauElements[0]; RTBIGNUMELEMENT uR = pDividend->pauElements[0] % pDivisor->pauElements[0]; rc = VINF_SUCCESS; if (uQ) { rc = rtBigNumSetUsed(pQuotient, 1); if (RT_SUCCESS(rc)) pQuotient->pauElements[0] = uQ; } if (uR && RT_SUCCESS(rc)) { rc = rtBigNumSetUsed(pRemainder, 1); if (RT_SUCCESS(rc)) pRemainder->pauElements[0] = uR; } } else { /* * Two elements dividend by a one or two element divisor. */ RTBIGNUMELEMENT2X uQ, uR; if (pDivisor->cUsed == 1) { rtBigNumElement2xDiv2xBy1x(&uQ, &uR.s.Lo, pDividend->pauElements[1], pDividend->pauElements[0], pDivisor->pauElements[0]); uR.s.Hi = 0; } else rtBigNumElement2xDiv(&uQ, &uR, pDividend->pauElements[1], pDividend->pauElements[0], pDivisor->pauElements[1], pDivisor->pauElements[0]); rc = rtBigNumElement2xCopyToMagnitude(&uQ, pQuotient); if (RT_SUCCESS(rc)) rc = rtBigNumElement2xCopyToMagnitude(&uR, pRemainder); } } /* * Decide upon which algorithm to use. Knuth requires a divisor that's at * least 2 elements big. */ else if (pDivisor->cUsed < 2 || fForceLong) rc = rtBigNumMagnitudeDivideSlowLong(pQuotient, pRemainder, pDividend, pDivisor); else rc = rtBigNumMagnitudeDivideKnuth(pQuotient, pRemainder, pDividend, pDivisor); return rc; } static int rtBigNumDivideCommon(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor, bool fForceLong) { Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient); AssertReturn(pQuotient->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pQuotient); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pQuotient); rc = rtBigNumUnscramble(pRemainder); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pRemainder); rc = rtBigNumUnscramble((PRTBIGNUM)pDividend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pDividend); rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pDivisor); /* * The sign value of the remainder is the same as the dividend. * The sign values of the quotient follow XOR rules, just like multiplication: * -3 / 2 = -1; r=-1; 1 ^ 0 = 1 * 3 / -2 = -1; r= 1; 1 ^ 0 = 1 * -3 / -2 = 1; r=-1; 1 ^ 1 = 0 * 3 / 2 = 1; r= 1; 0 ^ 0 = 0 */ pQuotient->fNegative = pDividend->fNegative ^ pDivisor->fNegative; pRemainder->fNegative = pDividend->fNegative; rc = rtBigNumMagnitudeDivide(pQuotient, pRemainder, pDividend, pDivisor, fForceLong); if (pQuotient->cUsed == 0) pQuotient->fNegative = 0; if (pRemainder->cUsed == 0) pRemainder->fNegative = 0; rtBigNumScramble((PRTBIGNUM)pDivisor); } rtBigNumScramble((PRTBIGNUM)pDividend); } rtBigNumScramble(pRemainder); } rtBigNumScramble(pQuotient); } return rc; } RTDECL(int) RTBigNumDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { return rtBigNumDivideCommon(pQuotient, pRemainder, pDividend, pDivisor, false /*fForceLong*/); } RTDECL(int) RTBigNumDivideLong(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { return rtBigNumDivideCommon(pQuotient, pRemainder, pDividend, pDivisor, true /*fForceLong*/); } /** * Calculates the modulus of a magnitude value, leaving the sign bit to the * caller. * * All variables must be unscrambled. The sign flag is not considered nor * touched, this means the caller have to check for zero outputs. * * @returns IPRT status code. * @param pRemainder Where to return the remainder. * @param pDividend What to divide. * @param pDivisor What to divide by. */ static int rtBigNumMagnitudeModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled); /* * Just set the output value to zero as that's the return for several * special case and the initial state of the general case. */ rtBigNumSetUsed(pRemainder, 0); /* * Dividing something by zero is undefined. * Diving zero by something is zero, unless the divsor is also zero. */ if (!pDivisor->cUsed || !pDividend->cUsed) return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO; /* * Dividing by one? Quotient = dividend, no remainder. */ if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1) return VINF_SUCCESS; /* * Dividend smaller than the divisor. Zero quotient, all divisor. */ int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor); if (iDiff < 0) return rtBigNumMagnitudeCopy(pRemainder, pDividend); /* * Since we already have done the compare, check if the two values are the * same. The result is 1 and no remainder then. */ if (iDiff == 0) return VINF_SUCCESS; /** @todo optimize small numbers. */ int rc = VINF_SUCCESS; if (pDivisor->cUsed < 2) { /* * Do very simple long division. This ain't fast, but it does the trick. */ uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend); while (iBit-- > 0) { rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit)); AssertRCBreak(rc); iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor); if (iDiff >= 0) { if (iDiff != 0) { rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor); AssertRCBreak(rc); } else rtBigNumSetUsed(pRemainder, 0); } } } else { /* * Join paths with division. */ rc = rtBigNumMagnitudeDivideKnuth(NULL, pRemainder, pDividend, pDivisor); } /* This shouldn't be necessary. */ rtBigNumStripTrailingZeros(pRemainder); return rc; } RTDECL(int) RTBigNumModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor) { Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pRemainder); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pRemainder); rc = rtBigNumUnscramble((PRTBIGNUM)pDividend); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pDividend); rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pDivisor); /* * The sign value of the remainder is the same as the dividend. */ pRemainder->fNegative = pDividend->fNegative; rc = rtBigNumMagnitudeModulo(pRemainder, pDividend, pDivisor); if (pRemainder->cUsed == 0) pRemainder->fNegative = 0; rtBigNumScramble((PRTBIGNUM)pDivisor); } rtBigNumScramble((PRTBIGNUM)pDividend); } rtBigNumScramble(pRemainder); } return rc; } /** * Exponentiate the magnitude. * * All variables must be unscrambled. The sign flag is not considered nor * touched, this means the caller have to reject negative exponents. * * @returns IPRT status code. * @param pResult Where to return power. * @param pBase The base value. * @param pExponent The exponent (assumed positive or zero). */ static int rtBigNumMagnitudeExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent) { Assert(pResult != pBase); Assert(pResult != pExponent); Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled); /* * A couple of special cases. */ int rc; /* base ^ 0 => 1. */ if (pExponent->cUsed == 0) { rc = rtBigNumSetUsed(pResult, 1); if (RT_SUCCESS(rc)) pResult->pauElements[0] = 1; return rc; } /* base ^ 1 => base. */ if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1) return rtBigNumMagnitudeCopy(pResult, pBase); /* * Set up. */ /* Init temporary power-of-two variable to base. */ RTBIGNUM Pow2; rc = rtBigNumCloneInternal(&Pow2, pBase); if (RT_SUCCESS(rc)) { /* Init result to 1. */ rc = rtBigNumSetUsed(pResult, 1); if (RT_SUCCESS(rc)) { pResult->pauElements[0] = 1; /* Make a temporary variable that we can use for temporary storage of the result. */ RTBIGNUM TmpMultiplicand; rc = rtBigNumCloneInternal(&TmpMultiplicand, pResult); if (RT_SUCCESS(rc)) { /* * Exponentiation by squaring. Reduces the number of * multiplications to: NumBitsSet(Exponent) + BitWidth(Exponent). */ uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent); uint32_t iBit = 0; for (;;) { if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0) { rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeMultiply(pResult, &TmpMultiplicand, &Pow2); if (RT_FAILURE(rc)) break; } /* Done? */ iBit++; if (iBit >= cExpBits) break; /* Not done yet, square the base again. */ rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeMultiply(&Pow2, &TmpMultiplicand, &TmpMultiplicand); if (RT_FAILURE(rc)) break; } RTBigNumDestroy(&TmpMultiplicand); } } RTBigNumDestroy(&Pow2); } return rc; } RTDECL(int) RTBigNumExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent) { Assert(pResult != pBase); Assert(pResult != pExponent); AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pBase); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pBase); rc = rtBigNumUnscramble((PRTBIGNUM)pExponent); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pExponent); if (!pExponent->fNegative) { pResult->fNegative = pBase->fNegative; /* sign unchanged. */ rc = rtBigNumMagnitudeExponentiate(pResult, pBase, pExponent); } else rc = VERR_BIGNUM_NEGATIVE_EXPONENT; rtBigNumScramble((PRTBIGNUM)pExponent); } rtBigNumScramble((PRTBIGNUM)pBase); } rtBigNumScramble(pResult); } return rc; } /** * Modular exponentiation, magnitudes only. * * All variables must be unscrambled. The sign flag is not considered nor * touched, this means the caller have to reject negative exponents and do any * other necessary sign bit fiddling. * * @returns IPRT status code. * @param pResult Where to return the remainder of the power. * @param pBase The base value. * @param pExponent The exponent (assumed positive or zero). * @param pModulus The modulus value (or divisor if you like). */ static int rtBigNumMagnitudeModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus) { Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus); Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled); Assert(!pModulus->fCurScrambled); int rc; /* * Check some special cases to get them out of the way. */ /* Div by 0 => invalid. */ if (pModulus->cUsed == 0) return VERR_BIGNUM_DIV_BY_ZERO; /* Div by 1 => no remainder. */ if (pModulus->cUsed == 1 && pModulus->pauElements[0] == 1) { rtBigNumSetUsed(pResult, 0); return VINF_SUCCESS; } /* base ^ 0 => 1. */ if (pExponent->cUsed == 0) { rc = rtBigNumSetUsed(pResult, 1); if (RT_SUCCESS(rc)) pResult->pauElements[0] = 1; return rc; } /* base ^ 1 => base. */ if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1) return rtBigNumMagnitudeModulo(pResult, pBase, pModulus); /* * Set up. */ /* Result = 1; preallocate space for the result while at it. */ rc = rtBigNumSetUsed(pResult, pModulus->cUsed + 1); if (RT_SUCCESS(rc)) rc = rtBigNumSetUsed(pResult, 1); if (RT_SUCCESS(rc)) { pResult->pauElements[0] = 1; /* ModBase = pBase or pBase % pModulus depending on the difference in size. */ RTBIGNUM Pow2; if (pBase->cUsed <= pModulus->cUsed + pModulus->cUsed / 2) rc = rtBigNumCloneInternal(&Pow2, pBase); else rc = rtBigNumMagnitudeModulo(rtBigNumInitZeroTemplate(&Pow2, pBase), pBase, pModulus); /* Need a couple of temporary variables. */ RTBIGNUM TmpMultiplicand; rtBigNumInitZeroTemplate(&TmpMultiplicand, pResult); RTBIGNUM TmpProduct; rtBigNumInitZeroTemplate(&TmpProduct, pResult); /* * We combine the exponentiation by squaring with the fact that: * (a*b) mod n = ( (a mod n) * (b mod n) ) mod n * * Thus, we can reduce the size of intermediate results by mod'ing them * in each step. */ uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent); uint32_t iBit = 0; for (;;) { if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0) { rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &Pow2); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeModulo(pResult, &TmpProduct, pModulus); if (RT_FAILURE(rc)) break; } /* Done? */ iBit++; if (iBit >= cExpBits) break; /* Not done yet, square and mod the base again. */ rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &TmpMultiplicand); if (RT_SUCCESS(rc)) rc = rtBigNumMagnitudeModulo(&Pow2, &TmpProduct, pModulus); if (RT_FAILURE(rc)) break; } RTBigNumDestroy(&TmpMultiplicand); RTBigNumDestroy(&TmpProduct); RTBigNumDestroy(&Pow2); } return rc; } RTDECL(int) RTBigNumModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus) { Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus); AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive | pModulus->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT); int rc = rtBigNumUnscramble(pResult); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pResult); rc = rtBigNumUnscramble((PRTBIGNUM)pBase); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pBase); rc = rtBigNumUnscramble((PRTBIGNUM)pExponent); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pExponent); rc = rtBigNumUnscramble((PRTBIGNUM)pModulus); if (RT_SUCCESS(rc)) { RTBIGNUM_ASSERT_VALID(pModulus); if (!pExponent->fNegative) { pResult->fNegative = pModulus->fNegative; /* pBase ^ pExponent / pModulus; result = remainder. */ rc = rtBigNumMagnitudeModExp(pResult, pBase, pExponent, pModulus); } else rc = VERR_BIGNUM_NEGATIVE_EXPONENT; rtBigNumScramble((PRTBIGNUM)pModulus); } rtBigNumScramble((PRTBIGNUM)pExponent); } rtBigNumScramble((PRTBIGNUM)pBase); } rtBigNumScramble(pResult); } return rc; }