/* $Id: alloc-r0drv.cpp 69111 2017-10-17 14:26:02Z vboxsync $ */ /** @file * IPRT - Memory Allocation, Ring-0 Driver. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define RTMEM_NO_WRAP_TO_EF_APIS #include #include "internal/iprt.h" #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include #endif #include #ifdef RT_MORE_STRICT # include #endif #include #include #include #include "r0drv/alloc-r0drv.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #ifdef RT_STRICT # define RTR0MEM_STRICT #endif #ifdef RTR0MEM_STRICT # define RTR0MEM_FENCE_EXTRA 16 #else # define RTR0MEM_FENCE_EXTRA 0 #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifdef RTR0MEM_STRICT /** Fence data. */ static uint8_t const g_abFence[RTR0MEM_FENCE_EXTRA] = { 0x77, 0x88, 0x66, 0x99, 0x55, 0xaa, 0x44, 0xbb, 0x33, 0xcc, 0x22, 0xdd, 0x11, 0xee, 0x00, 0xff }; #endif /** * Wrapper around rtR0MemAllocEx. * * @returns Pointer to the allocated memory block header. * @param cb The number of bytes to allocate (sans header). * @param fFlags The allocation flags. */ DECLINLINE(PRTMEMHDR) rtR0MemAlloc(size_t cb, uint32_t fFlags) { PRTMEMHDR pHdr; int rc = rtR0MemAllocEx(cb, fFlags, &pHdr); if (RT_FAILURE(rc)) return NULL; return pHdr; } RTDECL(void *) RTMemTmpAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_DEF { return RTMemAllocTag(cb, pszTag); } RT_EXPORT_SYMBOL(RTMemTmpAllocTag); RTDECL(void *) RTMemTmpAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW_DEF { return RTMemAllocZTag(cb, pszTag); } RT_EXPORT_SYMBOL(RTMemTmpAllocZTag); RTDECL(void) RTMemTmpFree(void *pv) RT_NO_THROW_DEF { return RTMemFree(pv); } RT_EXPORT_SYMBOL(RTMemTmpFree); RTDECL(void *) RTMemAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_DEF { PRTMEMHDR pHdr; RT_ASSERT_INTS_ON(); RT_NOREF_PV(pszTag); pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, 0); if (pHdr) { #ifdef RTR0MEM_STRICT pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb); memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA); #endif return pHdr + 1; } return NULL; } RT_EXPORT_SYMBOL(RTMemAllocTag); RTDECL(void *) RTMemAllocZTag(size_t cb, const char *pszTag) RT_NO_THROW_DEF { PRTMEMHDR pHdr; RT_ASSERT_INTS_ON(); RT_NOREF_PV(pszTag); pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, RTMEMHDR_FLAG_ZEROED); if (pHdr) { #ifdef RTR0MEM_STRICT pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb); memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA); return memset(pHdr + 1, 0, cb); #else return memset(pHdr + 1, 0, pHdr->cb); #endif } return NULL; } RT_EXPORT_SYMBOL(RTMemAllocZTag); RTDECL(void *) RTMemAllocVarTag(size_t cbUnaligned, const char *pszTag) { size_t cbAligned; if (cbUnaligned >= 16) cbAligned = RT_ALIGN_Z(cbUnaligned, 16); else cbAligned = RT_ALIGN_Z(cbUnaligned, sizeof(void *)); return RTMemAllocTag(cbAligned, pszTag); } RT_EXPORT_SYMBOL(RTMemAllocVarTag); RTDECL(void *) RTMemAllocZVarTag(size_t cbUnaligned, const char *pszTag) { size_t cbAligned; if (cbUnaligned >= 16) cbAligned = RT_ALIGN_Z(cbUnaligned, 16); else cbAligned = RT_ALIGN_Z(cbUnaligned, sizeof(void *)); return RTMemAllocZTag(cbAligned, pszTag); } RT_EXPORT_SYMBOL(RTMemAllocZVarTag); RTDECL(void *) RTMemReallocTag(void *pvOld, size_t cbNew, const char *pszTag) RT_NO_THROW_DEF { PRTMEMHDR pHdrOld; /* Free. */ if (!cbNew && pvOld) { RTMemFree(pvOld); return NULL; } /* Alloc. */ if (!pvOld) return RTMemAllocTag(cbNew, pszTag); /* * Realloc. */ pHdrOld = (PRTMEMHDR)pvOld - 1; RT_ASSERT_PREEMPTIBLE(); if (pHdrOld->u32Magic == RTMEMHDR_MAGIC) { PRTMEMHDR pHdrNew; /* If there is sufficient space in the old block and we don't cause substantial internal fragmentation, reuse the old block. */ if ( pHdrOld->cb >= cbNew + RTR0MEM_FENCE_EXTRA && pHdrOld->cb - (cbNew + RTR0MEM_FENCE_EXTRA) <= 128) { pHdrOld->cbReq = (uint32_t)cbNew; Assert(pHdrOld->cbReq == cbNew); #ifdef RTR0MEM_STRICT memcpy((uint8_t *)(pHdrOld + 1) + cbNew, &g_abFence[0], RTR0MEM_FENCE_EXTRA); #endif return pvOld; } /* Allocate a new block and copy over the content. */ pHdrNew = rtR0MemAlloc(cbNew + RTR0MEM_FENCE_EXTRA, 0); if (pHdrNew) { size_t cbCopy = RT_MIN(pHdrOld->cb, pHdrNew->cb); memcpy(pHdrNew + 1, pvOld, cbCopy); #ifdef RTR0MEM_STRICT pHdrNew->cbReq = (uint32_t)cbNew; Assert(pHdrNew->cbReq == cbNew); memcpy((uint8_t *)(pHdrNew + 1) + cbNew, &g_abFence[0], RTR0MEM_FENCE_EXTRA); AssertReleaseMsg(!memcmp((uint8_t *)(pHdrOld + 1) + pHdrOld->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA), ("pHdr=%p pvOld=%p cbReq=%u cb=%u cbNew=%zu fFlags=%#x\n" "fence: %.*Rhxs\n" "expected: %.*Rhxs\n", pHdrOld, pvOld, pHdrOld->cbReq, pHdrOld->cb, cbNew, pHdrOld->fFlags, RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdrOld + 1) + pHdrOld->cbReq, RTR0MEM_FENCE_EXTRA, &g_abFence[0])); #endif rtR0MemFree(pHdrOld); return pHdrNew + 1; } } else AssertMsgFailed(("pHdrOld->u32Magic=%RX32 pvOld=%p cbNew=%#zx\n", pHdrOld->u32Magic, pvOld, cbNew)); return NULL; } RT_EXPORT_SYMBOL(RTMemReallocTag); RTDECL(void) RTMemFree(void *pv) RT_NO_THROW_DEF { PRTMEMHDR pHdr; RT_ASSERT_INTS_ON(); if (!pv) return; pHdr = (PRTMEMHDR)pv - 1; if (pHdr->u32Magic == RTMEMHDR_MAGIC) { Assert(!(pHdr->fFlags & RTMEMHDR_FLAG_ALLOC_EX)); Assert(!(pHdr->fFlags & RTMEMHDR_FLAG_EXEC)); #ifdef RTR0MEM_STRICT AssertReleaseMsg(!memcmp((uint8_t *)(pHdr + 1) + pHdr->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA), ("pHdr=%p pv=%p cbReq=%u cb=%u fFlags=%#x\n" "fence: %.*Rhxs\n" "expected: %.*Rhxs\n", pHdr, pv, pHdr->cbReq, pHdr->cb, pHdr->fFlags, RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdr + 1) + pHdr->cbReq, RTR0MEM_FENCE_EXTRA, &g_abFence[0])); #endif rtR0MemFree(pHdr); } else AssertMsgFailed(("pHdr->u32Magic=%RX32 pv=%p\n", pHdr->u32Magic, pv)); } RT_EXPORT_SYMBOL(RTMemFree); RTDECL(void *) RTMemExecAllocTag(size_t cb, const char *pszTag) RT_NO_THROW_DEF { PRTMEMHDR pHdr; #ifdef RT_OS_SOLARIS /** @todo figure out why */ RT_ASSERT_INTS_ON(); #else RT_ASSERT_PREEMPTIBLE(); #endif RT_NOREF_PV(pszTag); pHdr = rtR0MemAlloc(cb + RTR0MEM_FENCE_EXTRA, RTMEMHDR_FLAG_EXEC); if (pHdr) { #ifdef RTR0MEM_STRICT pHdr->cbReq = (uint32_t)cb; Assert(pHdr->cbReq == cb); memcpy((uint8_t *)(pHdr + 1) + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA); #endif return pHdr + 1; } return NULL; } RT_EXPORT_SYMBOL(RTMemExecAllocTag); RTDECL(void) RTMemExecFree(void *pv, size_t cb) RT_NO_THROW_DEF { PRTMEMHDR pHdr; RT_ASSERT_INTS_ON(); RT_NOREF_PV(cb); if (!pv) return; pHdr = (PRTMEMHDR)pv - 1; if (pHdr->u32Magic == RTMEMHDR_MAGIC) { Assert(!(pHdr->fFlags & RTMEMHDR_FLAG_ALLOC_EX)); #ifdef RTR0MEM_STRICT AssertReleaseMsg(!memcmp((uint8_t *)(pHdr + 1) + pHdr->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA), ("pHdr=%p pv=%p cbReq=%u cb=%u fFlags=%#x\n" "fence: %.*Rhxs\n" "expected: %.*Rhxs\n", pHdr, pv, pHdr->cbReq, pHdr->cb, pHdr->fFlags, RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdr + 1) + pHdr->cbReq, RTR0MEM_FENCE_EXTRA, &g_abFence[0])); #endif rtR0MemFree(pHdr); } else AssertMsgFailed(("pHdr->u32Magic=%RX32 pv=%p\n", pHdr->u32Magic, pv)); } RT_EXPORT_SYMBOL(RTMemExecFree); RTDECL(int) RTMemAllocExTag(size_t cb, size_t cbAlignment, uint32_t fFlags, const char *pszTag, void **ppv) RT_NO_THROW_DEF { uint32_t fHdrFlags = RTMEMHDR_FLAG_ALLOC_EX; PRTMEMHDR pHdr; int rc; RT_NOREF_PV(pszTag); RT_ASSERT_PREEMPT_CPUID_VAR(); if (!(fFlags & RTMEMALLOCEX_FLAGS_ANY_CTX_ALLOC)) RT_ASSERT_INTS_ON(); /* * Fake up some alignment support. */ AssertMsgReturn(cbAlignment <= sizeof(void *), ("%zu (%#x)\n", cbAlignment, cbAlignment), VERR_UNSUPPORTED_ALIGNMENT); if (cb < cbAlignment) cb = cbAlignment; /* * Validate and convert flags. */ AssertMsgReturn(!(fFlags & ~RTMEMALLOCEX_FLAGS_VALID_MASK_R0), ("%#x\n", fFlags), VERR_INVALID_PARAMETER); if (fFlags & RTMEMALLOCEX_FLAGS_ZEROED) fHdrFlags |= RTMEMHDR_FLAG_ZEROED; if (fFlags & RTMEMALLOCEX_FLAGS_EXEC) fHdrFlags |= RTMEMHDR_FLAG_EXEC; if (fFlags & RTMEMALLOCEX_FLAGS_ANY_CTX_ALLOC) fHdrFlags |= RTMEMHDR_FLAG_ANY_CTX_ALLOC; if (fFlags & RTMEMALLOCEX_FLAGS_ANY_CTX_FREE) fHdrFlags |= RTMEMHDR_FLAG_ANY_CTX_FREE; /* * Do the allocation. */ rc = rtR0MemAllocEx(cb + RTR0MEM_FENCE_EXTRA, fHdrFlags, &pHdr); if (RT_SUCCESS(rc)) { void *pv; Assert(pHdr->cbReq == cb + RTR0MEM_FENCE_EXTRA); Assert((pHdr->fFlags & fFlags) == fFlags); /* * Calc user pointer, initialize the memory if requested, and if * memory strictness is enable set up the fence. */ pv = pHdr + 1; *ppv = pv; if (fFlags & RTMEMHDR_FLAG_ZEROED) memset(pv, 0, pHdr->cb); #ifdef RTR0MEM_STRICT pHdr->cbReq = (uint32_t)cb; memcpy((uint8_t *)pv + cb, &g_abFence[0], RTR0MEM_FENCE_EXTRA); #endif } else if (rc == VERR_NO_MEMORY && (fFlags & RTMEMALLOCEX_FLAGS_EXEC)) rc = VERR_NO_EXEC_MEMORY; RT_ASSERT_PREEMPT_CPUID(); return rc; } RT_EXPORT_SYMBOL(RTMemAllocExTag); RTDECL(void) RTMemFreeEx(void *pv, size_t cb) RT_NO_THROW_DEF { PRTMEMHDR pHdr; RT_NOREF_PV(cb); if (!pv) return; AssertPtr(pv); pHdr = (PRTMEMHDR)pv - 1; if (pHdr->u32Magic == RTMEMHDR_MAGIC) { RT_ASSERT_PREEMPT_CPUID_VAR(); Assert(pHdr->fFlags & RTMEMHDR_FLAG_ALLOC_EX); if (!(pHdr->fFlags & RTMEMHDR_FLAG_ANY_CTX_FREE)) RT_ASSERT_INTS_ON(); AssertMsg(pHdr->cbReq == cb, ("cbReq=%zu cb=%zu\n", pHdr->cb, cb)); #ifdef RTR0MEM_STRICT AssertReleaseMsg(!memcmp((uint8_t *)(pHdr + 1) + pHdr->cbReq, &g_abFence[0], RTR0MEM_FENCE_EXTRA), ("pHdr=%p pv=%p cbReq=%u cb=%u fFlags=%#x\n" "fence: %.*Rhxs\n" "expected: %.*Rhxs\n", pHdr, pv, pHdr->cbReq, pHdr->cb, pHdr->fFlags, RTR0MEM_FENCE_EXTRA, (uint8_t *)(pHdr + 1) + pHdr->cbReq, RTR0MEM_FENCE_EXTRA, &g_abFence[0])); #endif rtR0MemFree(pHdr); RT_ASSERT_PREEMPT_CPUID(); } else AssertMsgFailed(("pHdr->u32Magic=%RX32 pv=%p\n", pHdr->u32Magic, pv)); } RT_EXPORT_SYMBOL(RTMemFreeEx);