/* $Id: memobj-r0drv-netbsd.c 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * IPRT - Ring-0 Memory Objects, NetBSD. */ /* * Contributed by knut st. osmundsen, Andriy Gapon, Arto Huusko. * * Copyright (C) 2007-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * -------------------------------------------------------------------- * * Copyright (c) 2007 knut st. osmundsen * Copyright (c) 2011 Andriy Gapon * Copyright (c) 2014 Arto Huusko * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "the-netbsd-kernel.h" #include #include #include #include #include #include #include #include "internal/memobj.h" /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * The NetBSD version of the memory object structure. */ typedef struct RTR0MEMOBJNETBSD { /** The core structure. */ RTR0MEMOBJINTERNAL Core; size_t size; struct pglist pglist; } RTR0MEMOBJNETBSD, *PRTR0MEMOBJNETBSD; typedef struct vm_map* vm_map_t; /** * Gets the virtual memory map the specified object is mapped into. * * @returns VM map handle on success, NULL if no map. * @param pMem The memory object. */ static vm_map_t rtR0MemObjNetBSDGetMap(PRTR0MEMOBJINTERNAL pMem) { switch (pMem->enmType) { case RTR0MEMOBJTYPE_PAGE: case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_CONT: return kernel_map; case RTR0MEMOBJTYPE_PHYS: case RTR0MEMOBJTYPE_PHYS_NC: return NULL; /* pretend these have no mapping atm. */ case RTR0MEMOBJTYPE_LOCK: return pMem->u.Lock.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map; case RTR0MEMOBJTYPE_RES_VIRT: return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map; case RTR0MEMOBJTYPE_MAPPING: return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map; default: return NULL; } } DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)pMem; int rc; switch (pMemNetBSD->Core.enmType) { case RTR0MEMOBJTYPE_PAGE: { kmem_free(pMemNetBSD->Core.pv, pMemNetBSD->Core.cb); break; } case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_CONT: { /* Unmap */ pmap_kremove((vaddr_t)pMemNetBSD->Core.pv, pMemNetBSD->Core.cb); /* Free the virtual space */ uvm_km_free(kernel_map, (vaddr_t)pMemNetBSD->Core.pv, pMemNetBSD->Core.cb, UVM_KMF_VAONLY); /* Free the physical pages */ uvm_pglistfree(&pMemNetBSD->pglist); break; } case RTR0MEMOBJTYPE_PHYS: case RTR0MEMOBJTYPE_PHYS_NC: { /* Free the physical pages */ uvm_pglistfree(&pMemNetBSD->pglist); break; } case RTR0MEMOBJTYPE_LOCK: if (pMemNetBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS) { uvm_map_pageable( &((struct proc *)pMemNetBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map, (vaddr_t)pMemNetBSD->Core.pv, ((vaddr_t)pMemNetBSD->Core.pv) + pMemNetBSD->Core.cb, 1, 0); } break; case RTR0MEMOBJTYPE_RES_VIRT: if (pMemNetBSD->Core.u.Lock.R0Process == NIL_RTR0PROCESS) { uvm_km_free(kernel_map, (vaddr_t)pMemNetBSD->Core.pv, pMemNetBSD->Core.cb, UVM_KMF_VAONLY); } break; case RTR0MEMOBJTYPE_MAPPING: if (pMemNetBSD->Core.u.Lock.R0Process == NIL_RTR0PROCESS) { pmap_kremove((vaddr_t)pMemNetBSD->Core.pv, pMemNetBSD->Core.cb); uvm_km_free(kernel_map, (vaddr_t)pMemNetBSD->Core.pv, pMemNetBSD->Core.cb, UVM_KMF_VAONLY); } break; default: AssertMsgFailed(("enmType=%d\n", pMemNetBSD->Core.enmType)); return VERR_INTERNAL_ERROR; } return VINF_SUCCESS; } static int rtR0MemObjNetBSDAllocHelper(PRTR0MEMOBJNETBSD pMemNetBSD, size_t cb, bool fExecutable, paddr_t VmPhysAddrHigh, bool fContiguous) { /* Virtual space first */ vaddr_t virt = uvm_km_alloc(kernel_map, cb, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_CANFAIL); if (virt == 0) return VERR_NO_MEMORY; struct pglist *rlist = &pMemNetBSD->pglist; int nsegs = fContiguous ? 1 : INT_MAX; /* Physical pages */ if (uvm_pglistalloc(cb, 0, VmPhysAddrHigh, PAGE_SIZE, 0, rlist, nsegs, 1) != 0) { uvm_km_free(kernel_map, virt, cb, UVM_KMF_VAONLY); return VERR_NO_MEMORY; } /* Map */ struct vm_page *page; vm_prot_t prot = VM_PROT_READ | VM_PROT_WRITE; if (fExecutable) prot |= VM_PROT_EXECUTE; vaddr_t virt2 = virt; TAILQ_FOREACH(page, rlist, pageq.queue) { pmap_kenter_pa(virt2, VM_PAGE_TO_PHYS(page), prot, 0); virt2 += PAGE_SIZE; } pMemNetBSD->Core.pv = (void *)virt; if (fContiguous) { page = TAILQ_FIRST(rlist); pMemNetBSD->Core.u.Cont.Phys = VM_PAGE_TO_PHYS(page); } return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_PAGE, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; void *pvMem = kmem_alloc(cb, KM_SLEEP); if (RT_UNLIKELY(!pvMem)) { rtR0MemObjDelete(&pMemNetBSD->Core); return VERR_NO_PAGE_MEMORY; } if (fExecutable) { pmap_protect(pmap_kernel(), (vaddr_t)pvMem, ((vaddr_t)pvMem) + cb, VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE); } pMemNetBSD->Core.pv = pvMem; *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_LOW, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; int rc = rtR0MemObjNetBSDAllocHelper(pMemNetBSD, cb, fExecutable, _4G - 1, false); if (rc) { rtR0MemObjDelete(&pMemNetBSD->Core); return rc; } *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_CONT, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; int rc = rtR0MemObjNetBSDAllocHelper(pMemNetBSD, cb, fExecutable, _4G - 1, true); if (rc) { rtR0MemObjDelete(&pMemNetBSD->Core); return rc; } *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } static int rtR0MemObjNetBSDAllocPhysPages(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, bool fContiguous) { paddr_t VmPhysAddrHigh; /* create the object. */ PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), enmType, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; if (PhysHighest != NIL_RTHCPHYS) VmPhysAddrHigh = PhysHighest; else VmPhysAddrHigh = ~(paddr_t)0; int nsegs = fContiguous ? 1 : INT_MAX; int error = uvm_pglistalloc(cb, 0, VmPhysAddrHigh, uAlignment, 0, &pMemNetBSD->pglist, nsegs, 1); if (error) { rtR0MemObjDelete(&pMemNetBSD->Core); return VERR_NO_MEMORY; } if (fContiguous) { Assert(enmType == RTR0MEMOBJTYPE_PHYS); const struct vm_page * const pg = TAILQ_FIRST(&pMemNetBSD->pglist); pMemNetBSD->Core.u.Phys.PhysBase = VM_PAGE_TO_PHYS(pg); pMemNetBSD->Core.u.Phys.fAllocated = true; } *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) { return rtR0MemObjNetBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest, uAlignment, true); } DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) { return rtR0MemObjNetBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest, PAGE_SIZE, false); } DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) { AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED); /* create the object. */ PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_PHYS, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; /* there is no allocation here, it needs to be mapped somewhere first. */ pMemNetBSD->Core.u.Phys.fAllocated = false; pMemNetBSD->Core.u.Phys.PhysBase = Phys; pMemNetBSD->Core.u.Phys.uCachePolicy = uCachePolicy; TAILQ_INIT(&pMemNetBSD->pglist); *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; int rc = uvm_map_pageable( &((struct proc *)R0Process)->p_vmspace->vm_map, R3Ptr, R3Ptr + cb, 0, 0); if (rc) { rtR0MemObjDelete(&pMemNetBSD->Core); return VERR_NO_MEMORY; } pMemNetBSD->Core.u.Lock.R0Process = R0Process; *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) { /* Kernel memory (always?) wired; all memory allocated by vbox code is? */ PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_LOCK, pv, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; pMemNetBSD->Core.u.Lock.R0Process = NIL_RTR0PROCESS; pMemNetBSD->Core.pv = pv; *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) { if (pvFixed != (void *)-1) { /* can we support this? or can we assume the virtual space is already reserved? */ printf("reserve specified kernel virtual address not supported\n"); return VERR_NOT_SUPPORTED; } PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb); if (!pMemNetBSD) return VERR_NO_MEMORY; vaddr_t virt = uvm_km_alloc(kernel_map, cb, uAlignment, UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_CANFAIL); if (virt == 0) { rtR0MemObjDelete(&pMemNetBSD->Core); return VERR_NO_MEMORY; } pMemNetBSD->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS; pMemNetBSD->Core.pv = (void *)virt; *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) { printf("NativeReserveUser\n"); return VERR_NOT_SUPPORTED; } DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt, size_t offSub, size_t cbSub) { if (pvFixed != (void *)-1) { /* can we support this? or can we assume the virtual space is already reserved? */ printf("map to specified kernel virtual address not supported\n"); return VERR_NOT_SUPPORTED; } PRTR0MEMOBJNETBSD pMemNetBSD0 = (PRTR0MEMOBJNETBSD)pMemToMap; if ((pMemNetBSD0->Core.enmType != RTR0MEMOBJTYPE_PHYS) && (pMemNetBSD0->Core.enmType != RTR0MEMOBJTYPE_PHYS_NC)) { printf("memory to map is not physical\n"); return VERR_NOT_SUPPORTED; } size_t sz = cbSub > 0 ? cbSub : pMemNetBSD0->Core.cb; PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)rtR0MemObjNew(sizeof(*pMemNetBSD), RTR0MEMOBJTYPE_MAPPING, NULL, sz); vaddr_t virt = uvm_km_alloc(kernel_map, sz, uAlignment, UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_CANFAIL); if (virt == 0) { rtR0MemObjDelete(&pMemNetBSD->Core); return VERR_NO_MEMORY; } vm_prot_t prot = 0; if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ) prot |= VM_PROT_READ; if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE) prot |= VM_PROT_WRITE; if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC) prot |= VM_PROT_EXECUTE; struct vm_page *page; vaddr_t virt2 = virt; size_t map_pos = 0; TAILQ_FOREACH(page, &pMemNetBSD0->pglist, pageq.queue) { if (map_pos >= offSub) { if (cbSub > 0 && (map_pos >= offSub + cbSub)) break; pmap_kenter_pa(virt2, VM_PAGE_TO_PHYS(page), prot, 0); virt2 += PAGE_SIZE; } map_pos += PAGE_SIZE; } pMemNetBSD->Core.pv = (void *)virt; pMemNetBSD->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; *ppMem = &pMemNetBSD->Core; return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process, size_t offSub, size_t cbSub) { printf("NativeMapUser\n"); return VERR_NOT_SUPPORTED; } DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) { vm_prot_t ProtectionFlags = 0; vaddr_t AddrStart = (vaddr_t)pMem->pv + offSub; vm_map_t pVmMap = rtR0MemObjNetBSDGetMap(pMem); if (!pVmMap) return VERR_NOT_SUPPORTED; if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ) ProtectionFlags |= UVM_PROT_R; if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE) ProtectionFlags |= UVM_PROT_W; if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC) ProtectionFlags |= UVM_PROT_X; int error = uvm_map_protect(pVmMap, AddrStart, AddrStart + cbSub, ProtectionFlags, 0); if (!error) return VINF_SUCCESS; return VERR_NOT_SUPPORTED; } DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) { PRTR0MEMOBJNETBSD pMemNetBSD = (PRTR0MEMOBJNETBSD)pMem; switch (pMemNetBSD->Core.enmType) { case RTR0MEMOBJTYPE_PAGE: case RTR0MEMOBJTYPE_LOW: { vaddr_t va = (vaddr_t)pMemNetBSD->Core.pv + ptoa(iPage); paddr_t pa = 0; pmap_extract(pmap_kernel(), va, &pa); return pa; } case RTR0MEMOBJTYPE_CONT: return pMemNetBSD->Core.u.Cont.Phys + ptoa(iPage); case RTR0MEMOBJTYPE_PHYS: return pMemNetBSD->Core.u.Phys.PhysBase + ptoa(iPage); case RTR0MEMOBJTYPE_PHYS_NC: { struct vm_page *page; size_t i = 0; TAILQ_FOREACH(page, &pMemNetBSD->pglist, pageq.queue) { if (i == iPage) break; i++; } return VM_PAGE_TO_PHYS(page); } case RTR0MEMOBJTYPE_LOCK: case RTR0MEMOBJTYPE_MAPPING: { pmap_t pmap; if (pMem->u.Lock.R0Process == NIL_RTR0PROCESS) pmap = pmap_kernel(); else pmap = ((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map.pmap; vaddr_t va = (vaddr_t)pMemNetBSD->Core.pv + ptoa(iPage); paddr_t pa = 0; pmap_extract(pmap, va, &pa); return pa; } case RTR0MEMOBJTYPE_RES_VIRT: return NIL_RTHCPHYS; default: return NIL_RTHCPHYS; } }