VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 38888

最後變更 在這個檔案從38888是 36555,由 vboxsync 提交於 14 年 前

Use DECLHIDDEN, especially in IPRT.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 18.6 KB
 
1/* $Id: memobj-r0drv-os2.cpp 36555 2011-04-05 12:34:09Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <[email protected]>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);
200
201 /** @todo alignment */
202 if (uAlignment != PAGE_SIZE)
203 return VERR_NOT_SUPPORTED;
204
205 /* create the object. */
206 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
207 if (!pMemOs2)
208 return VERR_NO_MEMORY;
209
210 /* do the allocation. */
211 ULONG ulPhys = ~0UL;
212 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
213 if (!rc)
214 {
215 Assert(ulPhys != ~0UL);
216 pMemOs2->Core.u.Phys.fAllocated = true;
217 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
218 *ppMem = &pMemOs2->Core;
219 return VINF_SUCCESS;
220 }
221 rtR0MemObjDelete(&pMemOs2->Core);
222 return RTErrConvertFromOS2(rc);
223}
224
225
226DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
227{
228 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
229 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
230}
231
232
233DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
234{
235 AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);
236
237 /* create the object. */
238 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
239 if (!pMemOs2)
240 return VERR_NO_MEMORY;
241
242 /* there is no allocation here, right? it needs to be mapped somewhere first. */
243 pMemOs2->Core.u.Phys.fAllocated = false;
244 pMemOs2->Core.u.Phys.PhysBase = Phys;
245 pMemOs2->Core.u.Phys.uCachePolicy = uCachePolicy;
246 *ppMem = &pMemOs2->Core;
247 return VINF_SUCCESS;
248}
249
250
251DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
252 RTR0PROCESS R0Process)
253{
254 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
255
256 /* create the object. */
257 const ULONG cPages = cb >> PAGE_SHIFT;
258 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
259 if (!pMemOs2)
260 return VERR_NO_MEMORY;
261
262 /* lock it. */
263 ULONG cPagesRet = cPages;
264 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
265 (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
266 if (!rc)
267 {
268 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
269 Assert(cb == pMemOs2->Core.cb);
270 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
271 pMemOs2->Core.u.Lock.R0Process = R0Process;
272 *ppMem = &pMemOs2->Core;
273 return VINF_SUCCESS;
274 }
275 rtR0MemObjDelete(&pMemOs2->Core);
276 return RTErrConvertFromOS2(rc);
277}
278
279
280DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
281{
282 /* create the object. */
283 const ULONG cPages = cb >> PAGE_SHIFT;
284 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
285 if (!pMemOs2)
286 return VERR_NO_MEMORY;
287
288 /* lock it. */
289 ULONG cPagesRet = cPages;
290 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
291 pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
292 if (!rc)
293 {
294 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
295 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
296 *ppMem = &pMemOs2->Core;
297 return VINF_SUCCESS;
298 }
299 rtR0MemObjDelete(&pMemOs2->Core);
300 return RTErrConvertFromOS2(rc);
301}
302
303
304DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
305{
306 return VERR_NOT_SUPPORTED;
307}
308
309
310DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
311 RTR0PROCESS R0Process)
312{
313 return VERR_NOT_SUPPORTED;
314}
315
316
317DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
318 unsigned fProt, size_t offSub, size_t cbSub)
319{
320 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
321 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
322
323 /*
324 * Check that the specified alignment is supported.
325 */
326 if (uAlignment > PAGE_SIZE)
327 return VERR_NOT_SUPPORTED;
328
329
330/** @todo finish the implementation. */
331
332 int rc;
333 void *pvR0 = NULL;
334 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
335 switch (pMemToMapOs2->Core.enmType)
336 {
337 /*
338 * These has kernel mappings.
339 */
340 case RTR0MEMOBJTYPE_PAGE:
341 case RTR0MEMOBJTYPE_LOW:
342 case RTR0MEMOBJTYPE_CONT:
343 pvR0 = pMemToMapOs2->Core.pv;
344 break;
345
346 case RTR0MEMOBJTYPE_PHYS:
347 pvR0 = pMemToMapOs2->Core.pv;
348 if (!pvR0)
349 {
350 /* no ring-0 mapping, so allocate a mapping in the process. */
351 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
352 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
353 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
354 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
355 if (rc)
356 return RTErrConvertFromOS2(rc);
357 pMemToMapOs2->Core.pv = pvR0;
358 }
359 break;
360
361 case RTR0MEMOBJTYPE_PHYS_NC:
362 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
363 return VERR_INTERNAL_ERROR_3;
364 break;
365
366 case RTR0MEMOBJTYPE_LOCK:
367 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
368 return VERR_NOT_SUPPORTED; /** @todo implement this... */
369 pvR0 = pMemToMapOs2->Core.pv;
370 break;
371
372 case RTR0MEMOBJTYPE_RES_VIRT:
373 case RTR0MEMOBJTYPE_MAPPING:
374 default:
375 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
376 return VERR_INTERNAL_ERROR;
377 }
378
379 /*
380 * Create a dummy mapping object for it.
381 *
382 * All mappings are read/write/execute in OS/2 and there isn't
383 * any cache options, so sharing is ok. And the main memory object
384 * isn't actually freed until all the mappings have been freed up
385 * (reference counting).
386 */
387 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
388 if (pMemOs2)
389 {
390 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
391 *ppMem = &pMemOs2->Core;
392 return VINF_SUCCESS;
393 }
394 return VERR_NO_MEMORY;
395}
396
397
398DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
399{
400 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
401 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
402 if (uAlignment > PAGE_SIZE)
403 return VERR_NOT_SUPPORTED;
404
405 int rc;
406 void *pvR0;
407 void *pvR3 = NULL;
408 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
409 switch (pMemToMapOs2->Core.enmType)
410 {
411 /*
412 * These has kernel mappings.
413 */
414 case RTR0MEMOBJTYPE_PAGE:
415 case RTR0MEMOBJTYPE_LOW:
416 case RTR0MEMOBJTYPE_CONT:
417 pvR0 = pMemToMapOs2->Core.pv;
418 break;
419
420 case RTR0MEMOBJTYPE_PHYS:
421 pvR0 = pMemToMapOs2->Core.pv;
422#if 0/* this is wrong. */
423 if (!pvR0)
424 {
425 /* no ring-0 mapping, so allocate a mapping in the process. */
426 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
427 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
428 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
429 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
430 if (rc)
431 return RTErrConvertFromOS2(rc);
432 }
433 break;
434#endif
435 return VERR_NOT_SUPPORTED;
436
437 case RTR0MEMOBJTYPE_PHYS_NC:
438 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
439 return VERR_INTERNAL_ERROR_5;
440 break;
441
442 case RTR0MEMOBJTYPE_LOCK:
443 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
444 return VERR_NOT_SUPPORTED; /** @todo implement this... */
445 pvR0 = pMemToMapOs2->Core.pv;
446 break;
447
448 case RTR0MEMOBJTYPE_RES_VIRT:
449 case RTR0MEMOBJTYPE_MAPPING:
450 default:
451 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
452 return VERR_INTERNAL_ERROR;
453 }
454
455 /*
456 * Map the ring-0 memory into the current process.
457 */
458 if (!pvR3)
459 {
460 Assert(pvR0);
461 ULONG flFlags = 0;
462 if (uAlignment == PAGE_SIZE)
463 flFlags |= VMDHGP_4MB;
464 if (fProt & RTMEM_PROT_WRITE)
465 flFlags |= VMDHGP_WRITE;
466 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
467 if (rc)
468 return RTErrConvertFromOS2(rc);
469 }
470 Assert(pvR3);
471
472 /*
473 * Create a mapping object for it.
474 */
475 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
476 if (pMemOs2)
477 {
478 Assert(pMemOs2->Core.pv == pvR3);
479 pMemOs2->Core.u.Mapping.R0Process = R0Process;
480 *ppMem = &pMemOs2->Core;
481 return VINF_SUCCESS;
482 }
483 KernVMFree(pvR3);
484 return VERR_NO_MEMORY;
485}
486
487
488DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
489{
490 NOREF(pMem);
491 NOREF(offSub);
492 NOREF(cbSub);
493 NOREF(fProt);
494 return VERR_NOT_SUPPORTED;
495}
496
497
498DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
499{
500 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
501
502 switch (pMemOs2->Core.enmType)
503 {
504 case RTR0MEMOBJTYPE_PAGE:
505 case RTR0MEMOBJTYPE_LOW:
506 case RTR0MEMOBJTYPE_LOCK:
507 case RTR0MEMOBJTYPE_PHYS_NC:
508 return pMemOs2->aPages[iPage].Addr;
509
510 case RTR0MEMOBJTYPE_CONT:
511 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
512
513 case RTR0MEMOBJTYPE_PHYS:
514 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
515
516 case RTR0MEMOBJTYPE_RES_VIRT:
517 case RTR0MEMOBJTYPE_MAPPING:
518 default:
519 return NIL_RTHCPHYS;
520 }
521}
522
523
524/**
525 * Expands the page list so we can index pages directly.
526 *
527 * @param paPages The page list array to fix.
528 * @param cPages The number of pages that's supposed to go into the list.
529 * @param cPagesRet The actual number of pages in the list.
530 */
531static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
532{
533 Assert(cPages >= cPagesRet);
534 if (cPages != cPagesRet)
535 {
536 ULONG iIn = cPagesRet;
537 ULONG iOut = cPages;
538 do
539 {
540 iIn--;
541 iOut--;
542 Assert(iIn <= iOut);
543
544 KernPageList_t Page = paPages[iIn];
545 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
546 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
547
548 if (Page.Size > PAGE_SIZE)
549 {
550 do
551 {
552 Page.Size -= PAGE_SIZE;
553 paPages[iOut].Addr = Page.Addr + Page.Size;
554 paPages[iOut].Size = PAGE_SIZE;
555 iOut--;
556 } while (Page.Size > PAGE_SIZE);
557 }
558
559 paPages[iOut].Addr = Page.Addr;
560 paPages[iOut].Size = PAGE_SIZE;
561 } while ( iIn != iOut
562 && iIn > 0);
563 }
564}
565
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette