/* $Id: tstRTLockValidator.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * IPRT Testcase - RTLockValidator. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include /* for return addresses */ #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define SECS_SIMPLE_TEST 1 #define SECS_RACE_TEST 3 #define TEST_SMALL_TIMEOUT ( 10*1000) #define TEST_LARGE_TIMEOUT ( 60*1000) #define TEST_DEBUG_TIMEOUT (3600*1000) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** The testcase handle. */ static RTTEST g_hTest; /** Flip this in the debugger to get some peace to single step wild code. */ bool volatile g_fDoNotSpin = false; /** Set when the main thread wishes to terminate the test. */ bool volatile g_fShutdown = false; /** The number of threads. */ static uint32_t g_cThreads; static uint32_t g_iDeadlockThread; static RTTHREAD g_ahThreads[32]; static RTLOCKVALCLASS g_ahClasses[32]; static RTCRITSECT g_aCritSects[32]; static RTSEMRW g_ahSemRWs[32]; static RTSEMMUTEX g_ahSemMtxes[32]; static RTSEMEVENT g_hSemEvt; static RTSEMEVENTMULTI g_hSemEvtMulti; /** Multiple release event semaphore that is signalled by the main thread after * it has started all the threads. */ static RTSEMEVENTMULTI g_hThreadsStartedEvt; /** The number of threads that have called testThreadBlocking */ static uint32_t volatile g_cThreadsBlocking; /** Multiple release event semaphore that is signalled by the last thread to * call testThreadBlocking. testWaitForAllOtherThreadsToSleep waits on this. */ static RTSEMEVENTMULTI g_hThreadsBlockingEvt; /** When to stop testing. */ static uint64_t g_NanoTSStop; /** The number of deadlocks. */ static uint32_t volatile g_cDeadlocks; /** The number of loops. */ static uint32_t volatile g_cLoops; /** * Spin until the callback stops returning VERR_TRY_AGAIN. * * @returns Callback result. VERR_TIMEOUT if too much time elapses. * @param pfnCallback Callback for checking the state. * @param pvWhat Callback parameter. */ static int testWaitForSomethingToBeOwned(int (*pfnCallback)(void *), void *pvWhat) { RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsStartedEvt, TEST_SMALL_TIMEOUT)); uint64_t u64StartMS = RTTimeMilliTS(); for (unsigned iLoop = 0; ; iLoop++) { RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); int rc = pfnCallback(pvWhat); if (rc != VERR_TRY_AGAIN/* && !g_fDoNotSpin*/) { RTTEST_CHECK_RC_OK(g_hTest, rc); return rc; } uint64_t cMsElapsed = RTTimeMilliTS() - u64StartMS; if (!g_fDoNotSpin) RTTEST_CHECK_RET(g_hTest, cMsElapsed <= TEST_SMALL_TIMEOUT, VERR_TIMEOUT); RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); RTThreadSleep(/*g_fDoNotSpin ? TEST_DEBUG_TIMEOUT :*/ iLoop > 256 ? 1 : 0); } } static int testCheckIfCritSectIsOwned(void *pvWhat) { PRTCRITSECT pCritSect = (PRTCRITSECT)pvWhat; if (!RTCritSectIsInitialized(pCritSect)) return VERR_SEM_DESTROYED; if (RTCritSectIsOwned(pCritSect)) return VINF_SUCCESS; return VERR_TRY_AGAIN; } static int testWaitForCritSectToBeOwned(PRTCRITSECT pCritSect) { return testWaitForSomethingToBeOwned(testCheckIfCritSectIsOwned, pCritSect); } static int testCheckIfSemRWIsOwned(void *pvWhat) { RTSEMRW hSemRW = (RTSEMRW)pvWhat; if (RTSemRWGetWriteRecursion(hSemRW) > 0) return VINF_SUCCESS; if (RTSemRWGetReadCount(hSemRW) > 0) return VINF_SUCCESS; return VERR_TRY_AGAIN; } static int testWaitForSemRWToBeOwned(RTSEMRW hSemRW) { return testWaitForSomethingToBeOwned(testCheckIfSemRWIsOwned, hSemRW); } static int testCheckIfSemMutexIsOwned(void *pvWhat) { RTSEMMUTEX hSemRW = (RTSEMMUTEX)pvWhat; if (RTSemMutexIsOwned(hSemRW)) return VINF_SUCCESS; return VERR_TRY_AGAIN; } static int testWaitForSemMutexToBeOwned(RTSEMMUTEX hSemMutex) { return testWaitForSomethingToBeOwned(testCheckIfSemMutexIsOwned, hSemMutex); } /** * For reducing spin in testWaitForAllOtherThreadsToSleep. */ static void testThreadBlocking(void) { if (ASMAtomicIncU32(&g_cThreadsBlocking) == g_cThreads) RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt)); } /** * Waits for all the other threads to enter sleeping states. * * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure. * @param enmDesiredState The desired thread sleep state. * @param cWaitOn The distance to the lock they'll be waiting on, * the lock type is derived from the desired state. * UINT32_MAX means no special lock. */ static int testWaitForAllOtherThreadsToSleep(RTTHREADSTATE enmDesiredState, uint32_t cWaitOn) { testThreadBlocking(); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsBlockingEvt, TEST_SMALL_TIMEOUT)); RTTHREAD hThreadSelf = RTThreadSelf(); for (uint32_t iOuterLoop = 0; ; iOuterLoop++) { uint32_t cMissing = 0; uint32_t cWaitedOn = 0; for (uint32_t i = 0; i < g_cThreads; i++) { RTTHREAD hThread = g_ahThreads[i]; if (hThread == NIL_RTTHREAD) cMissing++; else if (hThread != hThreadSelf) { /* * Figure out which lock to wait for. */ void *pvLock = NULL; if (cWaitOn != UINT32_MAX) { uint32_t j = (i + cWaitOn) % g_cThreads; switch (enmDesiredState) { case RTTHREADSTATE_CRITSECT: pvLock = &g_aCritSects[j]; break; case RTTHREADSTATE_RW_WRITE: case RTTHREADSTATE_RW_READ: pvLock = g_ahSemRWs[j]; break; case RTTHREADSTATE_MUTEX: pvLock = g_ahSemMtxes[j]; break; default: break; } } /* * Wait for this thread. */ for (unsigned iLoop = 0; ; iLoop++) { RTTHREADSTATE enmState = RTThreadGetReallySleeping(hThread); if (RTTHREAD_IS_SLEEPING(enmState)) { if ( enmState == enmDesiredState && ( !pvLock || ( pvLock == RTLockValidatorQueryBlocking(hThread) && !RTLockValidatorIsBlockedThreadInValidator(hThread) ) ) && RTThreadGetNativeState(hThread) != RTTHREADNATIVESTATE_RUNNING ) break; } else if ( enmState != RTTHREADSTATE_RUNNING && enmState != RTTHREADSTATE_INITIALIZING) return VERR_INTERNAL_ERROR; RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop + iLoop > 256 ? 1 : 0); RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); cWaitedOn++; } } RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); } if (!cMissing && !cWaitedOn) break; RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop > 256 ? 1 : 0); RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); } RTThreadSleep(0); /* fudge factor */ RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); return VINF_SUCCESS; } /** * Worker that starts the threads. * * @returns Same as RTThreadCreate. * @param cThreads The number of threads to start. * @param pfnThread Thread function. */ static int testStartThreads(uint32_t cThreads, PFNRTTHREAD pfnThread) { RTSemEventMultiReset(g_hThreadsStartedEvt); for (uint32_t i = 0; i < RT_ELEMENTS(g_ahThreads); i++) g_ahThreads[i] = NIL_RTTHREAD; int rc = VINF_SUCCESS; for (uint32_t i = 0; i < cThreads; i++) { rc = RTThreadCreateF(&g_ahThreads[i], pfnThread, (void *)(uintptr_t)i, 0, RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "thread-%02u", i); RTTEST_CHECK_RC_OK(g_hTest, rc); if (RT_FAILURE(rc)) break; } RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), rcCheck); return rc; } /** * Worker that waits for the threads to complete. * * @param cMillies How long to wait for each. * @param fStopOnError Whether to stop on error and heed the thread * return status. */ static void testWaitForThreads(uint32_t cMillies, bool fStopOnError) { uint32_t i = RT_ELEMENTS(g_ahThreads); while (i-- > 0) if (g_ahThreads[i] != NIL_RTTHREAD) { int rcThread; int rc2; RTTEST_CHECK_RC_OK(g_hTest, rc2 = RTThreadWait(g_ahThreads[i], cMillies, &rcThread)); if (RT_SUCCESS(rc2)) g_ahThreads[i] = NIL_RTTHREAD; if (fStopOnError && (RT_FAILURE(rc2) || RT_FAILURE(rcThread))) return; } } static void testIt(uint32_t cThreads, uint32_t cSecs, bool fLoops, PFNRTTHREAD pfnThread, const char *pszName) { /* * Init test. */ if (cSecs > 0) RTTestSubF(g_hTest, "%s, %u threads, %u secs", pszName, cThreads, cSecs); else RTTestSubF(g_hTest, "%s, %u threads, single pass", pszName, cThreads); RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_ahThreads) >= cThreads); RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_aCritSects) >= cThreads); g_cThreads = cThreads; g_fShutdown = false; for (uint32_t i = 0; i < cThreads; i++) { RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_ANY, "RTCritSect"), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_ANY, "RTSemRW"), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_ANY, "RTSemMutex"), VINF_SUCCESS); } RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventCreate(&g_hSemEvt), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hSemEvtMulti), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsStartedEvt), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsBlockingEvt), VINF_SUCCESS); /* * The test loop. */ uint32_t cPasses = 0; uint32_t cLoops = 0; uint32_t cDeadlocks = 0; uint32_t cErrors = RTTestErrorCount(g_hTest); uint64_t uStartNS = RTTimeNanoTS(); g_NanoTSStop = uStartNS + cSecs * UINT64_C(1000000000); do { g_iDeadlockThread = (cThreads - 1 + cPasses) % cThreads; g_cLoops = 0; g_cDeadlocks = 0; g_cThreadsBlocking = 0; RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hThreadsBlockingEvt), VINF_SUCCESS); int rc = testStartThreads(cThreads, pfnThread); if (RT_SUCCESS(rc)) { testWaitForThreads(TEST_LARGE_TIMEOUT + cSecs*1000, true); if (g_fDoNotSpin && RTTestErrorCount(g_hTest) != cErrors) testWaitForThreads(TEST_DEBUG_TIMEOUT, true); } RTTEST_CHECK(g_hTest, !fLoops || g_cLoops > 0); cLoops += g_cLoops; RTTEST_CHECK(g_hTest, !fLoops || g_cDeadlocks > 0); cDeadlocks += g_cDeadlocks; cPasses++; } while ( RTTestErrorCount(g_hTest) == cErrors && !fLoops && RTTimeNanoTS() < g_NanoTSStop); /* * Cleanup. */ ASMAtomicWriteBool(&g_fShutdown, true); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), VINF_SUCCESS); RTThreadSleep(RTTestErrorCount(g_hTest) == cErrors ? 0 : 50); for (uint32_t i = 0; i < cThreads; i++) { RTTEST_CHECK_RC(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS); } RTTEST_CHECK_RC(g_hTest, RTSemEventDestroy(g_hSemEvt), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hSemEvtMulti), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsStartedEvt), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsBlockingEvt), VINF_SUCCESS); testWaitForThreads(TEST_SMALL_TIMEOUT, false); /* * Print results if applicable. */ if (cSecs) { if (fLoops) RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cLoops=%u cDeadlocks=%u (%u%%)\n", cLoops, cDeadlocks, cLoops ? cDeadlocks * 100 / cLoops : 0); else RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cPasses=%u\n", cPasses); } } static DECLCALLBACK(int) testDd1Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; PRTCRITSECT pMine = &g_aCritSects[i]; PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; RT_NOREF_PV(ThreadSelf); RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); if (!(i & 1)) RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) { int rc; if (i != g_iDeadlockThread) { testThreadBlocking(); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); } else { RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VERR_SEM_LV_DEADLOCK); } RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); } if (!(i & 1)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); return VINF_SUCCESS; } static void testDd1(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, false, testDd1Thread, "deadlock, critsect"); } static DECLCALLBACK(int) testDd2Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; RTSEMRW hMine = g_ahSemRWs[i]; RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; int rc; RT_NOREF_PV(ThreadSelf); if (i & 1) { RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); if ((i & 3) == 3) RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS); } else RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext))) { if (i != g_iDeadlockThread) { testThreadBlocking(); RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS); } else { RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_RW_WRITE, 1)); if (RT_SUCCESS(rc)) { if (g_cThreads > 1) RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK); else RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_ILLEGAL_UPGRADE); } } RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hNext), VINF_SUCCESS); } if (i & 1) { if ((i & 3) == 3) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); } else RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); return VINF_SUCCESS; } static void testDd2(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, false, testDd2Thread, "deadlock, read-write"); } static DECLCALLBACK(int) testDd3Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; RTSEMRW hMine = g_ahSemRWs[i]; RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; int rc; RT_NOREF_PV(ThreadSelf); if (i & 1) RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); else RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext))) { do { rc = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT); if (rc != VINF_SUCCESS && rc != VERR_SEM_LV_DEADLOCK && rc != VERR_SEM_LV_ILLEGAL_UPGRADE) { RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc); break; } if (RT_SUCCESS(rc)) { RTTEST_CHECK_RC(g_hTest, rc = RTSemRWReleaseWrite(hNext), VINF_SUCCESS); if (RT_FAILURE(rc)) break; } else ASMAtomicIncU32(&g_cDeadlocks); ASMAtomicIncU32(&g_cLoops); } while (RTTimeNanoTS() < g_NanoTSStop); } if (i & 1) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); else RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); return VINF_SUCCESS; } static void testDd3(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, true, testDd3Thread, "deadlock, read-write race"); } static DECLCALLBACK(int) testDd4Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; RTSEMRW hMine = g_ahSemRWs[i]; RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; RT_NOREF_PV(ThreadSelf); do { int rc1 = (i & 1 ? RTSemRWRequestWrite : RTSemRWRequestRead)(hMine, TEST_SMALL_TIMEOUT); /* ugly ;-) */ RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (rc1 != VINF_SUCCESS && rc1 != VERR_SEM_LV_DEADLOCK && rc1 != VERR_SEM_LV_ILLEGAL_UPGRADE) { RTTestFailed(g_hTest, "#%u: RTSemRWRequest%s(hMine,) -> %Rrc\n", i, i & 1 ? "Write" : "read", rc1); break; } if (RT_SUCCESS(rc1)) { for (unsigned iInner = 0; iInner < 4; iInner++) { int rc2 = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT); if (rc2 != VINF_SUCCESS && rc2 != VERR_SEM_LV_DEADLOCK && rc2 != VERR_SEM_LV_ILLEGAL_UPGRADE) { RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc2); break; } if (RT_SUCCESS(rc2)) { RTTEST_CHECK_RC(g_hTest, rc2 = RTSemRWReleaseWrite(hNext), VINF_SUCCESS); if (RT_FAILURE(rc2)) break; } else ASMAtomicIncU32(&g_cDeadlocks); ASMAtomicIncU32(&g_cLoops); } RTTEST_CHECK_RC(g_hTest, rc1 = (i & 1 ? RTSemRWReleaseWrite : RTSemRWReleaseRead)(hMine), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_FAILURE(rc1)) break; } else ASMAtomicIncU32(&g_cDeadlocks); ASMAtomicIncU32(&g_cLoops); } while (RTTimeNanoTS() < g_NanoTSStop); return VINF_SUCCESS; } static void testDd4(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, true, testDd4Thread, "deadlock, read-write race v2"); } static DECLCALLBACK(int) testDd5Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; RTSEMMUTEX hMine = g_ahSemMtxes[i]; RTSEMMUTEX hNext = g_ahSemMtxes[(i + 1) % g_cThreads]; RT_NOREF_PV(ThreadSelf); RTTEST_CHECK_RC_RET(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); if (i & 1) RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS); if (RT_SUCCESS(testWaitForSemMutexToBeOwned(hNext))) { int rc; if (i != g_iDeadlockThread) { testThreadBlocking(); RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS); } else { RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_MUTEX, 1)); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK); } RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRelease(hNext), VINF_SUCCESS); } if (i & 1) RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS); return VINF_SUCCESS; } static void testDd5(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, false, testDd5Thread, "deadlock, mutex"); } static DECLCALLBACK(int) testDd6Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; PRTCRITSECT pMine = &g_aCritSects[i]; PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; RT_NOREF_PV(ThreadSelf); RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); if (i & 1) RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) { int rc; if (i != g_iDeadlockThread) { testThreadBlocking(); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); } else { RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); if (RT_SUCCESS(rc)) { RTSemEventSetSignaller(g_hSemEvt, g_ahThreads[0]); for (uint32_t iThread = 1; iThread < g_cThreads; iThread++) RTSemEventAddSignaller(g_hSemEvt, g_ahThreads[iThread]); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventSignal(g_hSemEvt), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTSemEventSetSignaller(g_hSemEvt, NIL_RTTHREAD); } } RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); } if (i & 1) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); return VINF_SUCCESS; } static void testDd6(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, false, testDd6Thread, "deadlock, event"); } static DECLCALLBACK(int) testDd7Thread(RTTHREAD ThreadSelf, void *pvUser) { uintptr_t i = (uintptr_t)pvUser; PRTCRITSECT pMine = &g_aCritSects[i]; PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; RT_NOREF_PV(ThreadSelf); RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); if (i & 1) RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) { int rc; if (i != g_iDeadlockThread) { testThreadBlocking(); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); } else { RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); if (RT_SUCCESS(rc)) { RTSemEventMultiSetSignaller(g_hSemEvtMulti, g_ahThreads[0]); for (uint32_t iThread = 1; iThread < g_cThreads; iThread++) RTSemEventMultiAddSignaller(g_hSemEvtMulti, g_ahThreads[iThread]); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hSemEvtMulti), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hSemEvtMulti), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); RTSemEventMultiSetSignaller(g_hSemEvtMulti, NIL_RTTHREAD); } } RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); } if (i & 1) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); return VINF_SUCCESS; } static void testDd7(uint32_t cThreads, uint32_t cSecs) { testIt(cThreads, cSecs, false, testDd7Thread, "deadlock, event multi"); } static void testLo1(void) { RTTestSub(g_hTest, "locking order basics"); /* Initialize the critsections, the first 4 has their own classes, the rest use the same class and relies on the sub-class mechanism for ordering. */ for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++) { if (i <= 3) { RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo1-%u", i), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-Auto"), VINF_SUCCESS); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); } else { g_ahClasses[i] = RTLockValidatorClassForSrcPos(RT_SRC_POS, "testLo1-%u", i); RTTEST_CHECK_RETV(g_hTest, g_ahClasses[i] != NIL_RTLOCKVALCLASS); RTTEST_CHECK_RETV(g_hTest, i == 4 || g_ahClasses[i] == g_ahClasses[i - 1]); if (i == 4) RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-None"), VINF_SUCCESS); else if (i == 5) RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_ANY, "RTCritSectLO-Any"), VINF_SUCCESS); else RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_USER + i, "RTCritSectLO-User"), VINF_SUCCESS); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 1 + (i - 4 + 1) * 2); /* released in cleanup. */ } } /* Enter the first 4 critsects in ascending order and thereby defining this as a valid lock order. */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); /* Now, leave and re-enter the critsects in a way that should break the order and check that we get the appropriate response. */ int rc; RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc= RTCritSectEnter(&g_aCritSects[2]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); /* Check that recursion isn't subject to order checks. */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); if (RT_SUCCESS(rc)) { RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); } RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); /* Enable strict release order for class 2 and check that violations are caught. */ RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); if (RT_FAILURE(rc)) { /* applies to recursions as well */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); } RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); if (RT_FAILURE(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); /* Test that sub-class order works (4 = NONE, 5 = ANY, 6+ = USER). */ uint32_t cErrorsBefore = RTTestErrorCount(g_hTest); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[8]), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[8]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS); /* Check that NONE trumps both ANY and USER. */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS); /* Take all the locks using sub-classes. */ if (cErrorsBefore == RTTestErrorCount(g_hTest)) { bool fSavedQuiet = RTLockValidatorSetQuiet(true); for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++) { RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[i]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); } for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++) { RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[i]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); } RTLockValidatorSetQuiet(fSavedQuiet); } /* Work up some hash statistics and trigger a violation to show them. */ for (uint32_t i = 0; i < 10240; i++) { RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); } RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VERR_SEM_LV_WRONG_ORDER); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); /* clean up */ //for (int i = RT_ELEMENTS(g_ahClasses) - 1; i >= 0; i--) for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++) { uint32_t c; if (i <= 3) RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 5 - i, (g_hTest, "c=%u i=%u\n", c, i)); else { uint32_t cExpect = 1 + (RT_ELEMENTS(g_ahClasses) - i) * 2 - 1; RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == cExpect, (g_hTest, "c=%u e=%u i=%u\n", c, cExpect, i)); } g_ahClasses[i] = NIL_RTLOCKVALCLASS; RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); } } static void testLo2(void) { RTTestSub(g_hTest, "locking order, critsect"); /* Initialize the critsection with all different classes */ for (unsigned i = 0; i < 4; i++) { RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo2-%u", i), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO"), VINF_SUCCESS); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); } /* Check the sub-class API.*/ RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); /* Enter the first 4 critsects in ascending order and thereby defining this as a valid lock order. */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); /* Now, leave and re-enter the critsects in a way that should break the order and check that we get the appropriate response. */ int rc; RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); /* Check that recursion isn't subject to order checks. */ RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); /* Enable strict release order for class 2 and check that violations are caught - including recursion. */ RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); /* start recursion */ RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); /* end recursion */ RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); /* clean up */ for (int i = 4 - 1; i >= 0; i--) { RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1); g_ahClasses[i] = NIL_RTLOCKVALCLASS; RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); } } static void testLo3(void) { RTTestSub(g_hTest, "locking order, read-write"); /* Initialize the critsection with all different classes */ for (unsigned i = 0; i < 6; i++) { RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo3-%u", i), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "hSemRW-Lo3-%u", i), VINF_SUCCESS); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 4); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 3); } /* Check the sub-class API.*/ RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); /* Enter the first 4 critsects in ascending order and thereby defining this as a valid lock order. */ RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[5], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* Now, leave and re-enter the critsects in a way that should break the order and check that we get the appropriate response. */ int rc; RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[1], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS); /* Check that recursion isn't subject to order checks. */ RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[2]), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); /* Enable strict release order for class 2 and 3, then check that violations are caught - including recursion. */ RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[3], true), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */ RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2); RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* (mixed) */ RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2); RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[4]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS); /* end recursion */ RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[5]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[4]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS); /* clean up */ for (int i = 6 - 1; i >= 0; i--) { uint32_t c; RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 2, (g_hTest, "c=%u i=%u\n", c, i)); g_ahClasses[i] = NIL_RTLOCKVALCLASS; RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS); g_ahSemRWs[i] = NIL_RTSEMRW; } } static void testLo4(void) { RTTestSub(g_hTest, "locking order, mutex"); /* Initialize the critsection with all different classes */ for (unsigned i = 0; i < 4; i++) { RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo4-%u", i), VINF_SUCCESS); RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTSemMutexLo4-%u", i), VINF_SUCCESS); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); } /* Check the sub-class API.*/ RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); /* Enter the first 4 critsects in ascending order and thereby defining this as a valid lock order. */ RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* Now, leave and re-enter the critsects in a way that should break the order and check that we get the appropriate response. */ int rc; RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS); /* Check that recursion isn't subject to order checks. */ RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); if (RT_SUCCESS(rc)) RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS); /* Enable strict release order for class 2 and check that violations are caught - including recursion. */ RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */ RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS); /* end recursion */ RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS); RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS); /* clean up */ for (int i = 4 - 1; i >= 0; i--) { RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1); g_ahClasses[i] = NIL_RTLOCKVALCLASS; RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS); } } static const char *testCheckIfLockValidationIsCompiledIn(void) { RTCRITSECT CritSect; RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectInit(&CritSect), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectEnter(&CritSect), ""); bool fRet = CritSect.pValidatorRec && CritSect.pValidatorRec->hThread == RTThreadSelf(); RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectLeave(&CritSect), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectDelete(&CritSect), ""); if (!fRet) return "Lock validation is not enabled for critical sections"; /* deadlock detection for RTSemRW */ RTSEMRW hSemRW; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-1"), NULL); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), ""); int rc = RTSemRWRequestWrite(hSemRW, 1); RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), ""); if (rc != VERR_SEM_LV_ILLEGAL_UPGRADE) return "Deadlock detection is not enabled for the read/write semaphores"; /* lock order for RTSemRW */ RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/, RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-2"), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), ""); rc = RTSemRWRequestWrite(hSemRW, 1); RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), ""); if (rc != VERR_SEM_LV_WRONG_ORDER) { RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "%Rrc\n", rc); return "Lock order validation is not enabled for the read/write semaphores"; } /* lock order for RTSemMutex */ RTSEMMUTEX hSemMtx1; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx1, 0 /*fFlags*/, RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-1"), ""); RTSEMMUTEX hSemMtx2; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx2, 0 /*fFlags*/, RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-2"), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx1, 50), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx1), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), ""); rc = RTSemMutexRequest(hSemMtx1, 50); RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx2), ""); hSemMtx2 = NIL_RTSEMMUTEX; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx1), ""); hSemMtx1 = NIL_RTSEMMUTEX; if (rc != VERR_SEM_LV_WRONG_ORDER) return "Lock order validation is not enabled for the mutex semaphores"; /* signaller checks on event sems. */ RTSEMEVENT hSemEvt; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventCreate(&hSemEvt), ""); RTSemEventSetSignaller(hSemEvt, RTThreadSelf()); RTSemEventSetSignaller(hSemEvt, NIL_RTTHREAD); rc = RTSemEventSignal(hSemEvt); RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventDestroy(hSemEvt), ""); if (rc != VERR_SEM_LV_NOT_SIGNALLER) return "Signalling checks are not enabled for the event semaphores"; /* signaller checks on multiple release event sems. */ RTSEMEVENTMULTI hSemEvtMulti; RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiCreate(&hSemEvtMulti), ""); RTSemEventMultiSetSignaller(hSemEvtMulti, RTThreadSelf()); RTSemEventMultiSetSignaller(hSemEvtMulti, NIL_RTTHREAD); rc = RTSemEventMultiSignal(hSemEvtMulti); RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiDestroy(hSemEvtMulti), ""); if (rc != VERR_SEM_LV_NOT_SIGNALLER) return "Signalling checks are not enabled for the multiple release event semaphores"; /* we're good */ return NULL; } int main() { /* * Init. */ int rc = RTTestInitAndCreate("tstRTLockValidator", &g_hTest); if (rc) return rc; RTTestBanner(g_hTest); RTLockValidatorSetEnabled(true); RTLockValidatorSetMayPanic(false); RTLockValidatorSetQuiet(true); const char *pszWhyDisabled = testCheckIfLockValidationIsCompiledIn(); if (pszWhyDisabled) return RTTestErrorCount(g_hTest) > 0 ? RTTestSummaryAndDestroy(g_hTest) : RTTestSkipAndDestroy(g_hTest, pszWhyDisabled); RTLockValidatorSetQuiet(false); bool fTestDd = true; bool fTestLo = true; /* * Some initial tests with verbose output (all single pass). */ if (fTestDd) { testDd1(3, 0); testDd2(1, 0); testDd2(3, 0); testDd5(3, 0); testDd6(3, 0); testDd7(3, 0); } if (fTestLo) { testLo1(); testLo2(); testLo3(); testLo4(); } /* * If successful, perform more thorough testing without noisy output. */ if (RTTestErrorCount(g_hTest) == 0) { RTLockValidatorSetQuiet(true); if (fTestDd) { testDd1( 2, SECS_SIMPLE_TEST); testDd1( 3, SECS_SIMPLE_TEST); testDd1( 7, SECS_SIMPLE_TEST); testDd1(10, SECS_SIMPLE_TEST); testDd1(15, SECS_SIMPLE_TEST); testDd1(30, SECS_SIMPLE_TEST); testDd2( 1, SECS_SIMPLE_TEST); testDd2( 2, SECS_SIMPLE_TEST); testDd2( 3, SECS_SIMPLE_TEST); testDd2( 7, SECS_SIMPLE_TEST); testDd2(10, SECS_SIMPLE_TEST); testDd2(15, SECS_SIMPLE_TEST); testDd2(30, SECS_SIMPLE_TEST); testDd3( 2, SECS_SIMPLE_TEST); testDd3(10, SECS_SIMPLE_TEST); testDd4( 2, SECS_RACE_TEST); testDd4( 6, SECS_RACE_TEST); testDd4(10, SECS_RACE_TEST); testDd4(30, SECS_RACE_TEST); testDd5( 2, SECS_RACE_TEST); testDd5( 3, SECS_RACE_TEST); testDd5( 7, SECS_RACE_TEST); testDd5(10, SECS_RACE_TEST); testDd5(15, SECS_RACE_TEST); testDd5(30, SECS_RACE_TEST); testDd6( 2, SECS_SIMPLE_TEST); testDd6( 3, SECS_SIMPLE_TEST); testDd6( 7, SECS_SIMPLE_TEST); testDd6(10, SECS_SIMPLE_TEST); testDd6(15, SECS_SIMPLE_TEST); testDd6(30, SECS_SIMPLE_TEST); testDd7( 2, SECS_SIMPLE_TEST); testDd7( 3, SECS_SIMPLE_TEST); testDd7( 7, SECS_SIMPLE_TEST); testDd7(10, SECS_SIMPLE_TEST); testDd7(15, SECS_SIMPLE_TEST); testDd7(30, SECS_SIMPLE_TEST); } } return RTTestSummaryAndDestroy(g_hTest); }