/* $Id: tstRTNoCrt-5.cpp 98510 2023-02-08 21:30:49Z vboxsync $ */ /** @file * IPRT Testcase - Testcase for the No-CRT 64-bit integer support. */ /* * Copyright (C) 2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included * in the VirtualBox distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0 */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #ifdef DEBUG # define RANDOM_LOOPS _256K #else # define RANDOM_LOOPS _1M #endif /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ typedef struct TSTRTNOCRT5SHIFT { uint64_t uValue; uint8_t cShift; uint64_t uExpected; } TSTRTNOCRT5SHIFT; typedef struct TSTRTNOCRT5MULT { uint64_t uFactor1, uFactor2; uint64_t uExpected; } TSTRTNOCRT5MULT; typedef struct TSTRTNOCRT5DIV { uint64_t uDividend, uDivisor; uint64_t uQuotient, uRemainder; } TSTRTNOCRT5DIV; /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ RTTEST g_hTest; TSTRTNOCRT5SHIFT volatile const g_aShiftRight[] = { { UINT64_C(0x8e7e6e5e4e3e2e1e), 0, UINT64_C(0x8e7e6e5e4e3e2e1e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 8, UINT64_C(0x008e7e6e5e4e3e2e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 16, UINT64_C(0x00008e7e6e5e4e3e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 24, UINT64_C(0x0000008e7e6e5e4e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 28, UINT64_C(0x00000008e7e6e5e4) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 32, UINT64_C(0x000000008e7e6e5e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 36, UINT64_C(0x0000000008e7e6e5) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 40, UINT64_C(0x00000000008e7e6e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 44, UINT64_C(0x000000000008e7e6) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 48, UINT64_C(0x0000000000008e7e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 52, UINT64_C(0x00000000000008e7) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 56, UINT64_C(0x000000000000008e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 60, UINT64_C(0x0000000000000008) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 64, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 65, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 99, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 127, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 132, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 255, UINT64_C(0x0000000000000000) }, }; static void tstShiftRight() { RTTestSub(g_hTest, "64-bit unsigned shift right"); /* static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aShiftRight); i++) { uint64_t const uResult = g_aShiftRight[i].uValue >> g_aShiftRight[i].cShift; if (uResult != g_aShiftRight[i].uExpected) RTTestFailed(g_hTest, "i=%u uValue=%#018RX64 SHR %u => %#018RX64, expected %#018RX64", i, g_aShiftRight[i].uValue, g_aShiftRight[i].cShift, uResult, g_aShiftRight[i].uExpected); } /* Random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { uint64_t const uValue = RTRandU64(); uint8_t const cShift = (uint8_t)RTRandU32Ex(0, i & 3 ? 63 : 255); uint64_t const uResult = uValue >> cShift; RTUINT64U uExpected = { uValue }; if (cShift <= 63) RTUInt64AssignShiftRight(&uExpected, cShift); else uExpected.u = 0; if (uResult != uExpected.u) RTTestFailed(g_hTest, "uValue=%#018RX64 SHR %u => %#018RX64, expected %#018RX64", uValue, cShift, uResult, uExpected.u); } } TSTRTNOCRT5SHIFT volatile const g_aShiftSignedRight[] = { { UINT64_C(0x8e7e6e5e4e3e2e1e), 0, UINT64_C(0x8e7e6e5e4e3e2e1e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 8, UINT64_C(0xff8e7e6e5e4e3e2e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 16, UINT64_C(0xffff8e7e6e5e4e3e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 24, UINT64_C(0xffffff8e7e6e5e4e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 28, UINT64_C(0xfffffff8e7e6e5e4) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 32, UINT64_C(0xffffffff8e7e6e5e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 36, UINT64_C(0xfffffffff8e7e6e5) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 40, UINT64_C(0xffffffffff8e7e6e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 44, UINT64_C(0xfffffffffff8e7e6) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 48, UINT64_C(0xffffffffffff8e7e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 52, UINT64_C(0xfffffffffffff8e7) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 56, UINT64_C(0xffffffffffffff8e) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 60, UINT64_C(0xfffffffffffffff8) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 64, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 65, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 99, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 127, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 132, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8e7e6e5e4e3e2e1e), 255, UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 0, UINT64_C(0x7e8e6e5e4e3e2e1e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 8, UINT64_C(0x007e8e6e5e4e3e2e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 16, UINT64_C(0x00007e8e6e5e4e3e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 24, UINT64_C(0x0000007e8e6e5e4e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 28, UINT64_C(0x00000007e8e6e5e4) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 32, UINT64_C(0x000000007e8e6e5e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 36, UINT64_C(0x0000000007e8e6e5) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 40, UINT64_C(0x00000000007e8e6e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 44, UINT64_C(0x000000000007e8e6) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 48, UINT64_C(0x0000000000007e8e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 52, UINT64_C(0x00000000000007e8) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 56, UINT64_C(0x000000000000007e) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 60, UINT64_C(0x0000000000000007) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 64, UINT64_C(0x0000000000000000) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 65, UINT64_C(0x0000000000000000) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 99, UINT64_C(0x0000000000000000) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 127, UINT64_C(0x0000000000000000) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 132, UINT64_C(0x0000000000000000) }, { UINT64_C(0x7e8e6e5e4e3e2e1e), 255, UINT64_C(0x0000000000000000) }, }; static void tstShiftRightArithmetic() { RTTestSub(g_hTest, "64-bit signed shift right"); /* static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aShiftSignedRight); i++) { int64_t const iResult = (int64_t)g_aShiftSignedRight[i].uValue >> g_aShiftSignedRight[i].cShift; if ((uint64_t)iResult != g_aShiftSignedRight[i].uExpected) RTTestFailed(g_hTest, "i=%u iValue=%#018RX64 SAR %u => %#018RX64, expected %#018RX64", i, g_aShiftSignedRight[i].uValue, g_aShiftSignedRight[i].cShift, iResult, g_aShiftSignedRight[i].uExpected); } /* Random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { uint64_t const uValue = RTRandU64(); uint8_t const cShift = (uint8_t)RTRandU32Ex(0, i & 3 ? 63 : 255); int64_t const iResult = (int64_t)uValue >> cShift; RTUINT64U uExpected = { uValue }; if (cShift > 63) uExpected.u = RT_BIT_64(63) & uValue ? UINT64_MAX : 0; else { RTUInt64AssignShiftRight(&uExpected, cShift); if (RT_BIT_64(63) & uValue) uExpected.u |= UINT64_MAX << (63 - cShift); } if ((uint64_t)iResult != uExpected.u) RTTestFailed(g_hTest, "uValue=%#018RX64 SHR %u => %#018RX64, expected %#018RX64", uValue, cShift, iResult, uExpected.u); } } TSTRTNOCRT5SHIFT volatile const g_aShiftLeft[] = { { UINT64_C(0x8e7d6c5e4a3e2b1e), 0, UINT64_C(0x8e7d6c5e4a3e2b1e) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 8, UINT64_C(0x7d6c5e4a3e2b1e00) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 16, UINT64_C(0x6c5e4a3e2b1e0000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 24, UINT64_C(0x5e4a3e2b1e000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 28, UINT64_C(0xe4a3e2b1e0000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 32, UINT64_C(0x4a3e2b1e00000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 36, UINT64_C(0xa3e2b1e000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 40, UINT64_C(0x3e2b1e0000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 44, UINT64_C(0xe2b1e00000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 48, UINT64_C(0x2b1e000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 52, UINT64_C(0xb1e0000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 56, UINT64_C(0x1e00000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 60, UINT64_C(0xe000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 64, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 65, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 99, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 127, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 132, UINT64_C(0x0000000000000000) }, { UINT64_C(0x8e7d6c5e4a3e2b1e), 255, UINT64_C(0x0000000000000000) }, }; static void tstShiftLeft() { RTTestSub(g_hTest, "64-bit shift left"); /* static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aShiftLeft); i++) { uint64_t const uResult = g_aShiftLeft[i].uValue << g_aShiftLeft[i].cShift; if (uResult != g_aShiftLeft[i].uExpected) RTTestFailed(g_hTest, "i=%u iValue=%#018RX64 SHL %u => %#018RX64, expected %#018RX64", i, g_aShiftLeft[i].uValue, g_aShiftLeft[i].cShift, uResult, g_aShiftLeft[i].uExpected); } for (size_t i = 0; i < RT_ELEMENTS(g_aShiftLeft); i++) { int64_t const iResult = (int64_t)g_aShiftLeft[i].uValue << g_aShiftLeft[i].cShift; if ((uint64_t)iResult != g_aShiftLeft[i].uExpected) RTTestFailed(g_hTest, "i=%u iValue=%#018RX64 SHL %u => %#018RX64, expected %#018RX64 [signed]", i, g_aShiftLeft[i].uValue, g_aShiftLeft[i].cShift, iResult, g_aShiftLeft[i].uExpected); } /* Random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { uint64_t const uValue = RTRandU64(); uint8_t const cShift = (uint8_t)RTRandU32Ex(0, i & 3 ? 63 : 255); uint64_t const uResult = uValue << cShift; RTUINT64U uExpected = { uValue }; if (cShift > 63) uExpected.u = 0; else RTUInt64AssignShiftLeft(&uExpected, cShift); if (uResult != uExpected.u) RTTestFailed(g_hTest, "uValue=%#018RX64 SHR %u => %#018RX64, expected %#018RX64", uValue, cShift, uResult, uExpected.u); } for (size_t i = 0; i < RANDOM_LOOPS; i++) { uint64_t const uValue = RTRandU64(); uint8_t const cShift = (uint8_t)RTRandU32Ex(0, i & 3 ? 63 : 255); int64_t const iResult = (int64_t)uValue << cShift; RTUINT64U uExpected = { uValue }; if (cShift > 63) uExpected.u = 0; else RTUInt64AssignShiftLeft(&uExpected, cShift); if ((uint64_t)iResult != uExpected.u) RTTestFailed(g_hTest, "uValue=%#018RX64 SHR %u => %#018RX64, expected %#018RX64", uValue, cShift, iResult, uExpected.u); } } TSTRTNOCRT5MULT volatile const g_aMult[] = { { UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000000), /* => */ UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x0000000000000001) }, { UINT64_C(0x000000001203879f), UINT64_C(0x0000000094585638), /* => */ UINT64_C(0x0A7041AFAAFD14C8) }, { UINT64_C(0x0000000100000000), UINT64_C(0x0000000010329484), /* => */ UINT64_C(0x1032948400000000) }, { UINT64_C(0x0958609457ad0f03), UINT64_C(0x8f9d0a07d9f83145), /* => */ UINT64_C(0xC77D9538D76C9ECF) }, }; static void tstMultiplication() { RTTestSub(g_hTest, "64-bit multiplication"); /* static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aMult); i++) { uint64_t const uResult = g_aMult[i].uFactor1 * g_aMult[i].uFactor2; if (uResult != g_aMult[i].uExpected) RTTestFailed(g_hTest, "i=%u %#018RX64 * %#018RX64 => %#018RX64, expected %#018RX64", i, g_aMult[i].uFactor1, g_aMult[i].uFactor2, uResult, g_aMult[i].uExpected); } for (size_t i = 0; i < RT_ELEMENTS(g_aMult); i++) { uint64_t const uResult = g_aMult[i].uFactor2 * g_aMult[i].uFactor1; if (uResult != g_aMult[i].uExpected) RTTestFailed(g_hTest, "i=%u %#018RX64 * %#018RX64 => %#018RX64, expected %#018RX64 (f2*f1)", i, g_aMult[i].uFactor2, g_aMult[i].uFactor1, uResult, g_aMult[i].uExpected); } for (size_t i = 0; i < RT_ELEMENTS(g_aMult); i++) { int64_t const iResult = (int64_t)g_aMult[i].uFactor1 * (int64_t)g_aMult[i].uFactor2; if ((uint64_t)iResult != g_aMult[i].uExpected) RTTestFailed(g_hTest, "i=%u %#018RX64 * %#018RX64 => %#018RX64, expected %#018RX64 (signed)", i, g_aMult[i].uFactor1, g_aMult[i].uFactor2, iResult, g_aMult[i].uExpected); } /* Random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uFactor1 = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uFactor2 = { RTRandU64Ex(0, i & 3 ? UINT64_MAX : UINT32_MAX) }; uint64_t const uResult = uFactor1.u * uFactor2.u; RTUINT64U uExpected; RTUInt64Mul(&uExpected, &uFactor1, &uFactor2); if (uResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 * %#018RX64 => %#018RX64, expected %#018RX64", uFactor1.u, uFactor2.u, uResult, uExpected.u); } for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uFactor1 = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uFactor2 = { RTRandU64Ex(0, i & 3 ? UINT64_MAX : UINT32_MAX) }; int64_t const iResult = (int64_t)uFactor1.u * (int64_t)uFactor2.u; RTUINT64U uExpected; RTUInt64Mul(&uExpected, &uFactor1, &uFactor2); if ((uint64_t)iResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 * %#018RX64 => %#018RX64, expected %#018RX64 (signed)", uFactor1.u, uFactor2.u, iResult, uExpected.u); } } TSTRTNOCRT5DIV volatile const g_aDivU[] = { { UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000002), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000003), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000001) }, { UINT64_C(0x0000000009821348), UINT64_C(0x0000000023949583), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x0000000009821348) }, { UINT64_C(0x0000000079821348), UINT64_C(0x0000000023949583), /* => */ UINT64_C(0x0000000000000003), UINT64_C(0x000000000EC452BF) }, { UINT64_C(0x0439583044583049), UINT64_C(0x0984987539485732), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x0439583044583049) }, { UINT64_C(0xf439583044583049), UINT64_C(0x0984987539485732), /* => */ UINT64_C(0x0000000000000019), UINT64_C(0x064674BDAC47AC67) }, { UINT64_C(0xdf8305930df94306), UINT64_C(0x00000043d9dfa039), /* => */ UINT64_C(0x00000000034B4D9D), UINT64_C(0x0000000990EFDB11) }, { UINT64_C(0xff9f939d0f0302d9), UINT64_C(0x0000000000000042), /* => */ UINT64_C(0x03DF823C8FBE1B31), UINT64_C(0x0000000000000037) }, { UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000042), /* => */ UINT64_C(0x03E0F83E0F83E0F8), UINT64_C(0x000000000000000f) }, { UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000007), /* => */ UINT64_C(0x2492492492492492), UINT64_C(0x0000000000000001) }, { UINT64_C(0xe1f17ac834b412b4), UINT64_C(0xda38027453291b1e), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x07b97853e18af796) }, /* These should trigger the rare overflow condition in the 32-bit approximation algorithm. */ { UINT64_C(0xe101721f65eb6226), UINT64_C(0x0000028180a483fa), /* => */ UINT64_C(0x000000000059CA9C), UINT64_C(0x000002814F9DB1CE) }, { UINT64_C(0x8b0a3ed1cda21100), UINT64_C(0x8b0a3ed1cda231d4), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x8B0A3ED1CDA21100) }, { UINT64_C(0xf1387d27f3a0c583), UINT64_C(0x000735f0d9661f93), /* => */ UINT64_C(0x0000000000002173), UINT64_C(0x000735F020AEA37A) }, { UINT64_C(0xb690b755d6f4496f), UINT64_C(0x000143027675d0d7), /* => */ UINT64_C(0x00000000000090b0), UINT64_C(0x00014302207bc59f) }, { UINT64_C(0x78a5b3efc6c82cf7), UINT64_C(0x00000f9b4400a9f0), /* => */ UINT64_C(0x000000000007bb06), UINT64_C(0x00000f9b0d11e157) }, { UINT64_C(0x8ae75b071b094efc), UINT64_C(0x0020904259dedd1e), /* => */ UINT64_C(0x0000000000000443), UINT64_C(0x002090421a40f822) }, { UINT64_C(0x90c9fb203c85fa7c), UINT64_C(0x000001ef807ef1e9), /* => */ UINT64_C(0x00000000004ace0e), UINT64_C(0x000001ef219141be) }, { UINT64_C(0xf9ae8ea6b31751df), UINT64_C(0x00004281110e2327), /* => */ UINT64_C(0x000000000003c11e), UINT64_C(0x00004280a179cc4d) }, /* These trigger an even more special case, where the QapproxDividend calculation overflows. */ { UINT64_C(0xffffffffffffffff), UINT64_C(0x00003C11D54B525f), /* => */ UINT64_C(0x00000000000442FF), UINT64_C(0x00003C11D540755E) }, { UINT64_C(0xfffffffffefa1235), UINT64_C(0x0001001702112f8c), /* => */ UINT64_C(0x000000000000FFE8), UINT64_C(0x00010017010A8755) }, }; static void tstUnsignedDivision() { RTTestSub(g_hTest, "64-bit unsigned division"); /* * static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aDivU); i++) { uint64_t const uResult = g_aDivU[i].uDividend / g_aDivU[i].uDivisor; /* aulldiv */ if (uResult != g_aDivU[i].uQuotient) RTTestFailed(g_hTest, "i=%u %#018RX64 / %#018RX64 => %#018RX64, expected %#018RX64", i, g_aDivU[i].uDividend, g_aDivU[i].uDivisor, uResult, g_aDivU[i].uQuotient); } for (size_t i = 0; i < RT_ELEMENTS(g_aDivU); i++) { uint64_t const uResult = g_aDivU[i].uDividend % g_aDivU[i].uDivisor; /* aullrem */ if (uResult != g_aDivU[i].uRemainder) RTTestFailed(g_hTest, "i=%u %#018RX64 %% %#018RX64 => %#018RX64, expected %#018RX64", i, g_aDivU[i].uDividend, g_aDivU[i].uDivisor, uResult, g_aDivU[i].uRemainder); } for (size_t i = 0; i < RT_ELEMENTS(g_aDivU); i++) { uint64_t const uDividend = g_aDivU[i].uDividend; uint64_t const uDivisor = g_aDivU[i].uDivisor; uint64_t const uQuotient = uDividend / uDivisor; /* auldvrm hopefully - only not in unoptimized builds. */ uint64_t const uRemainder = uDividend % uDivisor; if ( uQuotient != g_aDivU[i].uQuotient || uRemainder != g_aDivU[i].uRemainder) RTTestFailed(g_hTest, "i=%u %#018RX64 / %#018RX64 => q=%#018RX64 r=%#018RX64, expected q=%#018RX64 r=%#018RX64", i, g_aDivU[i].uDividend, g_aDivU[i].uDivisor, uQuotient, uRemainder, g_aDivU[i].uQuotient, g_aDivU[i].uRemainder); } /* * Same but with random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(0, i & 3 ? UINT64_MAX : UINT32_MAX) }; uint64_t const uResult = uDividend.u / uDivisor.u; RTUINT64U uExpected; RTUInt64Div(&uExpected, &uDividend, &uDivisor); if (uResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 / %#018RX64 => %#018RX64, expected %#018RX64", uDividend.u, uDivisor.u, uResult, uExpected.u); } for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(0, i & 3 ? UINT64_MAX : UINT32_MAX) }; uint64_t const uResult = uDividend.u % uDivisor.u; RTUINT64U uExpected; RTUInt64Mod(&uExpected, &uDividend, &uDivisor); if (uResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 %% %#018RX64 => %#018RX64, expected %#018RX64", uDividend.u, uDivisor.u, uResult, uExpected.u); } for (uint64_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(0, i & 3 ? UINT64_MAX : UINT32_MAX) }; uint64_t const uRemainder = uDividend.u % uDivisor.u; uint64_t const uQuotient = uDividend.u / uDivisor.u; RTUINT64U uExpectedQ, uExpectedR; RTUInt64DivRem(&uExpectedQ, &uExpectedR, &uDividend, &uDivisor); if ( uQuotient != uExpectedQ.u || uRemainder != uExpectedR.u) RTTestFailed(g_hTest, "%#018RX64 / %#018RX64 => q=%#018RX64 r=%#018RX64, expected q=%#018RX64 r=%#018RX64", uDividend.u, uDivisor.u, uQuotient, uRemainder, uExpectedQ.u, uExpectedR.u); } } TSTRTNOCRT5DIV volatile const g_aDivS[] = { { UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000000), UINT64_C(0xffffffffffffffff), /* => */ UINT64_C(0x0000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000001), UINT64_C(0xffffffffffffffff), /* => */ UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000000) }, { UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000000) }, { UINT64_C(0xffffffffffffffff), UINT64_C(0xffffffffffffffff), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000002), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x0000000000000003), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0x0000000000000001) }, { UINT64_C(0xfffffffffffffffd), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0xffffffffffffffff), UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x0000000000000003), UINT64_C(0xfffffffffffffffe), /* => */ UINT64_C(0xffffffffffffffff), UINT64_C(0x0000000000000001) }, { UINT64_C(0xfffffffffffffffd), UINT64_C(0xfffffffffffffffe), /* => */ UINT64_C(0x0000000000000001), UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8000000000000001), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x8000000000000001), UINT64_C(0x0000000000000000) }, { UINT64_C(0x8000000000000001), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0xc000000000000001), UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8000000000000001), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0xc000000000000001), UINT64_C(0xffffffffffffffff) }, { UINT64_C(0x8000000000000000), UINT64_C(0x0000000000000001), /* => */ UINT64_C(0x8000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x8000000000000000), UINT64_C(0x0000000000000002), /* => */ UINT64_C(0xc000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x8000000000000000), UINT64_C(0xffffffffffffffff), /* => */ UINT64_C(0x8000000000000000), UINT64_C(0x0000000000000000) }, { UINT64_C(0x8000000000000000), UINT64_C(0xfffffffffffffffe), /* => */ UINT64_C(0x4000000000000000), UINT64_C(0x0000000000000000) }, }; static void tstSignedDivision() { RTTestSub(g_hTest, "64-bit signed division"); /* * static tests from array. */ for (size_t i = 0; i < RT_ELEMENTS(g_aDivS); i++) { int64_t const iResult = (int64_t)g_aDivS[i].uDividend / (int64_t)g_aDivS[i].uDivisor; /* aulldiv */ if ((uint64_t)iResult != g_aDivS[i].uQuotient) RTTestFailed(g_hTest, "i=%u %#018RX64 / %#018RX64 => %#018RX64, expected %#018RX64", i, g_aDivS[i].uDividend, g_aDivS[i].uDivisor, iResult, g_aDivS[i].uQuotient); } for (size_t i = 0; i < RT_ELEMENTS(g_aDivS); i++) { int64_t const iResult = (int64_t)g_aDivS[i].uDividend % (int64_t)g_aDivS[i].uDivisor; /* aullrem */ if ((uint64_t)iResult != g_aDivS[i].uRemainder) RTTestFailed(g_hTest, "i=%u %#018RX64 %% %#018RX64 => %#018RX64, expected %#018RX64", i, g_aDivS[i].uDividend, g_aDivS[i].uDivisor, iResult, g_aDivS[i].uRemainder); } for (size_t i = 0; i < RT_ELEMENTS(g_aDivS); i++) { int64_t const iDividend = (int64_t)g_aDivS[i].uDividend; int64_t const iDivisor = (int64_t)g_aDivS[i].uDivisor; int64_t const iQuotient = iDividend / iDivisor; /* auldvrm hopefully - only not in unoptimized builds. */ int64_t const iRemainder = iDividend % iDivisor; if ( (uint64_t)iQuotient != g_aDivS[i].uQuotient || (uint64_t)iRemainder != g_aDivS[i].uRemainder) RTTestFailed(g_hTest, "i=%u %#018RX64 / %#018RX64 => q=%#018RX64 r=%#018RX64, expected q=%#018RX64 r=%#018RX64", i, g_aDivS[i].uDividend, g_aDivS[i].uDivisor, iQuotient, iRemainder, g_aDivS[i].uQuotient, g_aDivS[i].uRemainder); } /* Check that uint64 works: */ { RTUINT64U Tmp = { 42 }; RTTEST_CHECK(g_hTest, !RTUInt64IsSigned(&Tmp)); RTUInt64AssignNeg(&Tmp); int64_t iExpect = -42; RTTEST_CHECK(g_hTest, Tmp.u == (uint64_t)iExpect); RTTEST_CHECK(g_hTest, RTUInt64IsSigned(&Tmp)); } /* * Same but with random values via uint64. */ for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(1, i & 3 ? UINT64_MAX : UINT32_MAX) }; int64_t const iResult = (int64_t)uDividend.u / (int64_t)uDivisor.u; RTUINT64U uExpected; RTUInt64DivSigned(&uExpected, &uDividend, &uDivisor); if ((uint64_t)iResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 / %#018RX64 => %#018RX64, expected %#018RX64", uDividend.u, uDivisor.u, iResult, uExpected.u); } for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(1, i & 3 ? UINT64_MAX : UINT32_MAX) }; int64_t const iResult = (int64_t)uDividend.u % (int64_t)uDivisor.u; RTUINT64U uExpected; RTUInt64ModSigned(&uExpected, &uDividend, &uDivisor); if ((uint64_t)iResult != uExpected.u) RTTestFailed(g_hTest, "%#018RX64 %% %#018RX64 => %#018RX64, expected %#018RX64", uDividend.u, uDivisor.u, iResult, uExpected.u); } for (size_t i = 0; i < RANDOM_LOOPS; i++) { RTUINT64U const uDividend = { RTRandU64Ex(0, i & 7 ? UINT64_MAX : UINT32_MAX) }; RTUINT64U const uDivisor = { RTRandU64Ex(1, i & 3 ? UINT64_MAX : UINT32_MAX) }; int64_t const iRemainder = (int64_t)uDividend.u % (int64_t)uDivisor.u; int64_t const iQuotient = (int64_t)uDividend.u / (int64_t)uDivisor.u; RTUINT64U uExpectedQ, uExpectedR; RTUInt64DivRemSigned(&uExpectedQ, &uExpectedR, &uDividend, &uDivisor); if ( (uint64_t)iQuotient != uExpectedQ.u || (uint64_t)iRemainder != uExpectedR.u) RTTestFailed(g_hTest, "%#018RX64 / %#018RX64 => q=%#018RX64 r=%#018RX64, expected q=%#018RX64 r=%#018RX64", uDividend.u, uDivisor.u, iQuotient, iRemainder, uExpectedQ.u, uExpectedR.u); } } int main() { RTEXITCODE rcExit = RTTestInitAndCreate("tstRTNoCrt-5", &g_hTest); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; tstShiftRight(); tstShiftRightArithmetic(); tstShiftLeft(); tstMultiplication(); tstUnsignedDivision(); tstSignedDivision(); return RTTestSummaryAndDestroy(g_hTest); }