/* $Id: tstTimer.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */ /** @file * IPRT Testcase - Timers. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static volatile unsigned gcTicks; static volatile uint64_t gu64Min; static volatile uint64_t gu64Max; static volatile uint64_t gu64Prev; static volatile uint64_t gu64Norm; static uint32_t cFrequency[200]; static DECLCALLBACK(void) TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick) { RT_NOREF_PV(pTimer); RT_NOREF_PV(pvUser); RT_NOREF_PV(iTick); gcTicks++; const uint64_t u64Now = RTTimeNanoTS(); if (gu64Prev) { const uint64_t u64Delta = u64Now - gu64Prev; if (u64Delta < gu64Min) gu64Min = u64Delta; if (u64Delta > gu64Max) gu64Max = u64Delta; int i = (int)( RT_ELEMENTS(cFrequency) - (u64Delta * (RT_ELEMENTS(cFrequency) / 2) / gu64Norm)); if (i >= 0 && i < (int)RT_ELEMENTS(cFrequency)) cFrequency[i]++; } gu64Prev = u64Now; } int main() { /* * Init runtime */ unsigned cErrors = 0; int rc = RTR3InitExeNoArguments(0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * Check that the clock is reliable. */ RTPrintf("tstTimer: TESTING - RTTimeNanoTS() for 2sec\n"); uint64_t uTSMillies = RTTimeMilliTS(); uint64_t uTSBegin = RTTimeNanoTS(); uint64_t uTSLast = uTSBegin; uint64_t uTSDiff; uint64_t cIterations = 0; do { uint64_t uTS = RTTimeNanoTS(); if (uTS < uTSLast) { RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. uTS=%RU64 uTSLast=%RU64\n", uTS, uTSLast); cErrors++; } if (++cIterations > (2*1000*1000*1000)) { RTPrintf("tstTimer: FAILURE - RTTimeNanoTS() is unreliable. cIterations=%RU64 uTS=%RU64 uTSBegin=%RU64\n", cIterations, uTS, uTSBegin); return 1; } uTSLast = uTS; uTSDiff = uTSLast - uTSBegin; } while (uTSDiff < (2*1000*1000*1000)); uTSMillies = RTTimeMilliTS() - uTSMillies; if (uTSMillies >= 2500 || uTSMillies <= 1500) { RTPrintf("tstTimer: FAILURE - uTSMillies=%RI64 uTSBegin=%RU64 uTSLast=%RU64 uTSDiff=%RU64\n", uTSMillies, uTSBegin, uTSLast, uTSDiff); cErrors++; } if (!cErrors) RTPrintf("tstTimer: OK - RTTimeNanoTS()\n"); /* * Tests. */ static struct { unsigned uMicroInterval; unsigned uMilliesWait; unsigned cLower; unsigned cUpper; } aTests[] = { { 32000, 2000, 0, 0 }, { 20000, 2000, 0, 0 }, { 10000, 2000, 0, 0 }, { 8000, 2000, 0, 0 }, { 2000, 2000, 0, 0 }, { 1000, 2000, 0, 0 }, { 500, 5000, 0, 0 }, { 200, 5000, 0, 0 }, { 100, 5000, 0, 0 } }; unsigned i = 0; for (i = 0; i < RT_ELEMENTS(aTests); i++) { aTests[i].cLower = (aTests[i].uMilliesWait*1000 - aTests[i].uMilliesWait*100) / aTests[i].uMicroInterval; aTests[i].cUpper = (aTests[i].uMilliesWait*1000 + aTests[i].uMilliesWait*100) / aTests[i].uMicroInterval; gu64Norm = aTests[i].uMicroInterval*1000; RTPrintf("\n" "tstTimer: TESTING - %d us interval, %d ms wait, expects %d-%d ticks.\n", aTests[i].uMicroInterval, aTests[i].uMilliesWait, aTests[i].cLower, aTests[i].cUpper); /* * Start timer which ticks every 10ms. */ gcTicks = 0; PRTTIMER pTimer; gu64Max = 0; gu64Min = UINT64_MAX; gu64Prev = 0; RT_ZERO(cFrequency); #ifdef RT_OS_WINDOWS if (aTests[i].uMicroInterval < 1000) continue; rc = RTTimerCreate(&pTimer, aTests[i].uMicroInterval / 1000, TimerCallback, NULL); #else rc = RTTimerCreateEx(&pTimer, aTests[i].uMicroInterval * (uint64_t)1000, 0, TimerCallback, NULL); #endif if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerCreateEx(,%u*1M,,,) -> %Rrc\n", aTests[i].uMicroInterval, rc); cErrors++; continue; } /* * Start the timer and active waiting for the requested test period. */ uTSBegin = RTTimeNanoTS(); #ifndef RT_OS_WINDOWS rc = RTTimerStart(pTimer, 0); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerStart(,0) -> %Rrc\n", rc); cErrors++; } #endif while (RTTimeNanoTS() - uTSBegin < (uint64_t)aTests[i].uMilliesWait * 1000000) /* nothing */; /* destroy the timer */ uint64_t uTSEnd = RTTimeNanoTS(); uTSDiff = uTSEnd - uTSBegin; rc = RTTimerDestroy(pTimer); if (RT_FAILURE(rc)) { RTPrintf("tstTimer: FAILURE - RTTimerDestroy() -> %d gcTicks=%d\n", rc, gcTicks); cErrors++; } RTPrintf("tstTimer: uTS=%RI64 (%RU64 - %RU64)\n", uTSDiff, uTSBegin, uTSEnd); unsigned cTicks = gcTicks; RTThreadSleep(aTests[i].uMicroInterval/1000 * 3); if (gcTicks != cTicks) { RTPrintf("tstTimer: FAILURE - RTTimerDestroy() didn't really stop the timer! gcTicks=%d cTicks=%d\n", gcTicks, cTicks); cErrors++; continue; } /* * Check the number of ticks. */ if (gcTicks < aTests[i].cLower) { RTPrintf("tstTimer: FAILURE - Too few ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else if (gcTicks > aTests[i].cUpper) { RTPrintf("tstTimer: FAILURE - Too many ticks gcTicks=%d (expected %d-%d)", gcTicks, aTests[i].cUpper, aTests[i].cLower); cErrors++; } else RTPrintf("tstTimer: OK - gcTicks=%d", gcTicks); RTPrintf(" min=%RU64 max=%RU64\n", gu64Min, gu64Max); for (int j = 0; j < (int)RT_ELEMENTS(cFrequency); j++) { uint32_t len = cFrequency[j] * 70 / gcTicks; uint32_t deviation = j - RT_ELEMENTS(cFrequency) / 2; uint64_t u64FreqPercent = (uint64_t)cFrequency[j] * 10000 / gcTicks; uint64_t u64FreqPercentFrac = u64FreqPercent % 100; u64FreqPercent = u64FreqPercent / 100; RTPrintf("%+4d%c %6u %3llu.%02llu%% ", deviation, deviation == 0 ? ' ' : '%', cFrequency[j], u64FreqPercent, u64FreqPercentFrac); for (unsigned k = 0; k < len; k++) RTPrintf("*"); RTPrintf("\n"); } } /* * Summary. */ if (!cErrors) RTPrintf("tstTimer: SUCCESS\n"); else RTPrintf("tstTimer: FAILURE %d errors\n", cErrors); return !!cErrors; }