/* $Id: PGMPool.cpp 2981 2007-06-01 16:01:28Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006-2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. */ /** @page pg_pgm_pool PGM Shadow Page Pool * * Motivations: * -# Relationship between shadow page tables and physical guest pages. This * should allow us to skip most of the global flushes now following access * handler changes. The main expense is flushing shadow pages. * -# Limit the pool size (currently it's kind of limitless IIRC). * -# Allocate shadow pages from GC. Currently we're allocating at SyncCR3 time. * -# Required for 64-bit guests. * -# Combining the PD cache and page pool in order to simplify caching. * * * @section sec_pgm_pool_outline Design Outline * * The shadow page pool tracks pages used for shadowing paging structures (i.e. page * tables, page directory, page directory pointer table and page map level-4). Each * page in the pool has an unique identifier. This identifier is used to link a guest * physical page to a shadow PT. The identifier is a non-zero value and has a * relativly low max value - say 14 bits. This makes it possible to fit it into the * upper bits of the of the aHCPhys entries in the ram range. * * By restricting host physical memory to the first 48 bits (which is the announced * physical memory range of the K8L chip (scheduled for 2008)), we can safely use the * upper 16 bits for shadow page ID and reference counting. * * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT or * PD. This is solved by creating a list of physical cross reference extents when * ever this happens. Each node in the list (extent) is can contain 3 page pool * indexes. The list it self is chained using indexes into the paPhysExt array. * * * @section sec_pgm_pool_life Life Cycle of a Shadow Page * * -# The SyncPT function requests a page from the pool. * The request includes the kind of page it is (PT/PD, PAE/legacy), the * address of the page it's shadowing, and more. * -# The pool responds to the request by allocating a new page. * When the cache is enabled, it will first check if it's in the cache. * Should the pool be exhausted, one of two things can be done: * -# Flush the whole pool and current CR3. * -# Use the cache to find a page which can be flushed (~age). * -# The SyncPT function will sync one or more pages and insert it into the * shadow PD. * -# The SyncPage function may sync more pages on a later \#PFs. * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases. * When caching is enabled, the page isn't flush but remains in the cache. * * * @section sec_pgm_pool_impl Monitoring * * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages * sharing the monitor get linked using the iMonitoredNext/Prev. The head page * is the pvUser to the access handlers. * * * @section sec_pgm_pool_impl Implementation * * The pool will take pages from the MM page pool. The tracking data (attributes, * bitmaps and so on) are allocated from the hypervisor heap. The pool content can * be accessed both by using the page id and the physical address (HC). The former * is managed by means of an array, the latter by an offset based AVL tree. * * Flushing of a pool page means that we iterate the content (we know what kind * it is) and updates the link information in the ram range. * * ... */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #include #include #include "PGMInternal.h" #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ #ifdef PGMPOOL_WITH_MONITORING static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser); #endif /* PGMPOOL_WITH_MONITORING */ /** * Initalizes the pool * * @returns VBox status code. * @param pVM The VM handle. */ int pgmR3PoolInit(PVM pVM) { /* * Query Pool config. */ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool"); uint16_t cMaxPages; int rc = CFGMR3QueryU16(pCfg, "MaxPages", &cMaxPages); if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT) cMaxPages = 4*_1M >> PAGE_SHIFT; else if (VBOX_FAILURE(rc)) AssertRCReturn(rc, rc); else AssertMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16), ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER); cMaxPages = RT_ALIGN(cMaxPages, 16); uint16_t cMaxUsers; rc = CFGMR3QueryU16(pCfg, "MaxUsers", &cMaxUsers); if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT) cMaxUsers = cMaxPages * 2; else if (VBOX_FAILURE(rc)) AssertRCReturn(rc, rc); else AssertMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K, ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER); uint16_t cMaxPhysExts; rc = CFGMR3QueryU16(pCfg, "MaxPhysExts", &cMaxPhysExts); if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT) cMaxPhysExts = RT_MAX(cMaxPages * 2, PGMPOOL_IDX_LAST); else if (VBOX_FAILURE(rc)) AssertRCReturn(rc, rc); else AssertMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST, ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxUsers), VERR_INVALID_PARAMETER); bool fCacheEnabled; rc = CFGMR3QueryBool(pCfg, "CacheEnabled", &fCacheEnabled); if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_NO_PARENT) fCacheEnabled = true; else if (VBOX_FAILURE(rc)) AssertRCReturn(rc, rc); Log(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n", cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled)); /* * Allocate the data structures. */ uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]); #ifdef PGMPOOL_WITH_USER_TRACKING cb += cMaxUsers * sizeof(PGMPOOLUSER); #endif #ifdef PGMPOOL_WITH_GCPHYS_TRACKING cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT); #endif PPGMPOOL pPool; rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool); if (VBOX_FAILURE(rc)) return rc; pVM->pgm.s.pPoolHC = pPool; pVM->pgm.s.pPoolGC = MMHyperHC2GC(pVM, pPool); /* * Initialize it. */ pPool->pVMHC = pVM; pPool->pVMGC = pVM->pVMGC; pPool->cMaxPages = cMaxPages; pPool->cCurPages = PGMPOOL_IDX_FIRST; #ifdef PGMPOOL_WITH_USER_TRACKING pPool->iUserFreeHead = 0; pPool->cMaxUsers = cMaxUsers; PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages]; pPool->paUsersHC = paUsers; pPool->paUsersGC = MMHyperHC2GC(pVM, paUsers); for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; #endif #ifdef PGMPOOL_WITH_GCPHYS_TRACKING pPool->iPhysExtFreeHead = 0; pPool->cMaxPhysExts = cMaxPhysExts; PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers]; pPool->paPhysExtsHC = paPhysExts; pPool->paPhysExtsGC = MMHyperHC2GC(pVM, paPhysExts); for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; #endif #ifdef PGMPOOL_WITH_CACHE for (unsigned i = 0; i < ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; pPool->fCacheEnabled = fCacheEnabled; #endif #ifdef PGMPOOL_WITH_MONITORING pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler; pPool->pszAccessHandler = "Guest Paging Access Handler"; #endif pPool->HCPhysTree = 0; /* The NIL entry. */ Assert(NIL_PGMPOOL_IDX == 0); pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID; /* The Shadow 32-bit PD. */ pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS; pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS; pPool->aPages[PGMPOOL_IDX_PD].pvPageHC = pVM->pgm.s.pHC32BitPD; pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_ROOT_32BIT_PD; pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD; /* The Shadow PAE PDs. This is actually 4 pages! */ pPool->aPages[PGMPOOL_IDX_PAE_PD].Core.Key = NIL_RTHCPHYS; pPool->aPages[PGMPOOL_IDX_PAE_PD].GCPhys = NIL_RTGCPHYS; pPool->aPages[PGMPOOL_IDX_PAE_PD].pvPageHC = pVM->pgm.s.apHCPaePDs[0]; pPool->aPages[PGMPOOL_IDX_PAE_PD].enmKind = PGMPOOLKIND_ROOT_PAE_PD; pPool->aPages[PGMPOOL_IDX_PAE_PD].idx = PGMPOOL_IDX_PAE_PD; /* The Shadow PDPTR. */ pPool->aPages[PGMPOOL_IDX_PDPTR].Core.Key = NIL_RTHCPHYS; pPool->aPages[PGMPOOL_IDX_PDPTR].GCPhys = NIL_RTGCPHYS; pPool->aPages[PGMPOOL_IDX_PDPTR].pvPageHC = pVM->pgm.s.pHCPaePDPTR; pPool->aPages[PGMPOOL_IDX_PDPTR].enmKind = PGMPOOLKIND_ROOT_PDPTR; pPool->aPages[PGMPOOL_IDX_PDPTR].idx = PGMPOOL_IDX_PDPTR; /* The Shadow Page Map Level-4. */ pPool->aPages[PGMPOOL_IDX_PML4].Core.Key = NIL_RTHCPHYS; pPool->aPages[PGMPOOL_IDX_PML4].GCPhys = NIL_RTGCPHYS; pPool->aPages[PGMPOOL_IDX_PML4].pvPageHC = pVM->pgm.s.pHCPaePML4; pPool->aPages[PGMPOOL_IDX_PML4].enmKind = PGMPOOLKIND_ROOT_PML4; pPool->aPages[PGMPOOL_IDX_PML4].idx = PGMPOOL_IDX_PML4; /* * Set common stuff. */ for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++) { pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX; #ifdef PGMPOOL_WITH_USER_TRACKING pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX; #endif #ifdef PGMPOOL_WITH_MONITORING pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX; pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX; pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX; pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX; #endif #ifdef PGMPOOL_WITH_CACHE pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX; pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX; #endif Assert(VALID_PTR(pPool->aPages[iPage].pvPageHC)); Assert(pPool->aPages[iPage].idx == iPage); Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS); Assert(!pPool->aPages[iPage].fSeenNonGlobal); Assert(!pPool->aPages[iPage].fMonitored); Assert(!pPool->aPages[iPage].fCached); Assert(!pPool->aPages[iPage].fZeroed); Assert(!pPool->aPages[iPage].fReusedFlushPending); } #ifdef VBOX_WITH_STATISTICS /* * Register statistics. */ STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size."); STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size."); STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use."); STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages."); STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc."); STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolClearAll."); STAM_REG(pVM, &pPool->StatFlushAllInt, STAMTYPE_PROFILE, "/PGM/Pool/FlushAllInt", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushAllInt."); STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage."); STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree."); STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spend zeroing pages. Overlaps with Alloc."); # ifdef PGMPOOL_WITH_USER_TRACKING STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records."); STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries."); STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackDeref."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPT."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPTs."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow."); STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_OCCURENCES, "The number of times we were out of user tracking records."); # endif # ifdef PGMPOOL_WITH_GCPHYS_TRACKING STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_OCCURENCES, "Profiling deref activity related tracking GC physical pages."); STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches."); STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls."); # endif # ifdef PGMPOOL_WITH_MONITORING STAM_REG(pVM, &pPool->StatMonitorGC, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/GC", STAMUNIT_TICKS_PER_CALL, "Profiling the GC PT access handler."); STAM_REG(pVM, &pPool->StatMonitorGCEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/GCEmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); STAM_REG(pVM, &pPool->StatMonitorGCFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/GCFlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the GC PT access handler."); STAM_REG(pVM, &pPool->StatMonitorGCFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/GCFork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); STAM_REG(pVM, &pPool->StatMonitorGCHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/GCHandled", STAMUNIT_TICKS_PER_CALL, "Profiling the GC access we've handled (except REP STOSD)."); STAM_REG(pVM, &pPool->StatMonitorGCIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/GCIntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction."); STAM_REG(pVM, &pPool->StatMonitorGCIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/GCIntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing."); STAM_REG(pVM, &pPool->StatMonitorGCRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/GCRepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); STAM_REG(pVM, &pPool->StatMonitorGCRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/GCRepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); STAM_REG(pVM, &pPool->StatMonitorHC, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/HC", STAMUNIT_TICKS_PER_CALL, "Profiling the HC PT access handler."); STAM_REG(pVM, &pPool->StatMonitorHCEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/HCEmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); STAM_REG(pVM, &pPool->StatMonitorHCFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/HCFlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the HC PT access handler."); STAM_REG(pVM, &pPool->StatMonitorHCFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/HCFork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); STAM_REG(pVM, &pPool->StatMonitorHCHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/HCHandled", STAMUNIT_TICKS_PER_CALL, "Profiling the HC access we've handled (except REP STOSD)."); STAM_REG(pVM, &pPool->StatMonitorHCRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/HCRepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); STAM_REG(pVM, &pPool->StatMonitorHCRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/HCRepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); STAM_REG(pVM, &pPool->StatMonitorHCAsync, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/HCAsync", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush."); STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value."); STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages."); # endif # ifdef PGMPOOL_WITH_CACHE STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)"); STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page."); STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations."); STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations."); # endif #endif /* VBOX_WITH_STATISTICS */ return VINF_SUCCESS; } /** * Relocate the page pool data. * * @param pVM The VM handle. */ void pgmR3PoolRelocate(PVM pVM) { pVM->pgm.s.pPoolGC = MMHyperHC2GC(pVM, pVM->pgm.s.pPoolHC); pVM->pgm.s.pPoolHC->pVMGC = pVM->pVMGC; #ifdef PGMPOOL_WITH_USER_TRACKING pVM->pgm.s.pPoolHC->paUsersGC = MMHyperHC2GC(pVM, pVM->pgm.s.pPoolHC->paUsersHC); #endif #ifdef PGMPOOL_WITH_GCPHYS_TRACKING pVM->pgm.s.pPoolHC->paPhysExtsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pPoolHC->paPhysExtsHC); #endif #ifdef PGMPOOL_WITH_MONITORING int rc = PDMR3GetSymbolGC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolHC->pfnAccessHandlerGC); AssertReleaseRC(rc); /* init order hack. */ if (!pVM->pgm.s.pPoolHC->pfnAccessHandlerR0) { rc = PDMR3GetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolHC->pfnAccessHandlerR0); AssertReleaseRC(rc); } #endif } /** * Reset notification. * * This will flush the pool. * @param pVM The VM handle. */ void pgmR3PoolReset(PVM pVM) { pgmPoolFlushAll(pVM); } /** * Grows the shadow page pool. * * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet. * * @returns VBox status code. * @param pVM The VM handle. */ PDMR3DECL(int) PGMR3PoolGrow(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.pPoolHC; AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR); /* * How much to grow it by? */ uint32_t cPages = pPool->cMaxPages - pPool->cCurPages; cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages); LogFlow(("PGMR3PoolGrow: Growing the by %d (%#x) pages.\n", cPages, cPages)); for (unsigned i = pPool->cCurPages; cPages-- > 0; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; pPage->pvPageHC = MMR3PageAlloc(pVM); if (!pPage->pvPageHC) { Log(("We're out of memory!! i=%d\n", i)); return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY; } pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageHC); pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; pPage->idx = pPage - &pPool->aPages[0]; pPage->iNext = pPool->iFreeHead; #ifdef PGMPOOL_WITH_USER_TRACKING pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; #endif #ifdef PGMPOOL_WITH_MONITORING pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; #endif #ifdef PGMPOOL_WITH_CACHE pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; #endif /* commit it */ bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc); pPool->iFreeHead = i; pPool->cCurPages = i + 1; } Assert(pPool->cCurPages <= pPool->cMaxPages); return VINF_SUCCESS; } #ifdef PGMPOOL_WITH_MONITORING /** * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread. * * @param pPool The pool. * @param pPage The page. */ static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* for the present this should be safe enough I think... */ pgmLock(pPool->pVMHC); if ( pPage->fReusedFlushPending && pPage->enmKind != PGMPOOLKIND_FREE) pgmPoolFlushPage(pPool, pPage); pgmUnlock(pPool->pVMHC); } /** * \#PF Handler callback for PT write accesses. * * The handler can not raise any faults, it's mainly for monitoring write access * to certain pages. * * @returns VINF_SUCCESS if the handler have carried out the operation. * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation. * @param pVM VM Handle. * @param GCPhys The physical address the guest is writing to. * @param pvPhys The HC mapping of that address. * @param pvBuf What the guest is reading/writing. * @param cbBuf How much it's reading/writing. * @param enmAccessType The access type. * @param pvUser User argument. */ static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser) { STAM_PROFILE_START(&pVM->pgm.s.pPoolHC->StatMonitorHC, a); PPGMPOOL pPool = pVM->pgm.s.pPoolHC; PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; LogFlow(("pgmR3PoolAccessHandler: GCPhys=%VGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); /* * We don't have to be very sophisiticated about this since there are relativly few calls here. * However, we must try our best to detect any non-cpu accesses (disk / networking). * * Just to make life more interesting, we'll have to deal with the async threads too. * We cannot flush a page if we're in an async thread because of REM notifications. */ if (!VM_IS_EMT(pVM)) { Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); STAM_COUNTER_INC(&pPool->StatMonitorHCAsync); if (!pPage->fReusedFlushPending) { int rc = VMR3ReqCallEx(pPool->pVMHC, NULL, 0, VMREQFLAGS_NO_WAIT | VMREQFLAGS_VOID, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage); AssertRCReturn(rc, rc); pPage->fReusedFlushPending = true; pPage->cModifications += 0x1000; } pgmPoolMonitorChainChanging(pPool, pPage, GCPhys, pvPhys, NULL); /** @todo r=bird: making unsafe assumption about not crossing entries here! */ while (cbBuf > 4) { cbBuf -= 4; pvPhys = (uint8_t *)pvPhys + 4; GCPhys += 4; pgmPoolMonitorChainChanging(pPool, pPage, GCPhys, pvPhys, NULL); } STAM_PROFILE_STOP(&pPool->StatMonitorHC, a); } else if ( (pPage->fCR3Mix || pPage->cModifications < 96) /* it's cheaper here. */ && cbBuf <= 4) { /* Clear the shadow entry. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /** @todo r=bird: making unsafe assumption about not crossing entries here! */ pgmPoolMonitorChainChanging(pPool, pPage, GCPhys, pvPhys, NULL); STAM_PROFILE_STOP(&pPool->StatMonitorHC, a); } else { pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */ STAM_PROFILE_STOP_EX(&pPool->StatMonitorHC, &pPool->StatMonitorHCFlushPage, a); } return VINF_PGM_HANDLER_DO_DEFAULT; } #endif /* PGMPOOL_WITH_MONITORING */