/* $Id: CPUMAllRegs.cpp 42647 2012-08-07 07:47:47Z vboxsync $ */ /** @file * CPUM - CPU Monitor(/Manager) - Getters and Setters. */ /* * Copyright (C) 2006-2012 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include #include #include #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) # include #endif #include "CPUMInternal.h" #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 #include #endif /** Disable stack frame pointer generation here. */ #if defined(_MSC_VER) && !defined(DEBUG) # pragma optimize("y", off) #endif /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** * Converts a CPUMCPU::Guest pointer into a VMCPU pointer. * * @returns Pointer to the Virtual CPU. * @param a_pGuestCtx Pointer to the guest context. */ #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest) /** * Lazily loads the hidden parts of a selector register when using raw-mode. */ #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ do \ { \ if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) \ cpumGuestLazyLoadHiddenSelectorReg(a_pVCpu, a_pSReg); \ } while (0) #else # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)); #endif #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /** * Does the lazy hidden selector register loading. * * @param pVCpu The current Virtual CPU. * @param pSReg The selector register to lazily load hidden parts of. */ static void cpumGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) { Assert(!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)); Assert(!HWACCMIsEnabled(pVCpu->CTX_SUFF(pVM))); Assert((uintptr_t)(pSReg - &pVCpu->cpum.s.Guest.es) < X86_SREG_COUNT); if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { /* V8086 mode - Tightly controlled environment, no question about the limit or flags. */ pSReg->Attr.u = 0; pSReg->Attr.n.u4Type = pSReg == &pVCpu->cpum.s.Guest.cs ? X86_SEL_TYPE_ER_ACC : X86_SEL_TYPE_RW_ACC; pSReg->Attr.n.u1DescType = 1; /* code/data segment */ pSReg->Attr.n.u2Dpl = 3; pSReg->Attr.n.u1Present = 1; pSReg->u32Limit = 0x0000ffff; pSReg->u64Base = (uint32_t)pSReg->Sel << 4; pSReg->ValidSel = pSReg->Sel; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; /** @todo Check what the accessed bit should be (VT-x and AMD-V). */ } else if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) { /* Real mode - leave the limit and flags alone here, at least for now. */ pSReg->u64Base = (uint32_t)pSReg->Sel << 4; pSReg->ValidSel = pSReg->Sel; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; } else { /* Protected mode - get it from the selector descriptor tables. */ if (!(pSReg->Sel & X86_SEL_MASK_OFF_RPL)) { Assert(!CPUMIsGuestInLongMode(pVCpu)); pSReg->Sel = 0; pSReg->u64Base = 0; pSReg->u32Limit = 0; pSReg->Attr.u = 0; pSReg->ValidSel = 0; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; /** @todo see todo in iemHlpLoadNullDataSelectorProt. */ } else SELMLoadHiddenSelectorReg(pVCpu, &pVCpu->cpum.s.Guest, pSReg); } } /** * Makes sure the hidden CS and SS selector registers are valid, loading them if * necessary. * * @param pVCpu The current virtual CPU. */ VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenCsAndSs(PVMCPU pVCpu) { CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); } /** * Loads a the hidden parts of a selector register. * * @param pVCpu The current virtual CPU. */ VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) { CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, pSReg); } #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ /** * Obsolete. * * We don't support nested hypervisor context interrupts or traps. Life is much * simpler when we don't. It's also slightly faster at times. * * @param pVM Handle to the virtual machine. */ VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Hyper); } /** * Gets the pointer to the hypervisor CPU context structure of a virtual CPU. * * @param pVCpu Pointer to the VMCPU. */ VMMDECL(PCPUMCTX) CPUMGetHyperCtxPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.Hyper; } VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) { pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit; pVCpu->cpum.s.Hyper.gdtr.pGdt = addr; } VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) { pVCpu->cpum.s.Hyper.idtr.cbIdt = limit; pVCpu->cpum.s.Hyper.idtr.pIdt = addr; } VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3) { pVCpu->cpum.s.Hyper.cr3 = cr3; #ifdef IN_RC /* Update the current CR3. */ ASMSetCR3(cr3); #endif } VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.cr3; } VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS) { pVCpu->cpum.s.Hyper.cs.Sel = SelCS; } VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS) { pVCpu->cpum.s.Hyper.ds.Sel = SelDS; } VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES) { pVCpu->cpum.s.Hyper.es.Sel = SelES; } VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS) { pVCpu->cpum.s.Hyper.fs.Sel = SelFS; } VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS) { pVCpu->cpum.s.Hyper.gs.Sel = SelGS; } VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS) { pVCpu->cpum.s.Hyper.ss.Sel = SelSS; } VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP) { pVCpu->cpum.s.Hyper.esp = u32ESP; } VMMDECL(void) CPUMSetHyperEDX(PVMCPU pVCpu, uint32_t u32ESP) { pVCpu->cpum.s.Hyper.esp = u32ESP; } VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl) { pVCpu->cpum.s.Hyper.eflags.u32 = Efl; return VINF_SUCCESS; } VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP) { pVCpu->cpum.s.Hyper.eip = u32EIP; } /** * Used by VMMR3RawRunGC to reinitialize the general raw-mode context registers, * EFLAGS and EIP prior to resuming guest execution. * * All general register not given as a parameter will be set to 0. The EFLAGS * register will be set to sane values for C/C++ code execution with interrupts * disabled and IOPL 0. * * @param pVCpu The current virtual CPU. * @param u32EIP The EIP value. * @param u32ESP The ESP value. * @param u32EAX The EAX value. * @param u32EDX The EDX value. */ VMM_INT_DECL(void) CPUMSetHyperState(PVMCPU pVCpu, uint32_t u32EIP, uint32_t u32ESP, uint32_t u32EAX, uint32_t u32EDX) { pVCpu->cpum.s.Hyper.eip = u32EIP; pVCpu->cpum.s.Hyper.esp = u32ESP; pVCpu->cpum.s.Hyper.eax = u32EAX; pVCpu->cpum.s.Hyper.edx = u32EDX; pVCpu->cpum.s.Hyper.ecx = 0; pVCpu->cpum.s.Hyper.ebx = 0; pVCpu->cpum.s.Hyper.ebp = 0; pVCpu->cpum.s.Hyper.esi = 0; pVCpu->cpum.s.Hyper.edi = 0; pVCpu->cpum.s.Hyper.eflags.u = X86_EFL_1; } VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR) { pVCpu->cpum.s.Hyper.tr.Sel = SelTR; } VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR) { pVCpu->cpum.s.Hyper.ldtr.Sel = SelLDTR; } VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0) { pVCpu->cpum.s.Hyper.dr[0] = uDr0; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1) { pVCpu->cpum.s.Hyper.dr[1] = uDr1; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2) { pVCpu->cpum.s.Hyper.dr[2] = uDr2; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3) { pVCpu->cpum.s.Hyper.dr[3] = uDr3; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6) { pVCpu->cpum.s.Hyper.dr[6] = uDr6; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7) { pVCpu->cpum.s.Hyper.dr[7] = uDr7; /** @todo in GC we must load it! */ } VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.cs.Sel; } VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ds.Sel; } VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.es.Sel; } VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.fs.Sel; } VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.gs.Sel; } VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ss.Sel; } VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eax; } VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ebx; } VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ecx; } VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.edx; } VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.esi; } VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.edi; } VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ebp; } VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.esp; } VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eflags.u32; } VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eip; } VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.rip; } VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt; return pVCpu->cpum.s.Hyper.idtr.pIdt; } VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt; return pVCpu->cpum.s.Hyper.gdtr.pGdt; } VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ldtr.Sel; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[0]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[1]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[2]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[3]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[6]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[7]; } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVCpu Handle to the virtual cpu. */ VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Guest); } /** * Queries the pointer to the internal CPUMCTX structure. * * @returns The CPUMCTX pointer. * @param pVCpu Handle to the virtual cpu. */ VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.Guest; } VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit; pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit; pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr) { pVCpu->cpum.s.Guest.tr.Sel = tr; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr) { pVCpu->cpum.s.Guest.ldtr.Sel = ldtr; /* The caller will set more hidden bits if it has them. */ pVCpu->cpum.s.Guest.ldtr.ValidSel = 0; pVCpu->cpum.s.Guest.ldtr.fFlags = 0; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR; return VINF_SUCCESS; /* formality, consider it void. */ } /** * Set the guest CR0. * * When called in GC, the hyper CR0 may be updated if that is * required. The caller only has to take special action if AM, * WP, PG or PE changes. * * @returns VINF_SUCCESS (consider it void). * @param pVCpu Handle to the virtual cpu. * @param cr0 The new CR0 value. */ VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0) { #ifdef IN_RC /* * Check if we need to change hypervisor CR0 because * of math stuff. */ if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))) { if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU)) { /* * We haven't saved the host FPU state yet, so TS and MT are both set * and EM should be reflecting the guest EM (it always does this). */ if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM)) { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); HyperCR0 &= ~X86_CR0_EM; HyperCR0 |= cr0 & X86_CR0_EM; Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } # ifdef VBOX_STRICT else { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); } # endif } else { /* * Already saved the state, so we're just mirroring * the guest flags. */ uint32_t HyperCR0 = ASMGetCR0(); AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)), ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0)); HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } } #endif /* IN_RC */ /* * Check for changes causing TLB flushes (for REM). * The caller is responsible for calling PGM when appropriate. */ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0; pVCpu->cpum.s.Guest.cr0 = cr0 | X86_CR0_ET; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2) { pVCpu->cpum.s.Guest.cr2 = cr2; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3) { pVCpu->cpum.s.Guest.cr3 = cr3; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4) { if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4; if (!CPUMSupportsFXSR(pVCpu->CTX_SUFF(pVM))) cr4 &= ~X86_CR4_OSFSXR; pVCpu->cpum.s.Guest.cr4 = cr4; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags) { pVCpu->cpum.s.Guest.eflags.u32 = eflags; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip) { pVCpu->cpum.s.Guest.eip = eip; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax) { pVCpu->cpum.s.Guest.eax = eax; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx) { pVCpu->cpum.s.Guest.ebx = ebx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx) { pVCpu->cpum.s.Guest.ecx = ecx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx) { pVCpu->cpum.s.Guest.edx = edx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp) { pVCpu->cpum.s.Guest.esp = esp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp) { pVCpu->cpum.s.Guest.ebp = ebp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi) { pVCpu->cpum.s.Guest.esi = esi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi) { pVCpu->cpum.s.Guest.edi = edi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss) { pVCpu->cpum.s.Guest.ss.Sel = ss; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs) { pVCpu->cpum.s.Guest.cs.Sel = cs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds) { pVCpu->cpum.s.Guest.ds.Sel = ds; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es) { pVCpu->cpum.s.Guest.es.Sel = es; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs) { pVCpu->cpum.s.Guest.fs.Sel = fs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs) { pVCpu->cpum.s.Guest.gs.Sel = gs; return VINF_SUCCESS; } VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val) { pVCpu->cpum.s.Guest.msrEFER = val; } /** * Query an MSR. * * The caller is responsible for checking privilege if the call is the result * of a RDMSR instruction. We'll do the rest. * * @retval VINF_SUCCESS on success. * @retval VERR_CPUM_RAISE_GP_0 on failure (invalid MSR), the caller is * expected to take the appropriate actions. @a *puValue is set to 0. * @param pVCpu Pointer to the VMCPU. * @param idMsr The MSR. * @param puValue Where to return the value. * * @remarks This will always return the right values, even when we're in the * recompiler. */ VMMDECL(int) CPUMQueryGuestMsr(PVMCPU pVCpu, uint32_t idMsr, uint64_t *puValue) { /* * If we don't indicate MSR support in the CPUID feature bits, indicate * that a #GP(0) should be raised. */ if (!(pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_MSR)) { *puValue = 0; return VERR_CPUM_RAISE_GP_0; /** @todo isn't \#UD more correct if not supported? */ } int rc = VINF_SUCCESS; uint8_t const u8Multiplier = 4; switch (idMsr) { case MSR_IA32_TSC: *puValue = TMCpuTickGet(pVCpu); break; case MSR_IA32_APICBASE: rc = PDMApicGetBase(pVCpu->CTX_SUFF(pVM), puValue); if (RT_SUCCESS(rc)) rc = VINF_SUCCESS; else { *puValue = 0; rc = VERR_CPUM_RAISE_GP_0; } break; case MSR_IA32_CR_PAT: *puValue = pVCpu->cpum.s.Guest.msrPAT; break; case MSR_IA32_SYSENTER_CS: *puValue = pVCpu->cpum.s.Guest.SysEnter.cs; break; case MSR_IA32_SYSENTER_EIP: *puValue = pVCpu->cpum.s.Guest.SysEnter.eip; break; case MSR_IA32_SYSENTER_ESP: *puValue = pVCpu->cpum.s.Guest.SysEnter.esp; break; case MSR_IA32_MTRR_CAP: { /* This is currently a bit weird. :-) */ uint8_t const cVariableRangeRegs = 0; bool const fSystemManagementRangeRegisters = false; bool const fFixedRangeRegisters = false; bool const fWriteCombiningType = false; *puValue = cVariableRangeRegs | (fFixedRangeRegisters ? RT_BIT_64(8) : 0) | (fWriteCombiningType ? RT_BIT_64(10) : 0) | (fSystemManagementRangeRegisters ? RT_BIT_64(11) : 0); break; } case MSR_IA32_MTRR_DEF_TYPE: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType; break; case IA32_MTRR_FIX64K_00000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000; break; case IA32_MTRR_FIX16K_80000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000; break; case IA32_MTRR_FIX16K_A0000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000; break; case IA32_MTRR_FIX4K_C0000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000; break; case IA32_MTRR_FIX4K_C8000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000; break; case IA32_MTRR_FIX4K_D0000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000; break; case IA32_MTRR_FIX4K_D8000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000; break; case IA32_MTRR_FIX4K_E0000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000; break; case IA32_MTRR_FIX4K_E8000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000; break; case IA32_MTRR_FIX4K_F0000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000; break; case IA32_MTRR_FIX4K_F8000: *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000; break; case MSR_K6_EFER: *puValue = pVCpu->cpum.s.Guest.msrEFER; break; case MSR_K8_SF_MASK: *puValue = pVCpu->cpum.s.Guest.msrSFMASK; break; case MSR_K6_STAR: *puValue = pVCpu->cpum.s.Guest.msrSTAR; break; case MSR_K8_LSTAR: *puValue = pVCpu->cpum.s.Guest.msrLSTAR; break; case MSR_K8_CSTAR: *puValue = pVCpu->cpum.s.Guest.msrCSTAR; break; case MSR_K8_FS_BASE: *puValue = pVCpu->cpum.s.Guest.fs.u64Base; break; case MSR_K8_GS_BASE: *puValue = pVCpu->cpum.s.Guest.gs.u64Base; break; case MSR_K8_KERNEL_GS_BASE: *puValue = pVCpu->cpum.s.Guest.msrKERNELGSBASE; break; case MSR_K8_TSC_AUX: *puValue = pVCpu->cpum.s.GuestMsrs.msr.TscAux; break; case MSR_IA32_PERF_STATUS: /** @todo could really be not exactly correct, maybe use host's values */ *puValue = UINT64_C(1000) /* TSC increment by tick */ | ((uint64_t)u8Multiplier << 24) /* CPU multiplier (aka bus ratio) min */ | ((uint64_t)u8Multiplier << 40) /* CPU multiplier (aka bus ratio) max */; break; case MSR_IA32_FSB_CLOCK_STS: /* * Encoded as: * 0 - 266 * 1 - 133 * 2 - 200 * 3 - return 166 * 5 - return 100 */ *puValue = (2 << 4); break; case MSR_IA32_PLATFORM_INFO: *puValue = (u8Multiplier << 8) /* Flex ratio max */ | ((uint64_t)u8Multiplier << 40) /* Flex ratio min */; break; case MSR_IA32_THERM_STATUS: /* CPU temperature relative to TCC, to actually activate, CPUID leaf 6 EAX[0] must be set */ *puValue = RT_BIT(31) /* validity bit */ | (UINT64_C(20) << 16) /* degrees till TCC */; break; case MSR_IA32_MISC_ENABLE: #if 0 /* Needs to be tested more before enabling. */ *puValue = pVCpu->cpum.s.GuestMsr.msr.miscEnable; #else /* Currenty we don't allow guests to modify enable MSRs. */ *puValue = MSR_IA32_MISC_ENABLE_FAST_STRINGS /* by default */; if ((pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR) != 0) *puValue |= MSR_IA32_MISC_ENABLE_MONITOR /* if mwait/monitor available */; /** @todo: add more cpuid-controlled features this way. */ #endif break; #if 0 /*def IN_RING0 */ case MSR_IA32_PLATFORM_ID: case MSR_IA32_BIOS_SIGN_ID: if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL) { /* Available since the P6 family. VT-x implies that this feature is present. */ if (idMsr == MSR_IA32_PLATFORM_ID) *puValue = ASMRdMsr(MSR_IA32_PLATFORM_ID); else if (idMsr == MSR_IA32_BIOS_SIGN_ID) *puValue = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID); break; } /* no break */ #endif /* * Intel specifics MSRs: */ case MSR_IA32_PLATFORM_ID: /* fam/mod >= 6_01 */ case MSR_IA32_BIOS_SIGN_ID: /* fam/mod >= 6_01 */ /*case MSR_IA32_BIOS_UPDT_TRIG: - write-only? */ case MSR_IA32_MCP_CAP: /* fam/mod >= 6_01 */ /*case MSR_IA32_MCP_STATUS: - indicated as not present in CAP */ /*case MSR_IA32_MCP_CTRL: - indicated as not present in CAP */ case MSR_IA32_MC0_CTL: case MSR_IA32_MC0_STATUS: *puValue = 0; if (CPUMGetGuestCpuVendor(pVCpu->CTX_SUFF(pVM)) != CPUMCPUVENDOR_INTEL) { Log(("MSR %#x is Intel, the virtual CPU isn't an Intel one -> #GP\n", idMsr)); rc = VERR_CPUM_RAISE_GP_0; } break; default: /* * Hand the X2APIC range to PDM and the APIC. */ if ( idMsr >= MSR_IA32_APIC_START && idMsr < MSR_IA32_APIC_END) { rc = PDMApicReadMSR(pVCpu->CTX_SUFF(pVM), pVCpu->idCpu, idMsr, puValue); if (RT_SUCCESS(rc)) rc = VINF_SUCCESS; else { *puValue = 0; rc = VERR_CPUM_RAISE_GP_0; } } else { *puValue = 0; rc = VERR_CPUM_RAISE_GP_0; } break; } return rc; } /** * Sets the MSR. * * The caller is responsible for checking privilege if the call is the result * of a WRMSR instruction. We'll do the rest. * * @retval VINF_SUCCESS on success. * @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the * appropriate actions. * * @param pVCpu Pointer to the VMCPU. * @param idMsr The MSR id. * @param uValue The value to set. * * @remarks Everyone changing MSR values, including the recompiler, shall do it * by calling this method. This makes sure we have current values and * that we trigger all the right actions when something changes. */ VMMDECL(int) CPUMSetGuestMsr(PVMCPU pVCpu, uint32_t idMsr, uint64_t uValue) { /* * If we don't indicate MSR support in the CPUID feature bits, indicate * that a #GP(0) should be raised. */ if (!(pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_MSR)) return VERR_CPUM_RAISE_GP_0; /** @todo isn't \#UD more correct if not supported? */ int rc = VINF_SUCCESS; switch (idMsr) { case MSR_IA32_MISC_ENABLE: pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = uValue; break; case MSR_IA32_TSC: TMCpuTickSet(pVCpu->CTX_SUFF(pVM), pVCpu, uValue); break; case MSR_IA32_APICBASE: rc = PDMApicSetBase(pVCpu->CTX_SUFF(pVM), uValue); if (rc != VINF_SUCCESS) rc = VERR_CPUM_RAISE_GP_0; break; case MSR_IA32_CR_PAT: pVCpu->cpum.s.Guest.msrPAT = uValue; break; case MSR_IA32_SYSENTER_CS: pVCpu->cpum.s.Guest.SysEnter.cs = uValue & 0xffff; /* 16 bits selector */ break; case MSR_IA32_SYSENTER_EIP: pVCpu->cpum.s.Guest.SysEnter.eip = uValue; break; case MSR_IA32_SYSENTER_ESP: pVCpu->cpum.s.Guest.SysEnter.esp = uValue; break; case MSR_IA32_MTRR_CAP: return VERR_CPUM_RAISE_GP_0; case MSR_IA32_MTRR_DEF_TYPE: if ( (uValue & UINT64_C(0xfffffffffffff300)) || ( (uValue & 0xff) != 0 && (uValue & 0xff) != 1 && (uValue & 0xff) != 4 && (uValue & 0xff) != 5 && (uValue & 0xff) != 6) ) { Log(("MSR_IA32_MTRR_DEF_TYPE: #GP(0) - writing reserved value (%#llx)\n", uValue)); return VERR_CPUM_RAISE_GP_0; } pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType = uValue; break; case IA32_MTRR_FIX64K_00000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000 = uValue; break; case IA32_MTRR_FIX16K_80000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000 = uValue; break; case IA32_MTRR_FIX16K_A0000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000 = uValue; break; case IA32_MTRR_FIX4K_C0000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000 = uValue; break; case IA32_MTRR_FIX4K_C8000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000 = uValue; break; case IA32_MTRR_FIX4K_D0000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000 = uValue; break; case IA32_MTRR_FIX4K_D8000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000 = uValue; break; case IA32_MTRR_FIX4K_E0000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000 = uValue; break; case IA32_MTRR_FIX4K_E8000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000 = uValue; break; case IA32_MTRR_FIX4K_F0000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000 = uValue; break; case IA32_MTRR_FIX4K_F8000: pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000 = uValue; break; /* * AMD64 MSRs. */ case MSR_K6_EFER: { PVM pVM = pVCpu->CTX_SUFF(pVM); uint64_t const uOldEFER = pVCpu->cpum.s.Guest.msrEFER; uint32_t const fExtFeatures = pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 ? pVM->cpum.s.aGuestCpuIdExt[1].edx : 0; uint64_t fMask = 0; /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */ if (fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_NX) fMask |= MSR_K6_EFER_NXE; if (fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE) fMask |= MSR_K6_EFER_LME; if (fExtFeatures & X86_CPUID_EXT_FEATURE_EDX_SYSCALL) fMask |= MSR_K6_EFER_SCE; if (fExtFeatures & X86_CPUID_AMD_FEATURE_EDX_FFXSR) fMask |= MSR_K6_EFER_FFXSR; /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */ if ( (uOldEFER & MSR_K6_EFER_LME) != (uValue & fMask & MSR_K6_EFER_LME) && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)) { Log(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n")); return VERR_CPUM_RAISE_GP_0; } /* There are a few more: e.g. MSR_K6_EFER_LMSLE */ AssertMsg(!(uValue & ~(MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA /* ignored anyway */ | MSR_K6_EFER_SCE | MSR_K6_EFER_FFXSR)), ("Unexpected value %RX64\n", uValue)); pVCpu->cpum.s.Guest.msrEFER = (uOldEFER & ~fMask) | (uValue & fMask); /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */ if ( (uOldEFER & (MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA)) != (pVCpu->cpum.s.Guest.msrEFER & (MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA))) { /// @todo PGMFlushTLB(pVCpu, cr3, true /*fGlobal*/); HWACCMFlushTLB(pVCpu); /* Notify PGM about NXE changes. */ if ( (uOldEFER & MSR_K6_EFER_NXE) != (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE)) PGMNotifyNxeChanged(pVCpu, !(uOldEFER & MSR_K6_EFER_NXE)); } break; } case MSR_K8_SF_MASK: pVCpu->cpum.s.Guest.msrSFMASK = uValue; break; case MSR_K6_STAR: pVCpu->cpum.s.Guest.msrSTAR = uValue; break; case MSR_K8_LSTAR: pVCpu->cpum.s.Guest.msrLSTAR = uValue; break; case MSR_K8_CSTAR: pVCpu->cpum.s.Guest.msrCSTAR = uValue; break; case MSR_K8_FS_BASE: pVCpu->cpum.s.Guest.fs.u64Base = uValue; break; case MSR_K8_GS_BASE: pVCpu->cpum.s.Guest.gs.u64Base = uValue; break; case MSR_K8_KERNEL_GS_BASE: pVCpu->cpum.s.Guest.msrKERNELGSBASE = uValue; break; case MSR_K8_TSC_AUX: pVCpu->cpum.s.GuestMsrs.msr.TscAux = uValue; break; /* * Intel specifics MSRs: */ /*case MSR_IA32_PLATFORM_ID: - read-only */ case MSR_IA32_BIOS_SIGN_ID: /* fam/mod >= 6_01 */ case MSR_IA32_BIOS_UPDT_TRIG: /* fam/mod >= 6_01 */ /*case MSR_IA32_MCP_CAP: - read-only */ /*case MSR_IA32_MCP_STATUS: - read-only */ /*case MSR_IA32_MCP_CTRL: - indicated as not present in CAP */ /*case MSR_IA32_MC0_CTL: - read-only? */ /*case MSR_IA32_MC0_STATUS: - read-only? */ if (CPUMGetGuestCpuVendor(pVCpu->CTX_SUFF(pVM)) != CPUMCPUVENDOR_INTEL) { Log(("MSR %#x is Intel, the virtual CPU isn't an Intel one -> #GP\n", idMsr)); return VERR_CPUM_RAISE_GP_0; } /* ignored */ break; default: /* * Hand the X2APIC range to PDM and the APIC. */ if ( idMsr >= MSR_IA32_APIC_START && idMsr < MSR_IA32_APIC_END) { rc = PDMApicWriteMSR(pVCpu->CTX_SUFF(pVM), pVCpu->idCpu, idMsr, uValue); if (rc != VINF_SUCCESS) rc = VERR_CPUM_RAISE_GP_0; } else { /* We should actually trigger a #GP here, but don't as that might cause more trouble. */ /** @todo rc = VERR_CPUM_RAISE_GP_0 */ Log(("CPUMSetGuestMsr: Unknown MSR %#x attempted set to %#llx\n", idMsr, uValue)); } break; } return rc; } VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt; return pVCpu->cpum.s.Guest.idtr.pIdt; } VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden) { if (pHidden) *pHidden = pVCpu->cpum.s.Guest.tr; return pVCpu->cpum.s.Guest.tr.Sel; } VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.cs.Sel; } VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ds.Sel; } VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.es.Sel; } VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.fs.Sel; } VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.gs.Sel; } VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ss.Sel; } VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit) { *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base; *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit; return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.cr0; } VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.cr2; } VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.cr3; } VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.cr4; } VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu) { uint64_t u64; int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64); if (RT_FAILURE(rc)) u64 = 0; return u64; } VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR) { *pGDTR = pVCpu->cpum.s.Guest.gdtr; } VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.eip; } VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.rip; } VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.eax; } VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ebx; } VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ecx; } VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.edx; } VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.esi; } VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.edi; } VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.esp; } VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.ebp; } VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.eflags.u32; } VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue) { switch (iReg) { case DISCREG_CR0: *pValue = pVCpu->cpum.s.Guest.cr0; break; case DISCREG_CR2: *pValue = pVCpu->cpum.s.Guest.cr2; break; case DISCREG_CR3: *pValue = pVCpu->cpum.s.Guest.cr3; break; case DISCREG_CR4: *pValue = pVCpu->cpum.s.Guest.cr4; break; case DISCREG_CR8: { uint8_t u8Tpr; int rc = PDMApicGetTPR(pVCpu, &u8Tpr, NULL /*pfPending*/); if (RT_FAILURE(rc)) { AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc)); *pValue = 0; return rc; } *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0*/ break; } default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[0]; } VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[1]; } VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[2]; } VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[3]; } VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[6]; } VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.dr[7]; } VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue) { AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; *pValue = pVCpu->cpum.s.Guest.dr[iReg]; return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu) { return pVCpu->cpum.s.Guest.msrEFER; } /** * Gets a CPUID leaf. * * @param pVCpu Pointer to the VMCPU. * @param iLeaf The CPUID leaf to get. * @param pEax Where to store the EAX value. * @param pEbx Where to store the EBX value. * @param pEcx Where to store the ECX value. * @param pEdx Where to store the EDX value. */ VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) { PVM pVM = pVCpu->CTX_SUFF(pVM); PCCPUMCPUID pCpuId; if (iLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)) pCpuId = &pVM->cpum.s.aGuestCpuIdStd[iLeaf]; else if (iLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)) pCpuId = &pVM->cpum.s.aGuestCpuIdExt[iLeaf - UINT32_C(0x80000000)]; else if ( iLeaf - UINT32_C(0x40000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdHyper) && (pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_HVP)) pCpuId = &pVM->cpum.s.aGuestCpuIdHyper[iLeaf - UINT32_C(0x40000000)]; /* Only report if HVP bit set. */ else if (iLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)) pCpuId = &pVM->cpum.s.aGuestCpuIdCentaur[iLeaf - UINT32_C(0xc0000000)]; else pCpuId = &pVM->cpum.s.GuestCpuIdDef; uint32_t cCurrentCacheIndex = *pEcx; *pEax = pCpuId->eax; *pEbx = pCpuId->ebx; *pEcx = pCpuId->ecx; *pEdx = pCpuId->edx; if ( iLeaf == 1) { /* Bits 31-24: Initial APIC ID */ Assert(pVCpu->idCpu <= 255); *pEbx |= (pVCpu->idCpu << 24); } if ( iLeaf == 4 && cCurrentCacheIndex < 3 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL) { uint32_t type, level, sharing, linesize, partitions, associativity, sets, cores; /* For type: 1 - data cache, 2 - i-cache, 3 - unified */ partitions = 1; /* Those are only to shut up compiler, as they will always get overwritten, and compiler should be able to figure that out */ sets = associativity = sharing = level = 1; cores = pVM->cCpus > 32 ? 32 : pVM->cCpus; switch (cCurrentCacheIndex) { case 0: type = 1; level = 1; sharing = 1; linesize = 64; associativity = 8; sets = 64; break; case 1: level = 1; type = 2; sharing = 1; linesize = 64; associativity = 8; sets = 64; break; default: /* shut up gcc.*/ AssertFailed(); case 2: level = 2; type = 3; sharing = cores; /* our L2 cache is modelled as shared between all cores */ linesize = 64; associativity = 24; sets = 4096; break; } *pEax |= ((cores - 1) << 26) | ((sharing - 1) << 14) | (level << 5) | 1; *pEbx = (linesize - 1) | ((partitions - 1) << 12) | ((associativity - 1) << 22); /* -1 encoding */ *pEcx = sets - 1; } Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx)); } /** * Gets a number of standard CPUID leafs. * * @returns Number of leafs. * @param pVM Pointer to the VM. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdStdMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); } /** * Gets a number of extended CPUID leafs. * * @returns Number of leafs. * @param pVM Pointer to the VM. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdExtMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); } /** * Gets a number of centaur CPUID leafs. * * @returns Number of leafs. * @param pVM Pointer to the VM. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdCentaurMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); } /** * Sets a CPUID feature bit. * * @param pVM Pointer to the VM. * @param enmFeature The feature to set. */ VMMDECL(void) CPUMSetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_APIC; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_APIC; LogRel(("CPUMSetGuestCpuIdFeature: Enabled APIC\n")); break; /* * Set the x2APIC bit in the standard feature mask. */ case CPUMCPUIDFEATURE_X2APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx |= X86_CPUID_FEATURE_ECX_X2APIC; LogRel(("CPUMSetGuestCpuIdFeature: Enabled x2APIC\n")); break; /* * Set the sysenter/sysexit bit in the standard feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_SEP: { if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP)) { AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n")); return; } if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_SEP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled sysenter/exit\n")); break; } /* * Set the syscall/sysret bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_SYSCALL: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)) { #if HC_ARCH_BITS == 32 /* X86_CPUID_EXT_FEATURE_EDX_SYSCALL not set it seems in 32 bits mode. * Even when the cpu is capable of doing so in 64 bits mode. */ if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE) || !(ASMCpuId_EDX(1) & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)) #endif { LogRel(("WARNING: Can't turn on SYSCALL/SYSRET when the host doesn't support it!!\n")); return; } } /* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_EXT_FEATURE_EDX_SYSCALL; LogRel(("CPUMSetGuestCpuIdFeature: Enabled syscall/ret\n")); break; } /* * Set the PAE bit in both feature masks. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_PAE: { if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_PAE)) { LogRel(("WARNING: Can't turn on PAE when the host doesn't support it!!\n")); return; } if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAE; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAE; LogRel(("CPUMSetGuestCpuIdFeature: Enabled PAE\n")); break; } /* * Set the LONG MODE bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_LONG_MODE: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)) { LogRel(("WARNING: Can't turn on LONG MODE when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_EXT_FEATURE_EDX_LONG_MODE; LogRel(("CPUMSetGuestCpuIdFeature: Enabled LONG MODE\n")); break; } /* * Set the NX/XD bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_NX: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_NX)) { LogRel(("WARNING: Can't turn on NX/XD when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_EXT_FEATURE_EDX_NX; LogRel(("CPUMSetGuestCpuIdFeature: Enabled NX\n")); break; } /* * Set the LAHF/SAHF support in 64-bit mode. * Assumes the caller knows what it's doing! (host must support this) */ case CPUMCPUIDFEATURE_LAHF: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_ECX(0x80000001) & X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF)) { LogRel(("WARNING: Can't turn on LAHF/SAHF when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].ecx |= X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF; LogRel(("CPUMSetGuestCpuIdFeature: Enabled LAHF/SAHF\n")); break; } case CPUMCPUIDFEATURE_PAT: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAT; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAT; LogRel(("CPUMClearGuestCpuIdFeature: Enabled PAT\n")); break; } /* * Set the RDTSCP support bit. * Assumes the caller knows what it's doing! (host must support this) */ case CPUMCPUIDFEATURE_RDTSCP: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) || pVM->cpum.s.u8PortableCpuIdLevel > 0) { if (!pVM->cpum.s.u8PortableCpuIdLevel) LogRel(("WARNING: Can't turn on RDTSCP when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_EXT_FEATURE_EDX_RDTSCP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled RDTSCP.\n")); break; } /* * Set the Hypervisor Present bit in the standard feature mask. */ case CPUMCPUIDFEATURE_HVP: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx |= X86_CPUID_FEATURE_ECX_HVP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled Hypervisor Present bit\n")); break; default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID; } } /** * Queries a CPUID feature bit. * * @returns boolean for feature presence * @param pVM Pointer to the VM. * @param enmFeature The feature to query. */ VMMDECL(bool) CPUMGetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { case CPUMCPUIDFEATURE_PAE: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) return !!(pVM->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PAE); break; } case CPUMCPUIDFEATURE_NX: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_EXT_FEATURE_EDX_NX); } case CPUMCPUIDFEATURE_RDTSCP: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_EXT_FEATURE_EDX_RDTSCP); break; } case CPUMCPUIDFEATURE_LONG_MODE: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE); break; } default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } return false; } /** * Clears a CPUID feature bit. * * @param pVM Pointer to the VM. * @param enmFeature The feature to clear. */ VMMDECL(void) CPUMClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_APIC; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n")); break; /* * Clear the x2APIC bit in the standard feature mask. */ case CPUMCPUIDFEATURE_X2APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx &= ~X86_CPUID_FEATURE_ECX_X2APIC; LogRel(("CPUMSetGuestCpuIdFeature: Disabled x2APIC\n")); break; case CPUMCPUIDFEATURE_PAE: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAE; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAE; LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAE!\n")); break; } case CPUMCPUIDFEATURE_PAT: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAT; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAT; LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAT!\n")); break; } case CPUMCPUIDFEATURE_LONG_MODE: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_EXT_FEATURE_EDX_LONG_MODE; break; } case CPUMCPUIDFEATURE_LAHF: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].ecx &= ~X86_CPUID_EXT_FEATURE_ECX_LAHF_SAHF; break; } case CPUMCPUIDFEATURE_RDTSCP: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_EXT_FEATURE_EDX_RDTSCP; LogRel(("CPUMClearGuestCpuIdFeature: Disabled RDTSCP!\n")); break; } case CPUMCPUIDFEATURE_HVP: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx &= ~X86_CPUID_FEATURE_ECX_HVP; break; default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID; } } /** * Gets the host CPU vendor. * * @returns CPU vendor. * @param pVM Pointer to the VM. */ VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM) { return pVM->cpum.s.enmHostCpuVendor; } /** * Gets the CPU vendor. * * @returns CPU vendor. * @param pVM Pointer to the VM. */ VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM) { return pVM->cpum.s.enmGuestCpuVendor; } VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0) { pVCpu->cpum.s.Guest.dr[0] = uDr0; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1) { pVCpu->cpum.s.Guest.dr[1] = uDr1; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2) { pVCpu->cpum.s.Guest.dr[2] = uDr2; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3) { pVCpu->cpum.s.Guest.dr[3] = uDr3; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6) { pVCpu->cpum.s.Guest.dr[6] = uDr6; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7) { pVCpu->cpum.s.Guest.dr[7] = uDr7; return CPUMRecalcHyperDRx(pVCpu); } VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value) { AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; pVCpu->cpum.s.Guest.dr[iReg] = Value; return CPUMRecalcHyperDRx(pVCpu); } /** * Recalculates the hypervisor DRx register values based on * current guest registers and DBGF breakpoints. * * This is called whenever a guest DRx register is modified and when DBGF * sets a hardware breakpoint. In guest context this function will reload * any (hyper) DRx registers which comes out with a different value. * * @returns VINF_SUCCESS. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu) { PVM pVM = pVCpu->CTX_SUFF(pVM); /* * Compare the DR7s first. * * We only care about the enabled flags. The GE and LE flags are always * set and we don't care if the guest doesn't set them. GD is virtualized * when we dispatch #DB, we never enable it. */ const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); #ifdef CPUM_VIRTUALIZE_DRX const RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu); #else const RTGCUINTREG uGstDr7 = 0; #endif if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK) { /* * Ok, something is enabled. Recalc each of the breakpoints. * Straight forward code, not optimized/minimized in any way. */ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_MB1_MASK; /* bp 0 */ RTGCUINTREG uNewDr0; if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = DBGFBpGetDR0(pVM); } else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = CPUMGetGuestDR0(pVCpu); } else uNewDr0 = pVCpu->cpum.s.Hyper.dr[0]; /* bp 1 */ RTGCUINTREG uNewDr1; if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = DBGFBpGetDR1(pVM); } else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = CPUMGetGuestDR1(pVCpu); } else uNewDr1 = pVCpu->cpum.s.Hyper.dr[1]; /* bp 2 */ RTGCUINTREG uNewDr2; if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = DBGFBpGetDR2(pVM); } else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = CPUMGetGuestDR2(pVCpu); } else uNewDr2 = pVCpu->cpum.s.Hyper.dr[2]; /* bp 3 */ RTGCUINTREG uNewDr3; if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = DBGFBpGetDR3(pVM); } else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = CPUMGetGuestDR3(pVCpu); } else uNewDr3 = pVCpu->cpum.s.Hyper.dr[3]; /* * Apply the updates. */ #ifdef IN_RC if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS)) { /** @todo save host DBx registers. */ } #endif pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS; if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3]) CPUMSetHyperDR3(pVCpu, uNewDr3); if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2]) CPUMSetHyperDR2(pVCpu, uNewDr2); if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1]) CPUMSetHyperDR1(pVCpu, uNewDr1); if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0]) CPUMSetHyperDR0(pVCpu, uNewDr0); if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7]) CPUMSetHyperDR7(pVCpu, uNewDr7); } else { #ifdef IN_RC if (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS) { /** @todo restore host DBx registers. */ } #endif pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS; } Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7])); return VINF_SUCCESS; } /** * Tests if the guest has No-Execute Page Protection Enabled (NXE). * * @returns true if in real mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu) { return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE); } /** * Tests if the guest has the Page Size Extension enabled (PSE). * * @returns true if in real mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu) { /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */ return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE)); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu) { return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu) { return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP); } /** * Tests if the guest is running in real mode or not. * * @returns true if in real mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu) { return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in real or virtual 8086 mode. * * @returns @c true if it is, @c false if not. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu) { return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */ } /** * Tests if the guest is running in protected or not. * * @returns true if in protected mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu) { return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in paged protected or not. * * @returns true if in paged protected mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu) { return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG); } /** * Tests if the guest is running in long mode or not. * * @returns true if in long mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu) { return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA; } /** * Tests if the guest is running in PAE mode or not. * * @returns true if in PAE mode, otherwise false. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu) { return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE) && (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG) && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA); } /** * Tests if the guest is running in 64 bits mode or not. * * @returns true if in 64 bits protected mode, otherwise false. * @param pVCpu The current virtual CPU. */ VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu) { if (!CPUMIsGuestInLongMode(pVCpu)) return false; CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long; } /** * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS * registers. * * @returns true if in 64 bits protected mode, otherwise false. * @param pCtx Pointer to the current guest CPU context. */ VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx) { return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx)); } #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /** * * @returns @c true if we've entered raw-mode and selectors with RPL=1 are * really RPL=0, @c false if we've not (RPL=1 really is RPL=1). * @param pVCpu The current virtual CPU. */ VMM_INT_DECL(bool) CPUMIsGuestInRawMode(PVMCPU pVCpu) { return pVCpu->cpum.s.fRawEntered; } #endif #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /** * Updates the EFLAGS while we're in raw-mode. * * @param pVCpu Pointer to the VMCPU. * @param fEfl The new EFLAGS value. */ VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, uint32_t fEfl) { if (!pVCpu->cpum.s.fRawEntered) pVCpu->cpum.s.Guest.eflags.u32 = fEfl; else PATMRawSetEFlags(pVCpu->CTX_SUFF(pVM), CPUMCTX2CORE(&pVCpu->cpum.s.Guest), fEfl); } #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ /** * Gets the EFLAGS while we're in raw-mode. * * @returns The eflags. * @param pVCpu Pointer to the current virtual CPU. */ VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu) { #ifdef IN_RING0 return pVCpu->cpum.s.Guest.eflags.u32; #else if (!pVCpu->cpum.s.fRawEntered) return pVCpu->cpum.s.Guest.eflags.u32; return PATMRawGetEFlags(pVCpu->CTX_SUFF(pVM), CPUMCTX2CORE(&pVCpu->cpum.s.Guest)); #endif } /** * Sets the specified changed flags (CPUM_CHANGED_*). * * @param pVCpu Pointer to the current virtual CPU. */ VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedFlags) { pVCpu->cpum.s.fChanged |= fChangedFlags; } /** * Checks if the CPU supports the FXSAVE and FXRSTOR instruction. * @returns true if supported. * @returns false if not supported. * @param pVM Pointer to the VM. */ VMMDECL(bool) CPUMSupportsFXSR(PVM pVM) { return pVM->cpum.s.CPUFeatures.edx.u1FXSR != 0; } /** * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. * @returns true if used. * @returns false if not used. * @param pVM Pointer to the VM. */ VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) { return (pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER) != 0; } /** * Checks if the host OS uses the SYSCALL / SYSRET instructions. * @returns true if used. * @returns false if not used. * @param pVM Pointer to the VM. */ VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) { return (pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL) != 0; } #ifndef IN_RING3 /** * Lazily sync in the FPU/XMM state. * * @returns VBox status code. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu) { return cpumHandleLazyFPUAsm(&pVCpu->cpum.s); } #endif /* !IN_RING3 */ /** * Checks if we activated the FPU/XMM state of the guest OS. * @returns true if we did. * @returns false if not. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) { return (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU) != 0; } /** * Deactivate the FPU/XMM state of the guest OS. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(void) CPUMDeactivateGuestFPUState(PVMCPU pVCpu) { pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU; } /** * Checks if the guest debug state is active. * * @returns boolean * @param pVM Pointer to the VM. */ VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu) { return (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS) != 0; } /** * Checks if the hyper debug state is active. * * @returns boolean * @param pVM Pointer to the VM. */ VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu) { return (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HYPER) != 0; } /** * Mark the guest's debug state as inactive. * * @returns boolean * @param pVM Pointer to the VM. */ VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu) { pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS; } /** * Mark the hypervisor's debug state as inactive. * * @returns boolean * @param pVM Pointer to the VM. */ VMMDECL(void) CPUMDeactivateHyperDebugState(PVMCPU pVCpu) { pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER; } /** * Get the current privilege level of the guest. * * @returns CPL * @param pVCpu Pointer to the current virtual CPU. */ VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu) { /* * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not. * * Note! We used to check CS.DPL here, assuming it was always equal to * CPL even if a conforming segment was loaded. But this truned out to * only apply to older AMD-V. With VT-x we had an ACP2 regression * during install after a far call to ring 2 with VT-x. Then on newer * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl * as well as ss.Attr.n.u2Dpl to make this (and other) code work right. * * So, forget CS.DPL, always use SS.DPL. * * Note! The SS RPL is always equal to the CPL, while the CS RPL * isn't necessarily equal if the segment is conforming. * See section 4.11.1 in the AMD manual. */ uint32_t uCpl; if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) { if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss)) uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl; else { uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL); #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (uCpl == 1) uCpl = 0; #endif } } else uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */ } else uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */ return uCpl; } /** * Gets the current guest CPU mode. * * If paging mode is what you need, check out PGMGetGuestMode(). * * @returns The CPU mode. * @param pVCpu Pointer to the VMCPU. */ VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu) { CPUMMODE enmMode; if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) enmMode = CPUMMODE_REAL; else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) enmMode = CPUMMODE_PROTECTED; else enmMode = CPUMMODE_LONG; return enmMode; } /** * Figure whether the CPU is currently executing 16, 32 or 64 bit code. * * @returns 16, 32 or 64. * @param pVCpu The current virtual CPU. */ VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu) { if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return 16; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return 16; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return 64; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return 32; return 16; } VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu) { if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return DISCPUMODE_16BIT; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return DISCPUMODE_16BIT; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return DISCPUMODE_64BIT; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return DISCPUMODE_32BIT; return DISCPUMODE_16BIT; }