/* $Id: IEMAllAImplC.cpp 93744 2022-02-14 21:00:26Z vboxsync $ */ /** @file * IEM - Instruction Implementation in Assembly, portable C variant. */ /* * Copyright (C) 2011-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "IEMInternal.h" #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifndef RT_ARCH_AMD64 /** * Parity calculation table. * * The generator code: * @code * #include * * int main() * { * unsigned b; * for (b = 0; b < 256; b++) * { * int cOnes = ( b & 1) * + ((b >> 1) & 1) * + ((b >> 2) & 1) * + ((b >> 3) & 1) * + ((b >> 4) & 1) * + ((b >> 5) & 1) * + ((b >> 6) & 1) * + ((b >> 7) & 1); * printf(" /" "* %#04x = %u%u%u%u%u%u%u%ub *" "/ %s,\n", * b, * (b >> 7) & 1, * (b >> 6) & 1, * (b >> 5) & 1, * (b >> 4) & 1, * (b >> 3) & 1, * (b >> 2) & 1, * (b >> 1) & 1, * b & 1, * cOnes & 1 ? "0" : "X86_EFL_PF"); * } * return 0; * } * @endcode */ static uint8_t const g_afParity[256] = { /* 0000 = 00000000b */ X86_EFL_PF, /* 0x01 = 00000001b */ 0, /* 0x02 = 00000010b */ 0, /* 0x03 = 00000011b */ X86_EFL_PF, /* 0x04 = 00000100b */ 0, /* 0x05 = 00000101b */ X86_EFL_PF, /* 0x06 = 00000110b */ X86_EFL_PF, /* 0x07 = 00000111b */ 0, /* 0x08 = 00001000b */ 0, /* 0x09 = 00001001b */ X86_EFL_PF, /* 0x0a = 00001010b */ X86_EFL_PF, /* 0x0b = 00001011b */ 0, /* 0x0c = 00001100b */ X86_EFL_PF, /* 0x0d = 00001101b */ 0, /* 0x0e = 00001110b */ 0, /* 0x0f = 00001111b */ X86_EFL_PF, /* 0x10 = 00010000b */ 0, /* 0x11 = 00010001b */ X86_EFL_PF, /* 0x12 = 00010010b */ X86_EFL_PF, /* 0x13 = 00010011b */ 0, /* 0x14 = 00010100b */ X86_EFL_PF, /* 0x15 = 00010101b */ 0, /* 0x16 = 00010110b */ 0, /* 0x17 = 00010111b */ X86_EFL_PF, /* 0x18 = 00011000b */ X86_EFL_PF, /* 0x19 = 00011001b */ 0, /* 0x1a = 00011010b */ 0, /* 0x1b = 00011011b */ X86_EFL_PF, /* 0x1c = 00011100b */ 0, /* 0x1d = 00011101b */ X86_EFL_PF, /* 0x1e = 00011110b */ X86_EFL_PF, /* 0x1f = 00011111b */ 0, /* 0x20 = 00100000b */ 0, /* 0x21 = 00100001b */ X86_EFL_PF, /* 0x22 = 00100010b */ X86_EFL_PF, /* 0x23 = 00100011b */ 0, /* 0x24 = 00100100b */ X86_EFL_PF, /* 0x25 = 00100101b */ 0, /* 0x26 = 00100110b */ 0, /* 0x27 = 00100111b */ X86_EFL_PF, /* 0x28 = 00101000b */ X86_EFL_PF, /* 0x29 = 00101001b */ 0, /* 0x2a = 00101010b */ 0, /* 0x2b = 00101011b */ X86_EFL_PF, /* 0x2c = 00101100b */ 0, /* 0x2d = 00101101b */ X86_EFL_PF, /* 0x2e = 00101110b */ X86_EFL_PF, /* 0x2f = 00101111b */ 0, /* 0x30 = 00110000b */ X86_EFL_PF, /* 0x31 = 00110001b */ 0, /* 0x32 = 00110010b */ 0, /* 0x33 = 00110011b */ X86_EFL_PF, /* 0x34 = 00110100b */ 0, /* 0x35 = 00110101b */ X86_EFL_PF, /* 0x36 = 00110110b */ X86_EFL_PF, /* 0x37 = 00110111b */ 0, /* 0x38 = 00111000b */ 0, /* 0x39 = 00111001b */ X86_EFL_PF, /* 0x3a = 00111010b */ X86_EFL_PF, /* 0x3b = 00111011b */ 0, /* 0x3c = 00111100b */ X86_EFL_PF, /* 0x3d = 00111101b */ 0, /* 0x3e = 00111110b */ 0, /* 0x3f = 00111111b */ X86_EFL_PF, /* 0x40 = 01000000b */ 0, /* 0x41 = 01000001b */ X86_EFL_PF, /* 0x42 = 01000010b */ X86_EFL_PF, /* 0x43 = 01000011b */ 0, /* 0x44 = 01000100b */ X86_EFL_PF, /* 0x45 = 01000101b */ 0, /* 0x46 = 01000110b */ 0, /* 0x47 = 01000111b */ X86_EFL_PF, /* 0x48 = 01001000b */ X86_EFL_PF, /* 0x49 = 01001001b */ 0, /* 0x4a = 01001010b */ 0, /* 0x4b = 01001011b */ X86_EFL_PF, /* 0x4c = 01001100b */ 0, /* 0x4d = 01001101b */ X86_EFL_PF, /* 0x4e = 01001110b */ X86_EFL_PF, /* 0x4f = 01001111b */ 0, /* 0x50 = 01010000b */ X86_EFL_PF, /* 0x51 = 01010001b */ 0, /* 0x52 = 01010010b */ 0, /* 0x53 = 01010011b */ X86_EFL_PF, /* 0x54 = 01010100b */ 0, /* 0x55 = 01010101b */ X86_EFL_PF, /* 0x56 = 01010110b */ X86_EFL_PF, /* 0x57 = 01010111b */ 0, /* 0x58 = 01011000b */ 0, /* 0x59 = 01011001b */ X86_EFL_PF, /* 0x5a = 01011010b */ X86_EFL_PF, /* 0x5b = 01011011b */ 0, /* 0x5c = 01011100b */ X86_EFL_PF, /* 0x5d = 01011101b */ 0, /* 0x5e = 01011110b */ 0, /* 0x5f = 01011111b */ X86_EFL_PF, /* 0x60 = 01100000b */ X86_EFL_PF, /* 0x61 = 01100001b */ 0, /* 0x62 = 01100010b */ 0, /* 0x63 = 01100011b */ X86_EFL_PF, /* 0x64 = 01100100b */ 0, /* 0x65 = 01100101b */ X86_EFL_PF, /* 0x66 = 01100110b */ X86_EFL_PF, /* 0x67 = 01100111b */ 0, /* 0x68 = 01101000b */ 0, /* 0x69 = 01101001b */ X86_EFL_PF, /* 0x6a = 01101010b */ X86_EFL_PF, /* 0x6b = 01101011b */ 0, /* 0x6c = 01101100b */ X86_EFL_PF, /* 0x6d = 01101101b */ 0, /* 0x6e = 01101110b */ 0, /* 0x6f = 01101111b */ X86_EFL_PF, /* 0x70 = 01110000b */ 0, /* 0x71 = 01110001b */ X86_EFL_PF, /* 0x72 = 01110010b */ X86_EFL_PF, /* 0x73 = 01110011b */ 0, /* 0x74 = 01110100b */ X86_EFL_PF, /* 0x75 = 01110101b */ 0, /* 0x76 = 01110110b */ 0, /* 0x77 = 01110111b */ X86_EFL_PF, /* 0x78 = 01111000b */ X86_EFL_PF, /* 0x79 = 01111001b */ 0, /* 0x7a = 01111010b */ 0, /* 0x7b = 01111011b */ X86_EFL_PF, /* 0x7c = 01111100b */ 0, /* 0x7d = 01111101b */ X86_EFL_PF, /* 0x7e = 01111110b */ X86_EFL_PF, /* 0x7f = 01111111b */ 0, /* 0x80 = 10000000b */ 0, /* 0x81 = 10000001b */ X86_EFL_PF, /* 0x82 = 10000010b */ X86_EFL_PF, /* 0x83 = 10000011b */ 0, /* 0x84 = 10000100b */ X86_EFL_PF, /* 0x85 = 10000101b */ 0, /* 0x86 = 10000110b */ 0, /* 0x87 = 10000111b */ X86_EFL_PF, /* 0x88 = 10001000b */ X86_EFL_PF, /* 0x89 = 10001001b */ 0, /* 0x8a = 10001010b */ 0, /* 0x8b = 10001011b */ X86_EFL_PF, /* 0x8c = 10001100b */ 0, /* 0x8d = 10001101b */ X86_EFL_PF, /* 0x8e = 10001110b */ X86_EFL_PF, /* 0x8f = 10001111b */ 0, /* 0x90 = 10010000b */ X86_EFL_PF, /* 0x91 = 10010001b */ 0, /* 0x92 = 10010010b */ 0, /* 0x93 = 10010011b */ X86_EFL_PF, /* 0x94 = 10010100b */ 0, /* 0x95 = 10010101b */ X86_EFL_PF, /* 0x96 = 10010110b */ X86_EFL_PF, /* 0x97 = 10010111b */ 0, /* 0x98 = 10011000b */ 0, /* 0x99 = 10011001b */ X86_EFL_PF, /* 0x9a = 10011010b */ X86_EFL_PF, /* 0x9b = 10011011b */ 0, /* 0x9c = 10011100b */ X86_EFL_PF, /* 0x9d = 10011101b */ 0, /* 0x9e = 10011110b */ 0, /* 0x9f = 10011111b */ X86_EFL_PF, /* 0xa0 = 10100000b */ X86_EFL_PF, /* 0xa1 = 10100001b */ 0, /* 0xa2 = 10100010b */ 0, /* 0xa3 = 10100011b */ X86_EFL_PF, /* 0xa4 = 10100100b */ 0, /* 0xa5 = 10100101b */ X86_EFL_PF, /* 0xa6 = 10100110b */ X86_EFL_PF, /* 0xa7 = 10100111b */ 0, /* 0xa8 = 10101000b */ 0, /* 0xa9 = 10101001b */ X86_EFL_PF, /* 0xaa = 10101010b */ X86_EFL_PF, /* 0xab = 10101011b */ 0, /* 0xac = 10101100b */ X86_EFL_PF, /* 0xad = 10101101b */ 0, /* 0xae = 10101110b */ 0, /* 0xaf = 10101111b */ X86_EFL_PF, /* 0xb0 = 10110000b */ 0, /* 0xb1 = 10110001b */ X86_EFL_PF, /* 0xb2 = 10110010b */ X86_EFL_PF, /* 0xb3 = 10110011b */ 0, /* 0xb4 = 10110100b */ X86_EFL_PF, /* 0xb5 = 10110101b */ 0, /* 0xb6 = 10110110b */ 0, /* 0xb7 = 10110111b */ X86_EFL_PF, /* 0xb8 = 10111000b */ X86_EFL_PF, /* 0xb9 = 10111001b */ 0, /* 0xba = 10111010b */ 0, /* 0xbb = 10111011b */ X86_EFL_PF, /* 0xbc = 10111100b */ 0, /* 0xbd = 10111101b */ X86_EFL_PF, /* 0xbe = 10111110b */ X86_EFL_PF, /* 0xbf = 10111111b */ 0, /* 0xc0 = 11000000b */ X86_EFL_PF, /* 0xc1 = 11000001b */ 0, /* 0xc2 = 11000010b */ 0, /* 0xc3 = 11000011b */ X86_EFL_PF, /* 0xc4 = 11000100b */ 0, /* 0xc5 = 11000101b */ X86_EFL_PF, /* 0xc6 = 11000110b */ X86_EFL_PF, /* 0xc7 = 11000111b */ 0, /* 0xc8 = 11001000b */ 0, /* 0xc9 = 11001001b */ X86_EFL_PF, /* 0xca = 11001010b */ X86_EFL_PF, /* 0xcb = 11001011b */ 0, /* 0xcc = 11001100b */ X86_EFL_PF, /* 0xcd = 11001101b */ 0, /* 0xce = 11001110b */ 0, /* 0xcf = 11001111b */ X86_EFL_PF, /* 0xd0 = 11010000b */ 0, /* 0xd1 = 11010001b */ X86_EFL_PF, /* 0xd2 = 11010010b */ X86_EFL_PF, /* 0xd3 = 11010011b */ 0, /* 0xd4 = 11010100b */ X86_EFL_PF, /* 0xd5 = 11010101b */ 0, /* 0xd6 = 11010110b */ 0, /* 0xd7 = 11010111b */ X86_EFL_PF, /* 0xd8 = 11011000b */ X86_EFL_PF, /* 0xd9 = 11011001b */ 0, /* 0xda = 11011010b */ 0, /* 0xdb = 11011011b */ X86_EFL_PF, /* 0xdc = 11011100b */ 0, /* 0xdd = 11011101b */ X86_EFL_PF, /* 0xde = 11011110b */ X86_EFL_PF, /* 0xdf = 11011111b */ 0, /* 0xe0 = 11100000b */ 0, /* 0xe1 = 11100001b */ X86_EFL_PF, /* 0xe2 = 11100010b */ X86_EFL_PF, /* 0xe3 = 11100011b */ 0, /* 0xe4 = 11100100b */ X86_EFL_PF, /* 0xe5 = 11100101b */ 0, /* 0xe6 = 11100110b */ 0, /* 0xe7 = 11100111b */ X86_EFL_PF, /* 0xe8 = 11101000b */ X86_EFL_PF, /* 0xe9 = 11101001b */ 0, /* 0xea = 11101010b */ 0, /* 0xeb = 11101011b */ X86_EFL_PF, /* 0xec = 11101100b */ 0, /* 0xed = 11101101b */ X86_EFL_PF, /* 0xee = 11101110b */ X86_EFL_PF, /* 0xef = 11101111b */ 0, /* 0xf0 = 11110000b */ X86_EFL_PF, /* 0xf1 = 11110001b */ 0, /* 0xf2 = 11110010b */ 0, /* 0xf3 = 11110011b */ X86_EFL_PF, /* 0xf4 = 11110100b */ 0, /* 0xf5 = 11110101b */ X86_EFL_PF, /* 0xf6 = 11110110b */ X86_EFL_PF, /* 0xf7 = 11110111b */ 0, /* 0xf8 = 11111000b */ 0, /* 0xf9 = 11111001b */ X86_EFL_PF, /* 0xfa = 11111010b */ X86_EFL_PF, /* 0xfb = 11111011b */ 0, /* 0xfc = 11111100b */ X86_EFL_PF, /* 0xfd = 11111101b */ 0, /* 0xfe = 11111110b */ 0, /* 0xff = 11111111b */ X86_EFL_PF, }; #endif /* RT_ARCH_AMD64 */ /** * Calculates the signed flag value given a result and it's bit width. * * The signed flag (SF) is a duplication of the most significant bit in the * result. * * @returns X86_EFL_SF or 0. * @param a_uResult Unsigned result value. * @param a_cBitsWidth The width of the result (8, 16, 32, 64). */ #define X86_EFL_CALC_SF(a_uResult, a_cBitsWidth) \ ( (uint32_t)((a_uResult) >> ((a_cBitsWidth) - X86_EFL_SF_BIT - 1)) & X86_EFL_SF ) /** * Calculates the zero flag value given a result. * * The zero flag (ZF) indicates whether the result is zero or not. * * @returns X86_EFL_ZF or 0. * @param a_uResult Unsigned result value. */ #define X86_EFL_CALC_ZF(a_uResult) \ ( (uint32_t)((a_uResult) == 0) << X86_EFL_ZF_BIT ) /** * Updates the status bits (CF, PF, AF, ZF, SF, and OF) after a logical op. * * CF and OF are defined to be 0 by logical operations. AF on the other hand is * undefined. We do not set AF, as that seems to make the most sense (which * probably makes it the most wrong in real life). * * @returns Status bits. * @param a_pfEFlags Pointer to the 32-bit EFLAGS value to update. * @param a_uResult Unsigned result value. * @param a_cBitsWidth The width of the result (8, 16, 32, 64). * @param a_fExtra Additional bits to set. */ #define IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(a_pfEFlags, a_uResult, a_cBitsWidth, a_fExtra) \ do { \ uint32_t fEflTmp = *(a_pfEFlags); \ fEflTmp &= ~X86_EFL_STATUS_BITS; \ fEflTmp |= g_afParity[(a_uResult) & 0xff]; \ fEflTmp |= X86_EFL_CALC_ZF(a_uResult); \ fEflTmp |= X86_EFL_CALC_SF(a_uResult, a_cBitsWidth); \ fEflTmp |= (a_fExtra); \ *(a_pfEFlags) = fEflTmp; \ } while (0) #ifndef RT_ARCH_AMD64 /* * There are a few 64-bit on 32-bit things we'd rather do in C. Actually, doing * it all in C is probably safer atm., optimize what's necessary later, maybe. */ /* Binary ops */ IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst + uSrc; *puDst = uResult; /* Calc EFLAGS. */ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uResult < uDst) << X86_EFL_CF_BIT; fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_add_u64(puDst, uSrc, pfEFlags); else { uint64_t uDst = *puDst; uint64_t uResult = uDst + uSrc + 1; *puDst = uResult; /* Calc EFLAGS. */ /** @todo verify AF and OF calculations. */ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uResult <= uDst) << X86_EFL_CF_BIT; fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= (((uDst ^ uSrc ^ RT_BIT_64(63)) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst - uSrc; *puDst = uResult; /* Calc EFLAGS. */ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst < uSrc) << X86_EFL_CF_BIT; fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { if (!(*pfEFlags & X86_EFL_CF)) iemAImpl_sub_u64(puDst, uSrc, pfEFlags); else { uint64_t uDst = *puDst; uint64_t uResult = uDst - uSrc - 1; *puDst = uResult; /* Calc EFLAGS. */ /** @todo verify AF and OF calculations. */ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst <= uSrc) << X86_EFL_CF_BIT; fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uSrc ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= (((uDst ^ uSrc) & (uResult ^ uDst)) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst | uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst ^ uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst & uSrc; *puDst = uResult; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_cmp_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uDstTmp = *puDst; iemAImpl_sub_u64(&uDstTmp, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_test_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { uint64_t uResult = *puDst & uSrc; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uResult, 64, 0); } /** 64-bit locked binary operand operation. */ # define DO_LOCKED_BIN_OP_U64(a_Mnemonic) \ do { \ uint64_t uOld = ASMAtomicReadU64(puDst); \ uint64_t uTmp; \ uint32_t fEflTmp; \ do \ { \ uTmp = uOld; \ fEflTmp = *pfEFlags; \ iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, uSrc, &fEflTmp); \ } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \ *pfEFlags = fEflTmp; \ } while (0) IEM_DECL_IMPL_DEF(void, iemAImpl_add_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(add); } IEM_DECL_IMPL_DEF(void, iemAImpl_adc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(adc); } IEM_DECL_IMPL_DEF(void, iemAImpl_sub_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(sub); } IEM_DECL_IMPL_DEF(void, iemAImpl_sbb_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(sbb); } IEM_DECL_IMPL_DEF(void, iemAImpl_or_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(or); } IEM_DECL_IMPL_DEF(void, iemAImpl_xor_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(xor); } IEM_DECL_IMPL_DEF(void, iemAImpl_and_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(and); } IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst; iemAImpl_add_u64(&uResult, *puReg, pfEFlags); *puDst = uResult; *puReg = uDst; } IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *puDst, uint64_t *puReg, uint32_t *pfEFlags)) { uint64_t uOld = ASMAtomicReadU64(puDst); uint64_t uTmpDst; uint32_t fEflTmp; do { uTmpDst = uOld; fEflTmp = *pfEFlags; iemAImpl_add_u64(&uTmpDst, *puReg, pfEFlags); } while (!ASMAtomicCmpXchgExU64(puDst, uTmpDst, uOld, &uOld)); *puReg = uOld; *pfEFlags = fEflTmp; } /* Bit operations (same signature as above). */ IEM_DECL_IMPL_DEF(void, iemAImpl_bt_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t uDst = *puDst; if (uDst & RT_BIT_64(uSrc)) IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); else IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); } else { uDst |= fMask; *puDst = uDst; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); } } IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) { uDst &= ~fMask; *puDst = uDst; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); } else IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); } IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, ZF, AF, PF. We set them as after an logical operation (AND/OR/whatever). */ Assert(uSrc < 64); uint64_t fMask = RT_BIT_64(uSrc); uint64_t uDst = *puDst; if (uDst & fMask) IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, X86_EFL_CF); else { uDst |= fMask; *puDst = uDst; IEM_EFL_UPDATE_STATUS_BITS_FOR_LOGIC(pfEFlags, uDst, 64, 0); } } IEM_DECL_IMPL_DEF(void, iemAImpl_btc_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(btc); } IEM_DECL_IMPL_DEF(void, iemAImpl_btr_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(btr); } IEM_DECL_IMPL_DEF(void, iemAImpl_bts_u64_locked,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { DO_LOCKED_BIN_OP_U64(bts); } /* bit scan */ IEM_DECL_IMPL_DEF(void, iemAImpl_bsf_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, AF, PF, CF. */ /** @todo check what real CPUs do. */ if (uSrc) { uint8_t iBit; uint32_t u32Src; if (uSrc & UINT32_MAX) { iBit = 0; u32Src = uSrc; } else { iBit = 32; u32Src = uSrc >> 32; } if (!(u32Src & UINT16_MAX)) { iBit += 16; u32Src >>= 16; } if (!(u32Src & UINT8_MAX)) { iBit += 8; u32Src >>= 8; } if (!(u32Src & 0xf)) { iBit += 4; u32Src >>= 4; } if (!(u32Src & 0x3)) { iBit += 2; u32Src >>= 2; } if (!(u32Src & 1)) { iBit += 1; Assert(u32Src & 2); } *puDst = iBit; *pfEFlags &= ~X86_EFL_ZF; } else *pfEFlags |= X86_EFL_ZF; } IEM_DECL_IMPL_DEF(void, iemAImpl_bsr_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /* Note! "undefined" flags: OF, SF, AF, PF, CF. */ /** @todo check what real CPUs do. */ if (uSrc) { uint8_t iBit; uint32_t u32Src; if (uSrc & UINT64_C(0xffffffff00000000)) { iBit = 63; u32Src = uSrc >> 32; } else { iBit = 31; u32Src = uSrc; } if (!(u32Src & UINT32_C(0xffff0000))) { iBit -= 16; u32Src <<= 16; } if (!(u32Src & UINT32_C(0xff000000))) { iBit -= 8; u32Src <<= 8; } if (!(u32Src & UINT32_C(0xf0000000))) { iBit -= 4; u32Src <<= 4; } if (!(u32Src & UINT32_C(0xc0000000))) { iBit -= 2; u32Src <<= 2; } if (!(u32Src & UINT32_C(0x80000000))) { iBit -= 1; Assert(u32Src & RT_BIT(30)); } *puDst = iBit; *pfEFlags &= ~X86_EFL_ZF; } else *pfEFlags |= X86_EFL_ZF; } /* Unary operands. */ IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst + 1; *puDst = uResult; /* * Calc EFLAGS. * CF is NOT modified for hysterical raisins (allegedly for carrying and * borrowing in arithmetic loops on intel 8008). */ uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF); fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= (((uDst ^ RT_BIT_64(63)) & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = uDst - 1; *puDst = uResult; /* * Calc EFLAGS. * CF is NOT modified for hysterical raisins (allegedly for carrying and * borrowing in arithmetic loops on intel 8008). */ uint32_t fEfl = *pfEFlags & ~(X86_EFL_STATUS_BITS & ~X86_EFL_CF); fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= ((uDst & (uResult ^ RT_BIT_64(63))) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = *puDst; uint64_t uResult = ~uDst; *puDst = uResult; /* EFLAGS are not modified. */ RT_NOREF_PV(pfEFlags); } IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64,(uint64_t *puDst, uint32_t *pfEFlags)) { uint64_t uDst = 0; uint64_t uSrc = *puDst; uint64_t uResult = uDst - uSrc; *puDst = uResult; /* Calc EFLAGS. */ uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uSrc != 0) << X86_EFL_CF_BIT; fEfl |= g_afParity[uResult & 0xff]; fEfl |= ((uint32_t)uResult ^ (uint32_t)uDst) & X86_EFL_AF; fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= ((uSrc & uResult) >> (64 - X86_EFL_OF_BIT)) & X86_EFL_OF; *pfEFlags = fEfl; } /** 64-bit locked unary operand operation. */ # define DO_LOCKED_UNARY_OP_U64(a_Mnemonic) \ do { \ uint64_t uOld = ASMAtomicReadU64(puDst); \ uint64_t uTmp; \ uint32_t fEflTmp; \ do \ { \ uTmp = uOld; \ fEflTmp = *pfEFlags; \ iemAImpl_ ## a_Mnemonic ## _u64(&uTmp, &fEflTmp); \ } while (!ASMAtomicCmpXchgExU64(puDst, uTmp, uOld, &uOld)); \ *pfEFlags = fEflTmp; \ } while (0) IEM_DECL_IMPL_DEF(void, iemAImpl_inc_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) { DO_LOCKED_UNARY_OP_U64(inc); } IEM_DECL_IMPL_DEF(void, iemAImpl_dec_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) { DO_LOCKED_UNARY_OP_U64(dec); } IEM_DECL_IMPL_DEF(void, iemAImpl_not_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) { DO_LOCKED_UNARY_OP_U64(not); } IEM_DECL_IMPL_DEF(void, iemAImpl_neg_u64_locked,(uint64_t *puDst, uint32_t *pfEFlags)) { DO_LOCKED_UNARY_OP_U64(neg); } /* Shift and rotate. */ IEM_DECL_IMPL_DEF(void, iemAImpl_rol_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst << cShift; uResult |= uDst >> (64 - cShift); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); uint32_t fCarry = (uResult & 1); fEfl |= fCarry; fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_ror_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst >> cShift; uResult |= uDst << (64 - cShift); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts (OF = OF XOR New-CF). */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~(X86_EFL_CF | X86_EFL_OF); uint32_t fCarry = (uResult >> 63) & X86_EFL_CF; fEfl |= fCarry; fEfl |= (((uResult >> 62) ^ fCarry) << X86_EFL_OF_BIT) & X86_EFL_OF; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_rcl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint32_t fEfl = *pfEFlags; uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst << cShift; AssertCompile(X86_EFL_CF_BIT == 0); if (cShift > 1) uResult |= uDst >> (65 - cShift); uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (cShift - 1); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. */ uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF; fEfl &= ~(X86_EFL_CF | X86_EFL_OF); fEfl |= fCarry; fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_rcr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint32_t fEfl = *pfEFlags; uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst >> cShift; AssertCompile(X86_EFL_CF_BIT == 0); if (cShift > 1) uResult |= uDst << (65 - cShift); uResult |= (uint64_t)(fEfl & X86_EFL_CF) << (64 - cShift); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. */ uint32_t fCarry = (uDst >> (cShift - 1)) & X86_EFL_CF; fEfl &= ~(X86_EFL_CF | X86_EFL_OF); fEfl |= fCarry; fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_shl_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult = uDst << cShift; *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. The AF bit is undefined, we always set it to zero atm. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; uint32_t fCarry = (uDst >> (64 - cShift)) & X86_EFL_CF; fEfl |= fCarry; fEfl |= ((uResult >> 63) ^ fCarry) << X86_EFL_OF_BIT; fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= g_afParity[uResult & 0xff]; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_shr_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult = uDst >> cShift; *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. The AF bit is undefined, we always set it to zero atm. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; fEfl |= (uDst >> 63) << X86_EFL_OF_BIT; fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= g_afParity[uResult & 0xff]; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_sar_u64,(uint64_t *puDst, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult = (int64_t)uDst >> cShift; *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts (0). The AF bit is undefined, we always set it to zero atm. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= g_afParity[uResult & 0xff]; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_shld_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst << cShift; uResult |= uSrc >> (64 - cShift); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. The AF bit is undefined, we always set it to zero atm. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst >> (64 - cShift)) & X86_EFL_CF; fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT; fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= g_afParity[uResult & 0xff]; *pfEFlags = fEfl; } } IEM_DECL_IMPL_DEF(void, iemAImpl_shrd_u64,(uint64_t *puDst, uint64_t uSrc, uint8_t cShift, uint32_t *pfEFlags)) { cShift &= 63; if (cShift) { uint64_t uDst = *puDst; uint64_t uResult; uResult = uDst >> cShift; uResult |= uSrc << (64 - cShift); *puDst = uResult; /* Calc EFLAGS. The OF bit is undefined if cShift > 1, we implement it the same way as for 1 bit shifts. The AF bit is undefined, we always set it to zero atm. */ AssertCompile(X86_EFL_CF_BIT == 0); uint32_t fEfl = *pfEFlags & ~X86_EFL_STATUS_BITS; fEfl |= (uDst >> (cShift - 1)) & X86_EFL_CF; fEfl |= (uint32_t)((uDst >> 63) ^ (uint32_t)(uResult >> 63)) << X86_EFL_OF_BIT; fEfl |= X86_EFL_CALC_SF(uResult, 64); fEfl |= X86_EFL_CALC_ZF(uResult); fEfl |= g_afParity[uResult & 0xff]; *pfEFlags = fEfl; } } /* misc */ IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64,(uint64_t *puMem, uint64_t *puReg)) { /* XCHG implies LOCK. */ uint64_t uOldMem = *puMem; while (!ASMAtomicCmpXchgExU64(puMem, *puReg, uOldMem, &uOldMem)) ASMNopPause(); *puReg = uOldMem; } #endif /* !RT_ARCH_AMD64 */ #ifndef RT_ARCH_AMD64 /* multiplication and division */ IEM_DECL_IMPL_DEF(int, iemAImpl_mul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags)) { RTUINT128U Result; RTUInt128MulU64ByU64(&Result, *pu64RAX, u64Factor); *pu64RAX = Result.s.Lo; *pu64RDX = Result.s.Hi; /* MUL EFLAGS according to Skylake (similar to IMUL). */ *pfEFlags &= ~(X86_EFL_SF | X86_EFL_CF | X86_EFL_OF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_PF); if (Result.s.Lo & RT_BIT_64(63)) *pfEFlags |= X86_EFL_SF; *pfEFlags |= g_afParity[Result.s.Lo & 0xff]; /* (Skylake behaviour) */ if (Result.s.Hi != 0) *pfEFlags |= X86_EFL_CF | X86_EFL_OF; return 0; } IEM_DECL_IMPL_DEF(int, iemAImpl_imul_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Factor, uint32_t *pfEFlags)) { RTUINT128U Result; *pfEFlags &= ~( X86_EFL_SF | X86_EFL_CF | X86_EFL_OF /* Skylake always clears: */ | X86_EFL_AF | X86_EFL_ZF /* Skylake may set: */ | X86_EFL_PF); if ((int64_t)*pu64RAX >= 0) { if ((int64_t)u64Factor >= 0) { RTUInt128MulU64ByU64(&Result, *pu64RAX, u64Factor); if (Result.s.Hi != 0 || Result.s.Lo >= UINT64_C(0x8000000000000000)) *pfEFlags |= X86_EFL_CF | X86_EFL_OF; } else { RTUInt128MulU64ByU64(&Result, *pu64RAX, UINT64_C(0) - u64Factor); if (Result.s.Hi != 0 || Result.s.Lo > UINT64_C(0x8000000000000000)) *pfEFlags |= X86_EFL_CF | X86_EFL_OF; RTUInt128AssignNeg(&Result); } } else { if ((int64_t)u64Factor >= 0) { RTUInt128MulU64ByU64(&Result, UINT64_C(0) - *pu64RAX, u64Factor); if (Result.s.Hi != 0 || Result.s.Lo > UINT64_C(0x8000000000000000)) *pfEFlags |= X86_EFL_CF | X86_EFL_OF; RTUInt128AssignNeg(&Result); } else { RTUInt128MulU64ByU64(&Result, UINT64_C(0) - *pu64RAX, UINT64_C(0) - u64Factor); if (Result.s.Hi != 0 || Result.s.Lo >= UINT64_C(0x8000000000000000)) *pfEFlags |= X86_EFL_CF | X86_EFL_OF; } } *pu64RAX = Result.s.Lo; if (Result.s.Lo & RT_BIT_64(63)) *pfEFlags |= X86_EFL_SF; *pfEFlags |= g_afParity[Result.s.Lo & 0xff]; /* (Skylake behaviour) */ *pu64RDX = Result.s.Hi; return 0; } IEM_DECL_IMPL_DEF(void, iemAImpl_imul_two_u64,(uint64_t *puDst, uint64_t uSrc, uint32_t *pfEFlags)) { /** @todo Testcase: IMUL 2 and 3 operands. */ uint64_t u64Ign; iemAImpl_imul_u64(puDst, &u64Ign, uSrc, pfEFlags); } IEM_DECL_IMPL_DEF(int, iemAImpl_div_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags)) { /* Note! Skylake leaves all flags alone. */ RT_NOREF_PV(pfEFlags); if ( u64Divisor != 0 && *pu64RDX < u64Divisor) { RTUINT128U Dividend; Dividend.s.Lo = *pu64RAX; Dividend.s.Hi = *pu64RDX; RTUINT128U Divisor; Divisor.s.Lo = u64Divisor; Divisor.s.Hi = 0; RTUINT128U Remainder; RTUINT128U Quotient; # ifdef __GNUC__ /* GCC maybe really annoying in function. */ Quotient.s.Lo = 0; Quotient.s.Hi = 0; # endif RTUInt128DivRem(&Quotient, &Remainder, &Dividend, &Divisor); Assert(Quotient.s.Hi == 0); Assert(Remainder.s.Hi == 0); *pu64RAX = Quotient.s.Lo; *pu64RDX = Remainder.s.Lo; /** @todo research the undefined DIV flags. */ return 0; } /* #DE */ return VERR_IEM_ASPECT_NOT_IMPLEMENTED; } IEM_DECL_IMPL_DEF(int, iemAImpl_idiv_u64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64Divisor, uint32_t *pfEFlags)) { /* Note! Skylake leaves all flags alone. */ RT_NOREF_PV(pfEFlags); if (u64Divisor != 0) { /* * Convert to unsigned division. */ RTUINT128U Dividend; Dividend.s.Lo = *pu64RAX; Dividend.s.Hi = *pu64RDX; if ((int64_t)*pu64RDX < 0) RTUInt128AssignNeg(&Dividend); RTUINT128U Divisor; Divisor.s.Hi = 0; if ((int64_t)u64Divisor >= 0) Divisor.s.Lo = u64Divisor; else Divisor.s.Lo = UINT64_C(0) - u64Divisor; RTUINT128U Remainder; RTUINT128U Quotient; # ifdef __GNUC__ /* GCC maybe really annoying in function. */ Quotient.s.Lo = 0; Quotient.s.Hi = 0; # endif RTUInt128DivRem(&Quotient, &Remainder, &Dividend, &Divisor); /* * Setup the result, checking for overflows. */ if ((int64_t)u64Divisor >= 0) { if ((int64_t)*pu64RDX >= 0) { /* Positive divisor, positive dividend => result positive. */ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint64_t)INT64_MAX) { *pu64RAX = Quotient.s.Lo; *pu64RDX = Remainder.s.Lo; return 0; } } else { /* Positive divisor, positive dividend => result negative. */ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= UINT64_C(0x8000000000000000)) { *pu64RAX = UINT64_C(0) - Quotient.s.Lo; *pu64RDX = UINT64_C(0) - Remainder.s.Lo; return 0; } } } else { if ((int64_t)*pu64RDX >= 0) { /* Negative divisor, positive dividend => negative quotient, positive remainder. */ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= UINT64_C(0x8000000000000000)) { *pu64RAX = UINT64_C(0) - Quotient.s.Lo; *pu64RDX = Remainder.s.Lo; return 0; } } else { /* Negative divisor, negative dividend => positive quotient, negative remainder. */ if (Quotient.s.Hi == 0 && Quotient.s.Lo <= (uint64_t)INT64_MAX) { *pu64RAX = Quotient.s.Lo; *pu64RDX = UINT64_C(0) - Remainder.s.Lo; return 0; } } } } /* #DE */ return VERR_IEM_ASPECT_NOT_IMPLEMENTED; } #endif /* !RT_ARCH_AMD64 */ IEM_DECL_IMPL_DEF(void, iemAImpl_arpl,(uint16_t *pu16Dst, uint16_t u16Src, uint32_t *pfEFlags)) { if ((*pu16Dst & X86_SEL_RPL) < (u16Src & X86_SEL_RPL)) { *pu16Dst &= X86_SEL_MASK_OFF_RPL; *pu16Dst |= u16Src & X86_SEL_RPL; *pfEFlags |= X86_EFL_ZF; } else *pfEFlags &= ~X86_EFL_ZF; } IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx, uint32_t *pEFlags)) { RTUINT128U u128Tmp = *pu128Dst; if ( u128Tmp.s.Lo == pu128RaxRdx->s.Lo && u128Tmp.s.Hi == pu128RaxRdx->s.Hi) { *pu128Dst = *pu128RbxRcx; *pEFlags |= X86_EFL_ZF; } else { *pu128RaxRdx = u128Tmp; *pEFlags &= ~X86_EFL_ZF; } } IEM_DECL_IMPL_DEF(void, iemAImpl_movsldup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au32[0] = puSrc->au32[0]; puDst->au32[1] = puSrc->au32[0]; puDst->au32[2] = puSrc->au32[2]; puDst->au32[3] = puSrc->au32[2]; } #ifdef IEM_WITH_VEX IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pXState->x87.aXMM[iYRegSrc].au32[0]; pXState->x87.aXMM[iYRegDst].au32[1] = pXState->x87.aXMM[iYRegSrc].au32[0]; pXState->x87.aXMM[iYRegDst].au32[2] = pXState->x87.aXMM[iYRegSrc].au32[2]; pXState->x87.aXMM[iYRegDst].au32[3] = pXState->x87.aXMM[iYRegSrc].au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au32[2]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vmovsldup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) { pXState->x87.aXMM[iYRegDst].au32[0] = pSrc->au32[0]; pXState->x87.aXMM[iYRegDst].au32[1] = pSrc->au32[0]; pXState->x87.aXMM[iYRegDst].au32[2] = pSrc->au32[2]; pXState->x87.aXMM[iYRegDst].au32[3] = pSrc->au32[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[0] = pSrc->au32[4]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[1] = pSrc->au32[4]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[2] = pSrc->au32[6]; pXState->u.YmmHi.aYmmHi[iYRegDst].au32[3] = pSrc->au32[6]; } #endif /* IEM_WITH_VEX */ IEM_DECL_IMPL_DEF(void, iemAImpl_movshdup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc)) { RT_NOREF(pFpuState); puDst->au32[0] = puSrc->au32[1]; puDst->au32[1] = puSrc->au32[1]; puDst->au32[2] = puSrc->au32[3]; puDst->au32[3] = puSrc->au32[3]; } IEM_DECL_IMPL_DEF(void, iemAImpl_movddup,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, uint64_t uSrc)) { RT_NOREF(pFpuState); puDst->au64[0] = uSrc; puDst->au64[1] = uSrc; } #ifdef IEM_WITH_VEX IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rr,(PX86XSAVEAREA pXState, uint8_t iYRegDst, uint8_t iYRegSrc)) { pXState->x87.aXMM[iYRegDst].au64[0] = pXState->x87.aXMM[iYRegSrc].au64[0]; pXState->x87.aXMM[iYRegDst].au64[1] = pXState->x87.aXMM[iYRegSrc].au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pXState->u.YmmHi.aYmmHi[iYRegSrc].au64[0]; } IEM_DECL_IMPL_DEF(void, iemAImpl_vmovddup_256_rm,(PX86XSAVEAREA pXState, uint8_t iYRegDst, PCRTUINT256U pSrc)) { pXState->x87.aXMM[iYRegDst].au64[0] = pSrc->au64[0]; pXState->x87.aXMM[iYRegDst].au64[1] = pSrc->au64[0]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[0] = pSrc->au64[2]; pXState->u.YmmHi.aYmmHi[iYRegDst].au64[1] = pSrc->au64[2]; } #endif /* IEM_WITH_VEX */