/* $Id: IEMAllCImplSvmInstr.cpp.h 67527 2017-06-21 08:25:39Z vboxsync $ */ /** @file * IEM - AMD-V (Secure Virtual Machine) instruction implementation. */ /* * Copyright (C) 2011-2016 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** * Converts an IEM exception event type to an SVM event type. * * @returns The SVM event type. * @retval UINT8_MAX if the specified type of event isn't among the set * of recognized IEM event types. * * @param uVector The vector of the event. * @param fIemXcptFlags The IEM exception / interrupt flags. */ IEM_STATIC uint8_t iemGetSvmEventType(uint32_t uVector, uint32_t fIemXcptFlags) { if (fIemXcptFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) { if (uVector != X86_XCPT_NMI) return SVM_EVENT_EXCEPTION; return SVM_EVENT_NMI; } /* See AMD spec. Table 15-1. "Guest Exception or Interrupt Types". */ if (fIemXcptFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR)) return SVM_EVENT_EXCEPTION; if (fIemXcptFlags & IEM_XCPT_FLAGS_T_EXT_INT) return SVM_EVENT_EXTERNAL_IRQ; if (fIemXcptFlags & IEM_XCPT_FLAGS_T_SOFT_INT) return SVM_EVENT_SOFTWARE_INT; AssertMsgFailed(("iemGetSvmEventType: Invalid IEM xcpt/int. type %#x, uVector=%#x\n", fIemXcptFlags, uVector)); return UINT8_MAX; } /** * Helper for handling a SVM world-switch (VMRUN, \#VMEXIT). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uOldEfer EFER MSR prior to the world-switch. * @param uOldCr0 CR0 prior to the world-switch. */ DECLINLINE(VBOXSTRICTRC) iemSvmHandleWorldSwitch(PVMCPU pVCpu, uint64_t uOldEfer, uint64_t uOldCr0) { RT_NOREF(uOldEfer); RT_NOREF(uOldCr0); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); /* * Inform PGM. * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet, * see comment in iemMemPageTranslateAndCheckAccess(). */ PGMFlushTLB(pVCpu, pCtx->cr3, true); int rc = PGMChangeMode(pVCpu, pCtx->cr0 | X86_CR0_PE, pCtx->cr4, pCtx->msrEFER); AssertRCReturn(rc, rc); /* Inform CPUM (recompiler). */ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL); /* Re-initialize IEM cache/state after the drastic mode switch. */ iemReInitExec(pVCpu); return rc; } /** * SVM \#VMEXIT handler. * * @returns Strict VBox status code. * @retval VINF_SVM_VMEXIT when the \#VMEXIT is successful. * @retval VERR_SVM_VMEXIT_FAILED when the \#VMEXIT failed restoring the guest's * "host state" and a shutdown is required. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx The guest-CPU context. * @param uExitCode The exit code. * @param uExitInfo1 The exit info. 1 field. * @param uExitInfo2 The exit info. 2 field. */ IEM_STATIC VBOXSTRICTRC iemSvmVmexit(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) { #ifndef IN_RING3 AssertMsgFailed(("iemSvmVmexit: Bad context\n")); return VERR_INTERNAL_ERROR_5; #endif if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx) || uExitCode == SVM_EXIT_INVALID) { LogFlow(("iemSvmVmexit: CS:RIP=%04x:%08RX64 uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pCtx->cs.Sel, pCtx->rip, uExitCode, uExitInfo1, uExitInfo2)); /* * Disable the global interrupt flag to prevent interrupts during the 'atomic' world switch. */ pCtx->hwvirt.svm.fGif = 0; Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->es)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss)); Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ds)); /* * Save the nested-guest state into the VMCB state-save area. */ SVMVMCBSTATESAVE VmcbNstGst; HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, ES, es); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, CS, cs); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, SS, ss); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, DS, ds); VmcbNstGst.GDTR.u32Limit = pCtx->gdtr.cbGdt; VmcbNstGst.GDTR.u64Base = pCtx->gdtr.pGdt; VmcbNstGst.IDTR.u32Limit = pCtx->idtr.cbIdt; VmcbNstGst.IDTR.u64Base = pCtx->idtr.pIdt; VmcbNstGst.u64EFER = pCtx->msrEFER; VmcbNstGst.u64CR4 = pCtx->cr4; VmcbNstGst.u64CR3 = pCtx->cr3; VmcbNstGst.u64CR2 = pCtx->cr2; VmcbNstGst.u64CR0 = pCtx->cr0; /** @todo Nested paging. */ VmcbNstGst.u64RFlags = pCtx->rflags.u64; VmcbNstGst.u64RIP = pCtx->rip; VmcbNstGst.u64RSP = pCtx->rsp; VmcbNstGst.u64RAX = pCtx->rax; VmcbNstGst.u64DR7 = pCtx->dr[6]; VmcbNstGst.u64DR6 = pCtx->dr[7]; VmcbNstGst.u8CPL = pCtx->ss.Attr.n.u2Dpl; /* See comment in CPUMGetGuestCPL(). */ Assert(CPUMGetGuestCPL(pVCpu) == pCtx->ss.Attr.n.u2Dpl); /* Save interrupt shadow of the nested-guest instruction if any. */ if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip) { LogFlow(("iemSvmVmexit: Interrupt shadow till %#RX64\n", pCtx->rip)); pCtx->hwvirt.svm.VmcbCtrl.u64IntShadow |= SVM_INTERRUPT_SHADOW_ACTIVE; } /* * Save additional state and intercept information. */ if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)) { Assert(pCtx->hwvirt.svm.VmcbCtrl.IntCtrl.n.u1VIrqPending); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); } else pCtx->hwvirt.svm.VmcbCtrl.IntCtrl.n.u1VIrqPending = 0; /** @todo Save V_TPR, V_IRQ. */ /** @todo NRIP. */ /* Save exit information. */ pCtx->hwvirt.svm.VmcbCtrl.u64ExitCode = uExitCode; pCtx->hwvirt.svm.VmcbCtrl.u64ExitInfo1 = uExitInfo1; pCtx->hwvirt.svm.VmcbCtrl.u64ExitInfo2 = uExitInfo2; /* * Update the exit interrupt information field if this #VMEXIT happened as a result * of delivering an event. */ { uint8_t uExitIntVector; uint32_t uExitIntErr; uint32_t fExitIntFlags; bool const fRaisingEvent = IEMGetCurrentXcpt(pVCpu, &uExitIntVector, &fExitIntFlags, &uExitIntErr, NULL /* uExitIntCr2 */); pCtx->hwvirt.svm.VmcbCtrl.ExitIntInfo.n.u1Valid = fRaisingEvent; if (fRaisingEvent) { pCtx->hwvirt.svm.VmcbCtrl.ExitIntInfo.n.u8Vector = uExitIntVector; pCtx->hwvirt.svm.VmcbCtrl.ExitIntInfo.n.u3Type = iemGetSvmEventType(uExitIntVector, fExitIntFlags); if (fExitIntFlags & IEM_XCPT_FLAGS_ERR) { pCtx->hwvirt.svm.VmcbCtrl.ExitIntInfo.n.u1ErrorCodeValid = true; pCtx->hwvirt.svm.VmcbCtrl.ExitIntInfo.n.u32ErrorCode = uExitIntErr; } } } /* * Clear event injection in the VMCB. */ pCtx->hwvirt.svm.VmcbCtrl.EventInject.n.u1Valid = 0; /* * Write back the VMCB controls to the guest VMCB in guest physical memory. */ VBOXSTRICTRC rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb, &pCtx->hwvirt.svm.VmcbCtrl, sizeof(pCtx->hwvirt.svm.VmcbCtrl)); /* * Prepare for guest's "host mode" by clearing internal processor state bits. * * Some of these like TSC offset can then be used unconditionally in our TM code * but the offset in the guest's VMCB will remain as it should as we've written * back the VMCB controls above. */ RT_ZERO(pCtx->hwvirt.svm.VmcbCtrl); if (RT_SUCCESS(rcStrict)) { rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->hwvirt.svm.GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst, sizeof(VmcbNstGst)); if (RT_SUCCESS(rcStrict)) { /** @todo Nested paging. */ /** @todo ASID. */ uint64_t const uOldCr0 = pCtx->cr0; uint64_t const uOldEfer = pCtx->msrEFER; /* * Reload the guest's "host state". */ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pCtx->es = pHostState->es; pCtx->cs = pHostState->cs; pCtx->ss = pHostState->ss; pCtx->ds = pHostState->ds; pCtx->gdtr = pHostState->gdtr; pCtx->idtr = pHostState->idtr; pCtx->msrEFER = pHostState->uEferMsr; pCtx->cr0 = pHostState->uCr0 | X86_CR0_PE; pCtx->cr3 = pHostState->uCr3; pCtx->cr4 = pHostState->uCr4; pCtx->rflags = pHostState->rflags; pCtx->rflags.Bits.u1VM = 0; pCtx->rip = pHostState->uRip; pCtx->rsp = pHostState->uRsp; pCtx->rax = pHostState->uRax; pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pCtx->dr[7] |= X86_DR7_RA1_MASK; /** @todo if RIP is not canonical or outside the CS segment limit, we need to * raise \#GP(0) in the guest. */ /** @todo check the loaded host-state for consistency. Figure out what * exactly this involves? */ /* Restore guest's force-flags. */ if (pCtx->hwvirt.fLocalForcedActions) VMCPU_FF_SET(pVCpu, pCtx->hwvirt.fLocalForcedActions); /* * Inform PGM and others of the world-switch. */ rcStrict = iemSvmHandleWorldSwitch(pVCpu, uOldEfer, uOldCr0); if (rcStrict == VINF_SUCCESS) return VINF_SVM_VMEXIT; if (RT_SUCCESS(rcStrict)) { LogFlow(("iemSvmVmexit: Setting passup status from iemSvmHandleWorldSwitch %Rrc\n", rcStrict)); iemSetPassUpStatus(pVCpu, rcStrict); return VINF_SVM_VMEXIT; } LogFlow(("iemSvmVmexit: iemSvmHandleWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); } else LogFlow(("iemSvmVmexit: Writing VMCB guest-state at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict))); } else LogFlow(("iemSvmVmexit: Writing VMCB guest-controls at %#RGp failed. rc=%Rrc\n", pCtx->hwvirt.svm.GCPhysVmcb, VBOXSTRICTRC_VAL(rcStrict))); Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); return VERR_SVM_VMEXIT_FAILED; } Log(("iemSvmVmexit: Not in SVM guest mode! uExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uExitCode, uExitInfo1, uExitInfo2)); AssertMsgFailed(("iemSvmVmexit: Unexpected SVM-exit failure uExitCode=%#RX64\n", uExitCode)); return VERR_SVM_IPE_5; } /** * Performs the operations necessary that are part of the vmrun instruction * execution in the guest. * * @returns Strict VBox status code (i.e. informational status codes too). * @retval VINF_SUCCESS successully executed VMRUN and entered nested-guest * code execution. * @retval VINF_SVM_VMEXIT when executing VMRUN causes a \#VMEXIT * (SVM_EXIT_INVALID most likely). * * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest-CPU context. * @param cbInstr The length of the VMRUN instruction. * @param GCPhysVmcb Guest physical address of the VMCB to run. */ IEM_STATIC VBOXSTRICTRC iemSvmVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbInstr, RTGCPHYS GCPhysVmcb) { #ifndef IN_RING3 return VINF_EM_RESCHEDULE_REM; #endif Assert(pVCpu); Assert(pCtx); PVM pVM = pVCpu->CTX_SUFF(pVM); LogFlow(("iemSvmVmrun\n")); /* * Cache the physical address of the VMCB for #VMEXIT exceptions. */ pCtx->hwvirt.svm.GCPhysVmcb = GCPhysVmcb; /* * Save host state. */ SVMVMCBSTATESAVE VmcbNstGst; int rc = PGMPhysSimpleReadGCPhys(pVM, &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE)); if (RT_SUCCESS(rc)) { PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pHostState->es = pCtx->es; pHostState->cs = pCtx->cs; pHostState->ss = pCtx->ss; pHostState->ds = pCtx->ds; pHostState->gdtr = pCtx->gdtr; pHostState->idtr = pCtx->idtr; pHostState->uEferMsr = pCtx->msrEFER; pHostState->uCr0 = pCtx->cr0; pHostState->uCr3 = pCtx->cr3; pHostState->uCr4 = pCtx->cr4; pHostState->rflags = pCtx->rflags; pHostState->uRip = pCtx->rip + cbInstr; pHostState->uRsp = pCtx->rsp; pHostState->uRax = pCtx->rax; /* * Load the VMCB controls. */ rc = PGMPhysSimpleReadGCPhys(pVM, &pCtx->hwvirt.svm.VmcbCtrl, GCPhysVmcb, sizeof(pCtx->hwvirt.svm.VmcbCtrl)); if (RT_SUCCESS(rc)) { PSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.VmcbCtrl; /* * Validate guest-state and controls. */ /* VMRUN must always be iHMSntercepted. */ if (!CPUMIsGuestSvmCtrlInterceptSet(pCtx, SVM_CTRL_INTERCEPT_VMRUN)) { Log(("iemSvmVmrun: VMRUN instruction not intercepted -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Nested paging. */ if ( pVmcbCtrl->NestedPaging.n.u1NestedPaging && !pVM->cpum.ro.GuestFeatures.fSvmNestedPaging) { Log(("iemSvmVmrun: Nested paging not supported -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* AVIC. */ if ( pVmcbCtrl->IntCtrl.n.u1AvicEnable && !pVM->cpum.ro.GuestFeatures.fSvmAvic) { Log(("iemSvmVmrun: AVIC not supported -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Last branch record (LBR) virtualization. */ if ( (pVmcbCtrl->u64LBRVirt & SVM_LBR_VIRT_ENABLE) && !pVM->cpum.ro.GuestFeatures.fSvmLbrVirt) { Log(("iemSvmVmrun: LBR virtualization not supported -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Guest ASID. */ if (!pVmcbCtrl->TLBCtrl.n.u32ASID) { Log(("iemSvmVmrun: Guest ASID is invalid -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* IO permission bitmap. */ RTGCPHYS const GCPhysIOBitmap = pVmcbCtrl->u64IOPMPhysAddr; if ( (GCPhysIOBitmap & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + X86_PAGE_4K_SIZE) || !PGMPhysIsGCPhysNormal(pVM, GCPhysIOBitmap + (X86_PAGE_4K_SIZE << 1))) { Log(("iemSvmVmrun: IO bitmap physaddr invalid. GCPhysIOBitmap=%#RX64 -> #VMEXIT\n", GCPhysIOBitmap)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* MSR permission bitmap. */ RTGCPHYS const GCPhysMsrBitmap = pVmcbCtrl->u64MSRPMPhysAddr; if ( (GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap) || !PGMPhysIsGCPhysNormal(pVM, GCPhysMsrBitmap + X86_PAGE_4K_SIZE)) { Log(("iemSvmVmrun: MSR bitmap physaddr invalid. GCPhysMsrBitmap=%#RX64 -> #VMEXIT\n", GCPhysMsrBitmap)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* CR0. */ if ( !(VmcbNstGst.u64CR0 & X86_CR0_CD) && (VmcbNstGst.u64CR0 & X86_CR0_NW)) { Log(("iemSvmVmrun: CR0 no-write through with cache disabled. CR0=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64CR0)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (VmcbNstGst.u64CR0 >> 32) { Log(("iemSvmVmrun: CR0 reserved bits set. CR0=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64CR0)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo Implement all reserved bits/illegal combinations for CR3, CR4. */ /* DR6 and DR7. */ if ( VmcbNstGst.u64DR6 >> 32 || VmcbNstGst.u64DR7 >> 32) { Log(("iemSvmVmrun: DR6 and/or DR7 reserved bits set. DR6=%#RX64 DR7=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64DR6, VmcbNstGst.u64DR6)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo gPAT MSR validation? */ /* * Copy the IO permission bitmap into the cache. */ Assert(pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap)); rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap), GCPhysIOBitmap, SVM_IOPM_PAGES * X86_PAGE_4K_SIZE); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: Failed reading the IO permission bitmap at %#RGp. rc=%Rrc\n", GCPhysIOBitmap, rc)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Copy the MSR permission bitmap into the cache. */ Assert(pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap)); rc = PGMPhysSimpleReadGCPhys(pVM, pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap), GCPhysMsrBitmap, SVM_MSRPM_PAGES * X86_PAGE_4K_SIZE); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: Failed reading the MSR permission bitmap at %#RGp. rc=%Rrc\n", GCPhysMsrBitmap, rc)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Copy segments from nested-guest VMCB state to the guest-CPU state. * * We do this here as we need to use the CS attributes and it's easier this way * then using the VMCB format selectors. It doesn't really matter where we copy * the state, we restore the guest-CPU context state on the \#VMEXIT anyway. */ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, ES, es); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, CS, cs); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, SS, ss); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, DS, ds); /** @todo Segment attribute overrides by VMRUN. */ /* * CPL adjustments and overrides. * * SS.DPL is apparently the CPU's CPL, see comment in CPUMGetGuestCPL(). * We shall thus adjust both CS.DPL and SS.DPL here. */ pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = VmcbNstGst.u8CPL; if (CPUMIsGuestInV86ModeEx(pCtx)) pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 3; if (CPUMIsGuestInRealModeEx(pCtx)) pCtx->cs.Attr.n.u2Dpl = pCtx->ss.Attr.n.u2Dpl = 0; Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->ss)); /* * Continue validating guest-state and controls. */ /* EFER, CR0 and CR4. */ uint64_t uValidEfer; rc = CPUMQueryValidatedGuestEfer(pVM, VmcbNstGst.u64CR0, 0 /* uOldEfer */, VmcbNstGst.u64EFER, &uValidEfer); if (RT_FAILURE(rc)) { Log(("iemSvmVmrun: EFER invalid uOldEfer=%#RX64 uValidEfer=%#RX64 -> #VMEXIT\n", VmcbNstGst.u64EFER, uValidEfer)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } bool const fSvm = RT_BOOL(uValidEfer & MSR_K6_EFER_SVME); bool const fLongModeSupported = RT_BOOL(pVM->cpum.ro.GuestFeatures.fLongMode); bool const fLongModeEnabled = RT_BOOL(uValidEfer & MSR_K6_EFER_LME); bool const fPaging = RT_BOOL(VmcbNstGst.u64CR0 & X86_CR0_PG); bool const fPae = RT_BOOL(VmcbNstGst.u64CR4 & X86_CR4_PAE); bool const fProtMode = RT_BOOL(VmcbNstGst.u64CR0 & X86_CR0_PE); bool const fLongModeWithPaging = fLongModeEnabled && fPaging; bool const fLongModeConformCS = pCtx->cs.Attr.n.u1Long && pCtx->cs.Attr.n.u1DefBig; /* Adjust EFER.LMA (this is normally done by the CPU when system software writes CR0). */ if (fLongModeWithPaging) uValidEfer |= MSR_K6_EFER_LMA; bool const fLongModeActiveOrEnabled = RT_BOOL(uValidEfer & (MSR_K6_EFER_LME | MSR_K6_EFER_LMA)); if ( !fSvm || (!fLongModeSupported && fLongModeActiveOrEnabled) || (fLongModeWithPaging && !fPae) || (fLongModeWithPaging && !fProtMode) || ( fLongModeEnabled && fPaging && fPae && fLongModeConformCS)) { Log(("iemSvmVmrun: EFER invalid. uValidEfer=%#RX64 -> #VMEXIT\n", uValidEfer)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* * Preserve the required force-flags. * * We only preserve the force-flags that would affect the execution of the * nested-guest (or the guest). * * - VMCPU_FF_INHIBIT_INTERRUPTS need -not- be preserved as it's for a single * instruction which is this VMRUN instruction itself. * * - VMCPU_FF_BLOCK_NMIS needs to be preserved as it blocks NMI until the * execution of a subsequent IRET instruction in the guest. * * - The remaining FFs (e.g. timers) can stay in place so that we will be * able to generate interrupts that should cause #VMEXITs for the * nested-guest. */ pCtx->hwvirt.fLocalForcedActions = pVCpu->fLocalForcedActions & VMCPU_FF_BLOCK_NMIS; /* * Interrupt shadow. */ if (pVmcbCtrl->u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE) { LogFlow(("iemSvmVmrun: setting inerrupt shadow. inhibit PC=%#RX64\n", VmcbNstGst.u64RIP)); /** @todo will this cause trouble if the nested-guest is 64-bit but the guest is 32-bit? */ EMSetInhibitInterruptsPC(pVCpu, VmcbNstGst.u64RIP); } /* * TLB flush control. * Currently disabled since it's redundant as we unconditionally flush the TLB * in iemSvmHandleWorldSwitch() below. */ #if 0 /** @todo @bugref{7243}: ASID based PGM TLB flushes. */ if ( pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT || pVmcbCtrl->TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS) PGMFlushTLB(pVCpu, VmcbNstGst.u64CR3, true /* fGlobal */); #endif /** @todo @bugref{7243}: SVM TSC offset, see tmCpuTickGetInternal. */ uint64_t const uOldEfer = pCtx->msrEFER; uint64_t const uOldCr0 = pCtx->cr0; /* * Copy the remaining guest state from the VMCB to the guest-CPU context. */ pCtx->gdtr.cbGdt = VmcbNstGst.GDTR.u32Limit; pCtx->gdtr.pGdt = VmcbNstGst.GDTR.u64Base; pCtx->idtr.cbIdt = VmcbNstGst.IDTR.u32Limit; pCtx->idtr.pIdt = VmcbNstGst.IDTR.u64Base; pCtx->cr0 = VmcbNstGst.u64CR0; /** @todo What about informing PGM about CR0.WP? */ pCtx->cr4 = VmcbNstGst.u64CR4; pCtx->cr3 = VmcbNstGst.u64CR3; pCtx->cr2 = VmcbNstGst.u64CR2; pCtx->dr[6] = VmcbNstGst.u64DR6; pCtx->dr[7] = VmcbNstGst.u64DR7; pCtx->rflags.u64 = VmcbNstGst.u64RFlags; pCtx->rax = VmcbNstGst.u64RAX; pCtx->rsp = VmcbNstGst.u64RSP; pCtx->rip = VmcbNstGst.u64RIP; pCtx->msrEFER = uValidEfer; /* Mask DR6, DR7 bits mandatory set/clear bits. */ pCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK); pCtx->dr[6] |= X86_DR6_RA1_MASK; pCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pCtx->dr[7] |= X86_DR7_RA1_MASK; /* * Check for pending virtual interrupts. */ if (pVmcbCtrl->IntCtrl.n.u1VIrqPending) VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST); else Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST)); /* * Clear global interrupt flags to allow interrupts in the guest. */ pCtx->hwvirt.svm.fGif = 1; /* * Inform PGM and others of the world-switch. */ VBOXSTRICTRC rcStrict = iemSvmHandleWorldSwitch(pVCpu, uOldEfer, uOldCr0); if (rcStrict == VINF_SUCCESS) { /* likely */ } else if (RT_SUCCESS(rcStrict)) rcStrict = iemSetPassUpStatus(pVCpu, rcStrict); else { LogFlow(("iemSvmVmrun: iemSvmHandleWorldSwitch unexpected failure. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /* * Event injection. */ PCSVMEVENT pEventInject = &pVmcbCtrl->EventInject; pCtx->hwvirt.svm.fInterceptEvents = !pEventInject->n.u1Valid; if (pEventInject->n.u1Valid) { uint8_t const uVector = pEventInject->n.u8Vector; TRPMEVENT const enmType = HMSvmEventToTrpmEventType(pEventInject); uint16_t const uErrorCode = pEventInject->n.u1ErrorCodeValid ? pEventInject->n.u32ErrorCode : 0; /* Validate vectors for hardware exceptions, see AMD spec. 15.20 "Event Injection". */ if (enmType == TRPM_32BIT_HACK) { Log(("iemSvmVmrun: Invalid event type =%#x -> #VMEXIT\n", (uint8_t)pEventInject->n.u3Type)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if (pEventInject->n.u3Type == SVM_EVENT_EXCEPTION) { if ( uVector == X86_XCPT_NMI || uVector > X86_XCPT_LAST) { Log(("iemSvmVmrun: Invalid vector for hardware exception. uVector=%#x -> #VMEXIT\n", uVector)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } if ( uVector == X86_XCPT_BR && CPUMIsGuestInLongModeEx(pCtx)) { Log(("iemSvmVmrun: Cannot inject #BR when not in long mode -> #VMEXIT\n")); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_INVALID, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /** @todo any others? */ } /* * Update the exit interruption info field so that if an exception occurs * while delivering the event causing a #VMEXIT, we only need to update * the valid bit while the rest is already in place. */ pVmcbCtrl->ExitIntInfo.u = pVmcbCtrl->EventInject.u; pVmcbCtrl->ExitIntInfo.n.u1Valid = 0; /** @todo NRIP: Software interrupts can only be pushed properly if we support * NRIP for the nested-guest to calculate the instruction length * below. */ LogFlow(("iemSvmVmrun: InjectingEvent: uVector=%u enmType=%d uErrorCode=%u cr2=%#RX64\n", uVector, enmType, uErrorCode, pCtx->cr2)); rcStrict = IEMInjectTrap(pVCpu, uVector, enmType, uErrorCode, pCtx->cr2, 0 /* cbInstr */); } else LogFlow(("iemSvmVmrun: Entering nested-guest at %04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 efer=%#RX64 efl=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->cr0, pCtx->cr3, pCtx->cr4, pCtx->msrEFER, pCtx->rflags.u64)); return rcStrict; } /* Shouldn't really happen as the caller should've validated the physical address already. */ Log(("iemSvmVmrun: Failed to read nested-guest VMCB control area at %#RGp -> #VMEXIT\n", GCPhysVmcb)); return VERR_SVM_IPE_4; } /* Shouldn't really happen as the caller should've validated the physical address already. */ Log(("iemSvmVmrun: Failed to read nested-guest VMCB save-state area at %#RGp -> #VMEXIT\n", GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest))); return VERR_IEM_IPE_1; } #if 0 /** * Handles nested-guest SVM control intercepts and performs the \#VMEXIT if the * intercept is active. * * @returns Strict VBox status code. * @retval VINF_SVM_INTERCEPT_NOT_ACTIVE if the intercept is not active or * we're not executing a nested-guest. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the geust. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx The guest-CPU context. * @param uExitCode The SVM exit code (see SVM_EXIT_XXX). * @param uExitInfo1 The exit info. 1 field. * @param uExitInfo2 The exit info. 2 field. */ VMM_INT_DECL(VBOXSTRICTRC) HMSvmNstGstHandleCtrlIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) { #define HMSVM_CTRL_INTERCEPT_VMEXIT(a_Intercept) \ do { \ if (CPUMIsGuestSvmCtrlInterceptSet(pCtx, (a_Intercept))) \ return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); \ break; \ } while (0) if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) return VINF_HM_INTERCEPT_NOT_ACTIVE; switch (uExitCode) { case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3: case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7: case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22: case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25: case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28: case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31: { if (CPUMIsGuestSvmXcptInterceptSet(pCtx, (X86XCPT)(uExitCode - SVM_EXIT_EXCEPTION_0))) return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); break; } case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3: case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7: case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11: case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15: { if (CPUMIsGuestSvmWriteCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_CR0)) return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); break; } case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3: case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7: case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11: case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15: { if (CPUMIsGuestSvmReadCRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_CR0)) return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); break; } case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3: case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15: { if (CPUMIsGuestSvmReadDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_READ_DR0)) return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); break; } case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3: case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15: { if (CPUMIsGuestSvmWriteDRxInterceptSet(pCtx, uExitCode - SVM_EXIT_WRITE_DR0)) return iemSvmVmexit(pVCpu, pCtx, uExitCode, uExitInfo1, uExitInfo2); break; } case SVM_EXIT_INTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTR); case SVM_EXIT_NMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_NMI); case SVM_EXIT_SMI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SMI); case SVM_EXIT_INIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INIT); case SVM_EXIT_VINTR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VINTR); case SVM_EXIT_CR0_SEL_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CR0_SEL_WRITES); case SVM_EXIT_IDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_READS); case SVM_EXIT_GDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_READS); case SVM_EXIT_LDTR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_READS); case SVM_EXIT_TR_READ: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_READS); case SVM_EXIT_IDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IDTR_WRITES); case SVM_EXIT_GDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_GDTR_WRITES); case SVM_EXIT_LDTR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_LDTR_WRITES); case SVM_EXIT_TR_WRITE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TR_WRITES); case SVM_EXIT_RDTSC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSC); case SVM_EXIT_RDPMC: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDPMC); case SVM_EXIT_PUSHF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PUSHF); case SVM_EXIT_POPF: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_POPF); case SVM_EXIT_CPUID: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CPUID); case SVM_EXIT_RSM: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RSM); case SVM_EXIT_IRET: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_IRET); case SVM_EXIT_SWINT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INTN); case SVM_EXIT_INVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVD); case SVM_EXIT_PAUSE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_PAUSE); case SVM_EXIT_HLT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_HLT); case SVM_EXIT_INVLPG: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPG); case SVM_EXIT_INVLPGA: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_INVLPGA); case SVM_EXIT_TASK_SWITCH: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_TASK_SWITCH); case SVM_EXIT_FERR_FREEZE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_FERR_FREEZE); case SVM_EXIT_SHUTDOWN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SHUTDOWN); case SVM_EXIT_VMRUN: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMRUN); case SVM_EXIT_VMMCALL: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMMCALL); case SVM_EXIT_VMLOAD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMLOAD); case SVM_EXIT_VMSAVE: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_VMSAVE); case SVM_EXIT_STGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_STGI); case SVM_EXIT_CLGI: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_CLGI); case SVM_EXIT_SKINIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_SKINIT); case SVM_EXIT_RDTSCP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_RDTSCP); case SVM_EXIT_ICEBP: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_ICEBP); case SVM_EXIT_WBINVD: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_WBINVD); case SVM_EXIT_MONITOR: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MONITOR); case SVM_EXIT_MWAIT: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT); case SVM_EXIT_MWAIT_ARMED: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_MWAIT_ARMED); case SVM_EXIT_XSETBV: HMSVM_CTRL_INTERCEPT_VMEXIT(SVM_CTRL_INTERCEPT_XSETBV); case SVM_EXIT_IOIO: AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n")); return VERR_SVM_IPE_1; case SVM_EXIT_MSR: AssertMsgFailed(("Use HMSvmNstGstHandleMsrIntercept!\n")); return VERR_SVM_IPE_1; case SVM_EXIT_NPF: case SVM_EXIT_AVIC_INCOMPLETE_IPI: case SVM_EXIT_AVIC_NOACCEL: AssertMsgFailed(("Todo Implement.\n")); return VERR_SVM_IPE_1; default: AssertMsgFailed(("Unsupported SVM exit code %#RX64\n", uExitCode)); return VERR_SVM_IPE_1; } return VINF_HM_INTERCEPT_NOT_ACTIVE; #undef HMSVM_CTRL_INTERCEPT_VMEXIT } #endif /** * Checks if the event intercepts and performs the \#VMEXIT if the corresponding * intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or * we're not executing a nested-guest. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the geust. * * @returns VBox strict status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u16Port The IO port being accessed. * @param enmIoType The type of IO access. * @param cbReg The IO operand size in bytes. * @param cAddrSizeBits The address size bits (for 16, 32 or 64). * @param iEffSeg The effective segment number. * @param fRep Whether this is a repeating IO instruction (REP prefix). * @param fStrIo Whether this is a string IO instruction. * @param cbInstr The length of the IO instruction in bytes. */ IEM_STATIC VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) { Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* * Handle SVM exception and software interrupt intercepts, see AMD spec. 15.12 "Exception Intercepts". * * - NMI intercepts have their own exit code and do not cause SVM_EXIT_EXCEPTION_2 #VMEXITs. * - External interrupts and software interrupts (INTn instruction) do not check the exception intercepts * even when they use a vector in the range 0 to 31. * - ICEBP should not trigger #DB intercept, but its own intercept. * - For #PF exceptions, its intercept is checked before CR2 is written by the exception. */ /* Check NMI intercept */ if ( u8Vector == X86_XCPT_NMI && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_NMI)) { Log2(("iemHandleSvmNstGstEventIntercept: NMI intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_NMI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Check ICEBP intercept. */ if ( (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR) && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_ICEBP)) { Log2(("iemHandleSvmNstGstEventIntercept: ICEBP intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_ICEBP, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } /* Check CPU exception intercepts. */ if ( (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT) && IEM_IS_SVM_XCPT_INTERCEPT_SET(pVCpu, u8Vector)) { Assert(u8Vector <= X86_XCPT_LAST); uint64_t const uExitInfo1 = fFlags & IEM_XCPT_FLAGS_ERR ? uErr : 0; uint64_t const uExitInfo2 = fFlags & IEM_XCPT_FLAGS_CR2 ? uCr2 : 0; if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist && u8Vector == X86_XCPT_PF && !(uErr & X86_TRAP_PF_ID)) { /** @todo Nested-guest SVM - figure out fetching op-code bytes from IEM. */ #ifdef IEM_WITH_CODE_TLB AssertReleaseFailedReturn(VERR_IEM_IPE_5); #else uint8_t const offOpCode = pVCpu->iem.s.offOpcode; uint8_t const cbCurrent = pVCpu->iem.s.cbOpcode - pVCpu->iem.s.offOpcode; if ( cbCurrent > 0 && cbCurrent < sizeof(pCtx->hwvirt.svm.VmcbCtrl.abInstr)) { Assert(cbCurrent <= sizeof(pVCpu->iem.s.abOpcode)); memcpy(&pCtx->hwvirt.svm.VmcbCtrl.abInstr[0], &pVCpu->iem.s.abOpcode[offOpCode], cbCurrent); } #endif } Log2(("iemHandleSvmNstGstEventIntercept: Xcpt intercept. u32InterceptXcpt=%#RX32 u8Vector=%#x uExitInfo1=%#RX64, uExitInfo2=%#RX64 -> #VMEXIT\n", pCtx->hwvirt.svm.VmcbCtrl.u32InterceptXcpt, u8Vector, uExitInfo1, uExitInfo2)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_EXCEPTION_0 + u8Vector, uExitInfo1, uExitInfo2); } /* Check software interrupt (INTn) intercepts. */ if ( (fFlags & ( IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR | IEM_XCPT_FLAGS_OF_INSTR)) == IEM_XCPT_FLAGS_T_SOFT_INT && IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INTN)) { uint64_t const uExitInfo1 = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fSvmDecodeAssist ? u8Vector : 0; Log2(("iemHandleSvmNstGstEventIntercept: Software INT intercept (u8Vector=%#x) -> #VMEXIT\n", u8Vector)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SWINT, uExitInfo1, 0 /* uExitInfo2 */); } return VINF_HM_INTERCEPT_NOT_ACTIVE; } /** * Checks the SVM IO permission bitmap and performs the \#VMEXIT if the * corresponding intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the intercept is not active or * we're not executing a nested-guest. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the geust. * * @returns VBox strict status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param u16Port The IO port being accessed. * @param enmIoType The type of IO access. * @param cbReg The IO operand size in bytes. * @param cAddrSizeBits The address size bits (for 16, 32 or 64). * @param iEffSeg The effective segment number. * @param fRep Whether this is a repeating IO instruction (REP prefix). * @param fStrIo Whether this is a string IO instruction. * @param cbInstr The length of the IO instruction in bytes. */ IEM_STATIC VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPU pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg, uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) { Assert(IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_IOIO_PROT)); Assert(cAddrSizeBits == 0 || cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64); Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8); Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u)\n", u16Port, u16Port)); /* * The IOPM layout: * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or * two 4K pages. * * For IO instructions that access more than a single byte, the permission bits * for all bytes are checked; if any bit is set to 1, the IO access is intercepted. * * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes), * we need 3 extra bits beyond the second 4K page. */ PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 }; uint16_t const offIopm = u16Port >> 3; uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7]; uint8_t const cShift = u16Port - (offIopm << 3); uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift); uint8_t const *pbIopm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvIoBitmap); Assert(pbIopm); pbIopm += offIopm; uint16_t const u16Iopm = *(uint16_t *)pbIopm; if (u16Iopm & fIopmMask) { static const uint32_t s_auIoOpSize[] = { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 }; static const uint32_t s_auIoAddrSize[] = { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 }; SVMIOIOEXITINFO IoExitInfo; IoExitInfo.u = s_auIoOpSize[cbReg & 7]; IoExitInfo.u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7]; IoExitInfo.n.u1STR = fStrIo; IoExitInfo.n.u1REP = fRep; IoExitInfo.n.u3SEG = iEffSeg & 7; IoExitInfo.n.u1Type = enmIoType; IoExitInfo.n.u16Port = u16Port; Log3(("iemSvmHandleIOIntercept: u16Port=%#x (%u) offIoPm=%u fSizeMask=%#x cShift=%u fIopmMask=%#x -> #VMEXIT\n", u16Port, u16Port, offIopm, fSizeMask, cShift, fIopmMask)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_IOIO, IoExitInfo.u, pCtx->rip + cbInstr); } /** @todo remove later (for debugging as VirtualBox always traps all IO * intercepts). */ AssertMsgFailed(("iemSvmHandleIOIntercept: We expect an IO intercept here!\n")); return VINF_HM_INTERCEPT_NOT_ACTIVE; } /** * Checks the SVM MSR permission bitmap and performs the \#VMEXIT if the * corresponding intercept is active. * * @returns Strict VBox status code. * @retval VINF_HM_INTERCEPT_NOT_ACTIVE if the MSR permission bitmap does not * specify interception of the accessed MSR @a idMsr. * @retval VINF_SVM_VMEXIT if the intercept is active and the \#VMEXIT occurred * successfully. * @retval VERR_SVM_VMEXIT_FAILED if the intercept is active and the \#VMEXIT * failed and a shutdown needs to be initiated for the geust. * * @param pVCpu The cross context virtual CPU structure. * @param pCtx The guest-CPU context. * @param idMsr The MSR being accessed in the nested-guest. * @param fWrite Whether this is an MSR write access, @c false implies an * MSR read. */ IEM_STATIC VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t idMsr, bool fWrite) { /* * Check if any MSRs are being intercepted. */ Assert(CPUMIsGuestSvmCtrlInterceptSet(pCtx, SVM_CTRL_INTERCEPT_MSR_PROT)); Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); uint64_t const uExitInfo1 = fWrite ? SVM_EXIT1_MSR_WRITE : SVM_EXIT1_MSR_READ; /* * Get the byte and bit offset of the permission bits corresponding to the MSR. */ uint16_t offMsrpm; uint32_t uMsrpmBit; int rc = HMSvmGetMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit); if (RT_SUCCESS(rc)) { Assert(uMsrpmBit < 0x3fff); Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT); if (fWrite) ++uMsrpmBit; /* * Check if the bit is set, if so, trigger a #VMEXIT. */ uint8_t *pbMsrpm = (uint8_t *)pCtx->hwvirt.svm.CTX_SUFF(pvMsrBitmap); pbMsrpm += offMsrpm; if (ASMBitTest(pbMsrpm, uMsrpmBit)) return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */); } else { /* * This shouldn't happen, but if it does, cause a #VMEXIT and let the "host" (guest hypervisor) deal with it. */ Log(("iemSvmHandleMsrIntercept: Invalid/out-of-range MSR %#RX32 fWrite=%RTbool -> #VMEXIT\n", idMsr, fWrite)); return iemSvmVmexit(pVCpu, pCtx, SVM_EXIT_MSR, uExitInfo1, 0 /* uExitInfo2 */); } return VINF_HM_INTERCEPT_NOT_ACTIVE; } /** * Implements 'VMRUN'. */ IEM_CIMPL_DEF_0(iemCImpl_vmrun) { #ifndef IN_RING3 return VINF_EM_RESCHEDULE_REM; #endif LogFlow(("iemCImpl_vmrun\n")); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmrun); RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmrun: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMRUN)) { Log(("vmrun: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMRUN, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } VBOXSTRICTRC rcStrict = iemSvmVmrun(pVCpu, pCtx, cbInstr, GCPhysVmcb); if (rcStrict == VINF_SVM_VMEXIT) { iemRegAddToRipAndClearRF(pVCpu, cbInstr); rcStrict = VINF_SUCCESS; } else if (rcStrict == VERR_SVM_VMEXIT_FAILED) rcStrict = iemInitiateCpuShutdown(pVCpu); return rcStrict; } /** * Implements 'VMMCALL'. */ IEM_CIMPL_DEF_0(iemCImpl_vmmcall) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMMCALL)) { Log(("vmmcall: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMMCALL, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } bool fUpdatedRipAndRF; VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fUpdatedRipAndRF); if (RT_SUCCESS(rcStrict)) { if (!fUpdatedRipAndRF) iemRegAddToRipAndClearRF(pVCpu, cbInstr); return rcStrict; } return iemRaiseUndefinedOpcode(pVCpu); } /** * Implements 'VMLOAD'. */ IEM_CIMPL_DEF_0(iemCImpl_vmload) { #ifndef IN_RING3 return VINF_EM_RAW_EMULATE_INSTR; #endif LogFlow(("iemCImpl_vmload\n")); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmload); RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmload: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMLOAD)) { Log(("vmload: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMLOAD, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } SVMVMCBSTATESAVE VmcbNstGst; VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) { LogFlow(("vmload: Loading VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode)); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, FS, fs); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, GS, gs); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, TR, tr); HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr); pCtx->msrKERNELGSBASE = VmcbNstGst.u64KernelGSBase; pCtx->msrSTAR = VmcbNstGst.u64STAR; pCtx->msrLSTAR = VmcbNstGst.u64LSTAR; pCtx->msrCSTAR = VmcbNstGst.u64CSTAR; pCtx->msrSFMASK = VmcbNstGst.u64SFMASK; pCtx->SysEnter.cs = VmcbNstGst.u64SysEnterCS; pCtx->SysEnter.esp = VmcbNstGst.u64SysEnterESP; pCtx->SysEnter.eip = VmcbNstGst.u64SysEnterEIP; iemRegAddToRipAndClearRF(pVCpu, cbInstr); } return rcStrict; } /** * Implements 'VMSAVE'. */ IEM_CIMPL_DEF_0(iemCImpl_vmsave) { #ifndef IN_RING3 return VINF_EM_RAW_EMULATE_INSTR; #endif LogFlow(("iemCImpl_vmsave\n")); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, vmsave); RTGCPHYS const GCPhysVmcb = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax; if ( (GCPhysVmcb & X86_PAGE_4K_OFFSET_MASK) || !PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcb)) { Log(("vmsave: VMCB physaddr (%#RGp) not valid -> #GP(0)\n", GCPhysVmcb)); return iemRaiseGeneralProtectionFault0(pVCpu); } if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_VMSAVE)) { Log(("vmsave: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_VMSAVE, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } SVMVMCBSTATESAVE VmcbNstGst; VBOXSTRICTRC rcStrict = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcbNstGst, GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) { LogFlow(("vmsave: Saving VMCB at %#RGp enmEffAddrMode=%d\n", GCPhysVmcb, pVCpu->iem.s.enmEffAddrMode)); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, FS, fs); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, GS, gs); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, TR, tr); HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &VmcbNstGst, LDTR, ldtr); VmcbNstGst.u64KernelGSBase = pCtx->msrKERNELGSBASE; VmcbNstGst.u64STAR = pCtx->msrSTAR; VmcbNstGst.u64LSTAR = pCtx->msrLSTAR; VmcbNstGst.u64CSTAR = pCtx->msrCSTAR; VmcbNstGst.u64SFMASK = pCtx->msrSFMASK; VmcbNstGst.u64SysEnterCS = pCtx->SysEnter.cs; VmcbNstGst.u64SysEnterESP = pCtx->SysEnter.esp; VmcbNstGst.u64SysEnterEIP = pCtx->SysEnter.eip; rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcb + RT_OFFSETOF(SVMVMCB, guest), &VmcbNstGst, sizeof(SVMVMCBSTATESAVE)); if (rcStrict == VINF_SUCCESS) iemRegAddToRipAndClearRF(pVCpu, cbInstr); } return rcStrict; } /** * Implements 'CLGI'. */ IEM_CIMPL_DEF_0(iemCImpl_clgi) { #ifndef IN_RING3 return VINF_EM_RESCHEDULE_REM; #endif LogFlow(("iemCImpl_clgi\n")); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, clgi); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_CLGI)) { Log(("clgi: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_CLGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } pCtx->hwvirt.svm.fGif = 0; iemRegAddToRipAndClearRF(pVCpu, cbInstr); #if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true); #endif return VINF_SUCCESS; } /** * Implements 'STGI'. */ IEM_CIMPL_DEF_0(iemCImpl_stgi) { #ifndef IN_RING3 return VINF_EM_RESCHEDULE_REM; #endif LogFlow(("iemCImpl_stgi\n")); PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, stgi); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_STGI)) { Log2(("stgi: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_STGI, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } pCtx->hwvirt.svm.fGif = 1; iemRegAddToRipAndClearRF(pVCpu, cbInstr); #if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3) EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false); #endif return VINF_SUCCESS; } /** * Implements 'INVLPGA'. */ IEM_CIMPL_DEF_0(iemCImpl_invlpga) { PCPUMCTX pCtx = IEM_GET_CTX(pVCpu); RTGCPTR const GCPtrPage = pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT ? pCtx->rax : pCtx->eax; /** @todo PGM needs virtual ASID support. */ #if 0 uint32_t const uAsid = pCtx->ecx; #endif IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_INVLPGA)) { Log2(("invlpga: Guest intercept (%RGp) -> #VMEXIT\n", GCPtrPage)); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_INVLPGA, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } PGMInvalidatePage(pVCpu, GCPtrPage); iemRegAddToRipAndClearRF(pVCpu, cbInstr); return VINF_SUCCESS; } /** * Implements 'SKINIT'. */ IEM_CIMPL_DEF_0(iemCImpl_skinit) { IEM_SVM_INSTR_COMMON_CHECKS(pVCpu, invlpga); uint32_t uIgnore; uint32_t fFeaturesECX; CPUMGetGuestCpuId(pVCpu, 0x80000001, 0 /* iSubLeaf */, &uIgnore, &uIgnore, &fFeaturesECX, &uIgnore); if (!(fFeaturesECX & X86_CPUID_AMD_FEATURE_ECX_SKINIT)) return iemRaiseUndefinedOpcode(pVCpu); if (IEM_IS_SVM_CTRL_INTERCEPT_SET(pVCpu, SVM_CTRL_INTERCEPT_SKINIT)) { Log2(("skinit: Guest intercept -> #VMEXIT\n")); IEM_RETURN_SVM_VMEXIT(pVCpu, SVM_EXIT_SKINIT, 0 /* uExitInfo1 */, 0 /* uExitInfo2 */); } RT_NOREF(cbInstr); return VERR_IEM_INSTR_NOT_IMPLEMENTED; }