/* $Id: IOMAllMmioNew.cpp 81947 2019-11-18 16:14:43Z vboxsync $ */ /** @file * IOM - Input / Output Monitor - Any Context, MMIO & String I/O. */ /* * Copyright (C) 2006-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_IOM_MMIO #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #include #include #include #include #include #include #include "IOMInternal.h" #include #include #include #include "IOMInline.h" #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @def IOM_MMIO_STATS_COMMA_DECL * Parameter list declaration for statistics entry pointer. */ /** @def IOM_MMIO_STATS_COMMA_ARG * Statistics entry pointer argument. */ #if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING) # define IOM_MMIO_STATS_COMMA_DECL , PIOMMMIOSTATSENTRY pStats # define IOM_MMIO_STATS_COMMA_ARG , pStats #else # define IOM_MMIO_STATS_COMMA_DECL # define IOM_MMIO_STATS_COMMA_ARG #endif #ifndef IN_RING3 /** * Defers a pending MMIO write to ring-3. * * @returns VINF_IOM_R3_MMIO_COMMIT_WRITE * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param GCPhys The write address. * @param pvBuf The bytes being written. * @param cbBuf How many bytes. * @param idxRegEntry The MMIO registration index (handle) if available, * otherwise UINT32_MAX. */ static VBOXSTRICTRC iomMmioRing3WritePending(PVMCPU pVCpu, RTGCPHYS GCPhys, void const *pvBuf, size_t cbBuf, uint32_t idxRegEntry) { Log5(("iomMmioRing3WritePending: %RGp LB %#x (idx=%#x)\n", GCPhys, cbBuf, idxRegEntry)); if (pVCpu->iom.s.PendingMmioWrite.cbValue == 0) { pVCpu->iom.s.PendingMmioWrite.GCPhys = GCPhys; AssertReturn(cbBuf <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue), VERR_IOM_MMIO_IPE_2); pVCpu->iom.s.PendingMmioWrite.cbValue = (uint32_t)cbBuf; pVCpu->iom.s.PendingMmioWrite.idxMmioRegionHint = idxRegEntry; memcpy(pVCpu->iom.s.PendingMmioWrite.abValue, pvBuf, cbBuf); } else { /* * Join with pending if adjecent. * * This may happen if the stack overflows into MMIO territory and RSP/ESP/SP * isn't aligned. IEM will bounce buffer the access and do one write for each * page. We get here when the 2nd page part is written. */ uint32_t const cbOldValue = pVCpu->iom.s.PendingMmioWrite.cbValue; AssertMsgReturn(GCPhys == pVCpu->iom.s.PendingMmioWrite.GCPhys + cbOldValue, ("pending %RGp LB %#x; incoming %RGp LB %#x\n", pVCpu->iom.s.PendingMmioWrite.GCPhys, cbOldValue, GCPhys, cbBuf), VERR_IOM_MMIO_IPE_1); AssertReturn(cbBuf <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue) - cbOldValue, VERR_IOM_MMIO_IPE_2); pVCpu->iom.s.PendingMmioWrite.cbValue = cbOldValue + (uint32_t)cbBuf; memcpy(&pVCpu->iom.s.PendingMmioWrite.abValue[cbOldValue], pvBuf, cbBuf); } VMCPU_FF_SET(pVCpu, VMCPU_FF_IOM); return VINF_IOM_R3_MMIO_COMMIT_WRITE; } #endif /** * Deals with complicated MMIO writes. * * Complicated means unaligned or non-dword/qword sized accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_WRITE, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_READ may be returned. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pRegEntry The MMIO entry for the current context. * @param GCPhys The physical address to start writing. * @param offRegion MMIO region offset corresponding to @a GCPhys. * @param pvValue Where to store the value. * @param cbValue The size of the value to write. * @param pStats Pointer to the statistics (never NULL). */ static VBOXSTRICTRC iomMmioDoComplicatedWrite(PVM pVM, PVMCPU pVCpu, CTX_SUFF(PIOMMMIOENTRY) pRegEntry, RTGCPHYS GCPhys, RTGCPHYS offRegion, void const *pvValue, unsigned cbValue IOM_MMIO_STATS_COMMA_DECL) { AssertReturn( (pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) != IOMMMIO_FLAGS_WRITE_PASSTHRU && (pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) <= IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); RTGCPHYS const GCPhysStart = GCPhys; NOREF(GCPhysStart); bool const fReadMissing = (pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_READ_MISSING || (pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_DWORD_QWORD_READ_MISSING; RT_NOREF_PV(pVCpu); /* ring-3 */ /* * Do debug stop if requested. */ VBOXSTRICTRC rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (!(pRegEntry->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_WRITE)) { /* likely */ } else { # ifdef IN_RING3 LogRel(("IOM: Complicated write %#x byte at %RGp to %s, initiating debugger intervention\n", cbValue, GCPhys, R3STRING(pRegEntry->pszDesc))); rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated write %#x byte at %RGp to %s\n", cbValue, GCPhys, pRegEntry->pszDesc); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_WRITE; # endif } #endif STAM_COUNTER_INC(&pStats->ComplicatedWrites); /* * Check if we should ignore the write. */ if ((pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD) { Assert(cbValue != 4 || (GCPhys & 3)); return VINF_SUCCESS; } if ((pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_ONLY_DWORD_QWORD) { Assert((cbValue != 4 && cbValue != 8) || (GCPhys & (cbValue - 1))); return VINF_SUCCESS; } /* * Split and conquer. */ for (;;) { unsigned const offAccess = GCPhys & 3; unsigned cbThisPart = 4 - offAccess; if (cbThisPart > cbValue) cbThisPart = cbValue; /* * Get the missing bits (if any). */ uint32_t u32MissingValue = 0; if (fReadMissing && cbThisPart != 4) { VBOXSTRICTRC rc2 = pRegEntry->pfnReadCallback(pRegEntry->pDevIns, pRegEntry->pvUser, !(pRegEntry->fFlags & IOMMMIO_FLAGS_ABS) ? offRegion & ~(RTGCPHYS)3 : (GCPhys & ~(RTGCPHYS)3), &u32MissingValue, sizeof(u32MissingValue)); switch (VBOXSTRICTRC_VAL(rc2)) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: STAM_COUNTER_INC(&pStats->FFor00Reads); u32MissingValue = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: STAM_COUNTER_INC(&pStats->FFor00Reads); u32MissingValue = 0; break; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: LogFlow(("iomMmioDoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rc2))); rc2 = iomMmioRing3WritePending(pVCpu, GCPhys, pvValue, cbValue, pRegEntry->idxSelf); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; return rc; #endif default: if (RT_FAILURE(rc2)) { Log(("iomMmioDoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [read]\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rc2))); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", VBOXSTRICTRC_VAL(rc2)), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } } /* * Merge missing and given bits. */ uint32_t u32GivenMask; uint32_t u32GivenValue; switch (cbThisPart) { case 1: u32GivenValue = *(uint8_t const *)pvValue; u32GivenMask = UINT32_C(0x000000ff); break; case 2: u32GivenValue = *(uint16_t const *)pvValue; u32GivenMask = UINT32_C(0x0000ffff); break; case 3: u32GivenValue = RT_MAKE_U32_FROM_U8(((uint8_t const *)pvValue)[0], ((uint8_t const *)pvValue)[1], ((uint8_t const *)pvValue)[2], 0); u32GivenMask = UINT32_C(0x00ffffff); break; case 4: u32GivenValue = *(uint32_t const *)pvValue; u32GivenMask = UINT32_C(0xffffffff); break; default: AssertFailedReturn(VERR_IOM_MMIO_IPE_3); } if (offAccess) { u32GivenValue <<= offAccess * 8; u32GivenMask <<= offAccess * 8; } uint32_t u32Value = (u32MissingValue & ~u32GivenMask) | (u32GivenValue & u32GivenMask); /* * Do DWORD write to the device. */ VBOXSTRICTRC rc2 = pRegEntry->pfnWriteCallback(pRegEntry->pDevIns, pRegEntry->pvUser, !(pRegEntry->fFlags & IOMMMIO_FLAGS_ABS) ? offRegion & ~(RTGCPHYS)3 : GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (VBOXSTRICTRC_VAL(rc2)) { case VINF_SUCCESS: break; #ifndef IN_RING3 case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: Log3(("iomMmioDoComplicatedWrite: deferring GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rc2))); AssertReturn(pVCpu->iom.s.PendingMmioWrite.cbValue == 0, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue + (GCPhys & 3) <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue), VERR_IOM_MMIO_IPE_2); pVCpu->iom.s.PendingMmioWrite.GCPhys = GCPhys & ~(RTGCPHYS)3; pVCpu->iom.s.PendingMmioWrite.cbValue = cbValue + (GCPhys & 3); *(uint32_t *)pVCpu->iom.s.PendingMmioWrite.abValue = u32Value; if (cbValue > cbThisPart) memcpy(&pVCpu->iom.s.PendingMmioWrite.abValue[4], (uint8_t const *)pvValue + cbThisPart, cbValue - cbThisPart); VMCPU_FF_SET(pVCpu, VMCPU_FF_IOM); if (rc == VINF_SUCCESS) rc = VINF_IOM_R3_MMIO_COMMIT_WRITE; return rc; #endif default: if (RT_FAILURE(rc2)) { Log(("iomMmioDoComplicatedWrite: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rc=%Rrc [write]\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rc2))); return rc2; } AssertMsgReturn(rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST, ("%Rrc\n", VBOXSTRICTRC_VAL(rc2)), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rc2 < rc) rc = rc2; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; offRegion += cbThisPart; pvValue = (uint8_t const *)pvValue + cbThisPart; } return rc; } /** * Wrapper which does the write. */ DECLINLINE(VBOXSTRICTRC) iomMmioDoWrite(PVMCC pVM, PVMCPU pVCpu, CTX_SUFF(PIOMMMIOENTRY) pRegEntry, RTGCPHYS GCPhys, RTGCPHYS offRegion, const void *pvData, uint32_t cb IOM_MMIO_STATS_COMMA_DECL) { VBOXSTRICTRC rcStrict; if (RT_LIKELY(pRegEntry->pfnWriteCallback)) { if ( (cb == 4 && !(GCPhys & 3)) || (pRegEntry->fFlags & IOMMMIO_FLAGS_WRITE_MODE) == IOMMMIO_FLAGS_WRITE_PASSTHRU || (cb == 8 && !(GCPhys & 7) && IOMMMIO_DOES_WRITE_MODE_ALLOW_QWORD(pRegEntry->fFlags)) ) rcStrict = pRegEntry->pfnWriteCallback(pRegEntry->pDevIns, pRegEntry->pvUser, !(pRegEntry->fFlags & IOMMMIO_FLAGS_ABS) ? offRegion : GCPhys, pvData, cb); else rcStrict = iomMmioDoComplicatedWrite(pVM, pVCpu, pRegEntry, GCPhys, offRegion, pvData, cb IOM_MMIO_STATS_COMMA_ARG); } else rcStrict = VINF_SUCCESS; return rcStrict; } #ifdef IN_RING3 /** * Helper for IOMR3ProcessForceFlag() that lives here to utilize iomMmioDoWrite et al. */ VBOXSTRICTRC iomR3MmioCommitWorker(PVM pVM, PVMCPU pVCpu, PIOMMMIOENTRYR3 pRegEntry, RTGCPHYS offRegion) { # ifdef VBOX_WITH_STATISTICS STAM_PROFILE_START(UnusedMacroArg, Prf); PIOMMMIOSTATSENTRY const pStats = iomMmioGetStats(pVM, pRegEntry); # endif PPDMDEVINS const pDevIns = pRegEntry->pDevIns; int rc = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VERR_IGNORED); AssertRCReturn(rc, rc); VBOXSTRICTRC rcStrict = iomMmioDoWrite(pVM, pVCpu, pRegEntry, pVCpu->iom.s.PendingMmioWrite.GCPhys, offRegion, pVCpu->iom.s.PendingMmioWrite.abValue, pVCpu->iom.s.PendingMmioWrite.cbValue IOM_MMIO_STATS_COMMA_ARG); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); STAM_PROFILE_STOP(&pStats->ProfWriteR3, Prf); return rcStrict; } #endif /* IN_RING3 */ /** * Deals with complicated MMIO reads. * * Complicated means unaligned or non-dword/qword sized accesses depending on * the MMIO region's access mode flags. * * @returns Strict VBox status code. Any EM scheduling status code, * VINF_IOM_R3_MMIO_READ, VINF_IOM_R3_MMIO_READ_WRITE or * VINF_IOM_R3_MMIO_WRITE may be returned. * * @param pVM The cross context VM structure. * @param pRegEntry The MMIO entry for the current context. * @param GCPhys The physical address to start reading. * @param offRegion MMIO region offset corresponding to @a GCPhys. * @param pvValue Where to store the value. * @param cbValue The size of the value to read. * @param pStats Pointer to the statistics (never NULL). */ static VBOXSTRICTRC iomMMIODoComplicatedRead(PVM pVM, CTX_SUFF(PIOMMMIOENTRY) pRegEntry, RTGCPHYS GCPhys, RTGCPHYS offRegion, void *pvValue, unsigned cbValue IOM_MMIO_STATS_COMMA_DECL) { AssertReturn( (pRegEntry->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD || (pRegEntry->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD, VERR_IOM_MMIO_IPE_1); AssertReturn(cbValue != 0 && cbValue <= 16, VERR_IOM_MMIO_IPE_2); #ifdef LOG_ENABLED RTGCPHYS const GCPhysStart = GCPhys; #endif /* * Do debug stop if requested. */ VBOXSTRICTRC rc = VINF_SUCCESS; NOREF(pVM); #ifdef VBOX_STRICT if (pRegEntry->fFlags & IOMMMIO_FLAGS_DBGSTOP_ON_COMPLICATED_READ) { # ifdef IN_RING3 rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, RT_SRC_POS, "Complicated read %#x byte at %RGp to %s\n", cbValue, GCPhys, R3STRING(pRegEntry->pszDesc)); if (rc == VERR_DBGF_NOT_ATTACHED) rc = VINF_SUCCESS; # else return VINF_IOM_R3_MMIO_READ; # endif } #endif STAM_COUNTER_INC(&pStats->ComplicatedReads); /* * Split and conquer. */ for (;;) { /* * Do DWORD read from the device. */ uint32_t u32Value; VBOXSTRICTRC rcStrict2 = pRegEntry->pfnReadCallback(pRegEntry->pDevIns, pRegEntry->pvUser, !(pRegEntry->fFlags & IOMMMIO_FLAGS_ABS) ? offRegion & ~(RTGCPHYS)3 : GCPhys & ~(RTGCPHYS)3, &u32Value, sizeof(u32Value)); switch (VBOXSTRICTRC_VAL(rcStrict2)) { case VINF_SUCCESS: break; case VINF_IOM_MMIO_UNUSED_FF: STAM_COUNTER_INC(&pStats->FFor00Reads); u32Value = UINT32_C(0xffffffff); break; case VINF_IOM_MMIO_UNUSED_00: STAM_COUNTER_INC(&pStats->FFor00Reads); u32Value = 0; break; case VINF_IOM_R3_MMIO_READ: case VINF_IOM_R3_MMIO_READ_WRITE: case VINF_IOM_R3_MMIO_WRITE: /** @todo What if we've split a transfer and already read * something? Since reads can have sideeffects we could be * kind of screwed here... */ LogFlow(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rcStrict2=%Rrc\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rcStrict2))); return rcStrict2; default: if (RT_FAILURE(rcStrict2)) { Log(("iomMMIODoComplicatedRead: GCPhys=%RGp GCPhysStart=%RGp cbValue=%u rcStrict2=%Rrc\n", GCPhys, GCPhysStart, cbValue, VBOXSTRICTRC_VAL(rcStrict2))); return rcStrict2; } AssertMsgReturn(rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)), VERR_IPE_UNEXPECTED_INFO_STATUS); if (rc == VINF_SUCCESS || rcStrict2 < rc) rc = rcStrict2; break; } u32Value >>= (GCPhys & 3) * 8; /* * Write what we've read. */ unsigned cbThisPart = 4 - (GCPhys & 3); if (cbThisPart > cbValue) cbThisPart = cbValue; switch (cbThisPart) { case 1: *(uint8_t *)pvValue = (uint8_t)u32Value; break; case 2: *(uint16_t *)pvValue = (uint16_t)u32Value; break; case 3: ((uint8_t *)pvValue)[0] = RT_BYTE1(u32Value); ((uint8_t *)pvValue)[1] = RT_BYTE2(u32Value); ((uint8_t *)pvValue)[2] = RT_BYTE3(u32Value); break; case 4: *(uint32_t *)pvValue = u32Value; break; } /* * Advance. */ cbValue -= cbThisPart; if (!cbValue) break; GCPhys += cbThisPart; offRegion += cbThisPart; pvValue = (uint8_t *)pvValue + cbThisPart; } return rc; } /** * Implements VINF_IOM_MMIO_UNUSED_FF. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. * @param pStats Pointer to the statistics (never NULL). */ static int iomMMIODoReadFFs(void *pvValue, size_t cbValue IOM_MMIO_STATS_COMMA_DECL) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0xff); break; case 2: *(uint16_t *)pvValue = UINT16_C(0xffff); break; case 4: *(uint32_t *)pvValue = UINT32_C(0xffffffff); break; case 8: *(uint64_t *)pvValue = UINT64_C(0xffffffffffffffff); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0xff); break; } } STAM_COUNTER_INC(&pStats->FFor00Reads); return VINF_SUCCESS; } /** * Implements VINF_IOM_MMIO_UNUSED_00. * * @returns VINF_SUCCESS. * @param pvValue Where to store the zeros. * @param cbValue How many bytes to read. * @param pStats Pointer to the statistics (never NULL). */ static int iomMMIODoRead00s(void *pvValue, size_t cbValue IOM_MMIO_STATS_COMMA_DECL) { switch (cbValue) { case 1: *(uint8_t *)pvValue = UINT8_C(0x00); break; case 2: *(uint16_t *)pvValue = UINT16_C(0x0000); break; case 4: *(uint32_t *)pvValue = UINT32_C(0x00000000); break; case 8: *(uint64_t *)pvValue = UINT64_C(0x0000000000000000); break; default: { uint8_t *pb = (uint8_t *)pvValue; while (cbValue--) *pb++ = UINT8_C(0x00); break; } } STAM_COUNTER_INC(&pStats->FFor00Reads); return VINF_SUCCESS; } /** * Wrapper which does the read. */ DECLINLINE(VBOXSTRICTRC) iomMmioDoRead(PVMCC pVM, CTX_SUFF(PIOMMMIOENTRY) pRegEntry, RTGCPHYS GCPhys, RTGCPHYS offRegion, void *pvValue, uint32_t cbValue IOM_MMIO_STATS_COMMA_DECL) { VBOXSTRICTRC rcStrict; if (RT_LIKELY(pRegEntry->pfnReadCallback)) { if ( ( cbValue == 4 && !(GCPhys & 3)) || (pRegEntry->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_PASSTHRU || ( cbValue == 8 && !(GCPhys & 7) && (pRegEntry->fFlags & IOMMMIO_FLAGS_READ_MODE) == IOMMMIO_FLAGS_READ_DWORD_QWORD ) ) rcStrict = pRegEntry->pfnReadCallback(pRegEntry->pDevIns, pRegEntry->pvUser, !(pRegEntry->fFlags & IOMMMIO_FLAGS_ABS) ? offRegion : GCPhys, pvValue, cbValue); else rcStrict = iomMMIODoComplicatedRead(pVM, pRegEntry, GCPhys, offRegion, pvValue, cbValue IOM_MMIO_STATS_COMMA_ARG); } else rcStrict = VINF_IOM_MMIO_UNUSED_FF; if (rcStrict != VINF_SUCCESS) { switch (VBOXSTRICTRC_VAL(rcStrict)) { case VINF_IOM_MMIO_UNUSED_FF: rcStrict = iomMMIODoReadFFs(pvValue, cbValue IOM_MMIO_STATS_COMMA_ARG); break; case VINF_IOM_MMIO_UNUSED_00: rcStrict = iomMMIODoRead00s(pvValue, cbValue IOM_MMIO_STATS_COMMA_ARG); break; } } return rcStrict; } #ifndef IN_RING3 /** * Checks if we can handle an MMIO \#PF in R0/RC. */ DECLINLINE(bool) iomMmioCanHandlePfInRZ(PVMCC pVM, uint32_t uErrorCode, CTX_SUFF(PIOMMMIOENTRY) pRegEntry) { if (pRegEntry->cbRegion > 0) { if ( pRegEntry->pfnWriteCallback && pRegEntry->pfnReadCallback) return true; PIOMMMIOENTRYR3 const pRegEntryR3 = &pVM->iomr0.s.paMmioRing3Regs[pRegEntry->idxSelf]; if ( uErrorCode == UINT32_MAX ? pRegEntryR3->pfnWriteCallback || pRegEntryR3->pfnReadCallback : uErrorCode & X86_TRAP_PF_RW ? !pRegEntry->pfnWriteCallback && pRegEntryR3->pfnWriteCallback : !pRegEntry->pfnReadCallback && pRegEntryR3->pfnReadCallback) return false; return true; } return false; } /** * Common worker for the \#PF handler and IOMMMIOPhysHandler (APIC+VT-x). * * @returns VBox status code (appropriate for GC return). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uErrorCode CPU Error code. This is UINT32_MAX when we don't have * any error code (the EPT misconfig hack). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pRegEntry The MMIO entry for the current context. */ DECLINLINE(VBOXSTRICTRC) iomMmioCommonPfHandlerNew(PVMCC pVM, PVMCPUCC pVCpu, uint32_t uErrorCode, RTGCPHYS GCPhysFault, CTX_SUFF(PIOMMMIOENTRY) pRegEntry) { STAM_PROFILE_START(&pVM->iom.s.StatRZMMIOHandler, a); Log(("iomMmioCommonPfHandler: GCPhysFault=%RGp uErr=%#x rip=%RGv\n", GCPhysFault, uErrorCode, CPUMGetGuestRIP(pVCpu) )); RT_NOREF(GCPhysFault, uErrorCode); VBOXSTRICTRC rcStrict; #ifndef IN_RING3 /* * Should we defer the request right away? This isn't usually the case, so * do the simple test first and the try deal with uErrorCode being N/A. */ PPDMDEVINS const pDevIns = pRegEntry->pDevIns; if (RT_LIKELY( pDevIns && iomMmioCanHandlePfInRZ(pVM, uErrorCode, pRegEntry))) { /* * Enter the device critsect prior to engaging IOM in case of lock contention. * Note! Perhaps not a good move? */ rcStrict = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), VINF_IOM_R3_MMIO_READ_WRITE); if (rcStrict == VINF_SUCCESS) { #endif /* !IN_RING3 */ /* * Let IEM call us back via iomMmioHandler. */ rcStrict = IEMExecOne(pVCpu); #ifndef IN_RING3 PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); #endif if (RT_SUCCESS(rcStrict)) { /* likely */ } else if ( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED) { Log(("IOM: Hit unsupported IEM feature!\n")); rcStrict = VINF_EM_RAW_EMULATE_INSTR; } #ifndef IN_RING3 STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); return rcStrict; } else STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIODevLockContention); } else rcStrict = VINF_IOM_R3_MMIO_READ_WRITE; # ifdef VBOX_WITH_STATISTICS if (rcStrict == VINF_IOM_R3_MMIO_READ_WRITE) { PIOMMMIOSTATSENTRY const pStats = iomMmioGetStats(pVM, pRegEntry); if (uErrorCode & X86_TRAP_PF_RW) { STAM_COUNTER_INC(&pStats->WriteRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOWritesToR3); } else { STAM_COUNTER_INC(&pStats->ReadRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOReadsToR3); } } # endif #else /* IN_RING3 */ RT_NOREF(pVM, pRegEntry); #endif /* IN_RING3 */ STAM_PROFILE_STOP(&pVM->iom.s.StatRZMMIOHandler, a); return rcStrict; } /** * @callback_method_impl{FNPGMRZPHYSPFHANDLER, * \#PF access handler callback for MMIO pages.} * * @remarks The @a pvUser argument is the MMIO handle. */ DECLEXPORT(VBOXSTRICTRC) iomMmioPfHandlerNew(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pCtxCore, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { STAM_COUNTER_INC(&pVM->iom.s.StatMmioPfHandlerNew); LogFlow(("iomMmioPfHandlerNew: GCPhys=%RGp uErr=%#x pvFault=%RGv rip=%RGv\n", GCPhysFault, (uint32_t)uErrorCode, pvFault, (RTGCPTR)pCtxCore->rip)); RT_NOREF(pvFault, pCtxCore); /* Translate the MMIO handle to a registration entry for the current context. */ AssertReturn((uintptr_t)pvUser < RT_MIN(pVM->iom.s.cMmioRegs, pVM->iom.s.cMmioAlloc), VERR_IOM_INVALID_MMIO_HANDLE); # ifdef IN_RING0 AssertReturn((uintptr_t)pvUser < pVM->iomr0.s.cMmioAlloc, VERR_IOM_INVALID_MMIO_HANDLE); CTX_SUFF(PIOMMMIOENTRY) pRegEntry = &pVM->iomr0.s.paMmioRegs[(uintptr_t)pvUser]; # else CTX_SUFF(PIOMMMIOENTRY) pRegEntry = &pVM->iom.s.paMmioRegs[(uintptr_t)pvUser]; # endif return iomMmioCommonPfHandlerNew(pVM, pVCpu, (uint32_t)uErrorCode, GCPhysFault, pRegEntry); } #endif /* !IN_RING3 */ #ifdef IN_RING0 /** * Physical access handler for MMIO ranges. * * This is actually only used by VT-x for APIC page accesses. * * @returns VBox status code (appropriate for GC return). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uErrorCode CPU Error code. * @param GCPhysFault The GC physical address. */ VMM_INT_DECL(VBOXSTRICTRC) IOMR0MmioPhysHandler(PVMCC pVM, PVMCPUCC pVCpu, uint32_t uErrorCode, RTGCPHYS GCPhysFault) { STAM_COUNTER_INC(&pVM->iom.s.StatMmioPhysHandlerNew); /* * We don't have a range here, so look it up before calling the common function. */ VBOXSTRICTRC rcStrict = IOM_LOCK_SHARED(pVM); if (RT_SUCCESS(rcStrict)) { RTGCPHYS offRegion; CTX_SUFF(PIOMMMIOENTRY) pRegEntry = iomMmioGetEntry(pVM, GCPhysFault, &offRegion, &pVCpu->iom.s.idxMmioLastPhysHandler); if (RT_LIKELY(pRegEntry)) { IOM_UNLOCK_SHARED(pVM); rcStrict = iomMmioCommonPfHandlerNew(pVM, pVCpu, (uint32_t)uErrorCode, GCPhysFault, pRegEntry); } else { /* * Old style registrations. */ PIOMMMIORANGE pRange = iomMmioGetRange(pVM, pVCpu, GCPhysFault); if (pRange) { iomMmioRetainRange(pRange); IOM_UNLOCK_SHARED(pVM); rcStrict = iomMmioCommonPfHandlerOld(pVM, pVCpu, (uint32_t)uErrorCode, CPUMCTX2CORE(&pVCpu->cpum.GstCtx), GCPhysFault, pRange); iomMmioReleaseRange(pVM, pRange); } else { IOM_UNLOCK_SHARED(pVM); rcStrict = VERR_IOM_MMIO_RANGE_NOT_FOUND; } } } else if (rcStrict == VERR_SEM_BUSY) rcStrict = VINF_IOM_R3_MMIO_READ_WRITE; return rcStrict; } #endif /* IN_RING0 */ /** * @callback_method_impl{FNPGMPHYSHANDLER, MMIO page accesses} * * @remarks The @a pvUser argument is the MMIO handle. */ PGM_ALL_CB2_DECL(VBOXSTRICTRC) iomMmioHandlerNew(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysFault, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser) { STAM_PROFILE_START(UnusedMacroArg, Prf); STAM_COUNTER_INC(&pVM->iom.s.CTX_SUFF(StatMmioHandlerNew)); Log4(("iomMmioHandlerNew: GCPhysFault=%RGp cbBuf=%#x enmAccessType=%d enmOrigin=%d pvUser=%p\n", GCPhysFault, cbBuf, enmAccessType, enmOrigin, pvUser)); Assert(enmAccessType == PGMACCESSTYPE_READ || enmAccessType == PGMACCESSTYPE_WRITE); AssertMsg(cbBuf >= 1, ("%zu\n", cbBuf)); NOREF(pvPhys); NOREF(enmOrigin); #ifdef IN_RING3 int const rcToRing3 = VERR_IOM_MMIO_IPE_3; #else int const rcToRing3 = enmAccessType == PGMACCESSTYPE_READ ? VINF_IOM_R3_MMIO_READ : VINF_IOM_R3_MMIO_WRITE; #endif /* * Translate pvUser to an MMIO registration table entry. We can do this * without any locking as the data is static after VM creation. */ AssertReturn((uintptr_t)pvUser < RT_MIN(pVM->iom.s.cMmioRegs, pVM->iom.s.cMmioAlloc), VERR_IOM_INVALID_MMIO_HANDLE); #ifdef IN_RING0 AssertReturn((uintptr_t)pvUser < pVM->iomr0.s.cMmioAlloc, VERR_IOM_INVALID_MMIO_HANDLE); CTX_SUFF(PIOMMMIOENTRY) const pRegEntry = &pVM->iomr0.s.paMmioRegs[(uintptr_t)pvUser]; PIOMMMIOENTRYR3 const pRegEntryR3 = &pVM->iomr0.s.paMmioRing3Regs[(uintptr_t)pvUser]; #else CTX_SUFF(PIOMMMIOENTRY) const pRegEntry = &pVM->iom.s.paMmioRegs[(uintptr_t)pvUser]; #endif #ifdef VBOX_WITH_STATISTICS PIOMMMIOSTATSENTRY const pStats = iomMmioGetStats(pVM, pRegEntry); /* (Works even without ring-0 device setup.) */ #endif PPDMDEVINS const pDevIns = pRegEntry->pDevIns; #ifdef VBOX_STRICT /* * Assert the right entry in strict builds. This may yield a false positive * for SMP VMs if we're unlucky and the guest isn't well behaved. */ # ifdef IN_RING0 Assert(pRegEntry && (GCPhysFault - pRegEntryR3->GCPhysMapping < pRegEntryR3->cbRegion || !pRegEntryR3->fMapped)); # else Assert(pRegEntry && (GCPhysFault - pRegEntry->GCPhysMapping < pRegEntry->cbRegion || !pRegEntry->fMapped)); # endif #endif #ifndef IN_RING3 /* * If someone is doing FXSAVE, FXRSTOR, XSAVE, XRSTOR or other stuff dealing with * large amounts of data, just go to ring-3 where we don't need to deal with partial * successes. No chance any of these will be problematic read-modify-write stuff. * * Also drop back if the ring-0 registration entry isn't actually used. */ if ( RT_LIKELY(cbBuf <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue)) && pRegEntry->cbRegion != 0 && ( enmAccessType == PGMACCESSTYPE_READ ? pRegEntry->pfnReadCallback != NULL || pVM->iomr0.s.paMmioRing3Regs[(uintptr_t)pvUser].pfnReadCallback == NULL : pRegEntry->pfnWriteCallback != NULL || pVM->iomr0.s.paMmioRing3Regs[(uintptr_t)pvUser].pfnWriteCallback == NULL) && pDevIns ) { /* likely */ } else { Log4(("iomMmioHandlerNew: to ring-3: to-big=%RTbool zero-size=%RTbool no-callback=%RTbool pDevIns=%p hRegion=%p\n", !(cbBuf <= sizeof(pVCpu->iom.s.PendingMmioWrite.abValue)), !(pRegEntry->cbRegion != 0), !( enmAccessType == PGMACCESSTYPE_READ ? pRegEntry->pfnReadCallback != NULL || pVM->iomr0.s.paMmioRing3Regs[(uintptr_t)pvUser].pfnReadCallback == NULL : pRegEntry->pfnWriteCallback != NULL || pVM->iomr0.s.paMmioRing3Regs[(uintptr_t)pvUser].pfnWriteCallback == NULL), pDevIns, pvUser)); STAM_COUNTER_INC(enmAccessType == PGMACCESSTYPE_READ ? &pStats->ReadRZToR3 : &pStats->WriteRZToR3); STAM_COUNTER_INC(enmAccessType == PGMACCESSTYPE_READ ? &pVM->iom.s.StatRZMMIOReadsToR3 : &pVM->iom.s.StatRZMMIOWritesToR3); return rcToRing3; } #endif /* !IN_RING3 */ /* * If we've got an offset that's outside the region, defer to ring-3 if we * can, or pretend there is nothing there. This shouldn't happen, but can * if we're unlucky with an SMP VM and the guest isn't behaving very well. */ #ifdef IN_RING0 RTGCPHYS const GCPhysMapping = pRegEntryR3->GCPhysMapping; #else RTGCPHYS const GCPhysMapping = pRegEntry->GCPhysMapping; #endif RTGCPHYS const offRegion = GCPhysFault - GCPhysMapping; if (RT_LIKELY(offRegion < pRegEntry->cbRegion && GCPhysMapping != NIL_RTGCPHYS)) { /* likely */ } else { STAM_REL_COUNTER_INC(&pVM->iom.s.StatMMIOStaleMappings); LogRelMax(64, ("iomMmioHandlerNew: Stale access at %#RGp to range #%#x currently residing at %RGp LB %RGp\n", GCPhysFault, pRegEntry->idxSelf, GCPhysMapping, pRegEntry->cbRegion)); #ifdef IN_RING3 if (enmAccessType == PGMACCESSTYPE_READ) iomMMIODoReadFFs(pvBuf, cbBuf IOM_MMIO_STATS_COMMA_ARG); return VINF_SUCCESS; #else STAM_COUNTER_INC(enmAccessType == PGMACCESSTYPE_READ ? &pStats->ReadRZToR3 : &pStats->WriteRZToR3); STAM_COUNTER_INC(enmAccessType == PGMACCESSTYPE_READ ? &pVM->iom.s.StatRZMMIOReadsToR3 : &pVM->iom.s.StatRZMMIOWritesToR3); return rcToRing3; #endif } /* * Perform locking and the access. * * Writes requiring a return to ring-3 are buffered by IOM so IEM can * commit the instruction. * * Note! We may end up locking the device even when the relevant callback is * NULL. This is supposed to be an unlikely case, so not optimized yet. */ VBOXSTRICTRC rcStrict = PDMCritSectEnter(pDevIns->CTX_SUFF(pCritSectRo), rcToRing3); if (rcStrict == VINF_SUCCESS) { if (enmAccessType == PGMACCESSTYPE_READ) { /* * Read. */ rcStrict = iomMmioDoRead(pVM, pRegEntry, GCPhysFault, offRegion, pvBuf, (uint32_t)cbBuf IOM_MMIO_STATS_COMMA_ARG); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); #ifndef IN_RING3 if (rcStrict == VINF_IOM_R3_MMIO_READ) { STAM_COUNTER_INC(&pStats->ReadRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOReadsToR3); } else #endif STAM_COUNTER_INC(&pStats->Reads); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfRead), Prf); } else { /* * Write. */ rcStrict = iomMmioDoWrite(pVM, pVCpu, pRegEntry, GCPhysFault, offRegion, pvBuf, (uint32_t)cbBuf IOM_MMIO_STATS_COMMA_ARG); PDMCritSectLeave(pDevIns->CTX_SUFF(pCritSectRo)); #ifndef IN_RING3 if (rcStrict == VINF_IOM_R3_MMIO_WRITE) rcStrict = iomMmioRing3WritePending(pVCpu, GCPhysFault, pvBuf, cbBuf, pRegEntry->idxSelf); if (rcStrict == VINF_IOM_R3_MMIO_WRITE) { STAM_COUNTER_INC(&pStats->WriteRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOWritesToR3); } else if (rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE) { STAM_COUNTER_INC(&pStats->CommitRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOCommitsToR3); } else #endif STAM_COUNTER_INC(&pStats->Writes); STAM_PROFILE_STOP(&pStats->CTX_SUFF_Z(ProfWrite), Prf); } /* * Check the return code. */ #ifdef IN_RING3 AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc - Access type %d - %RGp - %s\n", VBOXSTRICTRC_VAL(rcStrict), enmAccessType, GCPhysFault, pRegEntry->pszDesc)); #else AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == rcToRing3 || (rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE && enmAccessType == PGMACCESSTYPE_WRITE) || rcStrict == VINF_EM_DBG_STOP || rcStrict == VINF_EM_DBG_EVENT || rcStrict == VINF_EM_DBG_BREAKPOINT || rcStrict == VINF_EM_OFF || rcStrict == VINF_EM_SUSPEND || rcStrict == VINF_EM_RESET //|| rcStrict == VINF_EM_HALT /* ?? */ //|| rcStrict == VINF_EM_NO_MEMORY /* ?? */ , ("%Rrc - Access type %d - %RGp - %s #%u\n", VBOXSTRICTRC_VAL(rcStrict), enmAccessType, GCPhysFault, pDevIns->pReg->szName, pDevIns->iInstance)); #endif } /* * Deal with enter-critsect failures. */ #ifndef IN_RING3 else if (rcStrict == VINF_IOM_R3_MMIO_WRITE) { Assert(enmAccessType == PGMACCESSTYPE_WRITE); rcStrict = iomMmioRing3WritePending(pVCpu, GCPhysFault, pvBuf, cbBuf, pRegEntry->idxSelf); if (rcStrict == VINF_IOM_R3_MMIO_COMMIT_WRITE) { STAM_COUNTER_INC(&pStats->CommitRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOCommitsToR3); } else { STAM_COUNTER_INC(&pStats->WriteRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIOWritesToR3); } STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIODevLockContention); } else if (rcStrict == VINF_IOM_R3_MMIO_READ) { Assert(enmAccessType == PGMACCESSTYPE_READ); STAM_COUNTER_INC(&pStats->ReadRZToR3); STAM_COUNTER_INC(&pVM->iom.s.StatRZMMIODevLockContention); } #endif else AssertMsg(RT_FAILURE_NP(rcStrict), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); return rcStrict; } /** * Mapping an MMIO2 page in place of an MMIO page for direct access. * * This is a special optimization used by the VGA device. Call * IOMMmioResetRegion() to undo the mapping. * * @returns VBox status code. This API may return VINF_SUCCESS even if no * remapping is made. * * @param pVM The cross context VM structure. * @param pDevIns The device instance @a hRegion and @a hMmio2 are * associated with. * @param hRegion The handle to the MMIO region. * @param offRegion The offset into @a hRegion of the page to be * remapped. * @param hMmio2 The MMIO2 handle. * @param offMmio2 Offset into @a hMmio2 of the page to be use for the * mapping. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMM_INT_DECL(int) IOMMmioMapMmio2Page(PVMCC pVM, PPDMDEVINS pDevIns, IOMMMIOHANDLE hRegion, RTGCPHYS offRegion, uint64_t hMmio2, RTGCPHYS offMmio2, uint64_t fPageFlags) { /* Currently only called from the VGA device during MMIO. */ Log(("IOMMmioMapMmio2Page %#RX64/%RGp -> %#RX64/%RGp flags=%RX64\n", hRegion, offRegion, hMmio2, offMmio2, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); AssertReturn(pDevIns, VERR_INVALID_POINTER); /** @todo Why is this restricted to protected mode??? Try it in all modes! */ PVMCPUCC pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ /** @todo NEM: MMIO page aliasing. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ /** @todo return some indicator if we fail here */ /* * Translate the handle into an entry and check the region offset. */ AssertReturn(hRegion < RT_MIN(pVM->iom.s.cMmioRegs, pVM->iom.s.cMmioAlloc), VERR_IOM_INVALID_MMIO_HANDLE); #ifdef IN_RING0 AssertReturn(hRegion < pVM->iomr0.s.cMmioAlloc, VERR_IOM_INVALID_MMIO_HANDLE); PIOMMMIOENTRYR3 const pRegEntry = &pVM->iomr0.s.paMmioRing3Regs[hRegion]; AssertReturn(pRegEntry->cbRegion > 0, VERR_IOM_INVALID_MMIO_HANDLE); AssertReturn(offRegion < pVM->iomr0.s.paMmioRegs[hRegion].cbRegion, VERR_OUT_OF_RANGE); AssertReturn( pVM->iomr0.s.paMmioRegs[hRegion].pDevIns == pDevIns || ( pVM->iomr0.s.paMmioRegs[hRegion].pDevIns == NULL && pRegEntry->pDevIns == pDevIns->pDevInsForR3), VERR_ACCESS_DENIED); #else PIOMMMIOENTRYR3 const pRegEntry = &pVM->iom.s.paMmioRegs[hRegion]; AssertReturn(pRegEntry->cbRegion > 0, VERR_IOM_INVALID_MMIO_HANDLE); AssertReturn(pRegEntry->pDevIns == pDevIns, VERR_ACCESS_DENIED); #endif AssertReturn(offRegion < pRegEntry->cbRegion, VERR_OUT_OF_RANGE); Assert((pRegEntry->cbRegion & PAGE_OFFSET_MASK) == 0); /* * When getting and using the mapping address, we must sit on the IOM lock * to prevent remapping. Shared suffices as we change nothing. */ int rc = IOM_LOCK_SHARED(pVM); if (rc == VINF_SUCCESS) { RTGCPHYS const GCPhys = pRegEntry->fMapped ? pRegEntry->GCPhysMapping : NIL_RTGCPHYS; if (GCPhys != NIL_RTGCPHYS) { Assert(!(GCPhys & PAGE_OFFSET_MASK)); /* * Do the aliasing; page align the addresses since PGM is picky. */ #if 0 /** @todo fix when DevVGA is converted to new model. */ rc = PGMHandlerPhysicalPageAlias(pVM, GCPhys, GCPhys + (offRange & ~(RTGCPHYS)PAGE_OFFSET_MASK), pDevIns, hMmio2, offMmio2); #else AssertFailed(); rc = VERR_NOT_IMPLEMENTED; RT_NOREF(offMmio2, hMmio2); #endif } else AssertFailedStmt(rc = VERR_IOM_MMIO_REGION_NOT_MAPPED); IOM_UNLOCK_SHARED(pVM); } /** @todo either ditch this or replace it with something that works in the * nested case, since we really only care about nested paging! */ #if 0 /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ # if 0 /* The assertion is wrong for the PGM_SYNC_CLEAR_PGM_POOL and VINF_PGM_HANDLER_ALREADY_ALIASED cases. */ # ifdef VBOX_STRICT uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); # endif # endif rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); #endif return rc; } #ifdef IN_RING0 /* VT-x ring-0 only, move to IOMR0Mmio.cpp later. */ /** * Mapping a HC page in place of an MMIO page for direct access. * * This is a special optimization used by the APIC in the VT-x case. This VT-x * code uses PGMHandlerPhysicalReset rather than IOMMmioResetRegion() to undo * the effects here. * * @todo Make VT-x usage more consistent. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param GCPhys The address of the MMIO page to be changed. * @param HCPhys The address of the host physical page. * @param fPageFlags Page flags to set. Must be (X86_PTE_RW | X86_PTE_P) * for the time being. */ VMM_INT_DECL(int) IOMR0MmioMapMmioHCPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint64_t fPageFlags) { /* Currently only called from VT-x code during a page fault. */ Log(("IOMR0MmioMapMmioHCPage %RGp -> %RGp flags=%RX64\n", GCPhys, HCPhys, fPageFlags)); AssertReturn(fPageFlags == (X86_PTE_RW | X86_PTE_P), VERR_INVALID_PARAMETER); /** @todo NEM: MMIO page aliasing?? */ Assert(HMIsEnabled(pVM)); # ifdef VBOX_STRICT /* * Check input address (it's HM calling, not the device, so no region handle). */ int rcSem = IOM_LOCK_SHARED(pVM); if (rcSem == VINF_SUCCESS) { RTGCPHYS offIgn; uint16_t idxIgn = UINT16_MAX; PIOMMMIOENTRYR0 pRegEntry = iomMmioGetEntry(pVM, GCPhys, &offIgn, &idxIgn); IOM_UNLOCK_SHARED(pVM); Assert(pRegEntry); Assert(pRegEntry && !(pRegEntry->cbRegion & PAGE_OFFSET_MASK)); } # endif /* * Do the aliasing; page align the addresses since PGM is picky. */ GCPhys &= ~(RTGCPHYS)PAGE_OFFSET_MASK; HCPhys &= ~(RTHCPHYS)PAGE_OFFSET_MASK; int rc = PGMHandlerPhysicalPageAliasHC(pVM, GCPhys, GCPhys, HCPhys); AssertRCReturn(rc, rc); /** @todo either ditch this or replace it with something that works in the * nested case, since we really only care about nested paging! */ /* * Modify the shadow page table. Since it's an MMIO page it won't be present and we * can simply prefetch it. * * Note: This is a NOP in the EPT case; we'll just let it fault again to resync the page. */ rc = PGMPrefetchPage(pVCpu, (RTGCPTR)GCPhys); Assert(rc == VINF_SUCCESS || rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); return VINF_SUCCESS; } #endif /** * Reset a previously modified MMIO region; restore the access flags. * * This undoes the effects of IOMMmioMapMmio2Page() and is currently only * intended for some ancient VGA hack. However, it would be great to extend it * beyond VT-x and/or nested-paging. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device instance @a hRegion is associated with. * @param hRegion The handle to the MMIO region. */ VMM_INT_DECL(int) IOMMmioResetRegion(PVMCC pVM, PPDMDEVINS pDevIns, IOMMMIOHANDLE hRegion) { Log(("IOMMMIOResetRegion %#RX64\n", hRegion)); AssertReturn(pDevIns, VERR_INVALID_POINTER); /** @todo Get rid of this this real/protected or nested paging restriction, * it probably shouldn't be here and would be nasty when the CPU * changes mode while we have the hack enabled... */ PVMCPUCC pVCpu = VMMGetCpu(pVM); /* This currently only works in real mode, protected mode without paging or with nested paging. */ /** @todo NEM: MMIO page aliasing. */ if ( !HMIsEnabled(pVM) /* useless without VT-x/AMD-V */ || ( CPUMIsGuestInPagedProtectedMode(pVCpu) && !HMIsNestedPagingActive(pVM))) return VINF_SUCCESS; /* ignore */ /* * Translate the handle into an entry and mapping address for PGM. * We have to take the lock to safely access the mapping address here. */ AssertReturn(hRegion < RT_MIN(pVM->iom.s.cMmioRegs, pVM->iom.s.cMmioAlloc), VERR_IOM_INVALID_MMIO_HANDLE); #ifdef IN_RING0 AssertReturn(hRegion < pVM->iomr0.s.cMmioAlloc, VERR_IOM_INVALID_MMIO_HANDLE); PIOMMMIOENTRYR3 const pRegEntry = &pVM->iomr0.s.paMmioRing3Regs[hRegion]; AssertReturn(pRegEntry->cbRegion > 0, VERR_IOM_INVALID_MMIO_HANDLE); AssertReturn( pVM->iomr0.s.paMmioRegs[hRegion].pDevIns == pDevIns || ( pVM->iomr0.s.paMmioRegs[hRegion].pDevIns == NULL && pRegEntry->pDevIns == pDevIns->pDevInsForR3), VERR_ACCESS_DENIED); #else PIOMMMIOENTRYR3 const pRegEntry = &pVM->iom.s.paMmioRegs[hRegion]; AssertReturn(pRegEntry->cbRegion > 0, VERR_IOM_INVALID_MMIO_HANDLE); AssertReturn(pRegEntry->pDevIns == pDevIns, VERR_ACCESS_DENIED); #endif Assert((pRegEntry->cbRegion & PAGE_OFFSET_MASK) == 0); int rcSem = IOM_LOCK_SHARED(pVM); RTGCPHYS GCPhys = pRegEntry->fMapped ? pRegEntry->GCPhysMapping : NIL_RTGCPHYS; if (rcSem == VINF_SUCCESS) IOM_UNLOCK_SHARED(pVM); Assert(!(GCPhys & PAGE_OFFSET_MASK)); Assert(!(pRegEntry->cbRegion & PAGE_OFFSET_MASK)); /* * Call PGM to do the job work. * * After the call, all the pages should be non-present, unless there is * a page pool flush pending (unlikely). */ int rc = PGMHandlerPhysicalReset(pVM, GCPhys); AssertRC(rc); # ifdef VBOX_STRICT if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) { RTGCPHYS cb = pRegEntry->cbRegion; while (cb) { uint64_t fFlags; RTHCPHYS HCPhys; rc = PGMShwGetPage(pVCpu, (RTGCPTR)GCPhys, &fFlags, &HCPhys); Assert(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT); cb -= PAGE_SIZE; GCPhys += PAGE_SIZE; } } # endif return rc; }