/* $Id: PGMAllBth.h 30889 2010-07-17 01:54:47Z vboxsync $ */ /** @file * VBox - Page Manager, Shadow+Guest Paging Template - All context code. * * @remarks The nested page tables on AMD makes use of PGM_SHW_TYPE in * {PGM_TYPE_AMD64, PGM_TYPE_PAE and PGM_TYPE_32BIT} and PGM_GST_TYPE * set to PGM_TYPE_PROT. Half of the code in this file is not * exercised with PGM_SHW_TYPE set to PGM_TYPE_NESTED. * * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT). * * @remarks This file is one big \#ifdef-orgy! * */ /* * Copyright (C) 2006-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Internal Functions * *******************************************************************************/ RT_C_DECLS_BEGIN PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken); PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr); PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr); PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage); PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal); #ifdef VBOX_STRICT PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0); #endif DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte); PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3); PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu); RT_C_DECLS_END /* * Filter out some illegal combinations of guest and shadow paging, so we can * remove redundant checks inside functions. */ #if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT # error "Invalid combination; PAE guest implies PAE shadow" #endif #if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT) # error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging." #endif #if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \ && !(PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT) # error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging." #endif #if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT) \ || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT) # error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa" #endif #ifndef IN_RING3 /** * #PF Handler for raw-mode guest execution. * * @returns VBox status code (appropriate for trap handling and GC return). * * @param pVCpu VMCPU Handle. * @param uErr The trap error code. * @param pRegFrame Trap register frame. * @param pvFault The fault address. * @param pfLockTaken PGM lock taken here or not (out) */ PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken) { PVM pVM = pVCpu->CTX_SUFF(pVM); *pfLockTaken = false; # if defined(IN_RC) && defined(VBOX_STRICT) PGMDynCheckLocks(pVM); # endif # if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE != PGM_TYPE_PAE /* * Hide the instruction fetch trap indicator for now. */ /** @todo NXE will change this and we must fix NXE in the switcher too! */ if (uErr & X86_TRAP_PF_ID) { uErr &= ~X86_TRAP_PF_ID; TRPMSetErrorCode(pVCpu, uErr); } # endif /* * Get PDs. */ int rc; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # if PGM_GST_TYPE == PGM_TYPE_32BIT const unsigned iPDSrc = pvFault >> GST_PD_SHIFT; PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 # if PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPDSrc = 0; /* initialized to shut up gcc */ X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, pvFault, &iPDSrc, &PdpeSrc); # elif PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPDSrc = 0; /* initialized to shut up gcc */ PX86PML4E pPml4eSrc = NULL; /* ditto */ X86PDPE PdpeSrc; PGSTPD pPDSrc; pPDSrc = pgmGstGetLongModePDPtr(pVCpu, pvFault, &pPml4eSrc, &PdpeSrc, &iPDSrc); Assert(pPml4eSrc); # endif /* Quick check for a valid guest trap. (PAE & AMD64) */ if (!pPDSrc) { # if PGM_GST_TYPE == PGM_TYPE_AMD64 && GC_ARCH_BITS == 64 LogFlow(("Trap0eHandler: guest PML4 %d not present CR3=%RGp\n", (int)((pvFault >> X86_PML4_SHIFT) & X86_PML4_MASK), CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK)); # else LogFlow(("Trap0eHandler: guest iPDSrc=%u not present CR3=%RGp\n", iPDSrc, CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK)); # endif STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; }); TRPMSetErrorCode(pVCpu, uErr); return VINF_EM_RAW_GUEST_TRAP; } # endif # else /* !PGM_WITH_PAGING */ PGSTPD pPDSrc = NULL; const unsigned iPDSrc = 0; # endif /* !PGM_WITH_PAGING */ # if !defined(PGM_WITHOUT_MAPPINGS) && ((PGM_GST_TYPE == PGM_TYPE_32BIT) || (PGM_GST_TYPE == PGM_TYPE_PAE)) /* * Check for write conflicts with our hypervisor mapping early on. If the guest happens to access a non-present page, * where our hypervisor is currently mapped, then we'll create a #PF storm in the guest. */ if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW) && MMHyperIsInsideArea(pVM, pvFault)) { /* Force a CR3 sync to check for conflicts and emulate the instruction. */ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); return VINF_EM_RAW_EMULATE_INSTR; } # endif /* * First check for a genuine guest page fault. */ /** @todo This duplicates the page table walk we're doing below. Need to * find some way to avoid this double work, probably by caching * the data. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e); rc = PGM_BTH_NAME(CheckPageFault)(pVCpu, uErr, &pPDSrc->a[iPDSrc], pvFault); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeCheckPageFault, e); if (rc == VINF_EM_RAW_GUEST_TRAP) { STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; }); return rc; } # endif /* PGM_WITH_PAGING */ /* Take the big lock now. */ *pfLockTaken = true; pgmLock(pVM); /* * Fetch the guest PDE, PDPE and PML4E. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else GSTPDE PdeSrc; PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ PdeSrc.n.u1Present = 1; PdeSrc.n.u1Write = 1; PdeSrc.n.u1Accessed = 1; PdeSrc.n.u1User = 1; # endif # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = pvFault >> SHW_PD_SHIFT; PX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */ PX86PDPAE pPDDst; # if PGM_GST_TYPE != PGM_TYPE_PAE X86PDPE PdpeSrc; /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ # endif rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* AMD-V nested paging */ X86PML4E Pml4eSrc; X86PDPE PdpeSrc; PX86PML4E pPml4eSrc = &Pml4eSrc; /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; # endif rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, pPml4eSrc, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); # endif # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* Dirty page handling. */ if (uErr & X86_TRAP_PF_RW) /* write fault? */ { /* * If we successfully correct the write protection fault due to dirty bit * tracking, then return immediately. */ STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a); rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], &pPDSrc->a[iPDSrc], pvFault); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyBitTracking), a); if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) { STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT ? &pVCpu->pgm.s.StatRZTrap0eTime2DirtyAndAccessed : &pVCpu->pgm.s.StatRZTrap0eTime2GuestTrap; }); LogBird(("Trap0eHandler: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } } # if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]); # endif # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /* * A common case is the not-present error caused by lazy page table syncing. * * It is IMPORTANT that we weed out any access to non-present shadow PDEs here * so we can safely assume that the shadow PT is present when calling SyncPage later. * * On failure, we ASSUME that SyncPT is out of memory or detected some kind * of mapping conflict and defer to SyncCR3 in R3. * (Again, we do NOT support access handlers for non-present guest pages.) * */ Assert(PdeSrc.n.u1Present); if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */ && !pPDDst->a[iPDDst].n.u1Present ) { STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2SyncPT; }); STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f); LogFlow(("=>SyncPT %04x = %08x\n", iPDSrc, PdeSrc.au32[0])); rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, pvFault); if (RT_SUCCESS(rc)) { STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f); return rc; } Log(("SyncPT: %d failed!! rc=%d\n", iPDSrc, rc)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeSyncPT, f); return VINF_PGM_SYNC_CR3; } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS) /* * Check if this address is within any of our mappings. * * This is *very* fast and it's gonna save us a bit of effort below and prevent * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam). * (BTW, it's impossible to have physical access handlers in a mapping.) */ if (pgmMapAreMappingsEnabled(&pVM->pgm.s)) { STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a); PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings); for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext)) { if (pvFault < pMapping->GCPtr) break; if (pvFault - pMapping->GCPtr < pMapping->cb) { /* * The first thing we check is if we've got an undetected conflict. */ if (pgmMapAreMappingsFloating(&pVM->pgm.s)) { unsigned iPT = pMapping->cb >> GST_PD_SHIFT; while (iPT-- > 0) if (pPDSrc->a[iPDSrc + iPT].n.u1Present) { STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eConflicts); Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */ STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a); return VINF_PGM_SYNC_CR3; } } /* * Check if the fault address is in a virtual page access handler range. */ PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, pvFault); if ( pCur && pvFault - pCur->Core.Key < pCur->cb && uErr & X86_TRAP_PF_RW) { # ifdef IN_RC STAM_PROFILE_START(&pCur->Stat, h); pgmUnlock(pVM); rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key); pgmLock(pVM); STAM_PROFILE_STOP(&pCur->Stat, h); # else AssertFailed(); rc = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */ # endif STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersMapping); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a); return rc; } /* * Pretend we're not here and let the guest handle the trap. */ TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFMapping); LogFlow(("PGM: Mapping access -> route trap to recompiler!\n")); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a); return VINF_EM_RAW_GUEST_TRAP; } } STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeMapping, a); } /* pgmAreMappingsEnabled(&pVM->pgm.s) */ # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /* * Check if this fault address is flagged for special treatment, * which means we'll have to figure out the physical address and * check flags associated with it. * * ASSUME that we can limit any special access handling to pages * in page tables which the guest believes to be present. */ Assert(PdeSrc.n.u1Present); { RTGCPHYS GCPhys = NIL_RTGCPHYS; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) if ( PdeSrc.b.u1Size # if PGM_GST_TYPE == PGM_TYPE_32BIT && CPUMIsGuestPageSizeExtEnabled(pVCpu) # endif ) GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc) | ((RTGCPHYS)pvFault & (GST_BIG_PAGE_OFFSET_MASK ^ PAGE_OFFSET_MASK)); else { PGSTPT pPTSrc; rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc); if (RT_SUCCESS(rc)) { unsigned iPTESrc = (pvFault >> GST_PT_SHIFT) & GST_PT_MASK; if (pPTSrc->a[iPTESrc].n.u1Present) GCPhys = pPTSrc->a[iPTESrc].u & GST_PTE_PG_MASK; } } # else /* No paging so the fault address is the physical address */ GCPhys = (RTGCPHYS)(pvFault & ~PAGE_OFFSET_MASK); # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /* * If we have a GC address we'll check if it has any flags set. */ if (GCPhys != NIL_RTGCPHYS) { STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); PPGMPAGE pPage; rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage); if (RT_SUCCESS(rc)) /** just handle the failure immediate (it returns) and make things easier to read. */ { if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage)) { /* * Physical page access handler. */ const RTGCPHYS GCPhysFault = GCPhys | (pvFault & PAGE_OFFSET_MASK); PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault); if (pCur) { # ifdef PGM_SYNC_N_PAGES /* * If the region is write protected and we got a page not present fault, then sync * the pages. If the fault was caused by a read, then restart the instruction. * In case of write access continue to the GC write handler. * * ASSUMES that there is only one handler per page or that they have similar write properties. */ if ( pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && !(uErr & X86_TRAP_PF_P)) { rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr); if ( RT_FAILURE(rc) || !(uErr & X86_TRAP_PF_RW) || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE) { AssertRC(rc); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rc; } } # endif AssertMsg( pCur->enmType != PGMPHYSHANDLERTYPE_PHYSICAL_WRITE || (pCur->enmType == PGMPHYSHANDLERTYPE_PHYSICAL_WRITE && (uErr & X86_TRAP_PF_RW)), ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType)); # if defined(IN_RC) || defined(IN_RING0) if (pCur->CTX_SUFF(pfnHandler)) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); # ifdef IN_RING0 PFNPGMR0PHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler); # else PFNPGMRCPHYSHANDLER pfnHandler = pCur->CTX_SUFF(pfnHandler); # endif bool fLeaveLock = (pfnHandler != pPool->CTX_SUFF(pfnAccessHandler)); void *pvUser = pCur->CTX_SUFF(pvUser); STAM_PROFILE_START(&pCur->Stat, h); if (fLeaveLock) pgmUnlock(pVM); /* @todo: Not entirely safe. */ rc = pfnHandler(pVM, uErr, pRegFrame, pvFault, GCPhysFault, pvUser); if (fLeaveLock) pgmLock(pVM); # ifdef VBOX_WITH_STATISTICS pCur = (PPGMPHYSHANDLER)RTAvlroGCPhysRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->PhysHandlers, GCPhysFault); if (pCur) STAM_PROFILE_STOP(&pCur->Stat, h); # else pCur = NULL; /* might be invalid by now. */ # endif } else # endif rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersPhysical); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndPhys; }); return rc; } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) else { # ifdef PGM_SYNC_N_PAGES /* * If the region is write protected and we got a page not present fault, then sync * the pages. If the fault was caused by a read, then restart the instruction. * In case of write access continue to the GC write handler. */ if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL && !(uErr & X86_TRAP_PF_P)) { rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr); if ( RT_FAILURE(rc) || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE || !(uErr & X86_TRAP_PF_RW)) { AssertRC(rc); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndVirt; }); return rc; } } # endif /* * Ok, it's an virtual page access handler. * * Since it's faster to search by address, we'll do that first * and then retry by GCPhys if that fails. */ /** @todo r=bird: perhaps we should consider looking up by physical address directly now? */ /** @note r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be out of sync, because the * page was changed without us noticing it (not-present -> present without invlpg or mov cr3, xxx) */ PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault); if (pCur) { AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb) || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE || !(uErr & X86_TRAP_PF_P) || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))), ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType)); if ( pvFault - pCur->Core.Key < pCur->cb && ( uErr & X86_TRAP_PF_RW || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) ) { # ifdef IN_RC STAM_PROFILE_START(&pCur->Stat, h); pgmUnlock(pVM); rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key); pgmLock(pVM); STAM_PROFILE_STOP(&pCur->Stat, h); # else rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ # endif STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtual); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; }); return rc; } /* Unhandled part of a monitored page */ } else { /* Check by physical address. */ unsigned iPage; rc = pgmHandlerVirtualFindByPhysAddr(pVM, GCPhys + (pvFault & PAGE_OFFSET_MASK), &pCur, &iPage); Assert(RT_SUCCESS(rc) || !pCur); if ( pCur && ( uErr & X86_TRAP_PF_RW || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) ) { Assert((pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) == GCPhys); # ifdef IN_RC RTGCPTR off = (iPage << PAGE_SHIFT) + (pvFault & PAGE_OFFSET_MASK) - (pCur->Core.Key & PAGE_OFFSET_MASK); Assert(off < pCur->cb); STAM_PROFILE_START(&pCur->Stat, h); pgmUnlock(pVM); rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, off); pgmLock(pVM); STAM_PROFILE_STOP(&pCur->Stat, h); # else rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ # endif STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualByPhys); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; }); return rc; } } } # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /* * There is a handled area of the page, but this fault doesn't belong to it. * We must emulate the instruction. * * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler * we first check if this was a page-not-present fault for a page with only * write access handlers. Restart the instruction if it wasn't a write access. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersUnhandled); if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) && !(uErr & X86_TRAP_PF_P)) { rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr); if ( RT_FAILURE(rc) || rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE || !(uErr & X86_TRAP_PF_RW)) { AssertRC(rc); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersOutOfSync); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndPhys; }); return rc; } } /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06 * It's writing to an unhandled part of the LDT page several million times. */ rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault); LogFlow(("PGM: PGMInterpretInstruction -> rc=%d pPage=%R[pgmpage]\n", rc, pPage)); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; }); return rc; } /* if any kind of handler */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) if (uErr & X86_TRAP_PF_P) { /* * The page isn't marked, but it might still be monitored by a virtual page access handler. * (ASSUMES no temporary disabling of virtual handlers.) */ /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here, * we should correct both the shadow page table and physical memory flags, and not only check for * accesses within the handler region but for access to pages with virtual handlers. */ PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault); if (pCur) { AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb) || ( pCur->enmType != PGMVIRTHANDLERTYPE_WRITE || !(uErr & X86_TRAP_PF_P) || (pCur->enmType == PGMVIRTHANDLERTYPE_WRITE && (uErr & X86_TRAP_PF_RW))), ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enum=%d\n", pvFault, GCPhys, pPage, uErr, pCur->enmType)); if ( pvFault - pCur->Core.Key < pCur->cb && ( uErr & X86_TRAP_PF_RW || pCur->enmType != PGMVIRTHANDLERTYPE_WRITE ) ) { # ifdef IN_RC STAM_PROFILE_START(&pCur->Stat, h); pgmUnlock(pVM); rc = pCur->CTX_SUFF(pfnHandler)(pVM, uErr, pRegFrame, pvFault, pCur->Core.Key, pvFault - pCur->Core.Key); pgmLock(pVM); STAM_PROFILE_STOP(&pCur->Stat, h); # else rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ # endif STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersVirtualUnmarked); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndVirt; }); return rc; } } } # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ } else { /* * When the guest accesses invalid physical memory (e.g. probing * of RAM or accessing a remapped MMIO range), then we'll fall * back to the recompiler to emulate the instruction. */ LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc)); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eHandlersInvalid); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); return VINF_EM_RAW_EMULATE_INSTR; } STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); # ifdef PGM_OUT_OF_SYNC_IN_GC /** @todo remove this bugger. */ /* * We are here only if page is present in Guest page tables and * trap is not handled by our handlers. * * Check it for page out-of-sync situation. */ STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c); if (!(uErr & X86_TRAP_PF_P)) { /* * Page is not present in our page tables. * Try to sync it! * BTW, fPageShw is invalid in this branch! */ if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); if (PGM_PAGE_IS_BALLOONED(pPage)) { /* Emulate reads from ballooned pages as they are not present in our shadow page tables. (required for e.g. Solaris guests; soft ecc, random nr generator) */ rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault); LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncBallloon)); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeHandlers, b); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2HndUnhandled; }); return rc; } # if defined(LOG_ENABLED) && !defined(IN_RING0) RTGCPHYS GCPhys2; uint64_t fPageGst2; PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2); Log(("Page out of sync: %RGv eip=%08x PdeSrc.n.u1User=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n", pvFault, pRegFrame->eip, PdeSrc.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip))); # endif /* LOG_ENABLED */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) if (CPUMGetGuestCPL(pVCpu, pRegFrame) == 0) { uint64_t fPageGst; rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL); if ( RT_SUCCESS(rc) && !(fPageGst & X86_PTE_US)) { /* Note: can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU */ if ( pvFault == (RTGCPTR)pRegFrame->eip || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */ # ifdef CSAM_DETECT_NEW_CODE_PAGES || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip) && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */ # endif /* CSAM_DETECT_NEW_CODE_PAGES */ ) { LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip)); rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip); if (rc != VINF_SUCCESS) { /* * CSAM needs to perform a job in ring 3. * * Sync the page before going to the host context; otherwise we'll end up in a loop if * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present) */ LogFlow(("CSAM ring 3 job\n")); int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr); AssertRC(rc2); STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2CSAM; }); return rc; } } # ifdef CSAM_DETECT_NEW_CODE_PAGES else if ( uErr == X86_TRAP_PF_RW && pRegFrame->ecx >= 0x100 /* early check for movswd count */ && pRegFrame->ecx < 0x10000) { /* In case of a write to a non-present supervisor shadow page, we'll take special precautions * to detect loading of new code pages. */ /* * Decode the instruction. */ RTGCPTR PC; rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->eip, &PC); if (rc == VINF_SUCCESS) { PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState; uint32_t cbOp; rc = EMInterpretDisasOneEx(pVM, pVCpu, PC, pRegFrame, pDis, &cbOp); /* For now we'll restrict this to rep movsw/d instructions */ if ( rc == VINF_SUCCESS && pDis->pCurInstr->opcode == OP_MOVSWD && (pDis->prefix & PREFIX_REP)) { CSAMMarkPossibleCodePage(pVM, pvFault); } } } # endif /* CSAM_DETECT_NEW_CODE_PAGES */ /* * Mark this page as safe. */ /** @todo not correct for pages that contain both code and data!! */ Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true)); CSAMMarkPage(pVM, pvFault, true); } } # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */ rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, PGM_SYNC_NR_PAGES, uErr); if (RT_SUCCESS(rc)) { /* The page was successfully synced, return to the guest. */ STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSync; }); return VINF_SUCCESS; } } else /* uErr & X86_TRAP_PF_P: */ { /* * Write protected pages are make writable when the guest makes the first * write to it. This happens for pages that are shared, write monitored * and not yet allocated. * * Also, a side effect of not flushing global PDEs are out of sync pages due * to physical monitored regions, that are no longer valid. * Assume for now it only applies to the read/write flag. */ if ( RT_SUCCESS(rc) && (uErr & X86_TRAP_PF_RW)) { if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr)); Assert(!PGM_PAGE_IS_ZERO(pPage)); AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); if (rc != VINF_SUCCESS) { AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); return rc; } if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))) return VINF_EM_NO_MEMORY; } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* Check to see if we need to emulate the instruction as X86_CR0_WP has been cleared. */ if ( CPUMGetGuestCPL(pVCpu, pRegFrame) == 0 && ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG)) { Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P)); uint64_t fPageGst; rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL); if ( RT_SUCCESS(rc) && !(fPageGst & X86_PTE_RW)) { rc = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault); if (RT_SUCCESS(rc)) STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulInRZ); else STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eWPEmulToR3); return rc; } AssertMsg(RT_SUCCESS(rc), ("Unexpected r/w page %RGv flag=%x rc=%Rrc\n", pvFault, (uint32_t)fPageGst, rc)); } # endif /// @todo count the above case; else if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUserWrite)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); /* * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the * page is not present, which is not true in this case. */ rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, pvFault, 1, uErr); if (RT_SUCCESS(rc)) { /* * Page was successfully synced, return to guest. * First invalidate the page as it might be in the TLB. */ # if PGM_SHW_TYPE == PGM_TYPE_EPT HWACCMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault); # else PGM_INVL_PG(pVCpu, pvFault); # endif # ifdef VBOX_STRICT RTGCPHYS GCPhys2; uint64_t fPageGst; if (!HWACCMIsNestedPagingActive(pVM)) { rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2); AssertMsg(RT_SUCCESS(rc) && (fPageGst & X86_PTE_RW), ("rc=%d fPageGst=%RX64\n")); LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst)); } uint64_t fPageShw; rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, ("rc=%Rrc fPageShw=%RX64\n", rc, fPageShw)); # endif /* VBOX_STRICT */ STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c); STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2OutOfSyncHndObs; }); return VINF_SUCCESS; } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # ifdef VBOX_STRICT /* * Check for VMM page flags vs. Guest page flags consistency. * Currently only for debug purposes. */ if (RT_SUCCESS(rc)) { /* Get guest page flags. */ uint64_t fPageGst; rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL); if (RT_SUCCESS(rc)) { uint64_t fPageShw; rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); /* * Compare page flags. * Note: we have AVL, A, D bits desynched. */ AssertMsg((fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)), ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64\n", pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst)); } else AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc)); } else AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc)); # endif /* VBOX_STRICT */ # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ } STAM_PROFILE_STOP(&pVCpu->pgm.s.StatRZTrap0eTimeOutOfSync, c); # endif /* PGM_OUT_OF_SYNC_IN_GC */ } else /* GCPhys == NIL_RTGCPHYS */ { /* * Page not present in Guest OS or invalid page table address. * This is potential virtual page access handler food. * * For the present we'll say that our access handlers don't * work for this case - we've already discarded the page table * not present case which is identical to this. * * When we perchance find we need this, we will probably have AVL * trees (offset based) to operate on and we can measure their speed * agains mapping a page table and probably rearrange this handling * a bit. (Like, searching virtual ranges before checking the * physical address.) */ } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * Conclusion, this is a guest trap. */ LogFlow(("PGM: Unhandled #PF -> route trap to recompiler!\n")); STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPFUnh); return VINF_EM_RAW_GUEST_TRAP; # else /* present, but not a monitored page; perhaps the guest is probing physical memory */ return VINF_EM_RAW_EMULATE_INSTR; # endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */ AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); return VERR_INTERNAL_ERROR; # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */ } #endif /* !IN_RING3 */ /** * Emulation of the invlpg instruction. * * * @returns VBox status code. * * @param pVCpu The VMCPU handle. * @param GCPtrPage Page to invalidate. * * @remark ASSUMES that the guest is updating before invalidating. This order * isn't required by the CPU, so this is speculative and could cause * trouble. * @remark No TLB shootdown is done on any other VCPU as we assume that * invlpg emulation is the *only* reason for calling this function. * (The guest has to shoot down TLB entries on other CPUs itself) * Currently true, but keep in mind! * * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses. */ PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage) { #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && PGM_SHW_TYPE != PGM_TYPE_EPT int rc; PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLockOwner(pVM)); LogFlow(("InvalidatePage %RGv\n", GCPtrPage)); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif /* * Get the shadow PD entry and skip out if this PD isn't present. * (Guessing that it is frequent for a shadow PDE to not be present, do this first.) */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT); PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s); /* If the shadow PDPE isn't present, then skip the invalidate. */ if (!pPdptDst->a[iPdpt].n.u1Present) { Assert(!(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; PX86PDPAE pPDDst; /* Fetch the pgm pool shadow descriptor. */ rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc, rc); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ /* PML4 */ const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK; const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst; PX86PDPT pPdptDst; PX86PML4E pPml4eDst; rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } Assert(pPDDst); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt]; if (!pPdpeDst->n.u1Present) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK); Assert(pShwPde); # endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ const SHWPDE PdeDst = *pPdeDst; if (!PdeDst.n.u1Present) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst); # endif /* * Get the guest PD entry and calc big page. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT; GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else /* PGM_GST_TYPE != PGM_TYPE_32BIT */ unsigned iPDSrc = 0; # if PGM_GST_TYPE == PGM_TYPE_PAE X86PDPE PdpeSrc; PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); # else /* AMD64 */ PX86PML4E pPml4eSrc; X86PDPE PdpeSrc; PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); # endif GSTPDE PdeSrc; if (pPDSrc) PdeSrc = pPDSrc->a[iPDSrc]; else PdeSrc.u = 0; # endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */ # if PGM_GST_TYPE == PGM_TYPE_32BIT const bool fIsBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu); # else const bool fIsBigPage = PdeSrc.b.u1Size; # endif # ifdef IN_RING3 /* * If a CR3 Sync is pending we may ignore the invalidate page operation * depending on the kind of sync and if it's a global page or not. * This doesn't make sense in GC/R0 so we'll skip it entirely there. */ # ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH if ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3) || ( VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) && fIsBigPage && PdeSrc.b.u1Global ) ) # else if (VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) ) # endif { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePageSkipped)); return VINF_SUCCESS; } # endif /* IN_RING3 */ /* * Deal with the Guest PDE. */ rc = VINF_SUCCESS; if (PdeSrc.n.u1Present) { Assert( PdeSrc.n.u1User == PdeDst.n.u1User && (PdeSrc.n.u1Write || !PdeDst.n.u1Write)); # ifndef PGM_WITHOUT_MAPPING if (PdeDst.u & PGM_PDFLAGS_MAPPING) { /* * Conflict - Let SyncPT deal with it to avoid duplicate code. */ Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE); rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); } else # endif /* !PGM_WITHOUT_MAPPING */ if (!fIsBigPage) { /* * 4KB - page. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); RTGCPHYS GCPhys = PdeSrc.u & GST_PDE_PG_MASK; # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT /* Reset the modification counter (OpenSolaris trashes tlb entries very often) */ if (pShwPage->cModifications) pShwPage->cModifications = 1; # endif # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys |= (iPDDst & 1) * (PAGE_SIZE/2); # endif if (pShwPage->GCPhys == GCPhys) { # if 0 /* likely cause of a major performance regression; must be SyncPageWorkerTrackDeref then */ const unsigned iPTEDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PSHWPT pPT = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); if (pPT->a[iPTEDst].n.u1Present) { /* This is very unlikely with caching/monitoring enabled. */ PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pShwPage, pPT->a[iPTEDst].u & SHW_PTE_PG_MASK, iPTEDst); ASMAtomicWriteSize(&pPT->a[iPTEDst], 0); } # else /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */ rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); if (RT_SUCCESS(rc)) rc = VINF_SUCCESS; # endif STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4KBPages)); PGM_INVL_PG(pVCpu, GCPtrPage); } else { /* * The page table address changed. */ LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst)); pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); ASMAtomicWriteSize(pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDOutOfSync)); PGM_INVL_VCPU_TLBS(pVCpu); } } else { /* * 2/4MB - page. */ /* Before freeing the page, check if anything really changed. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); RTGCPHYS GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT); # endif if ( pShwPage->GCPhys == GCPhys && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG) { /* ASSUMES a the given bits are identical for 4M and normal PDEs */ /** @todo PAT */ if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)) == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_PWT | X86_PDE_PCD)) && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */ || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))) { LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip)); # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif return VINF_SUCCESS; } } /* * Ok, the page table is present and it's been changed in the guest. * If we're in host context, we'll just mark it as not present taking the lazy approach. * We could do this for some flushes in GC too, but we need an algorithm for * deciding which 4MB pages containing code likely to be executed very soon. */ LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); ASMAtomicWriteSize(pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage4MBPages)); PGM_INVL_BIG_PG(pVCpu, GCPtrPage); } } else { /* * Page directory is not present, mark shadow PDE not present. */ if (!(PdeDst.u & PGM_PDFLAGS_MAPPING)) { pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); ASMAtomicWriteSize(pPdeDst, 0); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDNPs)); PGM_INVL_PG(pVCpu, GCPtrPage); } else { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePagePDMappings)); } } # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif return rc; #else /* guest real and protected mode */ /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */ return VINF_SUCCESS; #endif } /** * Update the tracking of shadowed pages. * * @param pVCpu The VMCPU handle. * @param pShwPage The shadow page. * @param HCPhys The physical page we is being dereferenced. * @param iPte Shadow PTE index */ DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte) { PVM pVM = pVCpu->CTX_SUFF(pVM); STAM_PROFILE_START(&pVM->pgm.s.StatTrackDeref, a); LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx)); /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done: * 1. have a medium sized HCPhys -> GCPhys TLB (hash?) * 2. write protect all shadowed pages. I.e. implement caching. */ /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */ /* * Find the guest address. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges); pRam; pRam = pRam->CTX_SUFF(pNext)) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) { if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(pShwPage->cPresent); Assert(pPool->cPresent); pShwPage->cPresent--; pPool->cPresent--; pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte); STAM_PROFILE_STOP(&pVM->pgm.s.StatTrackDeref, a); return; } } } for (;;) AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys)); } /** * Update the tracking of shadowed pages. * * @param pVCpu The VMCPU handle. * @param pShwPage The shadow page. * @param u16 The top 16-bit of the pPage->HCPhys. * @param pPage Pointer to the guest page. this will be modified. * @param iPTDst The index into the shadow table. */ DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst) { PVM pVM = pVCpu->CTX_SUFF(pVM); /* * Just deal with the simple first time here. */ if (!u16) { STAM_COUNTER_INC(&pVM->pgm.s.StatTrackVirgin); u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx); /* Save the page table index. */ PGM_PAGE_SET_PTE_INDEX(pPage, iPTDst); } else u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst); /* write back */ Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst)); PGM_PAGE_SET_TRACKING(pPage, u16); /* update statistics. */ pVM->pgm.s.CTX_SUFF(pPool)->cPresent++; pShwPage->cPresent++; if (pShwPage->iFirstPresent > iPTDst) pShwPage->iFirstPresent = iPTDst; } /** * Modifies a shadow PTE to account for access handlers. * * @param pVM The VM handle. * @param pPage The page in question. * @param fPteSrc The flags of the source PTE. * @param pPteDst The shadow PTE (output). */ DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint32_t fPteSrc, PSHWPTE pPteDst) { /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */ if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) { #if PGM_SHW_TYPE == PGM_TYPE_EPT pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage); pPteDst->n.u1Present = 1; pPteDst->n.u1Execute = 1; pPteDst->n.u1IgnorePAT = 1; pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB; /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */ #else pPteDst->u = (fPteSrc & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW)) | PGM_PAGE_GET_HCPHYS(pPage); #endif } #ifdef PGM_WITH_MMIO_OPTIMIZATIONS # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 else if ( PGM_PAGE_IS_MMIO(pPage) # if PGM_SHW_TYPE != PGM_TYPE_EPT && ( (fPteSrc & (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/ | X86_PTE_US )) /* #PF handles D & A first. */ == (X86_PTE_RW /*| X86_PTE_D | X86_PTE_A*/) || BTH_IS_NP_ACTIVE(pVM) ) # endif # if PGM_SHW_TYPE == PGM_TYPE_AMD64 && pVM->pgm.s.fLessThan52PhysicalAddressBits # endif ) { LogFlow(("SyncHandlerPte: MMIO page -> invalid \n")); # if PGM_SHW_TYPE == PGM_TYPE_EPT /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */ pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg; /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */ pPteDst->n.u1Present = 0; pPteDst->n.u1Write = 1; pPteDst->n.u1Execute = 0; /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */ pPteDst->n.u3EMT = 7; # else /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */ pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P; # endif } # endif #endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ else { LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage)); pPteDst->u = 0; } /** @todo count these kinds of entries. */ } /** * Creates a 4K shadow page for a guest page. * * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the * physical address. The PdeSrc argument only the flags are used. No page * structured will be mapped in this function. * * @param pVCpu The VMCPU handle. * @param pPteDst Destination page table entry. * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry). * Can safely assume that only the flags are being used. * @param PteSrc Source page table entry (i.e. Guest OS page table entry). * @param pShwPage Pointer to the shadow page. * @param iPTDst The index into the shadow table. * * @remark Not used for 2/4MB pages! */ DECLINLINE(void) PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst) { if ( PteSrc.n.u1Present && GST_IS_PTE_VALID(pVCpu, PteSrc)) { PVM pVM = pVCpu->CTX_SUFF(pVM); # if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) if (pShwPage->fDirty) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PX86PTPAE pGstPT; pGstPT = (PX86PTPAE)&pPool->aDirtyPages[pShwPage->idxDirty][0]; pGstPT->a[iPTDst].u = PteSrc.u; } # endif /* * Find the ram range. */ PPGMPAGE pPage; int rc = pgmPhysGetPageEx(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK, &pPage); if (RT_SUCCESS(rc)) { /* Ignore ballooned pages. Don't return errors or use a fatal assert here as part of a shadow sync range might included ballooned pages. */ if (PGM_PAGE_IS_BALLOONED(pPage)) { Assert(!pPteDst->n.u1Present); /** @todo user tracking needs updating if this triggers. */ return; } #ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( PteSrc.n.u1Write && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif ) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, PteSrc.u & GST_PTE_PG_MASK); AssertRC(rc); } #endif /* * Make page table entry. */ SHWPTE PteDst; if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, PteSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW), &PteDst); else { #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* * If the page or page directory entry is not marked accessed, * we mark the page not present. */ if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed) { LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n")); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,AccessedPage)); PteDst.u = 0; } /* * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit * when the page is modified. */ else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write)) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPage)); PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT | X86_PTE_RW)) | PGM_PAGE_GET_HCPHYS(pPage) | PGM_PTFLAGS_TRACK_DIRTY; } else #endif { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageSkipped)); #if PGM_SHW_TYPE == PGM_TYPE_EPT PteDst.u = PGM_PAGE_GET_HCPHYS(pPage); PteDst.n.u1Present = 1; PteDst.n.u1Write = 1; PteDst.n.u1Execute = 1; PteDst.n.u1IgnorePAT = 1; PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB; /* PteDst.n.u1Size = 0 */ #else PteDst.u = (PteSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT)) | PGM_PAGE_GET_HCPHYS(pPage); #endif } /* * Make sure only allocated pages are mapped writable. */ if ( PteDst.n.u1Write && PteDst.n.u1Present && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); PteDst.n.u1Write = 0; /** @todo this isn't quite working yet. Why, isn't it? */ Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", (RTGCPHYS)(PteSrc.u & X86_PTE_PAE_PG_MASK), pPage, iPTDst)); } } /* * Keep user track up to date. */ if (PteDst.n.u1Present) { if (!pPteDst->n.u1Present) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); else if ((pPteDst->u & SHW_PTE_PG_MASK) != (PteDst.u & SHW_PTE_PG_MASK)) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", (uint64_t)pPteDst->u, (uint64_t)PteDst.u)); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst); PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); } } else if (pPteDst->n.u1Present) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u)); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst); } /* * Update statistics and commit the entry. */ #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) if (!PteSrc.n.u1Global) pShwPage->fSeenNonGlobal = true; #endif ASMAtomicWriteSize(pPteDst, PteDst.u); return; } /** @todo count these three different kinds. */ Log2(("SyncPageWorker: invalid address in Pte\n")); } else if (!PteSrc.n.u1Present) Log2(("SyncPageWorker: page not present in Pte\n")); else Log2(("SyncPageWorker: invalid Pte\n")); /* * The page is not present or the PTE is bad. Replace the shadow PTE by * an empty entry, making sure to keep the user tracking up to date. */ if (pPteDst->n.u1Present) { Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", (uint64_t)pPteDst->u)); PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, pPteDst->u & SHW_PTE_PG_MASK, iPTDst); } ASMAtomicWriteSize(pPteDst, 0); } /** * Syncs a guest OS page. * * There are no conflicts at this point, neither is there any need for * page table allocations. * * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid. * When called in AMD64 guest mode, the guest PML4E shall be valid. * * @returns VBox status code. * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way. * @param pVCpu The VMCPU handle. * @param PdeSrc Page directory entry of the guest. * @param GCPtrPage Guest context page address. * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). * @param uErr Fault error (X86_TRAP_PF_*). */ PGM_BTH_DECL(int, SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr) { PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr)); Assert(PGMIsLockOwner(pVM)); #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && PGM_SHW_TYPE != PGM_TYPE_EPT /* * Assert preconditions. */ Assert(PdeSrc.n.u1Present); Assert(cPages); # if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]); # endif /* * Get the shadow PDE, find the shadow page table in the pool. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; PX86PDPAE pPDDst; /* Fetch the pgm pool shadow descriptor. */ int rc2 = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc2, rc2); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc2, rc2); Assert(pPDDst && pPdptDst); PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; # endif SHWPDE PdeDst = *pPdeDst; /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ if (!PdeDst.n.u1Present) { AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE p=%p/%RX64\n", pPdeDst, (uint64_t)PdeDst.u)); Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage)); return VINF_SUCCESS; /* force the instruction to be executed again. */ } PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); Assert(pShwPage); # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # endif # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst); # endif /* * Check that the page is present and that the shadow PDE isn't out of sync. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT const bool fBigPage = PdeSrc.b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu); # else const bool fBigPage = PdeSrc.b.u1Size; # endif const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc); RTGCPHYS GCPhys; if (!fBigPage) { GCPhys = PdeSrc.u & GST_PDE_PG_MASK; # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2); # endif } else { GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT); # endif } if ( fPdeValid && pShwPage->GCPhys == GCPhys && PdeSrc.n.u1Present && PdeSrc.n.u1User == PdeDst.n.u1User && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !CPUMIsGuestNXEnabled(pVCpu)) # endif ) { /* * Check that the PDE is marked accessed already. * Since we set the accessed bit *before* getting here on a #PF, this * check is only meant for dealing with non-#PF'ing paths. */ if (PdeSrc.n.u1Accessed) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); if (!fBigPage) { /* * 4KB Page - Map the guest page table. */ PGSTPT pPTSrc; int rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc); if (RT_SUCCESS(rc)) { # ifdef PGM_SYNC_N_PAGES Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); if ( cPages > 1 && !(uErr & X86_TRAP_PF_P) && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { /* * This code path is currently only taken when the caller is PGMTrap0eHandler * for non-present pages! * * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and * deal with locality. */ unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst < PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; for (; iPTDst < iPTDstEnd; iPTDst++) { if (!pPTDst->a[iPTDst].n.u1Present) { GSTPTE PteSrc = pPTSrc->a[offPTSrc + iPTDst]; RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT); NOREF(GCPtrCurPage); #ifndef IN_RING0 /* * Assuming kernel code will be marked as supervisor - and not as user level * and executed using a conforming code selector - And marked as readonly. * Also assume that if we're monitoring a page, it's of no interest to CSAM. */ PPGMPAGE pPage; if ( ((PdeSrc.u & PteSrc.u) & (X86_PTE_RW | X86_PTE_US)) || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */ || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage) || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK)) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) ) #endif /* else: CSAM not active */ PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n", GCPtrCurPage, PteSrc.n.u1Present, PteSrc.n.u1Write & PdeSrc.n.u1Write, PteSrc.n.u1User & PdeSrc.n.u1User, (uint64_t)PteSrc.u, (uint64_t)pPTDst->a[iPTDst].u, pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); } } } else # endif /* PGM_SYNC_N_PAGES */ { const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; GSTPTE PteSrc = pPTSrc->a[iPTSrc]; const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", GCPtrPage, PteSrc.n.u1Present, PteSrc.n.u1Write & PdeSrc.n.u1Write, PteSrc.n.u1User & PdeSrc.n.u1User, (uint64_t)PteSrc.u, (uint64_t)pPTDst->a[iPTDst].u, pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); } } else /* MMIO or invalid page: emulated in #PF handler. */ { LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc)); Assert(!pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK].n.u1Present); } } else { /* * 4/2MB page - lazy syncing shadow 4K pages. * (There are many causes of getting here, it's no longer only CSAM.) */ /* Calculate the GC physical address of this 4KB shadow page. */ GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK); /* Find ram range. */ PPGMPAGE pPage; int rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage); if (RT_SUCCESS(rc)) { AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Try to make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( PdeSrc.n.u1Write && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif ) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); AssertRC(rc); } # endif /* * Make shadow PTE entry. */ SHWPTE PteDst; if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, PdeSrc.u & ~( X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT), &PteDst); else PteDst.u = (PdeSrc.u & ~(X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT)) | PGM_PAGE_GET_HCPHYS(pPage); const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; if ( PteDst.n.u1Present && !pPTDst->a[iPTDst].n.u1Present) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); /* Make sure only allocated pages are mapped writable. */ if ( PteDst.n.u1Write && PteDst.n.u1Present && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */ Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage)); } ASMAtomicWriteSize(&pPTDst->a[iPTDst], PteDst.u); /* * If the page is not flagged as dirty and is writable, then make it read-only * at PD level, so we can set the dirty bit when the page is modified. * * ASSUMES that page access handlers are implemented on page table entry level. * Thus we will first catch the dirty access and set PDE.D and restart. If * there is an access handler, we'll trap again and let it work on the problem. */ /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already. * As for invlpg, it simply frees the whole shadow PT. * ...It's possibly because the guest clears it and the guest doesn't really tell us... */ if ( !PdeSrc.b.u1Dirty && PdeSrc.b.u1Write) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.n.u1Write = 0; } else { PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY; PdeDst.n.u1Write = PdeSrc.n.u1Write; } ASMAtomicWriteSize(pPdeDst, PdeDst.u); Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n", GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); } else { LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc)); /** @todo must wipe the shadow page table in this case. */ } } # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif return VINF_SUCCESS; } STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDNAs)); } else if (fPdeValid) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync)); Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); } else { /// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSync)); Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); } /* * Mark the PDE not present. Restart the instruction and let #PF call SyncPT. * Yea, I'm lazy. */ pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst); ASMAtomicWriteSize(pPdeDst, 0); # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif PGM_INVL_VCPU_TLBS(pVCpu); return VINF_PGM_SYNCPAGE_MODIFIED_PDE; #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !defined(IN_RC) # ifdef PGM_SYNC_N_PAGES /* * Get the shadow PDE, find the shadow page table in the pool. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_PAE X86PDEPAE PdeDst = pgmShwGetPaePDE(&pVCpu->pgm.s, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt); PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ X86PDEPAE PdeDst; PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst && pPdptDst); PdeDst = pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; EPTPDE PdeDst; int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # endif /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ if (!PdeDst.n.u1Present) { AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u)); Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage)); return VINF_SUCCESS; /* force the instruction to be executed again. */ } /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ if (PdeDst.n.u1Size) { Assert(HWACCMIsNestedPagingActive(pVM)); Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage)); return VINF_SUCCESS; } /* Mask away the page offset. */ GCPtrPage &= ~((RTGCPTR)0xfff); PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); if ( cPages > 1 && !(uErr & X86_TRAP_PF_P) && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { /* * This code path is currently only taken when the caller is PGMTrap0eHandler * for non-present pages! * * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and * deal with locality. */ unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst < PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; for (; iPTDst < iPTDstEnd; iPTDst++) { if (!pPTDst->a[iPTDst].n.u1Present) { RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT); GSTPTE PteSrc; /* Fake the page table entry */ PteSrc.u = GCPtrCurPage; PteSrc.n.u1Present = 1; PteSrc.n.u1Dirty = 1; PteSrc.n.u1Accessed = 1; PteSrc.n.u1Write = 1; PteSrc.n.u1User = 1; PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n", GCPtrCurPage, PteSrc.n.u1Present, PteSrc.n.u1Write & PdeSrc.n.u1Write, PteSrc.n.u1User & PdeSrc.n.u1User, (uint64_t)PteSrc.u, (uint64_t)pPTDst->a[iPTDst].u, pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); if (RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY))) break; } else Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, pPTDst->a[iPTDst].u)); } } else # endif /* PGM_SYNC_N_PAGES */ { const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT); GSTPTE PteSrc; /* Fake the page table entry */ PteSrc.u = GCPtrCurPage; PteSrc.n.u1Present = 1; PteSrc.n.u1Dirty = 1; PteSrc.n.u1Accessed = 1; PteSrc.n.u1Write = 1; PteSrc.n.u1User = 1; PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}PteDst=%08llx%s\n", GCPtrPage, PteSrc.n.u1Present, PteSrc.n.u1Write & PdeSrc.n.u1Write, PteSrc.n.u1User & PdeSrc.n.u1User, (uint64_t)PteSrc.u, (uint64_t)pPTDst->a[iPTDst].u, pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); } return VINF_SUCCESS; #else AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); return VERR_INTERNAL_ERROR; #endif } #if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /** * CheckPageFault helper for returning a page fault indicating a non-present * (NP) entry in the page translation structures. * * @returns VINF_EM_RAW_GUEST_TRAP. * @param pVCpu The virtual CPU to operate on. * @param uErr The error code of the shadow fault. Corrections to * TRPM's copy will be made if necessary. * @param GCPtrPage For logging. * @param uPageFaultLevel For logging. */ DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF)); AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr)); AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr)); if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P)); Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); return VINF_EM_RAW_GUEST_TRAP; } /** * CheckPageFault helper for returning a page fault indicating a reserved bit * (RSVD) error in the page translation structures. * * @returns VINF_EM_RAW_GUEST_TRAP. * @param pVCpu The virtual CPU to operate on. * @param uErr The error code of the shadow fault. Corrections to * TRPM's copy will be made if necessary. * @param GCPtrPage For logging. * @param uPageFaultLevel For logging. */ DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF)); if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P); Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); return VINF_EM_RAW_GUEST_TRAP; } /** * CheckPageFault helper for returning a page protection fault (P). * * @returns VINF_EM_RAW_GUEST_TRAP. * @param pVCpu The virtual CPU to operate on. * @param uErr The error code of the shadow fault. Corrections to * TRPM's copy will be made if necessary. * @param GCPtrPage For logging. * @param uPageFaultLevel For logging. */ DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyTrackRealPF)); AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr)); if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P) TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P); Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); return VINF_EM_RAW_GUEST_TRAP; } /** * Investigate a page fault to identify ones targetted at the guest and to * handle write protection page faults caused by dirty bit tracking. * * This will do detect invalid entries and raise X86_TRAP_PF_RSVD. * * @returns VBox status code. * @param pVCpu The VMCPU handle. * @param uErr Page fault error code. The X86_TRAP_PF_RSVD flag * cannot be trusted as it is used for MMIO optimizations. * @param pPdeSrc Guest page directory entry. * @param GCPtrPage Guest context page address. */ PGM_BTH_DECL(int, CheckPageFault)(PVMCPU pVCpu, uint32_t uErr, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage) { bool fUserLevelFault = !!(uErr & X86_TRAP_PF_US); bool fWriteFault = !!(uErr & X86_TRAP_PF_RW); # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) bool fMaybeNXEFault = (uErr & X86_TRAP_PF_ID) && CPUMIsGuestNXEnabled(pVCpu); # endif bool fMaybeWriteProtFault = fWriteFault && (fUserLevelFault || CPUMIsGuestR0WriteProtEnabled(pVCpu)); PVM pVM = pVCpu->CTX_SUFF(pVM); int rc; LogFlow(("CheckPageFault: GCPtrPage=%RGv uErr=%#x PdeSrc=%08x\n", GCPtrPage, uErr, pPdeSrc->u)); /* * Note! For PAE it is safe to assume that bad guest physical addresses * (which returns all FFs) in the translation tables will cause * #PF(RSVD). The same will be the case for long mode provided the * physical address width is less than 52 bits - this we ASSUME. * * Note! No convenient shortcuts here, we have to validate everything! */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* * Real page fault? (PML4E level) */ PX86PML4 pPml4Src = pgmGstGetLongModePML4Ptr(pVCpu); if (RT_UNLIKELY(!pPml4Src)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 0); PX86PML4E pPml4eSrc = &pPml4Src->a[(GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK]; if (!pPml4eSrc->n.u1Present) return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 0); if (RT_UNLIKELY(!GST_IS_PML4E_VALID(pVCpu, *pPml4eSrc))) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 0); if ( (fMaybeWriteProtFault && !pPml4eSrc->n.u1Write) || (fMaybeNXEFault && pPml4eSrc->n.u1NoExecute) || (fUserLevelFault && !pPml4eSrc->n.u1User) ) return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 0); /* * Real page fault? (PDPE level) */ PX86PDPT pPdptSrc; rc = PGM_GCPHYS_2_PTR_BY_VMCPU(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK, &pPdptSrc); if (RT_FAILURE(rc)) { AssertMsgReturn(rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS, ("%Rrc\n", rc), rc); return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1); } PX86PDPE pPdpeSrc = &pPdptSrc->a[(GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64]; if (!pPdpeSrc->n.u1Present) return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 1); if (!GST_IS_PDPE_VALID(pVCpu, *pPdpeSrc)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1); if ( (fMaybeWriteProtFault && !pPdpeSrc->lm.u1Write) || (fMaybeNXEFault && pPdpeSrc->lm.u1NoExecute) || (fUserLevelFault && !pPdpeSrc->lm.u1User) ) return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 1); # elif PGM_GST_TYPE == PGM_TYPE_PAE /* * Real page fault? (PDPE level) */ PX86PDPT pPdptSrc = pgmGstGetPaePDPTPtr(pVCpu); if (RT_UNLIKELY(!pPdptSrc)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1); /** @todo Handle bad CR3 address. */ PX86PDPE pPdpeSrc = pgmGstGetPaePDPEPtr(pVCpu, GCPtrPage); if (!pPdpeSrc->n.u1Present) return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 1); if (!GST_IS_PDPE_VALID(pVCpu, *pPdpeSrc)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 1); # endif /* PGM_GST_TYPE == PGM_TYPE_PAE */ /* * Real page fault? (PDE level) */ if (!pPdeSrc->n.u1Present) return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 2); # if PGM_GST_TYPE == PGM_TYPE_32BIT bool const fBigPage = pPdeSrc->b.u1Size && CPUMIsGuestPageSizeExtEnabled(pVCpu); # else bool const fBigPage = pPdeSrc->b.u1Size; # endif if (!fBigPage ? !GST_IS_PDE_VALID(pVCpu, *pPdeSrc) : !GST_IS_BIG_PDE_VALID(pVCpu, *pPdeSrc)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 2); if ( (fMaybeWriteProtFault && !pPdeSrc->n.u1Write) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) || (fMaybeNXEFault && pPdeSrc->n.u1NoExecute) # endif || (fUserLevelFault && !pPdeSrc->n.u1User) ) return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 2); /* * First check the easy case where the page directory has been marked * read-only to track the dirty bit of an emulated BIG page. */ if (fBigPage) { /* Mark guest page directory as accessed */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 pPml4eSrc->n.u1Accessed = 1; pPdpeSrc->lm.u1Accessed = 1; # endif pPdeSrc->b.u1Accessed = 1; /* Mark the entry guest PDE dirty it it's a write access. */ if (fWriteFault) pPdeSrc->b.u1Dirty = 1; } else { /* * Map the guest page table. */ PGSTPT pPTSrc; PGSTPTE pPteSrc; GSTPTE PteSrc; rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc); if (RT_SUCCESS(rc)) { pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK]; PteSrc.u = pPteSrc->u; } else if (rc == VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS) { /* All bits in the PTE are set. */ # if PGM_GST_TYPE == PGM_TYPE_32BIT PteSrc.u = UINT32_MAX; # else PteSrc.u = UINT64_MAX; # endif pPteSrc = &PteSrc; } else AssertRCReturn(rc, rc); /* * Real page fault? */ if (!PteSrc.n.u1Present) return PGM_BTH_NAME(CheckPageFaultReturnNP)(pVCpu, uErr, GCPtrPage, 3); if (!GST_IS_PTE_VALID(pVCpu, PteSrc)) return PGM_BTH_NAME(CheckPageFaultReturnRSVD)(pVCpu, uErr, GCPtrPage, 3); if ( (fMaybeWriteProtFault && !PteSrc.n.u1Write) # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) || (fMaybeNXEFault && PteSrc.n.u1NoExecute) # endif || (fUserLevelFault && !PteSrc.n.u1User) ) return PGM_BTH_NAME(CheckPageFaultReturnProt)(pVCpu, uErr, GCPtrPage, 0); LogFlow(("CheckPageFault: page fault at %RGv PteSrc.u=%08x\n", GCPtrPage, PteSrc.u)); /* * Set the accessed bits in the page directory and the page table. */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 pPml4eSrc->n.u1Accessed = 1; pPdpeSrc->lm.u1Accessed = 1; # endif pPdeSrc->n.u1Accessed = 1; pPteSrc->n.u1Accessed = 1; /* * Set the dirty flag in the PTE if it's a write access. */ if (fWriteFault) { # ifdef VBOX_WITH_STATISTICS if (!pPteSrc->n.u1Dirty) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtiedPage)); else STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageAlreadyDirty)); # endif pPteSrc->n.u1Dirty = 1; } } return VINF_SUCCESS; } /** * Handle dirty bit tracking faults. * * @returns VBox status code. * @param pVCpu The VMCPU handle. * @param uErr Page fault error code. * @param pPdeSrc Guest page directory entry. * @param pPdeDst Shadow page directory entry. * @param GCPtrPage Guest context page address. */ PGM_BTH_DECL(int, CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, PGSTPDE pPdeSrc, RTGCPTR GCPtrPage) { # if PGM_GST_TYPE == PGM_TYPE_32BIT const bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu); # else const bool fBigPagesSupported = true; # endif PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLockOwner(pVM)); /* * Handle big page. */ if (pPdeSrc->b.u1Size && fBigPagesSupported) { if ( pPdeDst->n.u1Present && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY)) { SHWPDE PdeDst = *pPdeDst; STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap)); Assert(pPdeSrc->b.u1Write); /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply * fault again and take this path to only invalidate the entry (see below). */ PdeDst.n.u1Write = 1; PdeDst.n.u1Accessed = 1; PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY; ASMAtomicWriteSize(pPdeDst, PdeDst.u); PGM_INVL_BIG_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # ifdef IN_RING0 /* Check for stale TLB entry; only applies to the SMP guest case. */ if ( pVM->cCpus > 1 && pPdeDst->n.u1Write && pPdeDst->n.u1Accessed) { PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); if (pShwPage) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; if ( pPteDst->n.u1Present && pPteDst->n.u1Write) { /* Stale TLB entry. */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } } } # endif /* IN_RING0 */ return VINF_PGM_NO_DIRTY_BIT_TRACKING; } /* * Map the guest page table. */ PGSTPT pPTSrc; int rc = PGM_GCPHYS_2_PTR(pVM, pPdeSrc->u & GST_PDE_PG_MASK, &pPTSrc); if (RT_FAILURE(rc)) { AssertRC(rc); return rc; } if (pPdeDst->n.u1Present) { PGSTPTE pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK]; const GSTPTE PteSrc = *pPteSrc; #ifndef IN_RING0 /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below. * Our individual shadow handlers will provide more information and force a fatal exit. */ if (MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage)) { LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage)); return VINF_PGM_NO_DIRTY_BIT_TRACKING; } #endif /* * Map shadow page table. */ PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); if (pShwPage) { PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; if (pPteDst->n.u1Present) /** @todo Optimize accessed bit emulation? */ { if (pPteDst->u & PGM_PTFLAGS_TRACK_DIRTY) { PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPteSrc->u & GST_PTE_PG_MASK); SHWPTE PteDst = *pPteDst; LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage)); STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageTrap)); Assert(pPteSrc->n.u1Write); /* Note: No need to invalidate this entry on other VCPUs as a stale TLB * entry will not harm; write access will simply fault again and * take this path to only invalidate the entry. */ if (RT_LIKELY(pPage)) { if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage)); Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)); /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */ PteDst.n.u1Write = 0; } else { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) { rc = pgmPhysPageMakeWritable(pVM, pPage, pPteSrc->u & GST_PTE_PG_MASK); AssertRC(rc); } if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) PteDst.n.u1Write = 1; else { /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); PteDst.n.u1Write = 0; } } } else PteDst.n.u1Write = 1; /** @todo r=bird: This doesn't make sense to me. */ PteDst.n.u1Dirty = 1; PteDst.n.u1Accessed = 1; PteDst.au32[0] &= ~PGM_PTFLAGS_TRACK_DIRTY; ASMAtomicWriteSize(pPteDst, PteDst.u); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # ifdef IN_RING0 /* Check for stale TLB entry; only applies to the SMP guest case. */ if ( pVM->cCpus > 1 && pPteDst->n.u1Write == 1 && pPteDst->n.u1Accessed == 1) { /* Stale TLB entry. */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageStale)); PGM_INVL_PG(pVCpu, GCPtrPage); return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ } # endif } } else AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK)); } return VINF_PGM_NO_DIRTY_BIT_TRACKING; } #endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ /** * Sync a shadow page table. * * The shadow page table is not present. This includes the case where * there is a conflict with a mapping. * * @returns VBox status code. * @param pVCpu The VMCPU handle. * @param iPD Page directory index. * @param pPDSrc Source page directory (i.e. Guest OS page directory). * Assume this is a temporary mapping. * @param GCPtrPage GC Pointer of the page that caused the fault */ PGM_BTH_DECL(int, SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage) { PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); #if 0 /* rarely useful; leave for debugging. */ STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]); #endif LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); Assert(PGMIsLocked(pVM)); #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && PGM_SHW_TYPE != PGM_TYPE_EPT int rc = VINF_SUCCESS; /* * Validate input a little bit. */ AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage)); # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; PX86PDPAE pPDDst; PSHWPDE pPdeDst; /* Fetch the pgm pool shadow descriptor. */ rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc, rc); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; # endif SHWPDE PdeDst = *pPdeDst; # if PGM_GST_TYPE == PGM_TYPE_AMD64 /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # endif # ifndef PGM_WITHOUT_MAPPINGS /* * Check for conflicts. * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3. * R3: Simply resolve the conflict. */ if (PdeDst.u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); # ifndef IN_RING3 Log(("SyncPT: Conflict at %RGv\n", GCPtrPage)); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); return VERR_ADDRESS_CONFLICT; # else /* IN_RING3 */ PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage); Assert(pMapping); # if PGM_GST_TYPE == PGM_TYPE_32BIT rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT)); # elif PGM_GST_TYPE == PGM_TYPE_PAE rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT)); # else AssertFailed(); /* can't happen for amd64 */ # endif if (RT_FAILURE(rc)) { STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); return rc; } PdeDst = *pPdeDst; # endif /* IN_RING3 */ } # endif /* !PGM_WITHOUT_MAPPINGS */ Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst); # endif /* * Sync page directory entry. */ GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; if (PdeSrc.n.u1Present) { /* * Allocate & map the page table. */ PSHWPT pPTDst; # if PGM_GST_TYPE == PGM_TYPE_32BIT const bool fPageTable = !PdeSrc.b.u1Size || !CPUMIsGuestPageSizeExtEnabled(pVCpu); # else const bool fPageTable = !PdeSrc.b.u1Size; # endif PPGMPOOLPAGE pShwPage; RTGCPHYS GCPhys; if (fPageTable) { GCPhys = PdeSrc.u & GST_PDE_PG_MASK; # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ GCPhys |= (iPDDst & 1) * (PAGE_SIZE / 2); # endif rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage); } else { PGMPOOLACCESS enmAccess; # if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) const bool fNoExecute = PdeSrc.n.u1NoExecute && CPUMIsGuestNXEnabled(pVCpu); # else const bool fNoExecute = false; # endif GCPhys = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ GCPhys |= GCPtrPage & (1 << X86_PD_PAE_SHIFT); # endif /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ if (PdeSrc.n.u1User) { if (PdeSrc.n.u1Write) enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW; else enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R; } else { if (PdeSrc.n.u1Write) enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; else enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; } rc = pgmPoolAllocEx(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, pShwPde->idx, iPDDst, &pShwPage); } if (rc == VINF_SUCCESS) pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); else if (rc == VINF_PGM_CACHED_PAGE) { /* * The PT was cached, just hook it up. */ if (fPageTable) PdeDst.u = pShwPage->Core.Key | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D)); else { PdeDst.u = pShwPage->Core.Key | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D)); /* (see explanation and assumptions further down.) */ if ( !PdeSrc.b.u1Dirty && PdeSrc.b.u1Write) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.b.u1Write = 0; } } ASMAtomicWriteSize(pPdeDst, PdeDst.u); # if defined(IN_RC) PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif return VINF_SUCCESS; } else if (rc == VERR_PGM_POOL_FLUSHED) { VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); # if defined(IN_RC) PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif return VINF_PGM_SYNC_CR3; } else AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR); PdeDst.u &= X86_PDE_AVL_MASK; PdeDst.u |= pShwPage->Core.Key; /* * Page directory has been accessed (this is a fault situation, remember). */ pPDSrc->a[iPDSrc].n.u1Accessed = 1; if (fPageTable) { /* * Page table - 4KB. * * Sync all or just a few entries depending on PGM_SYNC_N_PAGES. */ Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n", GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u)); PGSTPT pPTSrc; rc = PGM_GCPHYS_2_PTR(pVM, PdeSrc.u & GST_PDE_PG_MASK, &pPTSrc); if (RT_SUCCESS(rc)) { /* * Start by syncing the page directory entry so CSAM's TLB trick works. */ PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK)) | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D)); ASMAtomicWriteSize(pPdeDst, PdeDst.u); # if defined(IN_RC) PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif /* * Directory/page user or supervisor privilege: (same goes for read/write) * * Directory Page Combined * U/S U/S U/S * 0 0 0 * 0 1 0 * 1 0 0 * 1 1 1 * * Simple AND operation. Table listed for completeness. * */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4K)); # ifdef PGM_SYNC_N_PAGES unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; unsigned iPTDst = iPTBase; const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); if (iPTDst <= PGM_SYNC_NR_PAGES / 2) iPTDst = 0; else iPTDst -= PGM_SYNC_NR_PAGES / 2; # else /* !PGM_SYNC_N_PAGES */ unsigned iPTDst = 0; const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a); # endif /* !PGM_SYNC_N_PAGES */ # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif for (; iPTDst < iPTDstEnd; iPTDst++) { const unsigned iPTSrc = iPTDst + offPTSrc; const GSTPTE PteSrc = pPTSrc->a[iPTSrc]; if (PteSrc.n.u1Present) { # ifndef IN_RING0 /* * Assuming kernel code will be marked as supervisor - and not as user level * and executed using a conforming code selector - And marked as readonly. * Also assume that if we're monitoring a page, it's of no interest to CSAM. */ PPGMPAGE pPage; if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US)) || !CSAMDoesPageNeedScanning(pVM, (iPDSrc << GST_PD_SHIFT) | (iPTSrc << PAGE_SHIFT)) || ( (pPage = pgmPhysGetPage(&pVM->pgm.s, PteSrc.u & GST_PTE_PG_MASK)) && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) ) # endif PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n", (RTGCPTR)(((RTGCPTR)iPDSrc << GST_PD_SHIFT) | ((RTGCPTR)iPTSrc << PAGE_SHIFT)), PteSrc.n.u1Present, PteSrc.n.u1Write & PdeSrc.n.u1Write, PteSrc.n.u1User & PdeSrc.n.u1User, (uint64_t)PteSrc.u, pPTDst->a[iPTDst].u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "", pPTDst->a[iPTDst].u, iPTSrc, PdeSrc.au32[0], (RTGCPHYS)((PdeSrc.u & GST_PDE_PG_MASK) + iPTSrc*sizeof(PteSrc)) )); } /* else: the page table was cleared by the pool */ } /* for PTEs */ } } else { /* * Big page - 2/4MB. * * We'll walk the ram range list in parallel and optimize lookups. * We will only sync on shadow page table at a time. */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT4M)); /** * @todo It might be more efficient to sync only a part of the 4MB page (similar to what we do for 4kb PDs). */ /* * Start by syncing the page directory entry. */ PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY))) | (PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PDE_AVL_MASK | X86_PDE_PCD | X86_PDE_PWT | X86_PDE_PS | X86_PDE4M_G | X86_PDE4M_D)); /* * If the page is not flagged as dirty and is writable, then make it read-only * at PD level, so we can set the dirty bit when the page is modified. * * ASSUMES that page access handlers are implemented on page table entry level. * Thus we will first catch the dirty access and set PDE.D and restart. If * there is an access handler, we'll trap again and let it work on the problem. */ /** @todo move the above stuff to a section in the PGM documentation. */ Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)); if ( !PdeSrc.b.u1Dirty && PdeSrc.b.u1Write) { STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,DirtyPageBig)); PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; PdeDst.b.u1Write = 0; } ASMAtomicWriteSize(pPdeDst, PdeDst.u); # if defined(IN_RC) PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif /* * Fill the shadow page table. */ /* Get address and flags from the source PDE. */ SHWPTE PteDstBase; PteDstBase.u = PdeSrc.u & ~(GST_PDE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT); /* Loop thru the entries in the shadow PT. */ const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr); Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n", GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr, GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges); unsigned iPTDst = 0; while ( iPTDst < RT_ELEMENTS(pPTDst->a) && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { /* Advance ram range list. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); if (pRam && GCPhys >= pRam->GCPhys) { unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT; do { /* Make shadow PTE. */ PPGMPAGE pPage = &pRam->aPages[iHCPage]; SHWPTE PteDst; # ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC /* Try to make the page writable if necessary. */ if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM && ( PGM_PAGE_IS_ZERO(pPage) || ( PteDstBase.n.u1Write && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED # ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED # endif # ifdef VBOX_WITH_PAGE_SHARING && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED # endif && !PGM_PAGE_IS_BALLOONED(pPage)) ) ) { rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); AssertRCReturn(rc, rc); if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) break; } # endif if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) { PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u; PteDst.n.u1Write = 0; } else PteDst.u = 0; } else if (PGM_PAGE_IS_BALLOONED(pPage)) { /* Skip ballooned pages. */ PteDst.u = 0; } # ifndef IN_RING0 /* * Assuming kernel code will be marked as supervisor and not as user level and executed * using a conforming code selector. Don't check for readonly, as that implies the whole * 4MB can be code or readonly data. Linux enables write access for its large pages. */ else if ( !PdeSrc.n.u1User && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT))) PteDst.u = 0; # endif else PteDst.u = PGM_PAGE_GET_HCPHYS(pPage) | PteDstBase.u; /* Only map writable pages writable. */ if ( PteDst.n.u1Write && PteDst.n.u1Present && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) { /* Still applies to shared pages. */ Assert(!PGM_PAGE_IS_ZERO(pPage)); PteDst.n.u1Write = 0; /** @todo this isn't quite working yet... */ Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)))); } if (PteDst.n.u1Present) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); /* commit it */ pPTDst->a[iPTDst] = PteDst; Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n", (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), PteDst.n.u1Present, PteDst.n.u1Write, PteDst.n.u1User, (uint64_t)PteDst.u, PteDst.u & PGM_PTFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); /* advance */ GCPhys += PAGE_SIZE; iHCPage++; iPTDst++; } while ( iPTDst < RT_ELEMENTS(pPTDst->a) && GCPhys <= pRam->GCPhysLast); } else if (pRam) { Log(("Invalid pages at %RGp\n", GCPhys)); do { pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */ GCPhys += PAGE_SIZE; iPTDst++; } while ( iPTDst < RT_ELEMENTS(pPTDst->a) && GCPhys < pRam->GCPhys); } else { Log(("Invalid pages at %RGp (2)\n", GCPhys)); for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) pPTDst->a[iPTDst].u = 0; /* MMIO or invalid page, we must handle them manually. */ } } /* while more PTEs */ } /* 4KB / 4MB */ } else AssertRelease(!PdeDst.n.u1Present); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); if (RT_FAILURE(rc)) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPTFailed)); return rc; #elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ && !defined(IN_RC) /* * Validate input a little bit. */ int rc = VINF_SUCCESS; # if PGM_SHW_TYPE == PGM_TYPE_32BIT const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage); /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */ PX86PDPAE pPDDst; PSHWPDE pPdeDst; /* Fetch the pgm pool shadow descriptor. */ rc = pgmShwGetPaePoolPagePD(&pVCpu->pgm.s, GCPtrPage, &pShwPde); AssertRCSuccessReturn(rc, rc); Assert(pShwPde); pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(&pVM->pgm.s, pShwPde); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */ rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); AssertRCSuccessReturn(rc, rc); Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); Assert(pShwPde); # elif PGM_SHW_TYPE == PGM_TYPE_EPT const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PEPTPD pPDDst; PEPTPDPT pPdptDst; rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); AssertRC(rc); return rc; } Assert(pPDDst); PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; /* Fetch the pgm pool shadow descriptor. */ PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK); Assert(pShwPde); # endif SHWPDE PdeDst = *pPdeDst; Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING)); Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ # if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE if (BTH_IS_NP_ACTIVE(pVM)) { PPGMPAGE pPage; /* Check if we allocated a big page before for this 2 MB range. */ rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPtrPage & X86_PDE2M_PAE_PG_MASK, &pPage); if (RT_SUCCESS(rc)) { RTHCPHYS HCPhys = NIL_RTHCPHYS; if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) { STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } else if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) { /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ rc = pgmPhysIsValidLargePage(pVM, GCPtrPage, pPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } } else if (PGMIsUsingLargePages(pVM)) { rc = pgmPhysAllocLargePage(pVM, GCPtrPage); if (RT_SUCCESS(rc)) { Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); } else LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc)); } if (HCPhys != NIL_RTHCPHYS) { PdeDst.u &= X86_PDE_AVL_MASK; PdeDst.u |= HCPhys; PdeDst.n.u1Present = 1; PdeDst.n.u1Write = 1; PdeDst.b.u1Size = 1; # if PGM_SHW_TYPE == PGM_TYPE_EPT PdeDst.n.u1Execute = 1; PdeDst.b.u1IgnorePAT = 1; PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB; # else PdeDst.n.u1User = 1; # endif ASMAtomicWriteSize(pPdeDst, PdeDst.u); Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u)); /* Add a reference to the first page only. */ PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); return VINF_SUCCESS; } } } # endif /* HC_ARCH_BITS == 64 */ GSTPDE PdeSrc; PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ PdeSrc.n.u1Present = 1; PdeSrc.n.u1Write = 1; PdeSrc.n.u1Accessed = 1; PdeSrc.n.u1User = 1; /* * Allocate & map the page table. */ PSHWPT pPTDst; PPGMPOOLPAGE pShwPage; RTGCPHYS GCPhys; /* Virtual address = physical address */ GCPhys = GCPtrPage & X86_PAGE_4K_BASE_MASK; rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, pShwPde->idx, iPDDst, &pShwPage); if ( rc == VINF_SUCCESS || rc == VINF_PGM_CACHED_PAGE) pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage); else AssertMsgFailedReturn(("rc=%Rrc\n", rc), VERR_INTERNAL_ERROR); PdeDst.u &= X86_PDE_AVL_MASK; PdeDst.u |= pShwPage->Core.Key; PdeDst.n.u1Present = 1; PdeDst.n.u1Write = 1; # if PGM_SHW_TYPE == PGM_TYPE_EPT PdeDst.n.u1Execute = 1; # else PdeDst.n.u1User = 1; PdeDst.n.u1Accessed = 1; # endif ASMAtomicWriteSize(pPdeDst, PdeDst.u); rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, PGM_SYNC_NR_PAGES, 0 /* page not present */); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); return rc; #else AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPT), a); return VERR_INTERNAL_ERROR; #endif } /** * Prefetch a page/set of pages. * * Typically used to sync commonly used pages before entering raw mode * after a CR3 reload. * * @returns VBox status code. * @param pVCpu The VMCPU handle. * @param GCPtrPage Page to invalidate. */ PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage) { #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && PGM_SHW_TYPE != PGM_TYPE_EPT /* * Check that all Guest levels thru the PDE are present, getting the * PD and PDE in the processes. */ int rc = VINF_SUCCESS; # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # if PGM_GST_TYPE == PGM_TYPE_32BIT const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT; PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPDSrc; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); if (!pPDSrc) return VINF_SUCCESS; /* not present */ # elif PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPDSrc; PX86PML4E pPml4eSrc; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); if (!pPDSrc) return VINF_SUCCESS; /* not present */ # endif const GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else PGSTPD pPDSrc = NULL; const unsigned iPDSrc = 0; GSTPDE PdeSrc; PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ PdeSrc.n.u1Present = 1; PdeSrc.n.u1Write = 1; PdeSrc.n.u1Accessed = 1; PdeSrc.n.u1User = 1; # endif if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed) { PVM pVM = pVCpu->CTX_SUFF(pVM); pgmLock(pVM); # if PGM_SHW_TYPE == PGM_TYPE_32BIT const X86PDE PdeDst = pgmShwGet32BitPDE(&pVCpu->pgm.s, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_PAE const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; X86PDEPAE PdeDst; # if PGM_GST_TYPE != PGM_TYPE_PAE X86PDPE PdpeSrc; /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ # endif rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { pgmUnlock(pVM); AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; X86PDEPAE PdeDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* AMD-V nested paging */ X86PML4E Pml4eSrc; X86PDPE PdpeSrc; PX86PML4E pPml4eSrc = &Pml4eSrc; /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; # endif rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { pgmUnlock(pVM); AssertRC(rc); return rc; } Assert(pPDDst); PdeDst = pPDDst->a[iPDDst]; # endif if (!(PdeDst.u & PGM_PDFLAGS_MAPPING)) { if (!PdeDst.n.u1Present) { /** @todo r=bird: This guy will set the A bit on the PDE, * probably harmless. */ rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); } else { /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it * makes no sense to prefetch more than one page. */ rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); if (RT_SUCCESS(rc)) rc = VINF_SUCCESS; } } pgmUnlock(pVM); } return rc; #elif PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT return VINF_SUCCESS; /* ignore */ #else AssertCompile(0); #endif } /** * Syncs a page during a PGMVerifyAccess() call. * * @returns VBox status code (informational included). * @param pVCpu The VMCPU handle. * @param GCPtrPage The address of the page to sync. * @param fPage The effective guest page flags. * @param uErr The trap error code. * @remarks This will normally never be called on invalid guest page * translation entries. */ PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr) { PVM pVM = pVCpu->CTX_SUFF(pVM); LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr)); Assert(!HWACCMIsNestedPagingActive(pVM)); #if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_REAL \ || PGM_GST_TYPE == PGM_TYPE_PROT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ && PGM_SHW_TYPE != PGM_TYPE_NESTED \ && PGM_SHW_TYPE != PGM_TYPE_EPT # ifndef IN_RING0 if (!(fPage & X86_PTE_US)) { /* * Mark this page as safe. */ /** @todo not correct for pages that contain both code and data!! */ Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true)); CSAMMarkPage(pVM, GCPtrPage, true); } # endif /* * Get guest PD and index. */ /** @todo Performance: We've done all this a jiffy ago in the * PGMGstGetPage call. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) # if PGM_GST_TYPE == PGM_TYPE_32BIT const unsigned iPDSrc = GCPtrPage >> GST_PD_SHIFT; PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned iPDSrc = 0; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); if (RT_UNLIKELY(!pPDSrc)) { Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); return VINF_EM_RAW_GUEST_TRAP; } # elif PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPDSrc; PX86PML4E pPml4eSrc; X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); if (RT_UNLIKELY(!pPDSrc)) { Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); return VINF_EM_RAW_GUEST_TRAP; } # endif # else /* !PGM_WITH_PAGING */ PGSTPD pPDSrc = NULL; const unsigned iPDSrc = 0; # endif /* !PGM_WITH_PAGING */ int rc = VINF_SUCCESS; pgmLock(pVM); /* * First check if the shadow pd is present. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(&pVCpu->pgm.s, GCPtrPage); # elif PGM_SHW_TYPE == PGM_TYPE_PAE PX86PDEPAE pPdeDst; const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; # if PGM_GST_TYPE != PGM_TYPE_PAE /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ X86PDPE PdpeSrc; PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ # endif rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { pgmUnlock(pVM); AssertRC(rc); return rc; } Assert(pPDDst); pPdeDst = &pPDDst->a[iPDDst]; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); PX86PDPAE pPDDst; PX86PDEPAE pPdeDst; # if PGM_GST_TYPE == PGM_TYPE_PROT /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ X86PML4E Pml4eSrc; X86PDPE PdpeSrc; PX86PML4E pPml4eSrc = &Pml4eSrc; Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; # endif rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc, &PdpeSrc, &pPDDst); if (rc != VINF_SUCCESS) { pgmUnlock(pVM); AssertRC(rc); return rc; } Assert(pPDDst); pPdeDst = &pPDDst->a[iPDDst]; # endif # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynLockHCPage(pVM, (uint8_t *)pPdeDst); # endif if (!pPdeDst->n.u1Present) { rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); if (rc != VINF_SUCCESS) { # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif pgmUnlock(pVM); AssertRC(rc); return rc; } } # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) /* Check for dirty bit fault */ rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage); if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) Log(("PGMVerifyAccess: success (dirty)\n")); else # endif { # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; # else GSTPDE PdeSrc; PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ PdeSrc.n.u1Present = 1; PdeSrc.n.u1Write = 1; PdeSrc.n.u1Accessed = 1; PdeSrc.n.u1User = 1; # endif Assert(rc != VINF_EM_RAW_GUEST_TRAP); if (uErr & X86_TRAP_PF_US) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncUser)); else /* supervisor */ STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); if (RT_SUCCESS(rc)) { /* Page was successfully synced */ Log2(("PGMVerifyAccess: success (sync)\n")); rc = VINF_SUCCESS; } else { Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc)); rc = VINF_EM_RAW_GUEST_TRAP; } } # if defined(IN_RC) /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */ PGMDynUnlockHCPage(pVM, (uint8_t *)pPdeDst); # endif pgmUnlock(pVM); return rc; #else /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */ AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); return VERR_INTERNAL_ERROR; #endif /* PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_NESTED */ } /** * Syncs the paging hierarchy starting at CR3. * * @returns VBox status code, no specials. * @param pVCpu The VMCPU handle. * @param cr0 Guest context CR0 register * @param cr3 Guest context CR3 register * @param cr4 Guest context CR4 register * @param fGlobal Including global page directories or not */ PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal) { PVM pVM = pVCpu->CTX_SUFF(pVM); LogFlow(("SyncCR3 fGlobal=%d\n", !!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))); #if PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT pgmLock(pVM); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif /* * Update page access handlers. * The virtual are always flushed, while the physical are only on demand. * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll * have to look into that later because it will have a bad influence on the performance. * @note SvL: There's no need for that. Just invalidate the virtual range(s). * bird: Yes, but that won't work for aliases. */ /** @todo this MUST go away. See #1557. */ STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h); PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4); STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3Handlers), h); pgmUnlock(pVM); #endif /* !NESTED && !EPT */ #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT /* * Nested / EPT - almost no work. */ Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s)); return VINF_SUCCESS; #elif PGM_SHW_TYPE == PGM_TYPE_AMD64 /* * AMD64 (Shw & Gst) - No need to check all paging levels; we zero * out the shadow parts when the guest modifies its tables. */ Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s)); return VINF_SUCCESS; #else /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ # ifndef PGM_WITHOUT_MAPPINGS /* * Check for and resolve conflicts with our guest mappings if they * are enabled and not fixed. */ if (pgmMapAreMappingsFloating(&pVM->pgm.s)) { int rc = pgmMapResolveConflicts(pVM); Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3); if (rc == VINF_PGM_SYNC_CR3) { LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n")); return VINF_PGM_SYNC_CR3; } } # else Assert(!pgmMapAreMappingsEnabled(&pVM->pgm.s)); # endif return VINF_SUCCESS; #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ } #ifdef VBOX_STRICT #ifdef IN_RC # undef AssertMsgFailed # define AssertMsgFailed Log #endif #ifdef IN_RING3 # include /** * Dumps a page table hierarchy use only physical addresses and cr4/lm flags. * * @returns VBox status code (VINF_SUCCESS). * @param cr3 The root of the hierarchy. * @param crr The cr4, only PAE and PSE is currently used. * @param fLongMode Set if long mode, false if not long mode. * @param cMaxDepth Number of levels to dump. * @param pHlp Pointer to the output functions. */ RT_C_DECLS_BEGIN VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp); RT_C_DECLS_END #endif /** * Checks that the shadow page table is in sync with the guest one. * * @returns The number of errors. * @param pVM The virtual machine. * @param pVCpu The VMCPU handle. * @param cr3 Guest context CR3 register * @param cr4 Guest context CR4 register * @param GCPtr Where to start. Defaults to 0. * @param cb How much to check. Defaults to everything. */ PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb) { #if PGM_SHW_TYPE == PGM_TYPE_NESTED || PGM_SHW_TYPE == PGM_TYPE_EPT return 0; #else unsigned cErrors = 0; PVM pVM = pVCpu->CTX_SUFF(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); #if PGM_GST_TYPE == PGM_TYPE_PAE /** @todo currently broken; crashes below somewhere */ AssertFailed(); #endif #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 # if PGM_GST_TYPE == PGM_TYPE_32BIT bool fBigPagesSupported = CPUMIsGuestPageSizeExtEnabled(pVCpu); # else bool fBigPagesSupported = true; # endif PPGMCPU pPGM = &pVCpu->pgm.s; RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */ RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */ # ifndef IN_RING0 RTHCPHYS HCPhys; /* general usage. */ # endif int rc; /* * Check that the Guest CR3 and all its mappings are correct. */ AssertMsgReturn(pPGM->GCPhysCR3 == (cr3 & GST_CR3_PAGE_MASK), ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3), false); # if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64 # if PGM_GST_TYPE == PGM_TYPE_32BIT rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw); # else rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw); # endif AssertRCReturn(rc, 1); HCPhys = NIL_RTHCPHYS; rc = pgmRamGCPhys2HCPhys(&pVM->pgm.s, cr3 & GST_CR3_PAGE_MASK, &HCPhys); AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false); # if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3) pgmGstGet32bitPDPtr(pVCpu); RTGCPHYS GCPhys; rc = PGMR3DbgR3Ptr2GCPhys(pVM, pPGM->pGst32BitPdR3, &GCPhys); AssertRCReturn(rc, 1); AssertMsgReturn((cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false); # endif # endif /* !IN_RING0 */ /* * Get and check the Shadow CR3. */ # if PGM_SHW_TYPE == PGM_TYPE_32BIT unsigned cPDEs = X86_PG_ENTRIES; unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE; # elif PGM_SHW_TYPE == PGM_TYPE_PAE # if PGM_GST_TYPE == PGM_TYPE_32BIT unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */ # else unsigned cPDEs = X86_PG_PAE_ENTRIES; # endif unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE; # elif PGM_SHW_TYPE == PGM_TYPE_AMD64 unsigned cPDEs = X86_PG_PAE_ENTRIES; unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE; # endif if (cb != ~(RTGCPTR)0) cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1); /** @todo call the other two PGMAssert*() functions. */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++) { PPGMPOOLPAGE pShwPdpt = NULL; PX86PML4E pPml4eSrc; PX86PML4E pPml4eDst; RTGCPHYS GCPhysPdptSrc; pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4); pPml4eDst = pgmShwGetLongModePML4EPtr(&pVCpu->pgm.s, iPml4); /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */ if (!pPml4eDst->n.u1Present) { GCPtr += _2M * UINT64_C(512) * UINT64_C(512); continue; } pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK); GCPhysPdptSrc = pPml4eSrc->u & X86_PML4E_PG_MASK_FULL; if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present) { AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } if (GCPhysPdptSrc != pShwPdpt->GCPhys) { AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute) { AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); GCPtr += _2M * UINT64_C(512) * UINT64_C(512); cErrors++; continue; } # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ { # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ # if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE /* * Check the PDPTEs too. */ unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; for (;iPdpt <= SHW_PDPT_MASK; iPdpt++) { unsigned iPDSrc = 0; /* initialized to shut up gcc */ PPGMPOOLPAGE pShwPde = NULL; PX86PDPE pPdpeDst; RTGCPHYS GCPhysPdeSrc; # if PGM_GST_TYPE == PGM_TYPE_PAE X86PDPE PdpeSrc; PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc); PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s); # else PX86PML4E pPml4eSrcIgn; X86PDPE PdpeSrc; PX86PDPT pPdptDst; PX86PDPAE pPDDst; PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc); rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst); if (rc != VINF_SUCCESS) { AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); GCPtr += 512 * _2M; continue; /* next PDPTE */ } Assert(pPDDst); # endif Assert(iPDSrc == 0); pPdpeDst = &pPdptDst->a[iPdpt]; if (!pPdpeDst->n.u1Present) { GCPtr += 512 * _2M; continue; /* next PDPTE */ } pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK); GCPhysPdeSrc = PdpeSrc.u & X86_PDPE_PG_MASK; if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present) { AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); GCPtr += 512 * _2M; cErrors++; continue; } if (GCPhysPdeSrc != pShwPde->GCPhys) { # if PGM_GST_TYPE == PGM_TYPE_AMD64 AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); # else AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); # endif GCPtr += 512 * _2M; cErrors++; continue; } # if PGM_GST_TYPE == PGM_TYPE_AMD64 if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute) { AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); GCPtr += 512 * _2M; cErrors++; continue; } # endif # else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ { # endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ # if PGM_GST_TYPE == PGM_TYPE_32BIT GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu); # if PGM_SHW_TYPE == PGM_TYPE_32BIT PCX86PD pPDDst = pgmShwGet32BitPDPtr(&pVCpu->pgm.s); # endif # endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */ /* * Iterate the shadow page directory. */ GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT; unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; for (; iPDDst < cPDEs; iPDDst++, GCPtr += cIncrement) { # if PGM_SHW_TYPE == PGM_TYPE_PAE const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pPGM, GCPtr); # else const SHWPDE PdeDst = pPDDst->a[iPDDst]; # endif if (PdeDst.u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING) { AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u)); cErrors++; continue; } } else if ( (PdeDst.u & X86_PDE_P) || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) ) { HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK; PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw); if (!pPoolPage) { AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n", HCPhysShw, GCPtr, (uint64_t)PdeDst.u)); cErrors++; continue; } const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR(pVM, pPoolPage); if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD)) { AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; } if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D)) { AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; } const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK]; if (!PdeSrc.n.u1Present) { AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n", GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u)); cErrors++; continue; } if ( !PdeSrc.b.u1Size || !fBigPagesSupported) { GCPhysGst = PdeSrc.u & GST_PDE_PG_MASK; # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT GCPhysGst |= (iPDDst & 1) * (PAGE_SIZE / 2); # endif } else { # if PGM_GST_TYPE == PGM_TYPE_32BIT if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK) { AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } # endif GCPhysGst = GST_GET_PDE_BIG_PG_GCPHYS(pVM, PdeSrc); # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT GCPhysGst |= GCPtr & RT_BIT(X86_PAGE_2M_SHIFT); # endif } if ( pPoolPage->enmKind != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG)) { AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n", pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; } PPGMPAGE pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst); if (!pPhysPage) { AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } if (GCPhysGst != pPoolPage->GCPhys) { AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n", GCPhysGst, pPoolPage->GCPhys, GCPtr)); cErrors++; continue; } if ( !PdeSrc.b.u1Size || !fBigPagesSupported) { /* * Page Table. */ const GSTPT *pPTSrc; rc = PGM_GCPHYS_2_PTR(pVM, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1), &pPTSrc); if (RT_FAILURE(rc)) { AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); cErrors++; continue; } if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)) != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))) { /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here! // (This problem will go away when/if we shadow multiple CR3s.) AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) { AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeDst.u)); cErrors++; continue; } /* iterate the page table. */ # if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512; # else const unsigned offPTSrc = 0; # endif for (unsigned iPT = 0, off = 0; iPT < RT_ELEMENTS(pPTDst->a); iPT++, off += PAGE_SIZE) { const SHWPTE PteDst = pPTDst->a[iPT]; /* skip not-present entries. */ if (!(PteDst.u & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */ continue; Assert(PteDst.n.u1Present); const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc]; if (!PteSrc.n.u1Present) { # ifdef IN_RING3 PGMAssertHandlerAndFlagsInSync(pVM); PGMR3DumpHierarchyGC(pVM, cr3, cr4, (PdeSrc.u & GST_PDE_PG_MASK)); # endif AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u, pPTSrc, iPT + offPTSrc, PdeSrc.au32[0], (PdeSrc.u & GST_PDE_PG_MASK) + (iPT + offPTSrc)*sizeof(PteSrc))); cErrors++; continue; } uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT; # if 1 /** @todo sync accessed bit properly... */ fIgnoreFlags |= X86_PTE_A; # endif /* match the physical addresses */ HCPhysShw = PteDst.u & SHW_PTE_PG_MASK; GCPhysGst = PteSrc.u & GST_PTE_PG_MASK; # ifdef IN_RING3 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); if (RT_FAILURE(rc)) { if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } } else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } # endif pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst); if (!pPhysPage) { # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } # endif if (PteDst.n.u1Write) { AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_RW; } else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } /* flags */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) { if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) { if (PteDst.n.u1Write) { AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } fIgnoreFlags |= X86_PTE_RW; } else { if ( PteDst.n.u1Present # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 && !PGM_PAGE_IS_MMIO(pPhysPage) # endif ) { AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } fIgnoreFlags |= X86_PTE_P; } } else { if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write) { if (PteDst.n.u1Write) { AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } if (!(PteDst.u & PGM_PTFLAGS_TRACK_DIRTY)) { AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } if (PteDst.n.u1Dirty) { AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; } # if 0 /** @todo sync access bit properly... */ if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed) { AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_RW; # else fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; # endif } else if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY) { /* access bit emulation (not implemented). */ if (PteSrc.n.u1Accessed || PteDst.n.u1Present) { AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } if (!PteDst.n.u1Accessed) { AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_P; } # ifdef DEBUG_sandervl fIgnoreFlags |= X86_PTE_D | X86_PTE_A; # endif } if ( (PteSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags) && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) ) { AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PteSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } } /* foreach PTE */ } else { /* * Big Page. */ uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD; if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write) { if (PdeDst.n.u1Write) { AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)) { AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } # if 0 /** @todo sync access bit properly... */ if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed) { AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_RW; # else fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; # endif } else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) { /* access bit emulation (not implemented). */ if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present) { AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; continue; } if (!PdeDst.n.u1Accessed) { AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_P; } if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags)) { AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n", GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); cErrors++; } /* iterate the page table. */ for (unsigned iPT = 0, off = 0; iPT < RT_ELEMENTS(pPTDst->a); iPT++, off += PAGE_SIZE, GCPhysGst += PAGE_SIZE) { const SHWPTE PteDst = pPTDst->a[iPT]; if (PteDst.u & PGM_PTFLAGS_TRACK_DIRTY) { AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; } /* skip not-present entries. */ if (!PteDst.n.u1Present) /** @todo deal with ALL handlers and CSAM !P pages! */ continue; fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX; /* match the physical addresses */ HCPhysShw = PteDst.u & X86_PTE_PAE_PG_MASK; # ifdef IN_RING3 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); if (RT_FAILURE(rc)) { if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; } } else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } # endif pPhysPage = pgmPhysGetPage(&pVM->pgm.s, GCPhysGst); if (!pPhysPage) { # ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ { AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } # endif if (PteDst.n.u1Write) { AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; } fIgnoreFlags |= X86_PTE_RW; } else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) { AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } /* flags */ if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) { if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) { if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED) { if (PteDst.n.u1Write) { AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } fIgnoreFlags |= X86_PTE_RW; } } else { if ( PteDst.n.u1Present # if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 && !PGM_PAGE_IS_MMIO(pPhysPage) # endif ) { AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } fIgnoreFlags |= X86_PTE_P; } } if ( (PdeSrc.u & ~fIgnoreFlags) != (PteDst.u & ~fIgnoreFlags) && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (PteDst.u & ~fIgnoreFlags) /* lazy phys handler dereg. */ ) { AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n", GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PteDst.u & ~fIgnoreFlags, fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PteDst.u)); cErrors++; continue; } } /* for each PTE */ } } /* not present */ } /* for each PDE */ } /* for each PDPTE */ } /* for each PML4E */ # ifdef DEBUG if (cErrors) LogFlow(("AssertCR3: cErrors=%d\n", cErrors)); # endif #endif /* GST == 32BIT, PAE or AMD64 */ return cErrors; #endif /* PGM_SHW_TYPE != PGM_TYPE_NESTED && PGM_SHW_TYPE != PGM_TYPE_EPT */ } #endif /* VBOX_STRICT */ /** * Sets up the CR3 for shadow paging * * @returns Strict VBox status code. * @retval VINF_SUCCESS. * * @param pVCpu The VMCPU handle. * @param GCPhysCR3 The physical address in the CR3 register. */ PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3) { PVM pVM = pVCpu->CTX_SUFF(pVM); /* Update guest paging info. */ #if PGM_GST_TYPE == PGM_TYPE_32BIT \ || PGM_GST_TYPE == PGM_TYPE_PAE \ || PGM_GST_TYPE == PGM_TYPE_AMD64 LogFlow(("MapCR3: %RGp\n", GCPhysCR3)); /* * Map the page CR3 points at. */ RTHCPTR HCPtrGuestCR3; RTHCPHYS HCPhysGuestCR3; pgmLock(pVM); PPGMPAGE pPageCR3 = pgmPhysGetPage(&pVM->pgm.s, GCPhysCR3); AssertReturn(pPageCR3, VERR_INTERNAL_ERROR_2); HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3); /** @todo this needs some reworking wrt. locking. */ # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) HCPtrGuestCR3 = NIL_RTHCPTR; int rc = VINF_SUCCESS; # else int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */ # endif pgmUnlock(pVM); if (RT_SUCCESS(rc)) { rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0); if (RT_SUCCESS(rc)) { # ifdef IN_RC PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping); # endif # if PGM_GST_TYPE == PGM_TYPE_32BIT pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3; # endif pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping; # elif PGM_GST_TYPE == PGM_TYPE_PAE unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK; pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3; # endif pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off); LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC)); /* * Map the 4 PDs too. */ PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu); RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE; for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE) { if (pGuestPDPT->a[i].n.u1Present) { RTHCPTR HCPtr; RTHCPHYS HCPhys; RTGCPHYS GCPhys = pGuestPDPT->a[i].u & X86_PDPE_PG_MASK; pgmLock(pVM); PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys); AssertReturn(pPage, VERR_INTERNAL_ERROR_2); HCPhys = PGM_PAGE_GET_HCPHYS(pPage); # if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) HCPtr = NIL_RTHCPTR; int rc2 = VINF_SUCCESS; # else int rc2 = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, (void **)&HCPtr); # endif pgmUnlock(pVM); if (RT_SUCCESS(rc2)) { rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0); AssertRCReturn(rc, rc); pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr; # endif pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr; pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys; # ifdef IN_RC PGM_INVL_PG(pVCpu, GCPtr); # endif continue; } AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i)); } pVCpu->pgm.s.apGstPaePDsR3[i] = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.apGstPaePDsR0[i] = 0; # endif pVCpu->pgm.s.apGstPaePDsRC[i] = 0; pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; # ifdef IN_RC PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */ # endif } # elif PGM_GST_TYPE == PGM_TYPE_AMD64 pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3; # endif # endif } else AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); } else AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); #else /* prot/real stub */ int rc = VINF_SUCCESS; #endif /* Update shadow paging info for guest modes with paging (32, pae, 64). */ # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ && ( PGM_GST_TYPE != PGM_TYPE_REAL \ && PGM_GST_TYPE != PGM_TYPE_PROT)) Assert(!HWACCMIsNestedPagingActive(pVM)); /* * Update the shadow root page as well since that's not fixed. */ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); uint32_t iOldShwUserTable = pVCpu->pgm.s.iShwUserTable; uint32_t iOldShwUser = pVCpu->pgm.s.iShwUser; PPGMPOOLPAGE pNewShwPageCR3; pgmLock(pVM); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32))); rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, SHW_POOL_ROOT_IDX, GCPhysCR3 >> PAGE_SHIFT, &pNewShwPageCR3, true /* lock page */); AssertFatalRC(rc); rc = VINF_SUCCESS; # ifdef IN_RC /* * WARNING! We can't deal with jumps to ring 3 in the code below as the * state will be inconsistent! Flush important things now while * we still can and then make sure there are no ring-3 calls. */ REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu); VMMRZCallRing3Disable(pVCpu); # endif pVCpu->pgm.s.iShwUser = SHW_POOL_ROOT_IDX; pVCpu->pgm.s.iShwUserTable = GCPhysCR3 >> PAGE_SHIFT; pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3; # ifdef IN_RING0 pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); # elif defined(IN_RC) pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); # else pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); # endif # ifndef PGM_WITHOUT_MAPPINGS /* * Apply all hypervisor mappings to the new CR3. * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will * make sure we check for conflicts in the new CR3 root. */ # if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); # endif rc = pgmMapActivateCR3(pVM, pNewShwPageCR3); AssertRCReturn(rc, rc); # endif /* Set the current hypervisor CR3. */ CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); SELMShadowCR3Changed(pVM, pVCpu); # ifdef IN_RC /* NOTE: The state is consistent again. */ VMMRZCallRing3Enable(pVCpu); # endif /* Clean up the old CR3 root. */ if ( pOldShwPageCR3 && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */) { Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); # ifndef PGM_WITHOUT_MAPPINGS /* Remove the hypervisor mappings from the shadow page table. */ pgmMapDeactivateCR3(pVM, pOldShwPageCR3); # endif /* Mark the page as unlocked; allow flushing again. */ pgmPoolUnlockPage(pPool, pOldShwPageCR3); pgmPoolFreeByPage(pPool, pOldShwPageCR3, iOldShwUser, iOldShwUserTable); } pgmUnlock(pVM); # endif return rc; } /** * Unmaps the shadow CR3. * * @returns VBox status, no specials. * @param pVCpu The VMCPU handle. */ PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu) { LogFlow(("UnmapCR3\n")); int rc = VINF_SUCCESS; PVM pVM = pVCpu->CTX_SUFF(pVM); /* * Update guest paging info. */ #if PGM_GST_TYPE == PGM_TYPE_32BIT pVCpu->pgm.s.pGst32BitPdR3 = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGst32BitPdR0 = 0; # endif pVCpu->pgm.s.pGst32BitPdRC = 0; #elif PGM_GST_TYPE == PGM_TYPE_PAE pVCpu->pgm.s.pGstPaePdptR3 = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstPaePdptR0 = 0; # endif pVCpu->pgm.s.pGstPaePdptRC = 0; for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) { pVCpu->pgm.s.apGstPaePDsR3[i] = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.apGstPaePDsR0[i] = 0; # endif pVCpu->pgm.s.apGstPaePDsRC[i] = 0; pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; } #elif PGM_GST_TYPE == PGM_TYPE_AMD64 pVCpu->pgm.s.pGstAmd64Pml4R3 = 0; # ifndef VBOX_WITH_2X_4GB_ADDR_SPACE pVCpu->pgm.s.pGstAmd64Pml4R0 = 0; # endif #else /* prot/real mode stub */ /* nothing to do */ #endif #if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */ /* * Update shadow paging info. */ # if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ || PGM_SHW_TYPE == PGM_TYPE_PAE \ || PGM_SHW_TYPE == PGM_TYPE_AMD64)) # if PGM_GST_TYPE != PGM_TYPE_REAL Assert(!HWACCMIsNestedPagingActive(pVM)); # endif pgmLock(pVM); # ifndef PGM_WITHOUT_MAPPINGS if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) /* Remove the hypervisor mappings from the shadow page table. */ pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); # endif if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(pVCpu->pgm.s.iShwUser != PGMPOOL_IDX_NESTED_ROOT); # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPool->cDirtyPages) pgmPoolResetDirtyPages(pVM); # endif /* Mark the page as unlocked; allow flushing again. */ pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), pVCpu->pgm.s.iShwUser, pVCpu->pgm.s.iShwUserTable); pVCpu->pgm.s.pShwPageCR3R3 = 0; pVCpu->pgm.s.pShwPageCR3R0 = 0; pVCpu->pgm.s.pShwPageCR3RC = 0; pVCpu->pgm.s.iShwUser = 0; pVCpu->pgm.s.iShwUserTable = 0; } pgmUnlock(pVM); # endif #endif /* !IN_RC*/ return rc; }