/* $Id: PGMAllPool.cpp 2153 2007-04-18 09:24:15Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006 InnoTek Systemberatung GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #include #include #include #include #ifdef IN_GC # include #endif #include "PGMInternal.h" #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ __BEGIN_DECLS static void pgmPoolFlushAllInt(PPGMPOOL pPool); #ifdef PGMPOOL_WITH_USER_TRACKING DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind); DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind); static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage); #endif #ifdef PGMPOOL_WITH_GCPHYS_TRACKING static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint); #endif #ifdef PGMPOOL_WITH_CACHE static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable); #endif #ifdef PGMPOOL_WITH_MONITORING static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage); #endif #ifndef IN_RING3 DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser); #endif __END_DECLS /** * Checks if the specified page pool kind is for a 4MB or 2MB guest page. * * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false. * @param enmKind The page kind. */ DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: return true; default: return false; } } #ifdef IN_GC /** * Maps a pool page into the current context. * * @returns Pointer to the mapping. * @param pVM The VM handle. * @param pPage The page to map. */ void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage) { /* general pages. */ if (pPage->idx >= PGMPOOL_IDX_FIRST) { Assert(pPage->idx < pVM->pgm.s.pPoolGC->cCurPages); void *pv; int rc = PGMGCDynMapHCPage(pVM, pPage->Core.Key, &pv); AssertReleaseRC(rc); return pv; } /* special pages. */ switch (pPage->idx) { case PGMPOOL_IDX_PD: return pVM->pgm.s.pGC32BitPD; case PGMPOOL_IDX_PAE_PD: return pVM->pgm.s.apGCPaePDs[0]; case PGMPOOL_IDX_PDPTR: return pVM->pgm.s.pGCPaePDPTR; case PGMPOOL_IDX_PML4: return pVM->pgm.s.pGCPaePML4; default: AssertReleaseMsgFailed(("Invalid index %d\n", pPage->idx)); return NULL; } } #endif /* IN_GC */ #ifdef PGMPOOL_WITH_MONITORING /** * Determin the size of a write instruction. * @returns number of bytes written. * @param pDis The disassembler state. */ static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis) { /* * This is very crude and possibly wrong for some opcodes, * but since it's not really supposed to be called we can * probably live with that. */ return DISGetParamSize(pDis, &pDis->param1); } /** * Flushes a chain of pages sharing the same access monitor. * * @returns VBox status code suitable for scheduling. * @param pPool The pool. * @param pPage A page in the chain. */ int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Find the list head. */ uint16_t idx = pPage->idx; if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { idx = pPage->iMonitoredPrev; Assert(idx != pPage->idx); pPage = &pPool->aPages[idx]; } } /* * Itereate the list flushing each shadow page. */ int rc = VINF_SUCCESS; for (;;) { idx = pPage->iMonitoredNext; Assert(idx != pPage->idx); if (pPage->idx >= PGMPOOL_IDX_FIRST) { int rc2 = pgmPoolFlushPage(pPool, pPage); if (rc2 == VERR_PGM_POOL_CLEARED && rc == VINF_SUCCESS) rc = VINF_PGM_SYNC_CR3; } /* next */ if (idx == NIL_PGMPOOL_IDX) break; pPage = &pPool->aPages[idx]; } return rc; } /** * Wrapper for getting the current context pointer to the entry begin modified. * * @returns Pointer to the current context mapping of the entry. * @param pPool The pool. * @param pvFault The fault virtual address. * @param GCPhysFault The fault physical address. * @param cbEntry The entry size. */ #ifdef IN_RING3 DECLINLINE(void *) pgmPoolMonitorGCPtr2CCPtr(PPGMPOOL pPool, RTHCPTR pvFault, RTGCPHYS GCPhysFault, const unsigned cbEntry) #else DECLINLINE(void *) pgmPoolMonitorGCPtr2CCPtr(PPGMPOOL pPool, RTGCPTR pvFault, RTGCPHYS GCPhysFault, const unsigned cbEntry) #endif { #ifdef IN_GC return (RTGCPTR)((RTGCUINTPTR)pvFault & ~(RTGCUINTPTR)(cbEntry - 1)); #elif defined(IN_RING0) void *pvRet; int rc = PGMRamGCPhys2HCPtr(&pPool->pVMHC->pgm.s, GCPhysFault & ~(RTGCPHYS)(cbEntry - 1), &pvRet); AssertFatalRCSuccess(rc); return pvRet; #elif defined(IN_RING3) return (RTHCPTR)((uintptr_t)pvFault & ~(RTHCUINTPTR)(cbEntry - 1)); #else # error "huh?" #endif } /** * Process shadow entries before they are changed by the guest. * * For PT entries we will clear them. For PD entries, we'll simply check * for mapping conflicts and set the SyncCR3 FF if found. * * @param pPool The pool. * @param pPage The head page. * @param GCPhysFault The guest physical fault address. * @param uAddress In R0 and GC this is the guest context fault address (flat). * In R3 this is the host context 'fault' address. * @param pCpu The disassembler state for figuring out the write size. * This need not be specified if the caller knows we won't do cross entry accesses. */ #ifdef IN_RING3 void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu) #else void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu) #endif { Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); const unsigned off = GCPhysFault & PAGE_OFFSET_MASK; for (;;) { union { void *pv; PX86PT pPT; PX86PTPAE pPTPae; PX86PD pPD; PX86PDPAE pPDPae; } uShw; uShw.pv = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage); switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { const unsigned iShw = off / sizeof(X86PTE); if (uShw.pPT->a[iShw].n.u1Present) { # ifdef PGMPOOL_WITH_GCPHYS_TRACKING PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PG_MASK); # endif uShw.pPT->a[iShw].u = 0; } break; } /* page/2 sized */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2))) { const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1); if (uShw.pPTPae->a[iShw].n.u1Present) { # ifdef PGMPOOL_WITH_GCPHYS_TRACKING PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PG_MASK); # endif uShw.pPTPae->a[iShw].u = 0; } } break; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { const unsigned iShw = off / sizeof(X86PTPAE); if (uShw.pPTPae->a[iShw].n.u1Present) { # ifdef PGMPOOL_WITH_GCPHYS_TRACKING PCX86PTE pGstPte = (PCX86PTE)pgmPoolMonitorGCPtr2CCPtr(pPool, pvAddress, GCPhysFault, sizeof(*pGstPte)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, pGstPte->u & X86_PTE_PAE_PG_MASK); # endif uShw.pPTPae->a[iShw].u = 0; } break; } case PGMPOOLKIND_ROOT_32BIT_PD: { const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging! if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s)); VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); } /* paranoia / a bit assumptive. */ else if ( pCpu && (off & 4) && (off & 4) + pgmPoolDisasWriteSize(pCpu) > 4) { const unsigned iShw2 = (off + pgmPoolDisasWriteSize(pCpu) - 1) / sizeof(X86PTE); if ( iShw2 != iShw && iShw2 < ELEMENTS(uShw.pPD->a) && uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s)); VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); } } #if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */ if ( uShw.pPD->a[iShw].n.u1Present && !VM_FF_ISSET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3)) { LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); # ifdef IN_GC /* TLB load - we're pushing things a bit... */ ASMProbeReadByte(pvAddress); # endif pgmPoolFree(pPool->CTXSUFF(pVM), uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw); uShw.pPD->a[iShw].u = 0; } #endif break; } case PGMPOOLKIND_ROOT_PAE_PD: { unsigned iShw = (off / sizeof(X86PTE)) * 2; // ASSUMING 32-bit guest paging! for (unsigned i = 0; i < 2; i++, iShw++) { if ((uShw.pPDPae->a[iShw].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) { Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s)); VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); } /* paranoia / a bit assumptive. */ else if ( pCpu && (off & 4) && (off & 4) + pgmPoolDisasWriteSize(pCpu) > 4) { const unsigned iShw2 = iShw + 2; if ( iShw2 < ELEMENTS(uShw.pPDPae->a) && (uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) { Assert(pgmMapAreMappingsEnabled(&pPool->CTXSUFF(pVM)->pgm.s)); VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); } } #if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */ if ( uShw.pPDPae->a[iShw].n.u1Present && !VM_FF_ISSET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3)) { LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u)); # ifdef IN_GC /* TLB load - we're pushing things a bit... */ ASMProbeReadByte(pvAddress); # endif pgmPoolFree(pPool->CTXSUFF(pVM), uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); uShw.pPDPae->a[iShw].u = 0; } #endif } break; } default: AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); } /* next */ if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX) return; pPage = &pPool->aPages[pPage->iMonitoredNext]; } } # ifndef IN_RING3 /** * Checks if a access could be a fork operation in progress. * * Meaning, that the guest is setuping up the parent process for Copy-On-Write. * * @returns true if it's likly that we're forking, otherwise false. * @param pPool The pool. * @param pCpu The disassembled instruction. * @param offFault The access offset. */ DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault) { /* * i386 linux is using btr to clear X86_PTE_RW. * The functions involved are (2.6.16 source inspection): * clear_bit * ptep_set_wrprotect * copy_one_pte * copy_pte_range * copy_pmd_range * copy_pud_range * copy_page_range * dup_mmap * dup_mm * copy_mm * copy_process * do_fork */ if ( pCpu->pCurInstr->opcode == OP_BTR && !(offFault & 4) /** @todo Validate that the bit index is X86_PTE_RW. */ ) { STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,Fork)); return true; } return false; } /** * Determin whether the page is likely to have been reused. * * @returns true if we consider the page as being reused for a different purpose. * @returns false if we consider it to still be a paging page. * @param pPage The page in question. * @param pCpu The disassembly info for the faulting insturction. * @param pvFault The fault address. * * @remark The REP prefix check is left to the caller because of STOSD/W. */ DECLINLINE(bool) pgmPoolMonitorIsReused(PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu, RTGCPTR pvFault) { switch (pCpu->pCurInstr->opcode) { case OP_PUSH: Log4(("pgmPoolMonitorIsReused: PUSH\n")); return true; case OP_PUSHF: Log4(("pgmPoolMonitorIsReused: PUSHF\n")); return true; case OP_PUSHA: Log4(("pgmPoolMonitorIsReused: PUSHA\n")); return true; case OP_FXSAVE: Log4(("pgmPoolMonitorIsReused: FXSAVE\n")); return true; } if ( (pCpu->param1.flags & USE_REG_GEN32) && (pCpu->param1.base.reg_gen32 == USE_REG_ESP)) { Log4(("pgmPoolMonitorIsReused: ESP\n")); return true; } //if (pPage->fCR3Mix) // return false; return false; } /** * Flushes the page being accessed. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pCpu The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ static int pgmPoolAccessHandlerFlush(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { /* * First, do the flushing. */ int rc = pgmPoolMonitorChainFlush(pPool, pPage); /* * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). */ uint32_t cbWritten; int rc2 = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cbWritten); if (VBOX_SUCCESS(rc2)) pRegFrame->eip += pCpu->opsize; else if (rc2 == VERR_EM_INTERPRETER) { #ifdef IN_GC if (PATMIsPatchGCAddr(pVM, (RTGCPTR)pRegFrame->eip)) { LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04:%RGv, ignoring.\n", pRegFrame->cs, (RTGCPTR)pRegFrame->eip)); rc = VINF_SUCCESS; STAM_COUNTER_INC(&pPool->StatMonitorGCIntrFailPatch2); } else #endif { rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,EmulateInstr)); } } else rc = rc2; /* See use in pgmPoolAccessHandlerSimple(). */ PGM_INVL_GUEST_TLBS(); LogFlow(("pgmPoolAccessHandlerPT: returns %Vrc (flushed)\n", rc)); return rc; } /** * Handles the STOSD write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pCpu The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Execute REP STOSD. * * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync * write situation, meaning that it's safe to write here. */ #ifdef IN_GC uint32_t *pu32 = (uint32_t *)pvFault; #else RTGCPTR pu32 = pvFault; #endif while (pRegFrame->ecx) { pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pu32, NULL); #ifdef IN_GC *pu32++ = pRegFrame->eax; #else PGMPhysWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4); pu32 += 4; #endif GCPhysFault += 4; pRegFrame->edi += 4; pRegFrame->ecx--; } pRegFrame->eip += pCpu->opsize; /* See use in pgmPoolAccessHandlerSimple(). */ PGM_INVL_GUEST_TLBS(); LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n")); return VINF_SUCCESS; } /** * Handles the simple write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pCpu The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Clear all the pages. ASSUMES that pvFault is readable. */ pgmPoolMonitorChainChanging(pPool, pPage, GCPhysFault, pvFault, pCpu); /* * Interpret the instruction. */ uint32_t cb; int rc = EMInterpretInstructionCPU(pVM, pCpu, pRegFrame, pvFault, &cb); if (VBOX_SUCCESS(rc)) pRegFrame->eip += pCpu->opsize; else if (rc == VERR_EM_INTERPRETER) { # ifdef IN_GC if (PATMIsPatchGCAddr(pVM, (RTGCPTR)(RTGCUINTPTR)pCpu->opaddr)) { /* We're not able to handle this in ring-3, so fix the interpreter! */ /** @note Should be fine. There's no need to flush the whole thing. */ #ifndef DEBUG_sandervl AssertMsgFailed(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv - opcode=%d\n", pRegFrame->cs, (RTGCPTR)pRegFrame->eip, pCpu->pCurInstr->opcode)); #endif STAM_COUNTER_INC(&pPool->StatMonitorGCIntrFailPatch1); rc = pgmPoolMonitorChainFlush(pPool, pPage); } else # endif { rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,EmulateInstr)); } } /* * Quick hack, with logging enabled we're getting stale * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne. * Flushing here is BAD and expensive, I think EMInterpretDisasOne will * have to be fixed to support this. But that'll have to wait till next week. * * An alternative is to keep track of the changed PTEs together with the * GCPhys from the guest PT. This may proove expensive though. * * At the moment, it's VITAL that it's done AFTER the instruction interpreting * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly! */ PGM_INVL_GUEST_TLBS(); LogFlow(("pgmPoolAccessHandlerSimple: returns %Vrc cb=%d\n", rc, cb)); return rc; } /** * \#PF Handler callback for PT write accesses. * * @returns VBox status code (appropriate for GC return). * @param pVM VM Handle. * @param uErrorCode CPU Error code. * @param pRegFrame Trap register frame. * NULL on DMA and other non CPU access. * @param pvFault The fault address (cr2). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser User argument. */ DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { STAM_PROFILE_START(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), a); PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; LogFlow(("pgmPoolAccessHandler: pvFault=%p pPage=%p:{.idx=%d} GCPhysFault=%VGp\n", pvFault, pPage, pPage->idx, GCPhysFault)); /* * We should ALWAYS have the list head as user parameter. This * is because we use that page to record the changes. */ Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); /* * Disassemble the faulting instruction. */ DISCPUSTATE Cpu; int rc = EMInterpretDisasOne(pVM, pRegFrame, &Cpu, NULL); AssertRCReturn(rc, rc); /* * Check if it's worth dealing with. */ if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */ || pPage->fCR3Mix) && !pgmPoolMonitorIsReused(pPage, &Cpu,pvFault) && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK)) { /* * Simple instructions, no REP prefix. */ if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE))) { rc = pgmPoolAccessHandlerSimple(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,Handled), a); return rc; } /* * Windows is frequently doing small memset() operations (netio test 4k+). * We have to deal with these or we'll kill the cache and performance. */ if ( Cpu.pCurInstr->opcode == OP_STOSWD && CPUMGetGuestCPL(pVM, pRegFrame) == 0 && pRegFrame->ecx <= 0x20 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK) && !((uintptr_t)pvFault & 3) && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */ && Cpu.mode == CPUMODE_32BIT && Cpu.opmode == CPUMODE_32BIT && Cpu.addrmode == CPUMODE_32BIT && Cpu.prefix == PREFIX_REP && !pRegFrame->eflags.Bits.u1DF ) { rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,RepStosd), a); return rc; } /* REP prefix, don't bother. */ STAM_COUNTER_INC(&pPool->CTXMID(StatMonitor,RepPrefix)); Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x eip=%#x opcode=%d prefix=%#x\n", pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, pRegFrame->eip, Cpu.pCurInstr->opcode, Cpu.prefix)); } /* * Not worth it, so flush it. */ rc = pgmPoolAccessHandlerFlush(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTXSUFF(pPool)->CTXSUFF(StatMonitor), &pPool->CTXMID(StatMonitor,FlushPage), a); return rc; } # endif /* !IN_RING3 */ #endif /* PGMPOOL_WITH_MONITORING */ #ifdef PGMPOOL_WITH_CACHE /** * Inserts a page into the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX); uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); pPage->iNext = pPool->aiHash[iHash]; pPool->aiHash[iHash] = pPage->idx; } /** * Removes a page from the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); if (pPool->aiHash[iHash] == pPage->idx) pPool->aiHash[iHash] = pPage->iNext; else { uint16_t iPrev = pPool->aiHash[iHash]; for (;;) { const int16_t i = pPool->aPages[iPrev].iNext; if (i == pPage->idx) { pPool->aPages[iPrev].iNext = pPage->iNext; break; } if (i == NIL_PGMPOOL_IDX) { AssertReleaseMsgFailed(("GCPhys=%VGp idx=%#x\n", pPage->GCPhys, pPage->idx)); break; } iPrev = i; } } pPage->iNext = NIL_PGMPOOL_IDX; } /** * Frees up one cache page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_CLEARED if the deregistration of a physical handler will cause a light weight pool flush. * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser) { Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */ STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne); /* * Select one page from the tail of the age list. */ uint16_t iToFree = pPool->iAgeTail; if (iToFree == iUser) iToFree = pPool->aPages[iToFree].iAgePrev; /* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls. if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPool->aPages[iToFree].iAgePrev; for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev) { if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX) continue; iToFree = i; break; } } */ Assert(iToFree != iUser); AssertRelease(iToFree != NIL_PGMPOOL_IDX); int rc = pgmPoolFlushPage(pPool, &pPool->aPages[iToFree]); if (rc == VINF_SUCCESS) PGM_INVL_GUEST_TLBS(); /* see PT handler. */ return rc; } /** * Checks if a kind mismatch is really a page being reused * or if it's just normal remappings. * * @returns true if reused and the cached page (enmKind1) should be flushed * @returns false if not reused. * @param enmKind1 The kind of the cached page. * @param enmKind2 The kind of the requested page. */ static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2) { switch (enmKind1) { /* * Never reuse them. There is no remapping in non-paging mode. */ case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: return true; /* * It's prefectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: switch (enmKind2) { case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: return true; default: return false; } /* * It's prefectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: switch (enmKind2) { case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: return true; default: return false; } /* * These cannot be flushed, and it's common to reuse the PDs as PTs. */ case PGMPOOLKIND_ROOT_32BIT_PD: case PGMPOOLKIND_ROOT_PAE_PD: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: return false; default: AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1)); } } /** * Attempts to satisfy a pgmPoolAlloc request from the cache. * * @returns VBox status code. * @retval VINF_PGM_CACHED_PAGE on success. * @retval VERR_FILE_NOT_FOUND if not found. * @param pPool The pool. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param enmKind The kind of mapping. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). * @param ppPage Where to store the pointer to the page. */ static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage) { /* * Look up the GCPhys in the hash. */ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i != NIL_PGMPOOL_IDX) { do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if (pPage->GCPhys == GCPhys) { if ((PGMPOOLKIND)pPage->enmKind == enmKind) { int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable); if (VBOX_SUCCESS(rc)) { *ppPage = pPage; STAM_COUNTER_INC(&pPool->StatCacheHits); return VINF_PGM_CACHED_PAGE; } return rc; } /* * The kind is different. In some cases we should now flush the page * as it has been reused, but in most cases this is normal remapping * of PDs as PT or big pages using the GCPhys field in a slightly * different way than the other kinds. */ if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind)) { STAM_COUNTER_INC(&pPool->StatCacheKindMismatches); pgmPoolFlushPage(pPool, pPage); /* ASSUMES that VERR_PGM_POOL_CLEARED will be returned by pgmPoolTracInsert. */ PGM_INVL_GUEST_TLBS(); /* see PT handler. */ break; } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); } Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%d\n", GCPhys, enmKind)); STAM_COUNTER_INC(&pPool->StatCacheMisses); return VERR_FILE_NOT_FOUND; } /** * Inserts a page into the cache. * * @param pPool The pool. * @param pPage The cached page. * @param fCanBeCached Set if the page is fit for caching from the caller's point of view. */ static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached) { /* * Insert into the GCPhys hash if the page is fit for that. */ Assert(!pPage->fCached); if (fCanBeCached) { pPage->fCached = true; pgmPoolHashInsert(pPool, pPage); Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%d, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheCacheable); } else { Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%d, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheUncacheable); } /* * Insert at the head of the age list. */ pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = pPool->iAgeHead; if (pPool->iAgeHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx; else pPool->iAgeTail = pPage->idx; pPool->iAgeHead = pPage->idx; } /** * Flushes a cached page. * * @param pPool The pool. * @param pPage The cached page. */ static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Remove the page from the hash. */ if (pPage->fCached) { pPage->fCached = false; pgmPoolHashRemove(pPool, pPage); } else Assert(pPage->iNext == NIL_PGMPOOL_IDX); /* * Remove it from the age list. */ if (pPage->iAgeNext != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; else pPool->iAgeTail = pPage->iAgePrev; if (pPage->iAgePrev != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; else pPool->iAgeHead = pPage->iAgeNext; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; } #endif /* PGMPOOL_WITH_CACHE */ #ifdef PGMPOOL_WITH_MONITORING /** * Looks for pages sharing the monitor. * * @returns Pointer to the head page. * @returns NULL if not found. * @param pPool The Pool * @param pNewPage The page which is going to be monitored. */ static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage) { #ifdef PGMPOOL_WITH_CACHE /* * Look up the GCPhys in the hash. */ RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i == NIL_PGMPOOL_IDX) return NULL; do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if ( pPage->GCPhys - GCPhys < PAGE_SIZE && pPage != pNewPage) { switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_32BIT_PD: case PGMPOOLKIND_ROOT_PAE_PD: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: { /* find the head */ while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { Assert(pPage->iMonitoredPrev != pPage->idx); pPage = &pPool->aPages[pPage->iMonitoredPrev]; } return pPage; } /* ignore, no monitoring. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: break; default: AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); #endif return NULL; } /** * Enabled write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_CLEARED if the registration of the physical handler will cause a light weight pool flush. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* Nothing to monitor here. */ return VINF_SUCCESS; case PGMPOOLKIND_ROOT_32BIT_PD: case PGMPOOLKIND_ROOT_PAE_PD: #ifdef PGMPOOL_WITH_MIXED_PT_CR3 break; #endif case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } /* * Install handler. */ int rc; PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage); if (pPageHead) { Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx); Assert(pPageHead->iMonitoredPrev != pPage->idx); pPage->iMonitoredPrev = pPageHead->idx; pPage->iMonitoredNext = pPageHead->iMonitoredNext; if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX) pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx; pPageHead->iMonitoredNext = pPage->idx; rc = VINF_SUCCESS; } else { Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); PVM pVM = pPool->CTXSUFF(pVM); const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhysPage, GCPhysPage + (PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyper2HC(pVM, (uintptr_t)pPage), pPool->pfnAccessHandlerR0, MMHyper2HC(pVM, (uintptr_t)pPage), pPool->pfnAccessHandlerGC, MMHyper2GC(pVM, (uintptr_t)pPage), pPool->pszAccessHandler); /** @todo we should probably deal with out-of-memory conditions here, but for now increasing * the heap size should suffice. */ AssertFatalRC(rc); if (pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) rc = VERR_PGM_POOL_CLEARED; } pPage->fMonitored = true; return rc; } /** * Disables write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* Nothing to monitor here. */ return VINF_SUCCESS; case PGMPOOLKIND_ROOT_32BIT_PD: case PGMPOOLKIND_ROOT_PAE_PD: #ifdef PGMPOOL_WITH_MIXED_PT_CR3 break; #endif case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } /* * Remove the page from the monitored list or uninstall it if last. */ const PVM pVM = pPool->CTXSUFF(pVM); int rc; if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext]; pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX; pNewHead->fCR3Mix = pPage->fCR3Mix; rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyper2HC(pVM, (uintptr_t)pNewHead), pPool->pfnAccessHandlerR0, MMHyper2HC(pVM, (uintptr_t)pNewHead), pPool->pfnAccessHandlerGC, MMHyper2GC(pVM, (uintptr_t)pNewHead), pPool->pszAccessHandler); AssertFatalRCSuccess(rc); pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } else { pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext; if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; rc = VINF_SUCCESS; } } else { rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)); AssertFatalRC(rc); if (pVM->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) rc = VERR_PGM_POOL_CLEARED; } pPage->fMonitored = false; /* * Remove it from the list of modified pages (if in it). */ pgmPoolMonitorModifiedRemove(pPool, pPage); return rc; } #ifdef PGMPOOL_WITH_MIXED_PT_CR3 /** * Set or clear the fCR3Mix attribute in a chain of monitored pages. * * @param pPool The Pool. * @param pPage A page in the chain. * @param fCR3Mix The new fCR3Mix value. */ static void pgmPoolMonitorChainChangeCR3Mix(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCR3Mix) { /* current */ pPage->fCR3Mix = fCR3Mix; /* before */ int16_t idx = pPage->iMonitoredPrev; while (idx != NIL_PGMPOOL_IDX) { pPool->aPages[idx].fCR3Mix = fCR3Mix; idx = pPool->aPages[idx].iMonitoredPrev; } /* after */ idx = pPage->iMonitoredNext; while (idx != NIL_PGMPOOL_IDX) { pPool->aPages[idx].fCR3Mix = fCR3Mix; idx = pPool->aPages[idx].iMonitoredNext; } } /** * Installs or modifies monitoring of a CR3 page (special). * * We're pretending the CR3 page is shadowed by the pool so we can use the * generic mechanisms in detecting chained monitoring. (This also gives us a * tast of what code changes are required to really pool CR3 shadow pages.) * * @returns VBox status code. * @param pPool The pool. * @param idxRoot The CR3 (root) page index. * @param GCPhysCR3 The (new) CR3 value. */ int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3) { Assert(idxRoot != NIL_PGMPOOL_IDX && idxRoot < PGMPOOL_IDX_FIRST); PPGMPOOLPAGE pPage = &pPool->aPages[idxRoot]; LogFlow(("pgmPoolMonitorMonitorCR3: idxRoot=%d pPage=%p:{.GCPhys=%VGp, .fMonitored=%d} GCPhysCR3=%VGp\n", idxRoot, pPage, pPage->GCPhys, pPage->fMonitored, GCPhysCR3)); /* * The unlikely case where it already matches. */ if (pPage->GCPhys == GCPhysCR3) { Assert(pPage->fMonitored); return VINF_SUCCESS; } /* * Flush the current monitoring and remove it from the hash. */ int rc = VINF_SUCCESS; if (pPage->fMonitored) { pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, false); rc = pgmPoolMonitorFlush(pPool, pPage); if (rc == VERR_PGM_POOL_CLEARED) rc = VINF_SUCCESS; else AssertFatalRC(rc); pgmPoolHashRemove(pPool, pPage); } /* * Monitor the page at the new location and insert it into the hash. */ pPage->GCPhys = GCPhysCR3; int rc2 = pgmPoolMonitorInsert(pPool, pPage); if (rc2 != VERR_PGM_POOL_CLEARED) { AssertFatalRC(rc2); if (rc2 != VINF_SUCCESS && rc == VINF_SUCCESS) rc = rc2; } pgmPoolHashInsert(pPool, pPage); pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, true); return rc; } /** * Removes the monitoring of a CR3 page (special). * * @returns VBox status code. * @param pPool The pool. * @param idxRoot The CR3 (root) page index. */ int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot) { Assert(idxRoot != NIL_PGMPOOL_IDX && idxRoot < PGMPOOL_IDX_FIRST); PPGMPOOLPAGE pPage = &pPool->aPages[idxRoot]; LogFlow(("pgmPoolMonitorUnmonitorCR3: idxRoot=%d pPage=%p:{.GCPhys=%VGp, .fMonitored=%d}\n", idxRoot, pPage, pPage->GCPhys, pPage->fMonitored)); if (!pPage->fMonitored) return VINF_SUCCESS; pgmPoolMonitorChainChangeCR3Mix(pPool, pPage, false); int rc = pgmPoolMonitorFlush(pPool, pPage); if (rc != VERR_PGM_POOL_CLEARED) AssertFatalRC(rc); else rc = VINF_SUCCESS; pgmPoolHashRemove(pPool, pPage); Assert(!pPage->fMonitored); pPage->GCPhys = NIL_RTGCPHYS; return rc; } #endif /* PGMPOOL_WITH_MIXED_PT_CR3 */ /** * Inserts the page into the list of modified pages. * * @param pPool The pool. * @param pPage The page. */ void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx)); AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX && pPage->iModifiedPrev == NIL_PGMPOOL_IDX && pPool->iModifiedHead != pPage->idx, ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n", pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications, pPool->iModifiedHead, pPool->cModifiedPages)); pPage->iModifiedNext = pPool->iModifiedHead; if (pPool->iModifiedHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx; pPool->iModifiedHead = pPage->idx; pPool->cModifiedPages++; #ifdef VBOX_WITH_STATISTICS if (pPool->cModifiedPages > pPool->cModifiedPagesHigh) pPool->cModifiedPagesHigh = pPool->cModifiedPages; #endif } /** * Removes the page from the list of modified pages and resets the * moficiation counter. * * @param pPool The pool. * @param pPage The page which is believed to be in the list of modified pages. */ static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications)); if (pPool->iModifiedHead == pPage->idx) { Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPool->iModifiedHead = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPool->cModifiedPages--; } else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPool->cModifiedPages--; } else Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPage->cModifications = 0; } /** * Zaps the list of modified pages, resetting their modification counters in the process. * * @param pVM The VM handle. */ void pgmPoolMonitorModifiedClearAll(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages)); unsigned cPages = 0; NOREF(cPages); uint16_t idx = pPool->iModifiedHead; pPool->iModifiedHead = NIL_PGMPOOL_IDX; while (idx != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage = &pPool->aPages[idx]; idx = pPage->iModifiedNext; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; Assert(++cPages); } AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages)); pPool->cModifiedPages = 0; } /** * Clear all shadow pages and clear all modification counters. * * @param pVM The VM handle. * @remark Should only be used when monitoring is available, thus placed in * the PGMPOOL_WITH_MONITORING #ifdef. */ void pgmPoolClearAll(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); STAM_PROFILE_START(&pPool->StatClearAll, c); LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages)); /* * Iterate all the pages until we've encountered all that in use. * This is simple but not quite optimal solution. */ unsigned cModifiedPages = 0; NOREF(cModifiedPages); unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { #ifdef PGMPOOL_WITH_USER_TRACKING if (pPage->cPresent) #endif { void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage); STAM_PROFILE_START(&pPool->StatZeroPage, z); ASMMemZeroPage(pvShw); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); #ifdef PGMPOOL_WITH_USER_TRACKING pPage->cPresent = 0; pPage->iFirstPresent = ~0; #endif } } /* fall thru */ default: Assert(!pPage->cModifications || ++cModifiedPages); Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications); Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; break; } if (!--cLeft) break; } } /* swipe the special pages too. */ for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { Assert(!pPage->cModifications || ++cModifiedPages); Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications); Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; } } AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages)); pPool->iModifiedHead = NIL_PGMPOOL_IDX; pPool->cModifiedPages = 0; #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /* * Clear all the GCPhys links and rebuild the phys ext free list. */ for (PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXSUFF(pRamRanges); pRam; pRam = pRam->CTXSUFF(pNext)) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) pRam->aHCPhys[iPage] &= MM_RAM_FLAGS_NO_REFS_MASK; } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; #endif pPool->cPresent = 0; STAM_PROFILE_STOP(&pPool->StatClearAll, c); } #endif /* PGMPOOL_WITH_MONITORING */ #ifdef PGMPOOL_WITH_USER_TRACKING /** * Frees up at least one user entry. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser) { STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser); #ifdef PGMPOOL_WITH_CACHE /* * Just free cached pages in a braindead fashion. */ /** @todo walk the age list backwards and free the first with usage. */ int rc = VINF_SUCCESS; do { int rc2 = pgmPoolCacheFreeOne(pPool, iUser); if (VBOX_FAILURE(rc2) && rc == VINF_SUCCESS) rc = rc2; } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX); return rc; #else /* * Lazy approach. */ pgmPoolFlushAllInt(pPool); return VERR_PGM_POOL_FLUSHED; #endif } /** * Inserts a page into the cache. * * This will create user node for the page, insert it into the GCPhys * hash, and insert it into the age list. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush. * @param pPool The pool. * @param pPage The cached page. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param iUser The user index. * @param iUserTable The user table index. */ DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint16_t iUserTable) { int rc = VINF_SUCCESS; PPGMPOOLUSER pUser = pPool->CTXSUFF(paUsers); /* * Find free a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { int rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (VBOX_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } /* * Unlink the user node from the free list, * initialize and insert it into the user list. */ pPool->iUserFreeHead = pUser[i].iNext; pUser[i].iNext = NIL_PGMPOOL_USER_INDEX; pUser[i].iUser = iUser; pUser[i].iUserTable = iUserTable; pPage->iUserHead = i; /* * Insert into cache and enable monitoring of the guest page if enabled. * * Until we implement caching of all levels, including the CR3 one, we'll * have to make sure we don't try monitor & cache any recursive reuse of * a monitored CR3 page. Because all windows versions are doing this we'll * have to be able to do combined access monitoring, CR3 + PT and * PD + PT (guest PAE). * * Update: * We're now cooperating with the CR3 monitor if an uncachable page is found. */ #if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE) # ifdef PGMPOOL_WITH_MIXED_PT_CR3 const bool fCanBeMonitored = true; # else bool fCanBeMonitored = pPool->CTXSUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTXSUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK) || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind); # endif # ifdef PGMPOOL_WITH_CACHE pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */ # endif if (fCanBeMonitored) { # ifdef PGMPOOL_WITH_MONITORING rc = pgmPoolMonitorInsert(pPool, pPage); if (rc == VERR_PGM_POOL_CLEARED) { /* 'Failed' - free the usage, and keep it in the cache (if enabled). */ # ifndef PGMPOOL_WITH_CACHE pgmPoolMonitorFlush(pPool, pPage); rc = VERR_PGM_POOL_FLUSHED; # endif pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; pUser[i].iNext = pPool->iUserFreeHead; pUser[i].iUser = NIL_PGMPOOL_IDX; pPool->iUserFreeHead = i; } } # endif #endif /* PGMPOOL_WITH_MONITORING */ return rc; } # ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */ /** * Adds a user reference to a page. * * This will * This will move the page to the head of the * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pPool The pool. * @param pPage The cached page. * @param iUser The user index. * @param iUserTable The user table. */ static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable) { PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers); # ifdef VBOX_STRICT /* * Check that the entry doesn't already exists. */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPage->iUserHead; do { Assert(i < pPool->cMaxUsers); AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%d %d\n", iUser, iUserTable)); i = paUsers[i].iNext; } while (i != NIL_PGMPOOL_USER_INDEX); } # endif /* * Allocate a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { int rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (VBOX_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } pPool->iUserFreeHead = paUsers[i].iNext; /* * Initialize the user node and insert it. */ paUsers[i].iNext = pPage->iUserHead; paUsers[i].iUser = iUser; paUsers[i].iUserTable = iUserTable; pPage->iUserHead = i; # ifdef PGMPOOL_WITH_CACHE /* * Tell the cache to update its replacement stats for this page. */ pgmPoolCacheUsed(pPool, pPage); # endif return VINF_SUCCESS; } # endif /* PGMPOOL_WITH_CACHE */ /** * Frees a user record associated with a page. * * This does not clear the entry in the user table, it simply replaces the * user record to the chain of free records. * * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable) { /* * Unlink and free the specified user entry. */ PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers); /* Special: For PAE and 32-bit paging, there are usually no more than one user. */ uint16_t i = pPage->iUserHead; if ( i != NIL_PGMPOOL_USER_INDEX && paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } /* General: Linear search. */ uint16_t iPrev = NIL_PGMPOOL_USER_INDEX; while (i != NIL_PGMPOOL_USER_INDEX) { if ( paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { if (iPrev != NIL_PGMPOOL_USER_INDEX) paUsers[iPrev].iNext = paUsers[i].iNext; else pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } iPrev = i; i = paUsers[i].iNext; } /* Fatal: didn't find it */ AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%VGp\n", iUser, iUserTable, pPage->GCPhys)); } /** * Gets the entry size of a shadow table. * * @param enmKind * The kind of page. * * @returns The size of the entry in bytes. That is, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_ROOT_32BIT_PD: return 4; case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PAE_PD: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: return 8; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } /** * Gets the entry size of a guest table. * * @param enmKind * The kind of page. * * @returns The size of the entry in bytes. That is, 0, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_ROOT_32BIT_PD: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: return 4; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PAE_PD: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_ROOT_PML4: return 8; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: /** @todo can we return 0? (nobody is calling this...) */ return 0; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** * Scans one shadow page table for mappings of a physical page. * * @param pVM The VM handle. * @param pHCPhys The aHCPhys ramrange entry in question. * @param iShw The shadow page table. * @param cRefs The number of references made in that PT. */ static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCRTHCPHYS pHCPhys, uint16_t iShw, uint16_t cRefs) { LogFlow(("pgmPoolTrackFlushGCPhysPT: pHCPhys=%p:{%RHp} iShw=%d cRefs=%d\n", pHCPhys, *pHCPhys, iShw, cRefs)); PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); /* * Assert sanity. */ Assert(cRefs == 1); AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw)); PPGMPOOLPAGE pPage = &pPool->aPages[iShw]; /* * Then, clear the actual mappings to the page in the shadow PT. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { const uint32_t u32 = (*pHCPhys & X86_PTE_PAE_PG_MASK) | X86_PTE_P; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs)); pPT->a[i].u = 0; cRefs--; if (!cRefs) return; } #if defined(DEBUG) && !defined(IN_RING0) ///@todo RTLogPrintf is missing in R0. RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent); for (unsigned i = 0; i < ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--); pPT->a[i].u = 0; } #endif AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { const uint64_t u64 = (*pHCPhys & X86_PTE_PAE_PG_MASK) | X86_PTE_P; PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs)); pPT->a[i].u = 0; cRefs--; if (!cRefs) return; } #if defined(DEBUG) && !defined(IN_RING0) ///@todo RTLogPrintf is missing in R0. RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent); for (unsigned i = 0; i < ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--); pPT->a[i].u = 0; } #endif AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); break; } default: AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw)); } } /** * Scans one shadow page table for mappings of a physical page. * * @param pVM The VM handle. * @param pHCPhys The aHCPhys ramrange entry in question. * @param iShw The shadow page table. * @param cRefs The number of references made in that PT. */ void pgmPoolTrackFlushGCPhysPT(PVM pVM, PRTHCPHYS pHCPhys, uint16_t iShw, uint16_t cRefs) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); NOREF(pPool); LogFlow(("pgmPoolTrackFlushGCPhysPT: pHCPhys=%p:{%RHp} iShw=%d cRefs=%d\n", pHCPhys, *pHCPhys, iShw, cRefs)); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f); pgmPoolTrackFlushGCPhysPTInt(pVM, pHCPhys, iShw, cRefs); *pHCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f); } /** * Flushes a list of shadow page tables mapping the same physical page. * * @param pVM The VM handle. * @param pHCPhys The aHCPhys ramrange entry in question. * @param iPhysExt The physical cross reference extent list to flush. */ void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PRTHCPHYS pHCPhys, uint16_t iPhysExt) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f); LogFlow(("pgmPoolTrackFlushGCPhysPTs: pHCPhys=%p:{%RHp} iPhysExt\n", pHCPhys, *pHCPhys, iPhysExt)); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++) if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX) { pgmPoolTrackFlushGCPhysPTInt(pVM, pHCPhys, pPhysExt->aidx[i], 1); pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; } /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); /* insert the list into the free list and clear the ram range entry. */ pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; *pHCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f); } #endif /* PGMPOOL_WITH_GCPHYS_TRACKING */ /** * Scans all shadow page tables for mappings of a physical page. * * This may be slow, but it's most likely more efficient than cleaning * out the entire page pool / cache. * * @returns VBox status code. * @retval VINF_SUCCESS if all references has been successfully cleared. * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and * a page pool cleaning. * * @param pVM The VM handle. * @param pHCPhys The aHCPhys ramrange entry in question. */ int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PRTHCPHYS pHCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s); LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d *pHCPhys=%RHp\n", pPool->cUsedPages, pPool->cPresent, *pHCPhys)); #if 1 /* * There is a limit to what makes sense. */ if (pPool->cPresent > 1024) { LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); return VINF_PGM_GCPHYS_ALIASED; } #endif /* * Iterate all the pages until we've encountered all that in use. * This is simple but not quite optimal solution. */ const uint64_t u64 = (*pHCPhys & X86_PTE_PAE_PG_MASK) | X86_PTE_P; const uint32_t u32 = u64; unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++) if (pPT->a[i].n.u1Present) { if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i])); pPT->a[i].u = 0; } if (!--cPresent) break; } break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pPT->a); i++) if (pPT->a[i].n.u1Present) { if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); pPT->a[i].u = 0; } if (!--cPresent) break; } break; } } if (!--cLeft) break; } } *pHCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); return VINF_SUCCESS; } /** * Clears the user entry in a user table. * * This is used to remove all references to a page when flushing it. */ static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser) { Assert(pUser->iUser != NIL_PGMPOOL_IDX); Assert(pUser->iUser < pPool->cCurPages); /* * Map the user page. */ PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser]; union { uint64_t *pau64; uint32_t *pau32; } u; u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pUserPage); #ifdef VBOX_STRICT /* * Some sanity checks. */ switch (pUserPage->enmKind) { case PGMPOOLKIND_ROOT_32BIT_PD: Assert(!(u.pau32[pUser->iUser] & PGM_PDFLAGS_MAPPING)); Assert(pUser->iUserTable < X86_PG_ENTRIES); break; case PGMPOOLKIND_ROOT_PAE_PD: Assert(!(u.pau64[pUser->iUser] & PGM_PDFLAGS_MAPPING)); Assert(pUser->iUserTable < 2048 && pUser->iUser == PGMPOOL_IDX_PAE_PD); break; case PGMPOOLKIND_ROOT_PDPTR: Assert(!(u.pau64[pUser->iUserTable] & PGM_PLXFLAGS_PERMANENT)); Assert(pUser->iUserTable < 4); break; case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: Assert(pUser->iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PML4: Assert(!(u.pau64[pUser->iUserTable] & PGM_PLXFLAGS_PERMANENT)); Assert(pUser->iUserTable < X86_PG_PAE_ENTRIES); break; default: AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind)); break; } #endif /* VBOX_STRICT */ /* * Clear the entry in the user page. */ switch (pUserPage->enmKind) { /* 32-bit entries */ case PGMPOOLKIND_ROOT_32BIT_PD: u.pau32[pUser->iUserTable] = 0; break; /* 64-bit entries */ case PGMPOOLKIND_ROOT_PAE_PD: case PGMPOOLKIND_ROOT_PDPTR: case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: case PGMPOOLKIND_ROOT_PML4: u.pau64[pUser->iUserTable] = 0; break; default: AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable)); } } /** * Clears all users of a page. */ static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Free all the user records. */ PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers); uint16_t i = pPage->iUserHead; while (i != NIL_PGMPOOL_USER_INDEX) { /* Clear enter in user table. */ pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]); /* Free it. */ const uint16_t iNext = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; /* Next. */ i = iNext; } pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; } #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** * Allocates a new physical cross reference extent. * * @returns Pointer to the allocated extent on success. NULL if we're out of them. * @param pVM The VM handle. * @param piPhysExt Where to store the phys ext index. */ PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); uint16_t iPhysExt = pPool->iPhysExtFreeHead; if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) { STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures); return NULL; } PPGMPOOLPHYSEXT pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt]; pPool->iPhysExtFreeHead = pPhysExt->iNext; pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX; *piPhysExt = iPhysExt; return pPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The VM handle. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); Assert(iPhysExt < pPool->cMaxPhysExts); PPGMPOOLPHYSEXT pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++) pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The VM handle. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTXSUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < ELEMENTS(pPhysExt->aidx); i++) pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; } /** * Insert a reference into a list of physical cross reference extents. * * @returns The new ram range flags (top 16-bits). * * @param pVM The VM handle. * @param iPhysExt The physical extent index of the list head. * @param iShwPT The shadow page table index. * */ static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts); /* special common case. */ if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[2] = iShwPT; STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT)); return iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } /* general treatment. */ const uint16_t iPhysExtStart = iPhysExt; unsigned cMax = 15; for (;;) { Assert(iPhysExt < pPool->cMaxPhysExts); for (unsigned i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[i] = iShwPT; STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax)); return iPhysExtStart | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } if (!--cMax) { STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT)); return MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } } /* add another extent to the list. */ PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (!pNew) { STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); return MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } pNew->iNext = iPhysExtStart; pNew->aidx[0] = iShwPT; LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart)); return iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } /** * Add a reference to guest physical page where extents are in use. * * @returns The new ram range flags (top 16-bits). * * @param pVM The VM handle. * @param u16 The ram range flags (top 16-bits). * @param iShwPT The shadow page table index. */ uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT) { if ((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) != MM_RAM_FLAGS_CREFS_PHYSEXT) { /* * Convert to extent list. */ Assert((u16 >> (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)) == 1); uint16_t iPhysExt; PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (pPhysExt) { LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, u16 & MM_RAM_FLAGS_IDX_MASK, iShwPT)); STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased); pPhysExt->aidx[0] = u16 & MM_RAM_FLAGS_IDX_MASK; pPhysExt->aidx[1] = iShwPT; u16 = iPhysExt | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } else u16 = MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)); } else if (u16 != (MM_RAM_FLAGS_IDX_OVERFLOWED | (MM_RAM_FLAGS_CREFS_PHYSEXT << (MM_RAM_FLAGS_CREFS_SHIFT - MM_RAM_FLAGS_IDX_SHIFT)))) { /* * Insert into the extent list. */ u16 = pgmPoolTrackPhysExtInsert(pVM, u16 & MM_RAM_FLAGS_IDX_MASK, iShwPT); } else STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots); return u16; } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param pHCPhys Pointer to the aHCPhys entry in the ram range. */ void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PRTHCPHYS pHCPhys) { const unsigned cRefs = *pHCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; AssertFatalMsg(cRefs == MM_RAM_FLAGS_CREFS_PHYSEXT, ("cRefs=%d *pHCPhys=%RHp pPage=%p:{.idx=%d}\n", cRefs, *pHCPhys, pPage, pPage->idx)); uint16_t iPhysExt = (*pHCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK; if (iPhysExt != MM_RAM_FLAGS_IDX_OVERFLOWED) { uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX; PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts); do { Assert(iPhysExt < pPool->cMaxPhysExts); /* * Look for the shadow page and check if it's all freed. */ for (unsigned i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++) { if (paPhysExts[iPhysExt].aidx[i] == pPage->idx) { paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX; for (i = 0; i < ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX) { LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: *pHCPhys=%RX64 idx=%d\n", *pHCPhys, pPage->idx)); return; } /* we can free the node. */ PVM pVM = pPool->CTXSUFF(pVM); const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext; if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX) { /* lonely node */ pgmPoolTrackPhysExtFree(pVM, iPhysExt); LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: *pHCPhys=%RX64 idx=%d lonely\n", *pHCPhys, pPage->idx)); *pHCPhys &= MM_RAM_FLAGS_NO_REFS_MASK; } else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX) { /* head */ LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: *pHCPhys=%RX64 idx=%d head\n", *pHCPhys, pPage->idx)); *pHCPhys = (*pHCPhys & MM_RAM_FLAGS_NO_REFS_MASK) | ((uint64_t)MM_RAM_FLAGS_CREFS_PHYSEXT << MM_RAM_FLAGS_CREFS_SHIFT) | ((uint64_t)iPhysExtNext << MM_RAM_FLAGS_IDX_SHIFT); pgmPoolTrackPhysExtFree(pVM, iPhysExt); } else { /* in list */ LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: *pHCPhys=%RX64 idx=%d\n", *pHCPhys, pPage->idx)); paPhysExts[iPhysExtPrev].iNext = iPhysExtNext; pgmPoolTrackPhysExtFree(pVM, iPhysExt); } iPhysExt = iPhysExtNext; return; } } /* next */ iPhysExtPrev = iPhysExt; iPhysExt = paPhysExts[iPhysExt].iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); AssertFatalMsgFailed(("not-found! cRefs=%d *pHCPhys=%RHp pPage=%p:{.idx=%d}\n", cRefs, *pHCPhys, pPage, pPage->idx)); } else /* nothing to do */ LogFlow(("pgmPoolTrackPhysExtDerefGCPhys: *pHCPhys=%RX64\n", *pHCPhys)); } /** * Clear references to guest physical memory. * * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address * is assumed to be correct, so the linear search can be skipped and we can assert * at an earlier point. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhys The guest physical address corresponding to HCPhys. */ static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXSUFF(pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { /* does it match? */ const unsigned iPage = off >> PAGE_SHIFT; Assert(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK); if ((pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK) == HCPhys) { pgmTrackDerefGCPhys(pPool, pPage, &pRam->aHCPhys[iPage]); return; } break; } pRam = CTXSUFF(pRam->pNext); } AssertFatalMsgFailed(("HCPhys=%VHp GCPhys=%VGp\n", HCPhys, GCPhys)); } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhysHint The guest physical address which may corresponding to HCPhys. */ static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint) { /* * Walk range list. */ PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXSUFF(pRamRanges); while (pRam) { RTGCPHYS off = GCPhysHint - pRam->GCPhys; if (off < pRam->cb) { /* does it match? */ const unsigned iPage = off >> PAGE_SHIFT; Assert(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK); if ((pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK) == HCPhys) { pgmTrackDerefGCPhys(pPool, pPage, &pRam->aHCPhys[iPage]); return; } break; } pRam = CTXSUFF(pRam->pNext); } /* * Damn, the hint didn't work. We'll have to do an expensive linear search. */ STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches); pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXSUFF(pRamRanges); while (pRam) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) { Assert(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK); if ((pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK) == HCPhys) { Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%VHp GCPhysHint=%VGp GCPhysReal=%VGp\n", HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT))); pgmTrackDerefGCPhys(pPool, pPage, &pRam->aHCPhys[iPage]); return; } } pRam = CTXSUFF(pRam->pNext); } AssertFatalMsgFailed(("HCPhys=%VHp GCPhysHint=%VGp\n", HCPhys, GCPhysHint)); } /** * Clear references to guest physical memory in a 32-bit / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT) { for (unsigned i = pPage->iFirstPresent; i < ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n", i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK); if (!--pPage->cPresent) break; } } /** * Clear references to guest physical memory in a PAE / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table (just a half one). */ DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT) { for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK); } /** * Clear references to guest physical memory in a PAE / PAE page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT) { for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK); } /** * Clear references to guest physical memory in a 32-bit / 4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT) { RTGCPHYS GCPhys = pPage->GCPhys; for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n", i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys); } } /** * Clear references to guest physical memory in a PAE / 2/4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT) { RTGCPHYS GCPhys = pPage->GCPhys; for (unsigned i = 0; i < ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) if (pShwPT->a[i].n.u1Present) pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys); } #endif /* PGMPOOL_WITH_GCPHYS_TRACKING */ /** * Clear references to shadowed pages in a PAE page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD) { for (unsigned i = 0; i < ELEMENTS(pShwPD->a); i++) { if (pShwPD->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in a 64-bit page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPdPtr The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPTR64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPTR pShwPdPtr) { for (unsigned i = 0; i < ELEMENTS(pShwPdPtr->a); i++) { if (pShwPdPtr->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPdPtr->a[i].u & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPdPtr->a[i].u & X86_PDPE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clears all references made by this page. * * This includes other shadow pages and GC physical addresses. * * @param pPool The pool. * @param pPage The page. */ static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Map the shadow page and take action according to the page kind. */ void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage); switch (pPage->enmKind) { #ifdef PGMPOOL_WITH_GCPHYS_TRACKING case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTXSUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 4 MB page */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } #else /* !PGMPOOL_WITH_GCPHYS_TRACKING */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: break; #endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */ case PGMPOOLKIND_PAE_PD_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw); break; case PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR: pgmPoolTrackDerefPDPTR64Bit(pPool, pPage, (PX86PDPTR)pvShw); break; default: AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); } /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */ STAM_PROFILE_START(&pPool->StatZeroPage, z); ASMMemZeroPage(pvShw); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); pPage->fZeroed = true; } #endif /* PGMPOOL_WITH_USER_TRACKING */ /** * Flushes all the special root pages as part of a pgmPoolFlushAllInt operation. * * @param pPool The pool. */ static void pgmPoolFlushAllSpecialRoots(PPGMPOOL pPool) { /* * These special pages are all mapped into the indexes 1..PGMPOOL_IDX_FIRST. */ Assert(NIL_PGMPOOL_IDX == 0); for (unsigned i = 1; i < PGMPOOL_IDX_FIRST; i++) { /* * Get the page address. */ PPGMPOOLPAGE pPage = &pPool->aPages[i]; union { uint64_t *pau64; uint32_t *pau32; } u; u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTXSUFF(pVM), pPage); /* * Mark stuff not present. */ switch (pPage->enmKind) { case PGMPOOLKIND_ROOT_32BIT_PD: for (unsigned iPage = 0; iPage < X86_PG_ENTRIES; iPage++) if ((u.pau32[iPage] & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == X86_PDE_P) u.pau32[iPage] = 0; break; case PGMPOOLKIND_ROOT_PAE_PD: for (unsigned iPage = 0; iPage < X86_PG_PAE_ENTRIES * 4; iPage++) if ((u.pau64[iPage] & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == X86_PDE_P) u.pau64[iPage] = 0; break; case PGMPOOLKIND_ROOT_PML4: for (unsigned iPage = 0; iPage < X86_PG_PAE_ENTRIES; iPage++) if ((u.pau64[iPage] & (PGM_PLXFLAGS_PERMANENT | X86_PML4E_P)) == X86_PML4E_P) u.pau64[iPage] = 0; break; case PGMPOOLKIND_ROOT_PDPTR: /* Not root of shadowed pages currently, ignore it. */ break; } } /* * Paranoia (to be removed), flag a global CR3 sync. */ VM_FF_SET(pPool->CTXSUFF(pVM), VM_FF_PGM_SYNC_CR3); } /** * Flushes the entire cache. * * It will assert a global CR3 flush (FF) and assumes the caller is aware of this * and execute this CR3 flush. * * @param pPool The pool. */ static void pgmPoolFlushAllInt(PPGMPOOL pPool) { STAM_PROFILE_START(&pPool->StatFlushAllInt, a); LogFlow(("pgmPoolFlushAllInt:\n")); /* * If there are no pages in the pool, there is nothing to do. */ if (pPool->cCurPages <= PGMPOOL_IDX_FIRST) { STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a); return; } /* * Nuke the free list and reinsert all pages into it. */ for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; #ifdef IN_RING3 Assert(pPage->Core.Key == MMPage2Phys(pPool->pVMHC, pPage->pvPageHC)); #endif #ifdef PGMPOOL_WITH_MONITORING if (pPage->fMonitored) pgmPoolMonitorFlush(pPool, pPage); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; #endif pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; Assert(pPage->idx == i); pPage->iNext = i + 1; pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */ pPage->fSeenNonGlobal = false; pPage->fMonitored= false; pPage->fCached = false; pPage->fReusedFlushPending = false; pPage->fCR3Mix = false; #ifdef PGMPOOL_WITH_USER_TRACKING pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; #endif #ifdef PGMPOOL_WITH_CACHE pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; #endif } pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX; pPool->iFreeHead = PGMPOOL_IDX_FIRST; pPool->cUsedPages = 0; #ifdef PGMPOOL_WITH_USER_TRACKING /* * Zap and reinitialize the user records. */ pPool->cPresent = 0; pPool->iUserFreeHead = 0; PPGMPOOLUSER paUsers = pPool->CTXSUFF(paUsers); const unsigned cMaxUsers = pPool->cMaxUsers; for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; #endif #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /* * Clear all the GCPhys links and rebuild the phys ext free list. */ for (PPGMRAMRANGE pRam = pPool->CTXSUFF(pVM)->pgm.s.CTXSUFF(pRamRanges); pRam; pRam = pRam->CTXSUFF(pNext)) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) pRam->aHCPhys[iPage] &= MM_RAM_FLAGS_NO_REFS_MASK; } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTXSUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; #endif #ifdef PGMPOOL_WITH_MONITORING /* * Just zap the modified list. */ pPool->cModifiedPages = 0; pPool->iModifiedHead = NIL_PGMPOOL_IDX; #endif #ifdef PGMPOOL_WITH_CACHE /* * Clear the GCPhys hash and the age list. */ for (unsigned i = 0; i < ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; #endif /* * Flush all the special root pages. * Reinsert active pages into the hash and ensure monitoring chains are correct. */ pgmPoolFlushAllSpecialRoots(pPool); for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; pPage->iNext = NIL_PGMPOOL_IDX; #ifdef PGMPOOL_WITH_MONITORING pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */ pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; if (pPage->fMonitored) { PVM pVM = pPool->CTXSUFF(pVM); int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyper2HC(pVM, (uintptr_t)pPage), pPool->pfnAccessHandlerR0, MMHyper2HC(pVM, (uintptr_t)pPage), pPool->pfnAccessHandlerGC, MMHyper2GC(pVM, (uintptr_t)pPage), pPool->pszAccessHandler); AssertFatalRCSuccess(rc); # ifdef PGMPOOL_WITH_CACHE pgmPoolHashInsert(pPool, pPage); # endif } #endif #ifdef PGMPOOL_WITH_USER_TRACKING Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */ #endif #ifdef PGMPOOL_WITH_CACHE Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX); Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX); #endif } STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a); } /** * Flushes a pool page. * * This moves the page to the free list after removing all user references to it. * In GC this will cause a CR3 reload if the page is traced back to an active root page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_CLEARED if the deregistration of the physical handler will cause a light weight pool flush. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. */ int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { int rc = VINF_SUCCESS; STAM_PROFILE_START(&pPool->StatFlushPage, f); LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%VHp, .idx=%d, .enmKind=%d, .GCPhys=%VGp}\n", pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, pPage->GCPhys)); /* * Quietly reject any attempts at flushing any of the special root pages. */ if (pPage->idx < PGMPOOL_IDX_FIRST) { Log(("pgmPoolFlushPage: specaial root page, rejected. enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); return VINF_SUCCESS; } /* * Mark the page as being in need of a ASMMemZeroPage(). */ pPage->fZeroed = false; #ifdef PGMPOOL_WITH_USER_TRACKING /* * Clear the page. */ pgmPoolTrackClearPageUsers(pPool, pPage); STAM_PROFILE_START(&pPool->StatTrackDeref,a); pgmPoolTrackDeref(pPool, pPage); STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); #endif #ifdef PGMPOOL_WITH_CACHE /* * Flush it from the cache. */ pgmPoolCacheFlushPage(pPool, pPage); #endif /* PGMPOOL_WITH_CACHE */ #ifdef PGMPOOL_WITH_MONITORING /* * Deregistering the monitoring. */ if (pPage->fMonitored) rc = pgmPoolMonitorFlush(pPool, pPage); #endif /* * Free the page. */ Assert(pPage->iNext == NIL_PGMPOOL_IDX); pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; pPage->enmKind = PGMPOOLKIND_FREE; pPage->GCPhys = NIL_RTGCPHYS; pPage->fReusedFlushPending = false; pPool->cUsedPages--; STAM_PROFILE_STOP(&pPool->StatFlushPage, f); return rc; } /** * Frees a usage of a pool page. * * The caller is responsible to updating the user table so that it no longer * references the shadow page. * * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable) { STAM_PROFILE_START(&pPool->StatFree, a); LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%VHp, .idx=%d, enmKind=%d} iUser=%#x iUserTable=%#x\n", pPage, pPage->Core.Key, pPage->idx, pPage->enmKind, iUser, iUserTable)); Assert(pPage->idx >= PGMPOOL_IDX_FIRST); #ifdef PGMPOOL_WITH_USER_TRACKING pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable); #endif #ifdef PGMPOOL_WITH_CACHE if (!pPage->fCached) #endif pgmPoolFlushPage(pPool, pPage); /* ASSUMES that VERR_PGM_POOL_CLEARED can be ignored here. */ STAM_PROFILE_STOP(&pPool->StatFree, a); } /** * Makes one or more free page free. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * * @param pPool The pool. * @param iUser The user of the page. */ static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, uint16_t iUser) { LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser)); /* * If the pool isn't full grown yet, expand it. */ if (pPool->cCurPages < pPool->cMaxPages) { STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a); #ifdef IN_RING3 int rc = PGMR3PoolGrow(pPool->pVMHC); #else int rc = CTXALLMID(VMM, CallHost)(pPool->CTXSUFF(pVM), VMMCALLHOST_PGM_POOL_GROW, 0); #endif if (VBOX_FAILURE(rc)) return rc; STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a); if (pPool->iFreeHead != NIL_PGMPOOL_IDX) return VINF_SUCCESS; } #ifdef PGMPOOL_WITH_CACHE /* * Free one cached page. */ return pgmPoolCacheFreeOne(pPool, iUser); #else /* * Flush the pool. * If we have tracking enabled, it should be possible to come up with * a cheap replacement strategy... */ pgmPoolFlushAllInt(pPool); return VERR_PGM_POOL_FLUSHED; #endif } /** * Allocates a page from the pool. * * This page may actually be a cached page and not in need of any processing * on the callers part. * * @returns VBox status code. * @retval VINF_SUCCESS if a NEW page was allocated. * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pVM The VM handle. * @param GCPhys The GC physical address of the page we're gonna shadow. * For 4MB and 2MB PD entries, it's the first address the * shadow PT is covering. * @param enmKind The kind of mapping. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). * @param ppPage Where to store the pointer to the page. NULL is stored here on failure. */ int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage) { PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); STAM_PROFILE_ADV_START(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: GCPhys=%VGp enmKind=%d iUser=%#x iUserTable=%#x\n", GCPhys, enmKind, iUser, iUserTable)); *ppPage = NULL; #ifdef PGMPOOL_WITH_CACHE if (pPool->fCacheEnabled) { int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage); if (VBOX_SUCCESS(rc2)) { STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: returns %Vrc *ppPage=%p:{.Key=%VHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx)); return rc2; } } #endif /* * Allocate a new one. */ int rc = VINF_SUCCESS; uint16_t iNew = pPool->iFreeHead; if (iNew == NIL_PGMPOOL_IDX) { rc = pgmPoolMakeMoreFreePages(pPool, iUser); if (VBOX_FAILURE(rc)) { if (rc != VERR_PGM_POOL_CLEARED) { Log(("pgmPoolAlloc: returns %Vrc (Free)\n", rc)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } rc = VERR_PGM_POOL_FLUSHED; } iNew = pPool->iFreeHead; AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR); } /* unlink the free head */ PPGMPOOLPAGE pPage = &pPool->aPages[iNew]; pPool->iFreeHead = pPage->iNext; pPage->iNext = NIL_PGMPOOL_IDX; /* * Initialize it. */ pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */ pPage->enmKind = enmKind; pPage->GCPhys = GCPhys; pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */ pPage->fMonitored = false; pPage->fCached = false; pPage->fReusedFlushPending = false; pPage->fCR3Mix = false; #ifdef PGMPOOL_WITH_MONITORING pPage->cModifications = 0; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; #endif #ifdef PGMPOOL_WITH_USER_TRACKING pPage->cPresent = 0; pPage->iFirstPresent = ~0; /* * Insert into the tracking and cache. If this fails, free the page. */ int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable); if (VBOX_FAILURE(rc3)) { if (rc3 != VERR_PGM_POOL_CLEARED) { pPool->cUsedPages--; pPage->enmKind = PGMPOOLKIND_FREE; pPage->GCPhys = NIL_RTGCPHYS; pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); Log(("pgmPoolAlloc: returns %Vrc (Insert)\n", rc3)); return rc3; } rc = VERR_PGM_POOL_FLUSHED; } #endif /* PGMPOOL_WITH_USER_TRACKING */ /* * Commit the allocation, clear the page and return. */ #ifdef VBOX_WITH_STATISTICS if (pPool->cUsedPages > pPool->cUsedPagesHigh) pPool->cUsedPagesHigh = pPool->cUsedPages; #endif if (!pPage->fZeroed) { STAM_PROFILE_START(&pPool->StatZeroPage, z); void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); ASMMemZeroPage(pv); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); } *ppPage = pPage; LogFlow(("pgmPoolAlloc: returns %Vrc *ppPage=%p:{.Key=%VHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n", rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } /** * Frees a usage of a pool page. * * @param pVM The VM handle. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint16_t iUserTable) { LogFlow(("pgmPoolFree: HCPhys=%VHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable)); PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable); } /** * Gets a in-use page in the pool by it's physical address. * * @returns Pointer to the page. * @param pVM The VM handle. * @param HCPhys The HC physical address of the shadow page. * @remark This function will NEVER return NULL. It will assert if HCPhys is invalid. */ PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys) { /** @todo profile this! */ PPGMPOOL pPool = pVM->pgm.s.CTXSUFF(pPool); PPGMPOOLPAGE pPage = pgmPoolGetPage(pPool, HCPhys); Log3(("pgmPoolGetPageByHCPhys: HCPhys=%VHp -> %p:{.idx=%d .GCPhys=%VGp .enmKind=%d}\n", HCPhys, pPage, pPage->idx, pPage->GCPhys, pPage->enmKind)); return pPage; } /** * Flushes the entire cache. * * It will assert a global CR3 flush (FF) and assumes the caller is aware of this * and execute this CR3 flush. * * @param pPool The pool. */ void pgmPoolFlushAll(PVM pVM) { LogFlow(("pgmPoolFlushAll:\n")); pgmPoolFlushAllInt(pVM->pgm.s.CTXSUFF(pPool)); }