/* $Id: PGMAllPool.cpp 25816 2010-01-13 21:05:35Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #include #include #include #include #ifdef IN_RC # include #endif #include "PGMInternal.h" #include #include #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ RT_C_DECLS_BEGIN static void pgmPoolFlushAllInt(PPGMPOOL pPool); DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind); DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind); static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage); static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable); static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage); #ifndef IN_RING3 DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser); #endif #ifdef LOG_ENABLED static const char *pgmPoolPoolKindToStr(uint8_t enmKind); #endif #if defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT); #endif int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage); PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt); void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt); void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt); RT_C_DECLS_END /** * Checks if the specified page pool kind is for a 4MB or 2MB guest page. * * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false. * @param enmKind The page kind. */ DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: return true; default: return false; } } /** @def PGMPOOL_PAGE_2_LOCKED_PTR * Maps a pool page pool into the current context and lock it (RC only). * * @returns VBox status code. * @param pVM The VM handle. * @param pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage) { void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage); /* Make sure the dynamic mapping will not be reused. */ if (pv) PGMDynLockHCPage(pVM, (uint8_t *)pv); return pv; } #else # define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage) #endif /** @def PGMPOOL_UNLOCK_PTR * Unlock a previously locked dynamic caching (RC only). * * @returns VBox status code. * @param pVM The VM handle. * @param pPage The pool page. * * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #if defined(IN_RC) DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage) { if (pvPage) PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage); } #else # define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0) #endif /** * Flushes a chain of pages sharing the same access monitor. * * @returns VBox status code suitable for scheduling. * @param pPool The pool. * @param pPage A page in the chain. */ int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind)); /* * Find the list head. */ uint16_t idx = pPage->idx; if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { idx = pPage->iMonitoredPrev; Assert(idx != pPage->idx); pPage = &pPool->aPages[idx]; } } /* * Iterate the list flushing each shadow page. */ int rc = VINF_SUCCESS; for (;;) { idx = pPage->iMonitoredNext; Assert(idx != pPage->idx); if (pPage->idx >= PGMPOOL_IDX_FIRST) { int rc2 = pgmPoolFlushPage(pPool, pPage); AssertRC(rc2); } /* next */ if (idx == NIL_PGMPOOL_IDX) break; pPage = &pPool->aPages[idx]; } return rc; } /** * Wrapper for getting the current context pointer to the entry being modified. * * @returns VBox status code suitable for scheduling. * @param pVM VM Handle. * @param pvDst Destination address * @param pvSrc Source guest virtual address. * @param GCPhysSrc The source guest physical address. * @param cb Size of data to read */ DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb) { #if defined(IN_RING3) memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb); return VINF_SUCCESS; #else /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */ return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb); #endif } /** * Process shadow entries before they are changed by the guest. * * For PT entries we will clear them. For PD entries, we'll simply check * for mapping conflicts and set the SyncCR3 FF if found. * * @param pVCpu VMCPU handle * @param pPool The pool. * @param pPage The head page. * @param GCPhysFault The guest physical fault address. * @param uAddress In R0 and GC this is the guest context fault address (flat). * In R3 this is the host context 'fault' address. * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries */ void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, unsigned cbWrite) { AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%#x (idx=%#x)\n", pPage->iMonitoredPrev, pPage->idx)); const unsigned off = GCPhysFault & PAGE_OFFSET_MASK; PVM pVM = pPool->CTX_SUFF(pVM); LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, cbWrite)); for (;;) { union { void *pv; PX86PT pPT; PX86PTPAE pPTPae; PX86PD pPD; PX86PDPAE pPDPae; PX86PDPT pPDPT; PX86PML4 pPML4; } uShw; LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite)); uShw.pv = NULL; switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTE); LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw)); if (uShw.pPT->a[iShw].n.u1Present) { X86PTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK); ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0); } break; } /* page/2 sized */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2))) { const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1); LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw)); if (uShw.pPTPae->a[iShw].n.u1Present) { X86PTE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK); ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0); } } break; } case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: { unsigned iGst = off / sizeof(X86PDE); unsigned iShwPdpt = iGst / 256; unsigned iShw = (iGst % 256) * 2; uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD) { for (unsigned i = 0; i < 2; i++) { # ifndef IN_RING0 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i)); break; } else # endif /* !IN_RING0 */ if (uShw.pPDPae->a[iShw+i].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw + i); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0); } /* paranoia / a bit assumptive. */ if ( (off & 3) && (off & 3) + cbWrite > 4) { const unsigned iShw2 = iShw + 2 + i; if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a)) { # ifndef IN_RING0 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2)); break; } else # endif /* !IN_RING0 */ if (uShw.pPDPae->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0); } } } } } break; } case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTEPAE); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); if (uShw.pPTPae->a[iShw].n.u1Present) { X86PTEPAE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK); ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PTEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a)); if (uShw.pPTPae->a[iShw2].n.u1Present) { X86PTEPAE GstPte; # ifdef IN_RING3 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte)); # else int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte)); # endif AssertRC(rc); Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK); ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0); } } break; } case PGMPOOLKIND_32BIT_PD: { uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging! LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw)); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); # ifndef IN_RING0 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); break; } # endif /* !IN_RING0 */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ { if (uShw.pPD->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0); } } /* paranoia / a bit assumptive. */ if ( (off & 3) && (off & 3) + cbWrite > sizeof(X86PTE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE); if ( iShw2 != iShw && iShw2 < RT_ELEMENTS(uShw.pPD->a)) { # ifndef IN_RING0 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); break; } # endif /* !IN_RING0 */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ { if (uShw.pPD->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0); } } } } #if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */ if ( uShw.pPD->a[iShw].n.u1Present && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) { LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); # ifdef IN_RC /* TLB load - we're pushing things a bit... */ ASMProbeReadByte(pvAddress); # endif pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0); } #endif break; } case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: { uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDEPAE); STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); #ifndef IN_RING0 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); break; } #endif /* !IN_RING0 */ /* * Causes trouble when the guest uses a PDE to refer to the whole page table level * structure. (Invalidate here; faults later on when it tries to change the page * table entries -> recheck; probably only applies to the RC case.) */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ { if (uShw.pPDPae->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0); } } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); #ifndef IN_RING0 if ( iShw2 != iShw && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); break; } #endif /* !IN_RING0 */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ if (uShw.pPDPae->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_PAE_PDPT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); /* * Hopefully this doesn't happen very often: * - touching unused parts of the page * - messing with the bits of pd pointers without changing the physical address */ /* PDPT roots are not page aligned; 32 byte only! */ const unsigned offPdpt = GCPhysFault - pPage->GCPhys; uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = offPdpt / sizeof(X86PDPE); if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */ { # ifndef IN_RING0 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw)); break; } # endif /* !IN_RING0 */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ if (uShw.pPDPT->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u)); pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (offPdpt & 7) && (offPdpt & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE); if ( iShw2 != iShw && iShw2 < X86_PG_PAE_PDPE_ENTRIES) { # ifndef IN_RING0 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING) { Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s)); STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict)); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); break; } # endif /* !IN_RING0 */ # ifndef IN_RING0 else # endif /* !IN_RING0 */ if (uShw.pPDPT->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0); } } } } break; } #ifndef IN_RC case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDEPAE); Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)); if (uShw.pPDPae->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDEPAE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)); if (uShw.pPDPae->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); /* * Hopefully this doesn't happen very often: * - messing with the bits of pd pointers without changing the physical address */ uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDPE); if (uShw.pPDPT->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u)); pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE); if (uShw.pPDPT->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0); } } break; } case PGMPOOLKIND_64BIT_PML4: { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4)); /* * Hopefully this doesn't happen very often: * - messing with the bits of pd pointers without changing the physical address */ uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage); const unsigned iShw = off / sizeof(X86PDPE); if (uShw.pPML4->a[iShw].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u)); pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw); ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0); } /* paranoia / a bit assumptive. */ if ( (off & 7) && (off & 7) + cbWrite > sizeof(X86PDPE)) { const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E); if (uShw.pPML4->a[iShw2].n.u1Present) { LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u)); pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2); ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0); } } break; } #endif /* IN_RING0 */ default: AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); } PGMPOOL_UNLOCK_PTR(pVM, uShw.pv); /* next */ if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX) return; pPage = &pPool->aPages[pPage->iMonitoredNext]; } } # ifndef IN_RING3 /** * Checks if a access could be a fork operation in progress. * * Meaning, that the guest is setting up the parent process for Copy-On-Write. * * @returns true if it's likly that we're forking, otherwise false. * @param pPool The pool. * @param pDis The disassembled instruction. * @param offFault The access offset. */ DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault) { /* * i386 linux is using btr to clear X86_PTE_RW. * The functions involved are (2.6.16 source inspection): * clear_bit * ptep_set_wrprotect * copy_one_pte * copy_pte_range * copy_pmd_range * copy_pud_range * copy_page_range * dup_mmap * dup_mm * copy_mm * copy_process * do_fork */ if ( pDis->pCurInstr->opcode == OP_BTR && !(offFault & 4) /** @todo Validate that the bit index is X86_PTE_RW. */ ) { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork)); return true; } return false; } /** * Determine whether the page is likely to have been reused. * * @returns true if we consider the page as being reused for a different purpose. * @returns false if we consider it to still be a paging page. * @param pVM VM Handle. * @param pVCpu VMCPU Handle. * @param pRegFrame Trap register frame. * @param pDis The disassembly info for the faulting instruction. * @param pvFault The fault address. * * @remark The REP prefix check is left to the caller because of STOSD/W. */ DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault) { #ifndef IN_RC /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */ if ( HWACCMHasPendingIrq(pVM) && (pRegFrame->rsp - pvFault) < 32) { /* Fault caused by stack writes while trying to inject an interrupt event. */ Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp)); return true; } #else NOREF(pVM); NOREF(pvFault); #endif LogFlow(("Reused instr %RGv %d at %RGv param1.flags=%x param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->opcode, pvFault, pDis->param1.flags, pDis->param1.base.reg_gen)); /* Non-supervisor mode write means it's used for something else. */ if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0) return true; switch (pDis->pCurInstr->opcode) { /* call implies the actual push of the return address faulted */ case OP_CALL: Log4(("pgmPoolMonitorIsReused: CALL\n")); return true; case OP_PUSH: Log4(("pgmPoolMonitorIsReused: PUSH\n")); return true; case OP_PUSHF: Log4(("pgmPoolMonitorIsReused: PUSHF\n")); return true; case OP_PUSHA: Log4(("pgmPoolMonitorIsReused: PUSHA\n")); return true; case OP_FXSAVE: Log4(("pgmPoolMonitorIsReused: FXSAVE\n")); return true; case OP_MOVNTI: /* solaris - block_zero_no_xmm */ Log4(("pgmPoolMonitorIsReused: MOVNTI\n")); return true; case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */ Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n")); return true; case OP_MOVSWD: case OP_STOSWD: if ( pDis->prefix == (PREFIX_REP|PREFIX_REX) && pRegFrame->rcx >= 0x40 ) { Assert(pDis->mode == CPUMODE_64BIT); Log(("pgmPoolMonitorIsReused: OP_STOSQ\n")); return true; } return false; } if ( ( (pDis->param1.flags & USE_REG_GEN32) || (pDis->param1.flags & USE_REG_GEN64)) && (pDis->param1.base.reg_gen == USE_REG_ESP)) { Log4(("pgmPoolMonitorIsReused: ESP\n")); return true; } return false; } /** * Flushes the page being accessed. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { /* * First, do the flushing. */ int rc = pgmPoolMonitorChainFlush(pPool, pPage); /* * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). Must do this in raw mode (!); XP boot will fail otherwise */ uint32_t cbWritten; int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cbWritten); if (RT_SUCCESS(rc2)) pRegFrame->rip += pDis->opsize; else if (rc2 == VERR_EM_INTERPRETER) { #ifdef IN_RC if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip)) { LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n", pRegFrame->cs, (RTGCPTR)pRegFrame->eip)); rc = VINF_SUCCESS; STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2); } else #endif { rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr)); } } else rc = rc2; LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc)); return rc; } /** * Handles the STOSD write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. */ DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) { unsigned uIncrement = pDis->param1.size; Assert(pDis->mode == CPUMODE_32BIT || pDis->mode == CPUMODE_64BIT); Assert(pRegFrame->rcx <= 0x20); #ifdef VBOX_STRICT if (pDis->opmode == CPUMODE_32BIT) Assert(uIncrement == 4); else Assert(uIncrement == 8); #endif Log3(("pgmPoolAccessHandlerSTOSD\n")); /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Execute REP STOSD. * * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync * write situation, meaning that it's safe to write here. */ PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM)); RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault; while (pRegFrame->rcx) { #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu); pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement); PGMDynMapPopAutoSubset(pVCpu, iPrevSubset); #else pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, uIncrement); #endif #ifdef IN_RC *(uint32_t *)pu32 = pRegFrame->eax; #else PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement); #endif pu32 += uIncrement; GCPhysFault += uIncrement; pRegFrame->rdi += uIncrement; pRegFrame->rcx--; } pRegFrame->rip += pDis->opsize; LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n")); return VINF_SUCCESS; } /** * Handles the simple write accesses. * * @returns VBox status code suitable for scheduling. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. * @param pPool The pool. * @param pPage The pool page (head). * @param pDis The disassembly of the write instruction. * @param pRegFrame The trap register frame. * @param GCPhysFault The fault address as guest physical address. * @param pvFault The fault address. * @param pfReused Reused state (out) */ DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused) { Log3(("pgmPoolAccessHandlerSimple\n")); /* * Increment the modification counter and insert it into the list * of modified pages the first time. */ if (!pPage->cModifications++) pgmPoolMonitorModifiedInsert(pPool, pPage); /* * Clear all the pages. ASSUMES that pvFault is readable. */ #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu); pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, DISGetParamSize(pDis, &pDis->param1)); PGMDynMapPopAutoSubset(pVCpu, iPrevSubset); #else pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, DISGetParamSize(pDis, &pDis->param1)); #endif /* * Interpret the instruction. */ uint32_t cb; int rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cb); if (RT_SUCCESS(rc)) pRegFrame->rip += pDis->opsize; else if (rc == VERR_EM_INTERPRETER) { LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n", pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode)); rc = VINF_EM_RAW_EMULATE_INSTR; STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr)); } #if 0 /* experimental code */ if (rc == VINF_SUCCESS) { switch (pPage->enmKind) { case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { X86PTEPAE GstPte; int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte)); AssertRC(rc); /* Check the new value written by the guest. If present and with a bogus physical address, then * it's fairly safe to assume the guest is reusing the PT. */ if (GstPte.n.u1Present) { RTHCPHYS HCPhys = -1; int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys); if (rc != VINF_SUCCESS) { *pfReused = true; STAM_COUNTER_INC(&pPool->StatForceFlushReused); } } break; } } } #endif LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb)); return rc; } /** * \#PF Handler callback for PT write accesses. * * @returns VBox status code (appropriate for GC return). * @param pVM VM Handle. * @param uErrorCode CPU Error code. * @param pRegFrame Trap register frame. * NULL on DMA and other non CPU access. * @param pvFault The fault address (cr2). * @param GCPhysFault The GC physical address corresponding to pvFault. * @param pvUser User argument. */ DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) { STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; PVMCPU pVCpu = VMMGetCpu(pVM); unsigned cMaxModifications; bool fForcedFlush = false; LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault)); pgmLock(pVM); if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys)) { /* Pool page changed while we were waiting for the lock; ignore. */ Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys))); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a); pgmUnlock(pVM); return VINF_SUCCESS; } #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) { Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH)); pgmUnlock(pVM); return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */ } #endif #if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst); } #endif /* * Disassemble the faulting instruction. */ PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState; int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, NULL); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc)); pgmUnlock(pVM); return rc; } Assert(pPage->enmKind != PGMPOOLKIND_FREE); /* * We should ALWAYS have the list head as user parameter. This * is because we use that page to record the changes. */ Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); #ifdef IN_RING0 /* Maximum nr of modifications depends on the page type. */ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) cMaxModifications = 4; else cMaxModifications = 24; #else cMaxModifications = 48; #endif /* * Incremental page table updates should weight more than random ones. * (Only applies when started from offset 0) */ pVCpu->pgm.s.cPoolAccessHandler++; if ( pPage->pvLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */ && pPage->pvLastAccessHandlerRip < pRegFrame->rip + 0x40 && pvFault == (pPage->pvLastAccessHandlerFault + pDis->param1.size) && pVCpu->pgm.s.cPoolAccessHandler == (pPage->cLastAccessHandlerCount + 1)) { Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind))); pPage->cModifications = pPage->cModifications * 2; pPage->pvLastAccessHandlerFault = pvFault; pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler; if (pPage->cModifications >= cMaxModifications) { STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushReinit)); fForcedFlush = true; } } if (pPage->cModifications >= cMaxModifications) Log(("Mod overflow %VGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind))); /* * Check if it's worth dealing with. */ bool fReused = false; bool fNotReusedNotForking = false; if ( ( pPage->cModifications < cMaxModifications /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */ || pgmPoolIsPageLocked(&pVM->pgm.s, pPage) ) && !(fReused = pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault)) && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) { /* * Simple instructions, no REP prefix. */ if (!(pDis->prefix & (PREFIX_REP | PREFIX_REPNE))) { rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused); if (fReused) goto flushPage; /* A mov instruction to change the first page table entry will be remembered so we can detect * full page table changes early on. This will reduce the amount of unnecessary traps we'll take. */ if ( rc == VINF_SUCCESS && pDis->pCurInstr->opcode == OP_MOV && (pvFault & PAGE_OFFSET_MASK) == 0) { pPage->pvLastAccessHandlerFault = pvFault; pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler; pPage->pvLastAccessHandlerRip = pRegFrame->rip; /* Make sure we don't kick out a page too quickly. */ if (pPage->cModifications > 8) pPage->cModifications = 2; } else if (pPage->pvLastAccessHandlerFault == pvFault) { /* ignore the 2nd write to this page table entry. */ pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler; } else { pPage->pvLastAccessHandlerFault = 0; pPage->pvLastAccessHandlerRip = 0; } STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a); pgmUnlock(pVM); return rc; } /* * Windows is frequently doing small memset() operations (netio test 4k+). * We have to deal with these or we'll kill the cache and performance. */ if ( pDis->pCurInstr->opcode == OP_STOSWD && !pRegFrame->eflags.Bits.u1DF && pDis->opmode == pDis->mode && pDis->addrmode == pDis->mode) { bool fValidStosd = false; if ( pDis->mode == CPUMODE_32BIT && pDis->prefix == PREFIX_REP && pRegFrame->ecx <= 0x20 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK) && !((uintptr_t)pvFault & 3) && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */ ) { fValidStosd = true; pRegFrame->rcx &= 0xffffffff; /* paranoia */ } else if ( pDis->mode == CPUMODE_64BIT && pDis->prefix == (PREFIX_REP | PREFIX_REX) && pRegFrame->rcx <= 0x20 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK) && !((uintptr_t)pvFault & 7) && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */ ) { fValidStosd = true; } if (fValidStosd) { rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault); STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a); pgmUnlock(pVM); return rc; } } /* REP prefix, don't bother. */ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix)); Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n", pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode, pDis->prefix)); fNotReusedNotForking = true; } #if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0) /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring. */ if ( pPage->cModifications >= cMaxModifications && !fForcedFlush && pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT && ( fNotReusedNotForking || ( !pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault) && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) ) ) { Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage)); Assert(pPage->fDirty == false); /* Flush any monitored duplicates as we will disable write protection. */ if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPageHead = pPage; /* Find the monitor head. */ while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX) pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev]; while (pPageHead) { unsigned idxNext = pPageHead->iMonitoredNext; if (pPageHead != pPage) { STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush); Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind))); int rc2 = pgmPoolFlushPage(pPool, pPageHead); AssertRC(rc2); } if (idxNext == NIL_PGMPOOL_IDX) break; pPageHead = &pPool->aPages[idxNext]; } } /* The flushing above might fail for locked pages, so double check. */ if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) { pgmPoolAddDirtyPage(pVM, pPool, pPage); /* Temporarily allow write access to the page table again. */ rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys, pPage->GCPhys); if (rc == VINF_SUCCESS) { rc = PGMShwModifyPage(pVCpu, pvFault, 1, X86_PTE_RW, ~(uint64_t)X86_PTE_RW); AssertMsg(rc == VINF_SUCCESS /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT, ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc)); pPage->pvDirtyFault = pvFault; STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a); pgmUnlock(pVM); return rc; } } } #endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushModOverflow)); flushPage: /* * Not worth it, so flush it. * * If we considered it to be reused, don't go back to ring-3 * to emulate failed instructions since we usually cannot * interpret then. This may be a bit risky, in which case * the reuse detection must be fixed. */ rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault); if ( rc == VINF_EM_RAW_EMULATE_INSTR && fReused) { /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */ if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS) rc = VINF_SUCCESS; /* safe to restart the instruction. */ } STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a); pgmUnlock(pVM); return rc; } # endif /* !IN_RING3 */ # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT # ifdef VBOX_STRICT /** * Check references to guest physical memory in a PAE / PAE page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT) { unsigned cErrors = 0; int LastRc = -1; /* initialized to shut up gcc */ unsigned LastPTE = ~0U; /* initialized to shut up gcc */ RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */ #ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent)); #endif for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { if (pShwPT->a[i].n.u1Present) { RTHCPHYS HCPhys = -1; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); if ( rc != VINF_SUCCESS || (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) != HCPhys) { RTHCPHYS HCPhysPT = -1; Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, pShwPT->a[i].u, HCPhys)); LastPTE = i; LastRc = rc; LastHCPhys = HCPhys; cErrors++; rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT); AssertRC(rc); for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++) { PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage]; if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pTempPage); for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) { if ( pShwPT2->a[j].n.u1Present && pShwPT2->a[j].n.u1Write && ((pShwPT2->a[j].u & X86_PTE_PAE_PG_MASK) == HCPhysPT)) { Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, pShwPT->a[j].u, pShwPT2->a[j].u)); } } } } } } } AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, pShwPT->a[LastPTE].u, LastHCPhys)); } # endif /* VBOX_STRICT */ /** * Clear references to guest physical memory in a PAE / PAE page table. * * @returns nr of changed PTEs * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. * @param pOldGstPT The old cached guest page table. * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE * @param pfFlush Flush reused page table (out) */ DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT, PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush) { unsigned cChanged = 0; #ifdef VBOX_STRICT for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent)); #endif *pfFlush = false; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) { /* Check the new value written by the guest. If present and with a bogus physical address, then * it's fairly safe to assume the guest is reusing the PT. */ if ( fAllowRemoval && pGstPT->a[i].n.u1Present) { if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) { *pfFlush = true; return ++cChanged; } } if (pShwPT->a[i].n.u1Present) { /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */ if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) { #ifdef VBOX_STRICT RTHCPHYS HCPhys = -1; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); AssertMsg(rc == VINF_SUCCESS && (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, pShwPT->a[i].u, HCPhys)); #endif uint64_t uHostAttr = pShwPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); bool fHostRW = !!(pShwPT->a[i].u & X86_PTE_RW); uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW); if ( uHostAttr == uGuestAttr && fHostRW <= fGuestRW) continue; } cChanged++; /* Something was changed, so flush it. */ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n", i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK); ASMAtomicWriteSize(&pShwPT->a[i].u, 0); } } return cChanged; } /** * Flush a dirty page * * @param pVM VM Handle. * @param pPool The pool. * @param idxSlot Dirty array slot index * @param fAllowRemoval Allow a reused page table to be removed */ static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false) { PPGMPOOLPAGE pPage; unsigned idxPage; Assert(idxSlot < RT_ELEMENTS(pPool->aIdxDirtyPages)); if (pPool->aIdxDirtyPages[idxSlot] == NIL_PGMPOOL_IDX) return; idxPage = pPool->aIdxDirtyPages[idxSlot]; AssertRelease(idxPage != NIL_PGMPOOL_IDX); pPage = &pPool->aPages[idxPage]; Assert(pPage->idx == idxPage); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot)); Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications)); /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys); Assert(rc == VINF_SUCCESS); pPage->fDirty = false; #ifdef VBOX_STRICT uint64_t fFlags = 0; RTHCPHYS HCPhys; rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->pvDirtyFault, &fFlags, &HCPhys); AssertMsg( ( rc == VINF_SUCCESS && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key)) /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT, ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->pvDirtyFault, rc, fFlags)); #endif /* Flush those PTEs that have changed. */ STAM_PROFILE_START(&pPool->StatTrackDeref,a); void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage); void *pvGst; bool fFlush; rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); unsigned cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst, (PCX86PTPAE)&pPool->aDirtyPages[idxSlot][0], fAllowRemoval, &fFlush); STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); /** Note: we might want to consider keeping the dirty page active in case there were many changes. */ /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */ Assert(pPage->cModifications); if (cChanges < 4) pPage->cModifications = 1; /* must use > 0 here */ else pPage->cModifications = RT_MAX(1, pPage->cModifications / 2); STAM_COUNTER_INC(&pPool->StatResetDirtyPages); if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages)) pPool->idxFreeDirtyPage = idxSlot; pPool->cDirtyPages--; pPool->aIdxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX; Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages)); if (fFlush) { Assert(fAllowRemoval); Log(("Flush reused page table!\n")); pgmPoolFlushPage(pPool, pPage); STAM_COUNTER_INC(&pPool->StatForceFlushReused); } else Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges)); } # ifndef IN_RING3 /** * Add a new dirty page * * @param pVM VM Handle. * @param pPool The pool. * @param pPage The page. */ void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage) { unsigned idxFree; Assert(PGMIsLocked(pVM)); AssertCompile(RT_ELEMENTS(pPool->aIdxDirtyPages) == 8 || RT_ELEMENTS(pPool->aIdxDirtyPages) == 16); Assert(!pPage->fDirty); idxFree = pPool->idxFreeDirtyPage; Assert(idxFree < RT_ELEMENTS(pPool->aIdxDirtyPages)); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aIdxDirtyPages)) { STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush); pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/); } Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages)); AssertMsg(pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages)); Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree)); /* Make a copy of the guest page table as we require valid GCPhys addresses when removing * references to physical pages. (the HCPhys linear lookup is *extremely* expensive!) */ void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); memcpy(&pPool->aDirtyPages[idxFree][0], pvGst, PAGE_SIZE); #ifdef VBOX_STRICT pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst); #endif STAM_COUNTER_INC(&pPool->StatDirtyPage); pPage->fDirty = true; pPage->idxDirty = idxFree; pPool->aIdxDirtyPages[idxFree] = pPage->idx; pPool->cDirtyPages++; pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1); if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages) && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) { idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1); if (pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = idxFree; break; } } Assert(i != RT_ELEMENTS(pPool->aIdxDirtyPages)); } Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages) || pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX); return; } # endif /* !IN_RING3 */ /** * Check if the specified page is dirty (not write monitored) * * @return dirty or not * @param pVM VM Handle. * @param GCPhys Guest physical address */ bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLocked(pVM)); if (!pPool->cDirtyPages) return false; GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) { if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage; unsigned idxPage = pPool->aIdxDirtyPages[i]; pPage = &pPool->aPages[idxPage]; if (pPage->GCPhys == GCPhys) return true; } } return false; } /** * Reset all dirty pages by reinstating page monitoring. * * @param pVM VM Handle. */ void pgmPoolResetDirtyPages(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLocked(pVM)); Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages)); if (!pPool->cDirtyPages) return; Log(("pgmPoolResetDirtyPages\n")); for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/); pPool->idxFreeDirtyPage = 0; if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages) && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) { if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = i; break; } } AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); } Assert(pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages)); return; } /** * Reset all dirty pages by reinstating page monitoring. * * @param pVM VM Handle. * @param GCPhysPT Physical address of the page table */ void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLocked(pVM)); Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages)); unsigned idxDirtyPage = RT_ELEMENTS(pPool->aIdxDirtyPages); if (!pPool->cDirtyPages) return; GCPhysPT = GCPhysPT & ~(RTGCPHYS)(PAGE_SIZE - 1); for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) { if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX) { unsigned idxPage = pPool->aIdxDirtyPages[i]; PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; if (pPage->GCPhys == GCPhysPT) { idxDirtyPage = i; break; } } } if (idxDirtyPage != RT_ELEMENTS(pPool->aIdxDirtyPages)) { pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/); if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages) && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX) { unsigned i; for (i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) { if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX) { pPool->idxFreeDirtyPage = i; break; } } AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); } } } # endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */ /** * Inserts a page into the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys)); Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX); uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); pPage->iNext = pPool->aiHash[iHash]; pPool->aiHash[iHash] = pPage->idx; } /** * Removes a page from the GCPhys hash table. * * @param pPool The pool. * @param pPage The page. */ DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys)); uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); if (pPool->aiHash[iHash] == pPage->idx) pPool->aiHash[iHash] = pPage->iNext; else { uint16_t iPrev = pPool->aiHash[iHash]; for (;;) { const int16_t i = pPool->aPages[iPrev].iNext; if (i == pPage->idx) { pPool->aPages[iPrev].iNext = pPage->iNext; break; } if (i == NIL_PGMPOOL_IDX) { AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx)); break; } iPrev = i; } } pPage->iNext = NIL_PGMPOOL_IDX; } /** * Frees up one cache page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser) { #ifndef IN_RC const PVM pVM = pPool->CTX_SUFF(pVM); #endif Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */ STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne); /* * Select one page from the tail of the age list. */ PPGMPOOLPAGE pPage; for (unsigned iLoop = 0; ; iLoop++) { uint16_t iToFree = pPool->iAgeTail; if (iToFree == iUser) iToFree = pPool->aPages[iToFree].iAgePrev; /* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls. if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPool->aPages[iToFree].iAgePrev; for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev) { if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX) continue; iToFree = i; break; } } */ Assert(iToFree != iUser); AssertRelease(iToFree != NIL_PGMPOOL_IDX); pPage = &pPool->aPages[iToFree]; /* * Reject any attempts at flushing the currently active shadow CR3 mapping. * Call pgmPoolCacheUsed to move the page to the head of the age list. */ if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage)) break; LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n")); pgmPoolCacheUsed(pPool, pPage); AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR); } /* * Found a usable page, flush it and return. */ int rc = pgmPoolFlushPage(pPool, pPage); /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */ /* todo: find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */ if (rc == VINF_SUCCESS) PGM_INVL_ALL_VCPU_TLBS(pVM); return rc; } /** * Checks if a kind mismatch is really a page being reused * or if it's just normal remappings. * * @returns true if reused and the cached page (enmKind1) should be flushed * @returns false if not reused. * @param enmKind1 The kind of the cached page. * @param enmKind2 The kind of the requested page. */ static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2) { switch (enmKind1) { /* * Never reuse them. There is no remapping in non-paging mode. */ case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */ return false; /* * It's perfectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: switch (enmKind2) { case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: return true; default: return false; } /* * It's perfectly fine to reuse these, except for PAE and non-paging stuff. */ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: switch (enmKind2) { case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: return true; default: return false; } /* * These cannot be flushed, and it's common to reuse the PDs as PTs. */ case PGMPOOLKIND_ROOT_NESTED: return false; default: AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1)); } } /** * Attempts to satisfy a pgmPoolAlloc request from the cache. * * @returns VBox status code. * @retval VINF_PGM_CACHED_PAGE on success. * @retval VERR_FILE_NOT_FOUND if not found. * @param pPool The pool. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param enmKind The kind of mapping. * @param enmAccess Access type for the mapping (only relevant for big pages) * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). * @param ppPage Where to store the pointer to the page. */ static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage) { #ifndef IN_RC const PVM pVM = pPool->CTX_SUFF(pVM); #endif /* * Look up the GCPhys in the hash. */ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i)); if (i != NIL_PGMPOOL_IDX) { do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys)); if (pPage->GCPhys == GCPhys) { if ( (PGMPOOLKIND)pPage->enmKind == enmKind && (PGMPOOLACCESS)pPage->enmAccess == enmAccess) { /* Put it at the start of the use list to make sure pgmPoolTrackAddUser * doesn't flush it in case there are no more free use records. */ pgmPoolCacheUsed(pPool, pPage); int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable); if (RT_SUCCESS(rc)) { Assert((PGMPOOLKIND)pPage->enmKind == enmKind); *ppPage = pPage; if (pPage->cModifications) pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */ STAM_COUNTER_INC(&pPool->StatCacheHits); return VINF_PGM_CACHED_PAGE; } return rc; } if ((PGMPOOLKIND)pPage->enmKind != enmKind) { /* * The kind is different. In some cases we should now flush the page * as it has been reused, but in most cases this is normal remapping * of PDs as PT or big pages using the GCPhys field in a slightly * different way than the other kinds. */ if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind)) { STAM_COUNTER_INC(&pPool->StatCacheKindMismatches); pgmPoolFlushPage(pPool, pPage); break; } } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); } Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind))); STAM_COUNTER_INC(&pPool->StatCacheMisses); return VERR_FILE_NOT_FOUND; } /** * Inserts a page into the cache. * * @param pPool The pool. * @param pPage The cached page. * @param fCanBeCached Set if the page is fit for caching from the caller's point of view. */ static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached) { /* * Insert into the GCPhys hash if the page is fit for that. */ Assert(!pPage->fCached); if (fCanBeCached) { pPage->fCached = true; pgmPoolHashInsert(pPool, pPage); Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheCacheable); } else { Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); STAM_COUNTER_INC(&pPool->StatCacheUncacheable); } /* * Insert at the head of the age list. */ pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = pPool->iAgeHead; if (pPool->iAgeHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx; else pPool->iAgeTail = pPage->idx; pPool->iAgeHead = pPage->idx; } /** * Flushes a cached page. * * @param pPool The pool. * @param pPage The cached page. */ static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys)); /* * Remove the page from the hash. */ if (pPage->fCached) { pPage->fCached = false; pgmPoolHashRemove(pPool, pPage); } else Assert(pPage->iNext == NIL_PGMPOOL_IDX); /* * Remove it from the age list. */ if (pPage->iAgeNext != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; else pPool->iAgeTail = pPage->iAgePrev; if (pPage->iAgePrev != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; else pPool->iAgeHead = pPage->iAgeNext; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; } /** * Looks for pages sharing the monitor. * * @returns Pointer to the head page. * @returns NULL if not found. * @param pPool The Pool * @param pNewPage The page which is going to be monitored. */ static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage) { /* * Look up the GCPhys in the hash. */ RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i == NIL_PGMPOOL_IDX) return NULL; do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if ( pPage->GCPhys - GCPhys < PAGE_SIZE && pPage != pNewPage) { switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: { /* find the head */ while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { Assert(pPage->iMonitoredPrev != pPage->idx); pPage = &pPool->aPages[pPage->iMonitoredPrev]; } return pPage; } /* ignore, no monitoring. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: break; default: AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); return NULL; } /** * Enabled write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1))); /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: /* Nothing to monitor here. */ return VINF_SUCCESS; case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* Nothing to monitor here. */ return VINF_SUCCESS; default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } /* * Install handler. */ int rc; PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage); if (pPageHead) { Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx); Assert(pPageHead->iMonitoredPrev != pPage->idx); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPageHead->fDirty) pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirty, false /* do not remove */); #endif pPage->iMonitoredPrev = pPageHead->idx; pPage->iMonitoredNext = pPageHead->iMonitoredNext; if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX) pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx; pPageHead->iMonitoredNext = pPage->idx; rc = VINF_SUCCESS; } else { Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); PVM pVM = pPool->CTX_SUFF(pVM); const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhysPage, GCPhysPage + (PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage), pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage), pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage), pPool->pszAccessHandler); /** @todo we should probably deal with out-of-memory conditions here, but for now increasing * the heap size should suffice. */ AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc)); Assert(!(VMMGetCpu(pVM)->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3)); } pPage->fMonitored = true; return rc; } /** * Disables write monitoring of a guest page. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param pPage The cached page. */ static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Filter out the relevant kinds. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: break; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: /* Nothing to monitor here. */ return VINF_SUCCESS; default: AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); } /* * Remove the page from the monitored list or uninstall it if last. */ const PVM pVM = pPool->CTX_SUFF(pVM); int rc; if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) { if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext]; pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX; rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead), pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead), pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead), pPool->pszAccessHandler); AssertFatalRCSuccess(rc); pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } else { pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext; if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; } pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; rc = VINF_SUCCESS; } } else { rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)); AssertFatalRC(rc); #ifdef VBOX_STRICT PVMCPU pVCpu = VMMGetCpu(pVM); #endif AssertMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions)); } pPage->fMonitored = false; /* * Remove it from the list of modified pages (if in it). */ pgmPoolMonitorModifiedRemove(pPool, pPage); return rc; } /** * Inserts the page into the list of modified pages. * * @param pPool The pool. * @param pPage The page. */ void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx)); AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX && pPage->iModifiedPrev == NIL_PGMPOOL_IDX && pPool->iModifiedHead != pPage->idx, ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n", pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications, pPool->iModifiedHead, pPool->cModifiedPages)); pPage->iModifiedNext = pPool->iModifiedHead; if (pPool->iModifiedHead != NIL_PGMPOOL_IDX) pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx; pPool->iModifiedHead = pPage->idx; pPool->cModifiedPages++; #ifdef VBOX_WITH_STATISTICS if (pPool->cModifiedPages > pPool->cModifiedPagesHigh) pPool->cModifiedPagesHigh = pPool->cModifiedPages; #endif } /** * Removes the page from the list of modified pages and resets the * moficiation counter. * * @param pPool The pool. * @param pPage The page which is believed to be in the list of modified pages. */ static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications)); if (pPool->iModifiedHead == pPage->idx) { Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPool->iModifiedHead = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPool->cModifiedPages--; } else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext; if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) { pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev; pPage->iModifiedNext = NIL_PGMPOOL_IDX; } pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPool->cModifiedPages--; } else Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); pPage->cModifications = 0; } /** * Zaps the list of modified pages, resetting their modification counters in the process. * * @param pVM The VM handle. */ static void pgmPoolMonitorModifiedClearAll(PVM pVM) { pgmLock(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages)); unsigned cPages = 0; NOREF(cPages); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pgmPoolResetDirtyPages(pVM); #endif uint16_t idx = pPool->iModifiedHead; pPool->iModifiedHead = NIL_PGMPOOL_IDX; while (idx != NIL_PGMPOOL_IDX) { PPGMPOOLPAGE pPage = &pPool->aPages[idx]; idx = pPage->iModifiedNext; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; Assert(++cPages); } AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages)); pPool->cModifiedPages = 0; pgmUnlock(pVM); } /** * Handle SyncCR3 pool tasks * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only) * @param pVCpu The VMCPU handle. * @remark Should only be used when monitoring is available, thus placed in * the PGMPOOL_WITH_MONITORING #ifdef. */ int pgmPoolSyncCR3(PVMCPU pVCpu) { PVM pVM = pVCpu->CTX_SUFF(pVM); LogFlow(("pgmPoolSyncCR3\n")); /* * When monitoring shadowed pages, we reset the modification counters on CR3 sync. * Occasionally we will have to clear all the shadow page tables because we wanted * to monitor a page which was mapped by too many shadowed page tables. This operation * sometimes refered to as a 'lightweight flush'. */ # ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) pgmR3PoolClearAll(pVM); # else /* !IN_RING3 */ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) { LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n")); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ return VINF_PGM_SYNC_CR3; } # endif /* !IN_RING3 */ else pgmPoolMonitorModifiedClearAll(pVM); return VINF_SUCCESS; } /** * Frees up at least one user entry. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pPool The pool. * @param iUser The user index. */ static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser) { STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser); /* * Just free cached pages in a braindead fashion. */ /** @todo walk the age list backwards and free the first with usage. */ int rc = VINF_SUCCESS; do { int rc2 = pgmPoolCacheFreeOne(pPool, iUser); if (RT_FAILURE(rc2) && rc == VINF_SUCCESS) rc = rc2; } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX); return rc; } /** * Inserts a page into the cache. * * This will create user node for the page, insert it into the GCPhys * hash, and insert it into the age list. * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pPool The pool. * @param pPage The cached page. * @param GCPhys The GC physical address of the page we're gonna shadow. * @param iUser The user index. * @param iUserTable The user table index. */ DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable) { int rc = VINF_SUCCESS; PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable)); #ifdef VBOX_STRICT /* * Check that the entry doesn't already exists. */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPage->iUserHead; do { Assert(i < pPool->cMaxUsers); AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); i = paUsers[i].iNext; } while (i != NIL_PGMPOOL_USER_INDEX); } #endif /* * Find free a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (RT_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } /* * Unlink the user node from the free list, * initialize and insert it into the user list. */ pPool->iUserFreeHead = paUsers[i].iNext; paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX; paUsers[i].iUser = iUser; paUsers[i].iUserTable = iUserTable; pPage->iUserHead = i; /* * Insert into cache and enable monitoring of the guest page if enabled. * * Until we implement caching of all levels, including the CR3 one, we'll * have to make sure we don't try monitor & cache any recursive reuse of * a monitored CR3 page. Because all windows versions are doing this we'll * have to be able to do combined access monitoring, CR3 + PT and * PD + PT (guest PAE). * * Update: * We're now cooperating with the CR3 monitor if an uncachable page is found. */ const bool fCanBeMonitored = true; pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */ if (fCanBeMonitored) { rc = pgmPoolMonitorInsert(pPool, pPage); AssertRC(rc); } return rc; } /** * Adds a user reference to a page. * * This will move the page to the head of the * * @returns VBox status code. * @retval VINF_SUCCESS if successfully added. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pPool The pool. * @param pPage The cached page. * @param iUser The user index. * @param iUserTable The user table. */ static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable)); # ifdef VBOX_STRICT /* * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX). */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) { uint16_t i = pPage->iUserHead; do { Assert(i < pPool->cMaxUsers); AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 || paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); i = paUsers[i].iNext; } while (i != NIL_PGMPOOL_USER_INDEX); } # endif /* * Allocate a user node. */ uint16_t i = pPool->iUserFreeHead; if (i == NIL_PGMPOOL_USER_INDEX) { int rc = pgmPoolTrackFreeOneUser(pPool, iUser); if (RT_FAILURE(rc)) return rc; i = pPool->iUserFreeHead; } pPool->iUserFreeHead = paUsers[i].iNext; /* * Initialize the user node and insert it. */ paUsers[i].iNext = pPage->iUserHead; paUsers[i].iUser = iUser; paUsers[i].iUserTable = iUserTable; pPage->iUserHead = i; # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirty, false /* do not remove */); # endif /* * Tell the cache to update its replacement stats for this page. */ pgmPoolCacheUsed(pPool, pPage); return VINF_SUCCESS; } /** * Frees a user record associated with a page. * * This does not clear the entry in the user table, it simply replaces the * user record to the chain of free records. * * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { /* * Unlink and free the specified user entry. */ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable)); /* Special: For PAE and 32-bit paging, there is usually no more than one user. */ uint16_t i = pPage->iUserHead; if ( i != NIL_PGMPOOL_USER_INDEX && paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } /* General: Linear search. */ uint16_t iPrev = NIL_PGMPOOL_USER_INDEX; while (i != NIL_PGMPOOL_USER_INDEX) { if ( paUsers[i].iUser == iUser && paUsers[i].iUserTable == iUserTable) { if (iPrev != NIL_PGMPOOL_USER_INDEX) paUsers[iPrev].iNext = paUsers[i].iNext; else pPage->iUserHead = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; return; } iPrev = i; i = paUsers[i].iNext; } /* Fatal: didn't find it */ AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n", iUser, iUserTable, pPage->GCPhys)); } /** * Gets the entry size of a shadow table. * * @param enmKind The kind of page. * * @returns The size of the entry in bytes. That is, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: return 4; case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: return 8; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } /** * Gets the entry size of a guest table. * * @param enmKind The kind of page. * * @returns The size of the entry in bytes. That is, 0, 4 or 8. * @returns If the kind is not for a table, an assertion is raised and 0 is * returned. */ DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind) { switch (enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: return 4; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_PAE_PDPT: return 8; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: /** @todo can we return 0? (nobody is calling this...) */ AssertFailed(); return 0; default: AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); } } /** * Scans one shadow page table for mappings of a physical page. * * @returns true/false indicating removal of all relevant PTEs * @param pVM The VM handle. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iShw The shadow page table. * @param cRefs The number of references made in that PT. */ static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t cRefs) { LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d cRefs=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, cRefs)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); bool bRet = false; /* * Assert sanity. */ Assert(cRefs == 1); AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw)); PPGMPOOLPAGE pPage = &pPool->aPages[iShw]; /* * Then, clear the actual mappings to the page in the shadow PT. */ switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); uint32_t u32AndMask, u32OrMask; u32AndMask = 0; u32OrMask = 0; if (!fFlushPTEs) { switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) { case PGM_PAGE_HNDL_PHYS_STATE_NONE: /** No handler installed. */ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /** Monitoring is temporarily disabled. */ u32OrMask = X86_PTE_RW; u32AndMask = UINT32_MAX; bRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /** Write access is monitored. */ u32OrMask = 0; u32AndMask = ~X86_PTE_RW; bRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; default: STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); break; } } else STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { X86PTE Pte; Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs)); Pte.u = (pPT->a[i].u & u32AndMask) | u32OrMask; if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */ ASMAtomicWriteSize(&pPT->a[i].u, Pte.u); cRefs--; if (!cRefs) return bRet; } #ifdef LOG_ENABLED Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { Log(("i=%d cRefs=%d\n", i, cRefs--)); } #endif AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); uint64_t u64AndMask, u64OrMask; u64OrMask = 0; u64AndMask = 0; if (!fFlushPTEs) { switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) { case PGM_PAGE_HNDL_PHYS_STATE_NONE: /** No handler installed. */ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /** Monitoring is temporarily disabled. */ u64OrMask = X86_PTE_RW; u64AndMask = UINT64_MAX; bRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /** Write access is monitored. */ u64OrMask = 0; u64AndMask = ~((uint64_t)X86_PTE_RW); bRet = true; STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); break; default: STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); break; } } else STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { X86PTEPAE Pte; Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs)); Pte.u = (pPT->a[i].u & u64AndMask) | u64OrMask; if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */ ASMAtomicWriteSize(&pPT->a[i].u, Pte.u); cRefs--; if (!cRefs) return bRet; } #ifdef LOG_ENABLED Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { Log(("i=%d cRefs=%d\n", i, cRefs--)); } #endif AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64)); break; } case PGMPOOLKIND_EPT_PT_FOR_PHYS: { const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64) { Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs)); STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); pPT->a[i].u = 0; cRefs--; if (!cRefs) return bRet; } #ifdef LOG_ENABLED Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++) if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64) { Log(("i=%d cRefs=%d\n", i, cRefs--)); } #endif AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent)); break; } default: AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw)); } return bRet; } /** * Scans one shadow page table for mappings of a physical page. * * @param pVM The VM handle. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iShw The shadow page table. * @param cRefs The number of references made in that PT. */ static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t cRefs) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d cRefs=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, cRefs)); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f); bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, cRefs); if (!fKeptPTEs) PGM_PAGE_SET_TRACKING(pPhysPage, 0); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f); } /** * Flushes a list of shadow page tables mapping the same physical page. * * @param pVM The VM handle. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param iPhysExt The physical cross reference extent list to flush. */ static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt) { Assert(PGMIsLockOwner(pVM)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); bool fKeepList = false; STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f); Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt)); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) { if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX) { bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], 1); if (!fKeptPTEs) pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; else fKeepList = true; } } /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); if (!fKeepList) { /* insert the list into the free list and clear the ram range entry. */ pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; PGM_PAGE_SET_TRACKING(pPhysPage, 0); } STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f); } /** * Flushes all shadow page table mappings of the given guest page. * * This is typically called when the host page backing the guest one has been * replaced or when the page protection was changed due to an access handler. * * @returns VBox status code. * @retval VINF_SUCCESS if all references has been successfully cleared. * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page * pool cleaning. FF and sync flags are set. * * @param pVM The VM handle. * @param pPhysPage The guest page in question. * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be * flushed, it is NOT touched if this isn't necessary. * The caller MUST initialized this to @a false. */ int pgmPoolTrackUpdateGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs) { PVMCPU pVCpu = VMMGetCpu(pVM); pgmLock(pVM); int rc = VINF_SUCCESS; const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage); if (u16) { /* * The zero page is currently screwing up the tracking and we'll * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC * is defined, zero pages won't normally be mapped. Some kind of solution * will be needed for this problem of course, but it will have to wait... */ if (PGM_PAGE_IS_ZERO(pPhysPage)) rc = VINF_PGM_GCPHYS_ALIASED; else { # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */ uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu); # endif if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) pgmPoolTrackFlushGCPhysPT(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16), PGMPOOL_TD_GET_CREFS(u16)); else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16)); else rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage); *pfFlushTLBs = true; # ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset); # endif } } if (rc == VINF_PGM_GCPHYS_ALIASED) { pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); rc = VINF_PGM_SYNC_CR3; } pgmUnlock(pVM); return rc; } /** * Scans all shadow page tables for mappings of a physical page. * * This may be slow, but it's most likely more efficient than cleaning * out the entire page pool / cache. * * @returns VBox status code. * @retval VINF_SUCCESS if all references has been successfully cleared. * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and * a page pool cleaning. * * @param pVM The VM handle. * @param pPhysPage The guest page in question. */ int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s); LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n", pPool->cUsedPages, pPool->cPresent, pPhysPage)); #if 1 /* * There is a limit to what makes sense. */ if (pPool->cPresent > 1024) { LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); return VINF_PGM_GCPHYS_ALIASED; } #endif /* * Iterate all the pages until we've encountered all that in use. * This is simple but not quite optimal solution. */ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; const uint32_t u32 = u64; unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if (pPT->a[i].n.u1Present) { if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i])); pPT->a[i].u = 0; } if (!--cPresent) break; } break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { unsigned cPresent = pPage->cPresent; PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) if (pPT->a[i].n.u1Present) { if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) { //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); pPT->a[i].u = 0; } if (!--cPresent) break; } break; } } if (!--cLeft) break; } } PGM_PAGE_SET_TRACKING(pPhysPage, 0); STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); return VINF_SUCCESS; } /** * Clears the user entry in a user table. * * This is used to remove all references to a page when flushing it. */ static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser) { Assert(pUser->iUser != NIL_PGMPOOL_IDX); Assert(pUser->iUser < pPool->cCurPages); uint32_t iUserTable = pUser->iUserTable; /* * Map the user page. */ PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser]; union { uint64_t *pau64; uint32_t *pau32; } u; u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage); LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind))); /* Safety precaution in case we change the paging for other modes too in the future. */ Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage)); #ifdef VBOX_STRICT /* * Some sanity checks. */ switch (pUserPage->enmKind) { case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: Assert(iUserTable < X86_PG_ENTRIES); break; case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_PAE_PDPT_PHYS: Assert(iUserTable < 4); Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); break; case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PD_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: Assert(iUserTable < X86_PG_PAE_ENTRIES); Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING)); break; case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: Assert(iUserTable < X86_PG_PAE_ENTRIES); Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); break; case PGMPOOLKIND_64BIT_PML4: Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); /* GCPhys >> PAGE_SHIFT is the index here */ break; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; case PGMPOOLKIND_ROOT_NESTED: Assert(iUserTable < X86_PG_PAE_ENTRIES); break; default: AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind)); break; } #endif /* VBOX_STRICT */ /* * Clear the entry in the user page. */ switch (pUserPage->enmKind) { /* 32-bit entries */ case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_32BIT_PD_PHYS: ASMAtomicWriteSize(&u.pau32[iUserTable], 0); break; /* 64-bit entries */ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: #if defined(IN_RC) /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any * non-present PDPT will continue to cause page faults. */ ASMReloadCR3(); #endif /* no break */ case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: ASMAtomicWriteSize(&u.pau64[iUserTable], 0); break; default: AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable)); } } /** * Clears all users of a page. */ static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Free all the user records. */ LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys)); PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); uint16_t i = pPage->iUserHead; while (i != NIL_PGMPOOL_USER_INDEX) { /* Clear enter in user table. */ pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]); /* Free it. */ const uint16_t iNext = paUsers[i].iNext; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iNext = pPool->iUserFreeHead; pPool->iUserFreeHead = i; /* Next. */ i = iNext; } pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; } /** * Allocates a new physical cross reference extent. * * @returns Pointer to the allocated extent on success. NULL if we're out of them. * @param pVM The VM handle. * @param piPhysExt Where to store the phys ext index. */ PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt) { Assert(PGMIsLockOwner(pVM)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); uint16_t iPhysExt = pPool->iPhysExtFreeHead; if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) { STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures); return NULL; } PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; pPool->iPhysExtFreeHead = pPhysExt->iNext; pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX; *piPhysExt = iPhysExt; return pPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The VM handle. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt) { Assert(PGMIsLockOwner(pVM)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(iPhysExt < pPool->cMaxPhysExts); PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExt; } /** * Frees a physical cross reference extent. * * @param pVM The VM handle. * @param iPhysExt The extent to free. */ void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt) { Assert(PGMIsLockOwner(pVM)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); const uint16_t iPhysExtStart = iPhysExt; PPGMPOOLPHYSEXT pPhysExt; do { Assert(iPhysExt < pPool->cMaxPhysExts); pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; /* next */ iPhysExt = pPhysExt->iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); pPhysExt->iNext = pPool->iPhysExtFreeHead; pPool->iPhysExtFreeHead = iPhysExtStart; } /** * Insert a reference into a list of physical cross reference extents. * * @returns The new tracking data for PGMPAGE. * * @param pVM The VM handle. * @param iPhysExt The physical extent index of the list head. * @param iShwPT The shadow page table index. * */ static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT) { Assert(PGMIsLockOwner(pVM)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); /* special common case. */ if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[2] = iShwPT; STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d}\n", iPhysExt, iShwPT)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } /* general treatment. */ const uint16_t iPhysExtStart = iPhysExt; unsigned cMax = 15; for (;;) { Assert(iPhysExt < pPool->cMaxPhysExts); for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX) { paPhysExts[iPhysExt].aidx[i] = iShwPT; STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany); LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart); } if (!--cMax) { STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } } /* add another extent to the list. */ PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (!pNew) { STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows); pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } pNew->iNext = iPhysExtStart; pNew->aidx[0] = iShwPT; LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart)); return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } /** * Add a reference to guest physical page where extents are in use. * * @returns The new tracking data for PGMPAGE. * * @param pVM The VM handle. * @param u16 The ram range flags (top 16-bits). * @param iShwPT The shadow page table index. */ uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT) { pgmLock(pVM); if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) { /* * Convert to extent list. */ Assert(PGMPOOL_TD_GET_CREFS(u16) == 1); uint16_t iPhysExt; PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); if (pPhysExt) { LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT)); STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased); pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16); pPhysExt->aidx[1] = iShwPT; u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); } else u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); } else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) { /* * Insert into the extent list. */ u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT); } else STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots); pgmUnlock(pVM); return u16; } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param pPhysPage Pointer to the aPages entry in the ram range. */ void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage) { const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage); AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage); if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED) { PVM pVM = pPool->CTX_SUFF(pVM); pgmLock(pVM); uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); do { Assert(iPhysExt < pPool->cMaxPhysExts); /* * Look for the shadow page and check if it's all freed. */ for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) { if (paPhysExts[iPhysExt].aidx[i] == pPage->idx) { paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX; for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX) { Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx)); pgmUnlock(pVM); return; } /* we can free the node. */ const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext; if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX) { /* lonely node */ pgmPoolTrackPhysExtFree(pVM, iPhysExt); Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx)); PGM_PAGE_SET_TRACKING(pPhysPage, 0); } else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX) { /* head */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx)); PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext)); pgmPoolTrackPhysExtFree(pVM, iPhysExt); } else { /* in list */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx)); paPhysExts[iPhysExtPrev].iNext = iPhysExtNext; pgmPoolTrackPhysExtFree(pVM, iPhysExt); } iPhysExt = iPhysExtNext; pgmUnlock(pVM); return; } } /* next */ iPhysExtPrev = iPhysExt; iPhysExt = paPhysExts[iPhysExt].iNext; } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); pgmUnlock(pVM); AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); } else /* nothing to do */ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage)); } /** * Clear references to guest physical memory. * * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address * is assumed to be correct, so the linear search can be skipped and we can assert * at an earlier point. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhys The guest physical address corresponding to HCPhys. */ static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { /* does it match? */ const unsigned iPage = off >> PAGE_SHIFT; Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage])); #ifdef LOG_ENABLED RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]); Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys)); #endif if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]); return; } break; } pRam = pRam->CTX_SUFF(pNext); } AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys)); } /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param HCPhys The host physical address corresponding to the guest page. * @param GCPhysHint The guest physical address which may corresponding to HCPhys. */ void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint) { Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint)); /* * Walk range list. */ PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges); while (pRam) { RTGCPHYS off = GCPhysHint - pRam->GCPhys; if (off < pRam->cb) { /* does it match? */ const unsigned iPage = off >> PAGE_SHIFT; Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage])); if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]); return; } break; } pRam = pRam->CTX_SUFF(pNext); } /* * Damn, the hint didn't work. We'll have to do an expensive linear search. */ STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches); pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges); while (pRam) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) { if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) { Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n", HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT))); pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]); return; } } pRam = pRam->CTX_SUFF(pNext); } AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint)); } /** * Clear references to guest physical memory in a 32-bit / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT) { for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n", i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK); if (!--pPage->cPresent) break; } } /** * Clear references to guest physical memory in a PAE / 32-bit page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table (just a half one). */ DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT) { for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n", i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK); if (!--pPage->cPresent) break; } } /** * Clear references to guest physical memory in a PAE / PAE page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). * @param pGstPT The guest page table. */ DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT) { for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n", i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK); if (!--pPage->cPresent) break; } } /** * Clear references to guest physical memory in a 32-bit / 4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT) { RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n", i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys); if (!--pPage->cPresent) break; } } /** * Clear references to guest physical memory in a PAE / 2/4MB page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPT The shadow page table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT) { RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n", i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys); if (!--pPage->cPresent) break; } } /** * Clear references to shadowed pages in an EPT page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPML4 The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT) { RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) if (pShwPT->a[i].n.u1Present) { Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n", i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys)); pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys); if (!--pPage->cPresent) break; } } /** * Clear references to shadowed pages in a 32 bits page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { if ( pShwPD->a[i].n.u1Present && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING) ) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK)); } } } /** * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { if ( pShwPD->a[i].n.u1Present && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING) ) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in a PAE page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) { for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) { if ( pShwPDPT->a[i].n.u1Present && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING) ) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK)); } } } /** * Clear references to shadowed pages in a 64-bit page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) { Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)); if (pShwPDPT->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in a 64-bit level 4 page table. * * @param pPool The pool. * @param pPage The page. * @param pShwPML4 The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++) { if (pShwPML4->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in an EPT page directory. * * @param pPool The pool. * @param pPage The page. * @param pShwPD The shadow page directory (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { if (pShwPD->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clear references to shadowed pages in an EPT page directory pointer table. * * @param pPool The pool. * @param pPage The page. * @param pShwPDPT The shadow page directory pointer table (mapping of the page). */ DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT) { for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) { if (pShwPDPT->a[i].n.u1Present) { PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK); if (pSubPage) pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); else AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK)); /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ } } } /** * Clears all references made by this page. * * This includes other shadow pages and GC physical addresses. * * @param pPool The pool. * @param pPage The page. */ static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Map the shadow page and take action according to the page kind. */ void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage); switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); void *pvGst; int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: { STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw); STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); break; } case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw); break; case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_32BIT_PD: pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw); break; case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: case PGMPOOLKIND_PAE_PDPT: case PGMPOOLKIND_PAE_PDPT_PHYS: pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw); break; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw); break; case PGMPOOLKIND_64BIT_PML4: pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw); break; case PGMPOOLKIND_EPT_PT_FOR_PHYS: pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw); break; case PGMPOOLKIND_EPT_PD_FOR_PHYS: pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw); break; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw); break; default: AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); } /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */ STAM_PROFILE_START(&pPool->StatZeroPage, z); ASMMemZeroPage(pvShw); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); pPage->fZeroed = true; PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw); } /** * Flushes a pool page. * * This moves the page to the free list after removing all user references to it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!) */ int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush) { PVM pVM = pPool->CTX_SUFF(pVM); bool fFlushRequired = false; int rc = VINF_SUCCESS; STAM_PROFILE_START(&pPool->StatFlushPage, f); LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); /* * Quietly reject any attempts at flushing any of the special root pages. */ if (pPage->idx < PGMPOOL_IDX_FIRST) { AssertFailed(); /* can no longer happen */ Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx)); return VINF_SUCCESS; } pgmLock(pVM); /* * Quietly reject any attempts at flushing the currently active shadow CR3 mapping */ if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage)) { AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT || pPage->enmKind == PGMPOOLKIND_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD, ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind)); Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx)); pgmUnlock(pVM); return VINF_SUCCESS; } #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 /* Start a subset so we won't run out of mapping space. */ PVMCPU pVCpu = VMMGetCpu(pVM); uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu); #endif /* * Mark the page as being in need of an ASMMemZeroPage(). */ pPage->fZeroed = false; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirty, false /* do not remove */); #endif /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) fFlushRequired = true; /* * Clear the page. */ pgmPoolTrackClearPageUsers(pPool, pPage); STAM_PROFILE_START(&pPool->StatTrackDeref,a); pgmPoolTrackDeref(pPool, pPage); STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); /* * Flush it from the cache. */ pgmPoolCacheFlushPage(pPool, pPage); #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 /* Heavy stuff done. */ PGMDynMapPopAutoSubset(pVCpu, iPrevSubset); #endif /* * Deregistering the monitoring. */ if (pPage->fMonitored) rc = pgmPoolMonitorFlush(pPool, pPage); /* * Free the page. */ Assert(pPage->iNext == NIL_PGMPOOL_IDX); pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; pPage->GCPhys = NIL_RTGCPHYS; pPage->fReusedFlushPending = false; pPool->cUsedPages--; /* Flush the TLBs of all VCPUs if required. */ if ( fFlushRequired && fFlush) { PGM_INVL_ALL_VCPU_TLBS(pVM); } pgmUnlock(pVM); STAM_PROFILE_STOP(&pPool->StatFlushPage, f); return rc; } /** * Frees a usage of a pool page. * * The caller is responsible to updating the user table so that it no longer * references the shadow page. * * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) { PVM pVM = pPool->CTX_SUFF(pVM); STAM_PROFILE_START(&pPool->StatFree, a); LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n", pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable)); Assert(pPage->idx >= PGMPOOL_IDX_FIRST); pgmLock(pVM); pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable); if (!pPage->fCached) pgmPoolFlushPage(pPool, pPage); pgmUnlock(pVM); STAM_PROFILE_STOP(&pPool->StatFree, a); } /** * Makes one or more free page free. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * * @param pPool The pool. * @param enmKind Page table kind * @param iUser The user of the page. */ static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser) { PVM pVM = pPool->CTX_SUFF(pVM); LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser)); /* * If the pool isn't full grown yet, expand it. */ if ( pPool->cCurPages < pPool->cMaxPages #if defined(IN_RC) /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */ && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD) #endif ) { STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a); #ifdef IN_RING3 int rc = PGMR3PoolGrow(pVM); #else int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0); #endif if (RT_FAILURE(rc)) return rc; STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a); if (pPool->iFreeHead != NIL_PGMPOOL_IDX) return VINF_SUCCESS; } /* * Free one cached page. */ return pgmPoolCacheFreeOne(pPool, iUser); } /** * Allocates a page from the pool. * * This page may actually be a cached page and not in need of any processing * on the callers part. * * @returns VBox status code. * @retval VINF_SUCCESS if a NEW page was allocated. * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned. * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed. * @param pVM The VM handle. * @param GCPhys The GC physical address of the page we're gonna shadow. * For 4MB and 2MB PD entries, it's the first address the * shadow PT is covering. * @param enmKind The kind of mapping. * @param enmAccess Access type for the mapping (only relevant for big pages) * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). * @param ppPage Where to store the pointer to the page. NULL is stored here on failure. * @param fLockPage Lock the page */ int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_ADV_START(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable)); *ppPage = NULL; /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates * (TRPMR3SyncIDT) because of FF priority. Try fix that? * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */ pgmLock(pVM); if (pPool->fCacheEnabled) { int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage); if (RT_SUCCESS(rc2)) { if (fLockPage) pgmPoolLockPage(pPool, *ppPage); pgmUnlock(pVM); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx)); return rc2; } } /* * Allocate a new one. */ int rc = VINF_SUCCESS; uint16_t iNew = pPool->iFreeHead; if (iNew == NIL_PGMPOOL_IDX) { rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser); if (RT_FAILURE(rc)) { pgmUnlock(pVM); Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } iNew = pPool->iFreeHead; AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR); } /* unlink the free head */ PPGMPOOLPAGE pPage = &pPool->aPages[iNew]; pPool->iFreeHead = pPage->iNext; pPage->iNext = NIL_PGMPOOL_IDX; /* * Initialize it. */ pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */ pPage->enmKind = enmKind; pPage->enmAccess = enmAccess; pPage->GCPhys = GCPhys; pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */ pPage->fMonitored = false; pPage->fCached = false; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pPage->fDirty = false; #endif pPage->fReusedFlushPending = false; pPage->cModifications = 0; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cPresent = 0; pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; pPage->pvLastAccessHandlerFault = 0; pPage->cLastAccessHandlerCount = 0; pPage->pvLastAccessHandlerRip = 0; /* * Insert into the tracking and cache. If this fails, free the page. */ int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable); if (RT_FAILURE(rc3)) { pPool->cUsedPages--; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; pPage->GCPhys = NIL_RTGCPHYS; pPage->iNext = pPool->iFreeHead; pPool->iFreeHead = pPage->idx; pgmUnlock(pVM); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3)); return rc3; } /* * Commit the allocation, clear the page and return. */ #ifdef VBOX_WITH_STATISTICS if (pPool->cUsedPages > pPool->cUsedPagesHigh) pPool->cUsedPagesHigh = pPool->cUsedPages; #endif if (!pPage->fZeroed) { STAM_PROFILE_START(&pPool->StatZeroPage, z); void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); ASMMemZeroPage(pv); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); } *ppPage = pPage; if (fLockPage) pgmPoolLockPage(pPool, pPage); pgmUnlock(pVM); LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n", rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored)); STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); return rc; } /** * Frees a usage of a pool page. * * @param pVM The VM handle. * @param HCPhys The HC physical address of the shadow page. * @param iUser The shadow page pool index of the user table. * @param iUserTable The index into the user table (shadowed). */ void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable) { LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable)); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable); } /** * Internal worker for finding a 'in-use' shadow page give by it's physical address. * * @returns Pointer to the shadow page structure. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. */ PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys) { PVM pVM = pPool->CTX_SUFF(pVM); Assert(PGMIsLockOwner(pVM)); /* * Look up the page. */ pgmLock(pVM); PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); pgmUnlock(pVM); AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0)); return pPage; } #ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */ /** * Flush the specified page if present * * @param pVM The VM handle. * @param GCPhys Guest physical address of the page to flush */ void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); VM_ASSERT_EMT(pVM); /* * Look up the GCPhys in the hash. */ GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1); unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; if (i == NIL_PGMPOOL_IDX) return; do { PPGMPOOLPAGE pPage = &pPool->aPages[i]; if (pPage->GCPhys - GCPhys < PAGE_SIZE) { switch (pPage->enmKind) { case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: case PGMPOOLKIND_64BIT_PML4: case PGMPOOLKIND_32BIT_PD: case PGMPOOLKIND_PAE_PDPT: { Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys)); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (pPage->fDirty) STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage); else #endif STAM_COUNTER_INC(&pPool->StatForceFlushPage); Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage)); pgmPoolMonitorChainFlush(pPool, pPage); return; } /* ignore, no monitoring. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: case PGMPOOLKIND_64BIT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: case PGMPOOLKIND_EPT_PD_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: case PGMPOOLKIND_ROOT_NESTED: case PGMPOOLKIND_PAE_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_PHYS: case PGMPOOLKIND_32BIT_PD_PHYS: case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: break; default: AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); } } /* next */ i = pPage->iNext; } while (i != NIL_PGMPOOL_IDX); return; } #endif /* IN_RING3 */ #ifdef IN_RING3 void pgmR3PoolResetCpu(PVM pVM, PVMCPU pVCpu) { pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu); pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } /** * Flushes the entire cache. * * It will assert a global CR3 flush (FF) and assumes the caller is aware of * this and execute this CR3 flush. * * @param pPool The pool. */ void pgmR3PoolReset(PVM pVM) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); Assert(PGMIsLockOwner(pVM)); STAM_PROFILE_START(&pPool->StatR3Reset, a); LogFlow(("pgmR3PoolReset:\n")); /* * If there are no pages in the pool, there is nothing to do. */ if (pPool->cCurPages <= PGMPOOL_IDX_FIRST) { STAM_PROFILE_STOP(&pPool->StatR3Reset, a); return; } /* * Exit the shadow mode since we're going to clear everything, * including the root page. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu); } /* * Nuke the free list and reinsert all pages into it. */ for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3)); if (pPage->fMonitored) pgmPoolMonitorFlush(pPool, pPage); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; pPage->GCPhys = NIL_RTGCPHYS; pPage->enmKind = PGMPOOLKIND_FREE; pPage->enmAccess = PGMPOOLACCESS_DONTCARE; Assert(pPage->idx == i); pPage->iNext = i + 1; pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */ pPage->fSeenNonGlobal = false; pPage->fMonitored = false; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pPage->fDirty = false; #endif pPage->fCached = false; pPage->fReusedFlushPending = false; pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; pPage->iAgeNext = NIL_PGMPOOL_IDX; pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->cLocked = 0; } pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX; pPool->iFreeHead = PGMPOOL_IDX_FIRST; pPool->cUsedPages = 0; /* * Zap and reinitialize the user records. */ pPool->cPresent = 0; pPool->iUserFreeHead = 0; PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); const unsigned cMaxUsers = pPool->cMaxUsers; for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffffffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; /* * Clear all the GCPhys links and rebuild the phys ext free list. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges); pRam; pRam = pRam->CTX_SUFF(pNext)) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0); } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; /* * Just zap the modified list. */ pPool->cModifiedPages = 0; pPool->iModifiedHead = NIL_PGMPOOL_IDX; /* * Clear the GCPhys hash and the age list. */ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT /* Clear all dirty pages. */ pPool->idxFreeDirtyPage = 0; pPool->cDirtyPages = 0; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++) pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX; #endif /* * Reinsert active pages into the hash and ensure monitoring chains are correct. */ for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; pPage->iNext = NIL_PGMPOOL_IDX; pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */ pPage->iMonitoredNext = NIL_PGMPOOL_IDX; pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; if (pPage->fMonitored) { int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1), pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage), pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage), pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage), pPool->pszAccessHandler); AssertFatalRCSuccess(rc); pgmPoolHashInsert(pPool, pPage); } Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */ Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX); Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX); } for (VMCPUID i = 0; i < pVM->cCpus; i++) { /* * Re-enter the shadowing mode and assert Sync CR3 FF. */ PVMCPU pVCpu = &pVM->aCpus[i]; pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } STAM_PROFILE_STOP(&pPool->StatR3Reset, a); } #endif /* IN_RING3 */ #ifdef LOG_ENABLED static const char *pgmPoolPoolKindToStr(uint8_t enmKind) { switch(enmKind) { case PGMPOOLKIND_INVALID: return "PGMPOOLKIND_INVALID"; case PGMPOOLKIND_FREE: return "PGMPOOLKIND_FREE"; case PGMPOOLKIND_32BIT_PT_FOR_PHYS: return "PGMPOOLKIND_32BIT_PT_FOR_PHYS"; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT"; case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB"; case PGMPOOLKIND_PAE_PT_FOR_PHYS: return "PGMPOOLKIND_PAE_PT_FOR_PHYS"; case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT"; case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB"; case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT"; case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB"; case PGMPOOLKIND_32BIT_PD: return "PGMPOOLKIND_32BIT_PD"; case PGMPOOLKIND_32BIT_PD_PHYS: return "PGMPOOLKIND_32BIT_PD_PHYS"; case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD"; case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD"; case PGMPOOLKIND_PAE_PD_PHYS: return "PGMPOOLKIND_PAE_PD_PHYS"; case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT"; case PGMPOOLKIND_PAE_PDPT: return "PGMPOOLKIND_PAE_PDPT"; case PGMPOOLKIND_PAE_PDPT_PHYS: return "PGMPOOLKIND_PAE_PDPT_PHYS"; case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT"; case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS"; case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD"; case PGMPOOLKIND_64BIT_PD_FOR_PHYS: return "PGMPOOLKIND_64BIT_PD_FOR_PHYS"; case PGMPOOLKIND_64BIT_PML4: return "PGMPOOLKIND_64BIT_PML4"; case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS"; case PGMPOOLKIND_EPT_PD_FOR_PHYS: return "PGMPOOLKIND_EPT_PD_FOR_PHYS"; case PGMPOOLKIND_EPT_PT_FOR_PHYS: return "PGMPOOLKIND_EPT_PT_FOR_PHYS"; case PGMPOOLKIND_ROOT_NESTED: return "PGMPOOLKIND_ROOT_NESTED"; } return "Unknown kind!"; } #endif /* LOG_ENABLED*/