/* $Id: PGMAllShw.h 103720 2024-03-07 09:36:08Z vboxsync $ */ /** @file * VBox - Page Manager, Shadow Paging Template - All context code. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #undef SHWUINT #undef SHWPT #undef PSHWPT #undef SHWPTE #undef PSHWPTE #undef SHWPD #undef PSHWPD #undef SHWPDE #undef PSHWPDE #undef SHW_PDE_PG_MASK #undef SHW_PD_SHIFT #undef SHW_PD_MASK #undef SHW_PDE_ATOMIC_SET #undef SHW_PDE_ATOMIC_SET2 #undef SHW_PDE_IS_P #undef SHW_PDE_IS_A #undef SHW_PDE_IS_BIG #undef SHW_PTE_PG_MASK #undef SHW_PTE_IS_P #undef SHW_PTE_IS_RW #undef SHW_PTE_IS_US #undef SHW_PTE_IS_A #undef SHW_PTE_IS_D #undef SHW_PTE_IS_P_RW #undef SHW_PTE_IS_TRACK_DIRTY #undef SHW_PTE_GET_HCPHYS #undef SHW_PTE_GET_U #undef SHW_PTE_LOG64 #undef SHW_PTE_SET #undef SHW_PTE_ATOMIC_SET #undef SHW_PTE_ATOMIC_SET2 #undef SHW_PTE_SET_RO #undef SHW_PTE_SET_RW #undef SHW_PT_SHIFT #undef SHW_PT_MASK #undef SHW_TOTAL_PD_ENTRIES #undef SHW_PDPT_SHIFT #undef SHW_PDPT_MASK #undef SHW_PDPE_PG_MASK #if PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT # define SHWUINT uint32_t # define SHWPT X86PT # define PSHWPT PX86PT # define SHWPTE X86PTE # define PSHWPTE PX86PTE # define SHWPD X86PD # define PSHWPD PX86PD # define SHWPDE X86PDE # define PSHWPDE PX86PDE # define SHW_PDE_PG_MASK X86_PDE_PG_MASK # define SHW_PD_SHIFT X86_PD_SHIFT # define SHW_PD_MASK X86_PD_MASK # define SHW_TOTAL_PD_ENTRIES X86_PG_ENTRIES # define SHW_PDE_IS_P(Pde) ( (Pde).u & X86_PDE_P ) # define SHW_PDE_IS_A(Pde) ( (Pde).u & X86_PDE_A ) # define SHW_PDE_IS_BIG(Pde) ( (Pde).u & X86_PDE_PS ) # define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU32(&(Pde).u, (uNew)); } while (0) # define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU32(&(Pde).u, (Pde2).u); } while (0) # define SHW_PTE_PG_MASK X86_PTE_PG_MASK # define SHW_PTE_IS_P(Pte) ( (Pte).u & X86_PTE_P ) # define SHW_PTE_IS_RW(Pte) ( (Pte).u & X86_PTE_RW ) # define SHW_PTE_IS_US(Pte) ( (Pte).u & X86_PTE_US ) # define SHW_PTE_IS_A(Pte) ( (Pte).u & X86_PTE_A ) # define SHW_PTE_IS_D(Pte) ( (Pte).u & X86_PTE_D ) # define SHW_PTE_IS_P_RW(Pte) ( ((Pte).u & (X86_PTE_P | X86_PTE_RW)) == (X86_PTE_P | X86_PTE_RW) ) # define SHW_PTE_IS_TRACK_DIRTY(Pte) ( !!((Pte).u & PGM_PTFLAGS_TRACK_DIRTY) ) # define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & X86_PTE_PG_MASK ) # define SHW_PTE_LOG64(Pte) ( (uint64_t)(Pte).u ) # define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0) # define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU32(&(Pte).u, (uNew)); } while (0) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU32(&(Pte).u, (Pte2).u); } while (0) # define SHW_PTE_SET_RO(Pte) do { (Pte).u &= ~(X86PGUINT)X86_PTE_RW; } while (0) # define SHW_PTE_SET_RW(Pte) do { (Pte).u |= X86_PTE_RW; } while (0) # define SHW_PT_SHIFT X86_PT_SHIFT # define SHW_PT_MASK X86_PT_MASK #elif PGM_SHW_TYPE == PGM_TYPE_EPT # define SHWUINT uint64_t # define SHWPT EPTPT # define PSHWPT PEPTPT # define SHWPTE EPTPTE # define PSHWPTE PEPTPTE # define SHWPD EPTPD # define PSHWPD PEPTPD # define SHWPDE EPTPDE # define PSHWPDE PEPTPDE # define SHW_PDE_PG_MASK EPT_PDE_PG_MASK # define SHW_PD_SHIFT EPT_PD_SHIFT # define SHW_PD_MASK EPT_PD_MASK # define SHW_PDE_IS_P(Pde) ( (Pde).u & EPT_E_READ /* always set*/ ) # define SHW_PDE_IS_A(Pde) ( 1 ) /* We don't use EPT_E_ACCESSED, use with care! */ # define SHW_PDE_IS_BIG(Pde) ( (Pde).u & EPT_E_LEAF ) # define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU64(&(Pde).u, (uNew)); } while (0) # define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU64(&(Pde).u, (Pde2).u); } while (0) # define SHW_PTE_PG_MASK EPT_PTE_PG_MASK # define SHW_PTE_IS_P(Pte) ( (Pte).u & EPT_E_READ ) /* Approximation, works for us. */ # define SHW_PTE_IS_RW(Pte) ( (Pte).u & EPT_E_WRITE ) # define SHW_PTE_IS_US(Pte) ( true ) # define SHW_PTE_IS_A(Pte) ( true ) # define SHW_PTE_IS_D(Pte) ( true ) # define SHW_PTE_IS_P_RW(Pte) ( ((Pte).u & (EPT_E_READ | EPT_E_WRITE)) == (EPT_E_READ | EPT_E_WRITE) ) # define SHW_PTE_IS_TRACK_DIRTY(Pte) ( false ) # define SHW_PTE_GET_HCPHYS(Pte) ( (Pte).u & EPT_PTE_PG_MASK ) # define SHW_PTE_LOG64(Pte) ( (Pte).u ) # define SHW_PTE_GET_U(Pte) ( (Pte).u ) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) do { (Pte).u = (uNew); } while (0) # define SHW_PTE_ATOMIC_SET(Pte, uNew) do { ASMAtomicWriteU64(&(Pte).u, (uNew)); } while (0) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) do { ASMAtomicWriteU64(&(Pte).u, (Pte2).u); } while (0) # define SHW_PTE_SET_RO(Pte) do { (Pte).u &= ~(uint64_t)EPT_E_WRITE; } while (0) # define SHW_PTE_SET_RW(Pte) do { (Pte).u |= EPT_E_WRITE; } while (0) # define SHW_PT_SHIFT EPT_PT_SHIFT # define SHW_PT_MASK EPT_PT_MASK # define SHW_PDPT_SHIFT EPT_PDPT_SHIFT # define SHW_PDPT_MASK EPT_PDPT_MASK # define SHW_PDPE_PG_MASK EPT_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (EPT_PG_AMD64_ENTRIES * EPT_PG_AMD64_PDPE_ENTRIES) #else # define SHWUINT uint64_t # define SHWPT PGMSHWPTPAE # define PSHWPT PPGMSHWPTPAE # define SHWPTE PGMSHWPTEPAE # define PSHWPTE PPGMSHWPTEPAE # define SHWPD X86PDPAE # define PSHWPD PX86PDPAE # define SHWPDE X86PDEPAE # define PSHWPDE PX86PDEPAE # define SHW_PDE_PG_MASK X86_PDE_PAE_PG_MASK # define SHW_PD_SHIFT X86_PD_PAE_SHIFT # define SHW_PD_MASK X86_PD_PAE_MASK # define SHW_PDE_IS_P(Pde) ( (Pde).u & X86_PDE_P ) # define SHW_PDE_IS_A(Pde) ( (Pde).u & X86_PDE_A ) # define SHW_PDE_IS_BIG(Pde) ( (Pde).u & X86_PDE_PS ) # define SHW_PDE_ATOMIC_SET(Pde, uNew) do { ASMAtomicWriteU64(&(Pde).u, (uNew)); } while (0) # define SHW_PDE_ATOMIC_SET2(Pde, Pde2) do { ASMAtomicWriteU64(&(Pde).u, (Pde2).u); } while (0) # define SHW_PTE_PG_MASK X86_PTE_PAE_PG_MASK # define SHW_PTE_IS_P(Pte) PGMSHWPTEPAE_IS_P(Pte) # define SHW_PTE_IS_RW(Pte) PGMSHWPTEPAE_IS_RW(Pte) # define SHW_PTE_IS_US(Pte) PGMSHWPTEPAE_IS_US(Pte) # define SHW_PTE_IS_A(Pte) PGMSHWPTEPAE_IS_A(Pte) # define SHW_PTE_IS_D(Pte) PGMSHWPTEPAE_IS_D(Pte) # define SHW_PTE_IS_P_RW(Pte) PGMSHWPTEPAE_IS_P_RW(Pte) # define SHW_PTE_IS_TRACK_DIRTY(Pte) PGMSHWPTEPAE_IS_TRACK_DIRTY(Pte) # define SHW_PTE_GET_HCPHYS(Pte) PGMSHWPTEPAE_GET_HCPHYS(Pte) # define SHW_PTE_LOG64(Pte) PGMSHWPTEPAE_GET_LOG(Pte) # define SHW_PTE_GET_U(Pte) PGMSHWPTEPAE_GET_U(Pte) /**< Use with care. */ # define SHW_PTE_SET(Pte, uNew) PGMSHWPTEPAE_SET(Pte, uNew) # define SHW_PTE_ATOMIC_SET(Pte, uNew) PGMSHWPTEPAE_ATOMIC_SET(Pte, uNew) # define SHW_PTE_ATOMIC_SET2(Pte, Pte2) PGMSHWPTEPAE_ATOMIC_SET2(Pte, Pte2) # define SHW_PTE_SET_RO(Pte) PGMSHWPTEPAE_SET_RO(Pte) # define SHW_PTE_SET_RW(Pte) PGMSHWPTEPAE_SET_RW(Pte) # define SHW_PT_SHIFT X86_PT_PAE_SHIFT # define SHW_PT_MASK X86_PT_PAE_MASK # if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 || /* whatever: */ PGM_SHW_TYPE == PGM_TYPE_NONE # define SHW_PDPT_SHIFT X86_PDPT_SHIFT # define SHW_PDPT_MASK X86_PDPT_MASK_AMD64 # define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (X86_PG_AMD64_ENTRIES * X86_PG_AMD64_PDPE_ENTRIES) # elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE # define SHW_PDPT_SHIFT X86_PDPT_SHIFT # define SHW_PDPT_MASK X86_PDPT_MASK_PAE # define SHW_PDPE_PG_MASK X86_PDPE_PG_MASK # define SHW_TOTAL_PD_ENTRIES (X86_PG_PAE_ENTRIES * X86_PG_PAE_PDPE_ENTRIES) # else # error "Misconfigured PGM_SHW_TYPE or something..." # endif #endif #if PGM_SHW_TYPE == PGM_TYPE_NONE && PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) # error "PGM_TYPE_IS_NESTED_OR_EPT is true for PGM_TYPE_NONE!" #endif /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ RT_C_DECLS_BEGIN PGM_SHW_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys); PGM_SHW_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags); PGM_SHW_DECL(int, Exit)(PVMCPUCC pVCpu); #ifdef IN_RING3 PGM_SHW_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta); #endif RT_C_DECLS_END /** * Enters the shadow mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ PGM_SHW_DECL(int, Enter)(PVMCPUCC pVCpu) { #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT RTGCPHYS GCPhysCR3; PGMPOOLKIND enmKind; if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_EPT) { GCPhysCR3 = RT_BIT_64(63); enmKind = PGMPOOLKIND_ROOT_NESTED; } else { GCPhysCR3 = pVCpu->pgm.s.uEptPtr & EPT_EPTP_PG_MASK; enmKind = PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4; } # else RTGCPHYS const GCPhysCR3 = RT_BIT_64(63); PGMPOOLKIND const enmKind = PGMPOOLKIND_ROOT_NESTED; # endif PVMCC const pVM = pVCpu->CTX_SUFF(pVM); Assert(HMIsNestedPagingActive(pVM)); Assert(pVM->pgm.s.fNestedPaging); Assert(!pVCpu->pgm.s.pShwPageCR3R3); PGM_LOCK_VOID(pVM); PPGMPOOLPAGE pNewShwPageCR3; int rc = pgmPoolAlloc(pVM, GCPhysCR3, enmKind, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, &pNewShwPageCR3); AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc); pVCpu->pgm.s.pShwPageCR3R3 = pgmPoolConvertPageToR3(pVM->pgm.s.CTX_SUFF(pPool), pNewShwPageCR3); pVCpu->pgm.s.pShwPageCR3R0 = pgmPoolConvertPageToR0(pVM->pgm.s.CTX_SUFF(pPool), pNewShwPageCR3); PGM_UNLOCK(pVM); Log(("Enter nested shadow paging mode: root %RHv phys %RHp\n", pVCpu->pgm.s.pShwPageCR3R3, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key)); #else NOREF(pVCpu); #endif return VINF_SUCCESS; } /** * Exits the shadow mode. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ PGM_SHW_DECL(int, Exit)(PVMCPUCC pVCpu) { #if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) PVMCC pVM = pVCpu->CTX_SUFF(pVM); if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); PGM_LOCK_VOID(pVM); # if defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT) && PGM_SHW_TYPE == PGM_TYPE_EPT if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT) pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); # endif /* Do *not* unlock this page as we have two of them floating around in the 32-bit host & 64-bit guest case. * We currently assert when you try to free one of them; don't bother to really allow this. * * Note that this is two nested paging root pages max. This isn't a leak. They are reused. */ /* pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); */ pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX); pVCpu->pgm.s.pShwPageCR3R3 = 0; pVCpu->pgm.s.pShwPageCR3R0 = 0; PGM_UNLOCK(pVM); Log(("Leave nested shadow paging mode\n")); } #else RT_NOREF_PV(pVCpu); #endif return VINF_SUCCESS; } #if 0 PGM_SHW_DECL(int, NestedGetPage)(PVMCPUCC pVCpu, PEPTPD pEptPd, PPGMPTWALK pWalk, uint64_t *pfFlags, PRTHCPHYS pHCPhys) { #if PGM_SHW_TYPE == PGM_TYPE_EPT RTGCPHYS const GCPhysNested = pWalk->GCPhysNested; unsigned const iEptPd = ((GCPhysNested >> SHW_PD_SHIFT) & SHW_PD_MASK); Assert(iEptPd < EPT_PG_ENTRIES); SHWPDE EptPde = pEptPd->a[iEptPd]; if (!SHW_PDE_IS_P(EptPde)) { *pfFlags = 0; *pHCPhys = NIL_RTHCPHYS; return VERR_PAGE_TABLE_NOT_PRESENT; } if (SHW_PDE_IS_BIG(EptPde)) { Assert(pWalk->fBigPage); if (pfFlags) *pfFlags = (EptPde.u & ~SHW_PDE_PG_MASK); if (pHCPhys) *pHCPhys = (EptPde.u & EPT_PDE2M_PG_MASK) + (pWalk->GCPhys & (RT_BIT(EPT_PD_SHIFT) - 1) & X86_PAGE_4K_BASE_MASK); return VINF_SUCCESS; } PSHWPT pEptPt; int const rc = PGM_HCPHYS_2_PTR(pVCpu->CTX_SUFF(pVM), pVCpu, EptPde.u & EPT_PDE_PG_MASK, &pEptPt); if (RT_FAILURE(rc)) { *pfFlags = 0; *pHCPhys = NIL_RTHCPHYS; return rc; } unsigned const iEptPt = (GCPhysNested >> SHW_PT_SHIFT) & SHW_PT_MASK; Assert(iEptPt < EPT_PG_ENTRIES); SHWPTE EptPte = pEptPt->a[iEptPt]; if (!SHW_PTE_IS_P(EptPte)) { *pfFlags = 0; *pHCPhys = NIL_RTHCPHYS; return VERR_PAGE_NOT_PRESENT; } if (pfFlags) { /* Read, Write and Execute bits (Present mask) are cumulative. */ *pfFlags = (SHW_PTE_GET_U(EptPte) & ~SHW_PTE_PG_MASK) & ((EptPde.u & EPT_PRESENT_MASK) | ~(uint64_t)EPT_PRESENT_MASK); } if (pHCPhys) *pHCPhys = SHW_PTE_GET_HCPHYS(EptPte); return VINF_SUCCESS; #else /* PGM_SHW_TYPE != PGM_TYPE_EPT */ RT_NOREF(pVCpu, pEptPd, pWalk, *pfFlags, pHCPhys); AssertFailed(); return VERR_PGM_SHW_NONE_IPE; #endif /* PGM_SHW_TYPE != PGM_TYPE_EPT */ } #endif /** * Gets effective page information (from the VMM page directory). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Guest Context virtual address of the page. * @param pfFlags Where to store the flags. These are X86_PTE_*. * @param pHCPhys Where to store the HC physical address of the page. * This is page aligned. * @remark You should use PGMMapGetPage() for pages in a mapping. */ PGM_SHW_DECL(int, GetPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys) { #if PGM_SHW_TYPE == PGM_TYPE_NONE RT_NOREF(pVCpu, GCPtr); AssertFailed(); *pfFlags = 0; *pHCPhys = NIL_RTHCPHYS; return VERR_PGM_SHW_NONE_IPE; #else /* PGM_SHW_TYPE != PGM_TYPE_NONE */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_ASSERT_OWNER(pVM); /* * Get the PDE. */ # if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 X86PDEPAE Pde; /* PML4 */ X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr); if (!(Pml4e.u & X86_PML4E_P)) return VERR_PAGE_TABLE_NOT_PRESENT; /* PDPT */ PX86PDPT pPDPT; int rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT); if (RT_FAILURE(rc)) return rc; const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; X86PDPE Pdpe = pPDPT->a[iPDPT]; if (!(Pdpe.u & X86_PDPE_P)) return VERR_PAGE_TABLE_NOT_PRESENT; /* PD */ PX86PDPAE pPd; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd); if (RT_FAILURE(rc)) return rc; const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; Pde = pPd->a[iPd]; /* Merge accessed, write, user and no-execute bits into the PDE. */ AssertCompile(X86_PML4E_A == X86_PDPE_A && X86_PML4E_A == X86_PDE_A); AssertCompile(X86_PML4E_RW == X86_PDPE_RW && X86_PML4E_RW == X86_PDE_RW); AssertCompile(X86_PML4E_US == X86_PDPE_US && X86_PML4E_US == X86_PDE_US); AssertCompile(X86_PML4E_NX == X86_PDPE_LM_NX && X86_PML4E_NX == X86_PDE_PAE_NX); Pde.u &= (Pml4e.u & Pdpe.u) | ~(X86PGPAEUINT)(X86_PML4E_A | X86_PML4E_RW | X86_PML4E_US); Pde.u |= (Pml4e.u | Pdpe.u) & X86_PML4E_NX; # elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr); # elif PGM_SHW_TYPE == PGM_TYPE_EPT EPTPDE Pde; const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK); if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT) { PEPTPD pPDDst; int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst); if (rc == VINF_SUCCESS) /** @todo this function isn't expected to return informational status codes. Check callers / fix. */ { /* likely */ } else { AssertRC(rc); return rc; } Assert(pPDDst); Pde = pPDDst->a[iPd]; } else { # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT); Assert(!(GCPtr & GUEST_PAGE_OFFSET_MASK)); PGMPTWALK Walk; PGMPTWALKGST GstWalkAll; RTGCPHYS const GCPhysNestedPage = GCPtr; int rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNestedFault*/, &Walk, &GstWalkAll); if (RT_SUCCESS(rc)) { # ifdef DEBUG_ramshankar /* Paranoia. */ Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT); Assert(Walk.fSucceeded); Assert(Walk.fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK)); Assert(Walk.fIsSlat); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_R_MASK)); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_W_MASK)); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK)); # endif PGM_A20_ASSERT_MASKED(pVCpu, Walk.GCPhys); /* Update the nested-guest physical address with the translated guest-physical address. */ GCPtr = Walk.GCPhys; /* Get the PD. */ PSHWPD pEptPd; rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll); AssertRCReturn(rc, rc); Assert(pEptPd); Assert(iPd < EPT_PG_ENTRIES); Pde = pEptPd->a[iPd]; } else { Log(("Failed to translate nested-guest physical address %#RGp rc=%Rrc\n", GCPhysNestedPage, rc)); return rc; } # else /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ AssertFailed(); return VERR_PGM_SHW_NONE_IPE; # endif /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ } # elif PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr); # else # error "Misconfigured PGM_SHW_TYPE or something..." # endif if (!SHW_PDE_IS_P(Pde)) return VERR_PAGE_TABLE_NOT_PRESENT; /* Deal with large pages. */ if (SHW_PDE_IS_BIG(Pde)) { /* * Store the results. * RW and US flags depend on the entire page translation hierarchy - except for * legacy PAE which has a simplified PDPE. */ if (pfFlags) { *pfFlags = (Pde.u & ~SHW_PDE_PG_MASK); # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 if ( (Pde.u & X86_PTE_PAE_NX) # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) && CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */ # endif ) *pfFlags |= X86_PTE_PAE_NX; # endif } if (pHCPhys) *pHCPhys = (Pde.u & SHW_PDE_PG_MASK) + (GCPtr & (RT_BIT(SHW_PD_SHIFT) - 1) & X86_PAGE_4K_BASE_MASK); return VINF_SUCCESS; } /* * Get PT entry. */ PSHWPT pPT; int rc2 = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT); if (RT_FAILURE(rc2)) return rc2; const unsigned iPt = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK; SHWPTE Pte = pPT->a[iPt]; if (!SHW_PTE_IS_P(Pte)) return VERR_PAGE_NOT_PRESENT; /* * Store the results. * RW and US flags depend on the entire page translation hierarchy - except for * legacy PAE which has a simplified PDPE. */ if (pfFlags) { *pfFlags = (SHW_PTE_GET_U(Pte) & ~SHW_PTE_PG_MASK) & ((Pde.u & (X86_PTE_RW | X86_PTE_US)) | ~(uint64_t)(X86_PTE_RW | X86_PTE_US)); # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 /* The NX bit is determined by a bitwise OR between the PT and PD */ if ( ((SHW_PTE_GET_U(Pte) | Pde.u) & X86_PTE_PAE_NX) # if PGM_WITH_NX(PGM_SHW_TYPE, PGM_SHW_TYPE) && CPUMIsGuestNXEnabled(pVCpu) /** @todo why do we have to check the guest state here? */ # endif ) *pfFlags |= X86_PTE_PAE_NX; # endif } if (pHCPhys) *pHCPhys = SHW_PTE_GET_HCPHYS(Pte); return VINF_SUCCESS; #endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */ } /** * Modify page flags for a range of pages in the shadow context. * * The existing flags are ANDed with the fMask and ORed with the fFlags. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param GCPtr Virtual address of the first page in the range. Page aligned! * @param cb Size (in bytes) of the range to apply the modification to. Page aligned! * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course. * @param fMask The AND mask - page flags X86_PTE_*. * Be extremely CAREFUL with ~'ing values because they can be 32-bit! * @param fOpFlags A combination of the PGM_MK_PK_XXX flags. * @remark You must use PGMMapModifyPage() for pages in a mapping. */ PGM_SHW_DECL(int, ModifyPage)(PVMCPUCC pVCpu, RTGCUINTPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask, uint32_t fOpFlags) { #if PGM_SHW_TYPE == PGM_TYPE_NONE RT_NOREF(pVCpu, GCPtr, cb, fFlags, fMask, fOpFlags); AssertFailed(); return VERR_PGM_SHW_NONE_IPE; #else /* PGM_SHW_TYPE != PGM_TYPE_NONE */ PVMCC pVM = pVCpu->CTX_SUFF(pVM); PGM_LOCK_ASSERT_OWNER(pVM); /* * Walk page tables and pages till we're done. */ int rc; for (;;) { /* * Get the PDE. */ # if PGM_SHW_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_NESTED_AMD64 X86PDEPAE Pde; /* PML4 */ X86PML4E Pml4e = pgmShwGetLongModePML4E(pVCpu, GCPtr); if (!(Pml4e.u & X86_PML4E_P)) return VERR_PAGE_TABLE_NOT_PRESENT; /* PDPT */ PX86PDPT pPDPT; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pml4e.u & X86_PML4E_PG_MASK, &pPDPT); if (RT_FAILURE(rc)) return rc; const unsigned iPDPT = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; X86PDPE Pdpe = pPDPT->a[iPDPT]; if (!(Pdpe.u & X86_PDPE_P)) return VERR_PAGE_TABLE_NOT_PRESENT; /* PD */ PX86PDPAE pPd; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pdpe.u & X86_PDPE_PG_MASK, &pPd); if (RT_FAILURE(rc)) return rc; const unsigned iPd = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; Pde = pPd->a[iPd]; # elif PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_NESTED_PAE X86PDEPAE Pde = pgmShwGetPaePDE(pVCpu, GCPtr); # elif PGM_SHW_TYPE == PGM_TYPE_EPT EPTPDE Pde; const unsigned iPd = ((GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK); if (pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_DIRECT) { PEPTPD pPDDst; rc = pgmShwGetEPTPDPtr(pVCpu, GCPtr, NULL, &pPDDst); if (rc != VINF_SUCCESS) { AssertRC(rc); return rc; } Assert(pPDDst); Pde = pPDDst->a[iPd]; } else { # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT Assert(pVCpu->pgm.s.enmGuestSlatMode == PGMSLAT_EPT); Assert(!(GCPtr & GUEST_PAGE_OFFSET_MASK)); PGMPTWALK Walk; PGMPTWALKGST GstWalkAll; RTGCPHYS const GCPhysNestedPage = GCPtr; rc = pgmGstSlatWalk(pVCpu, GCPhysNestedPage, false /*fIsLinearAddrValid*/, 0 /*GCPtrNestedFault*/, &Walk, &GstWalkAll); if (RT_SUCCESS(rc)) { # ifdef DEBUG_ramshankar /* Paranoia. */ Assert(GstWalkAll.enmType == PGMPTWALKGSTTYPE_EPT); Assert(Walk.fSucceeded); Assert(Walk.fEffective & (PGM_PTATTRS_EPT_R_MASK | PGM_PTATTRS_EPT_W_MASK | PGM_PTATTRS_EPT_X_SUPER_MASK)); Assert(Walk.fIsSlat); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_R_MASK) == RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_R_MASK)); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_W_MASK) == RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_W_MASK)); Assert(RT_BOOL(Walk.fEffective & PGM_PTATTRS_NX_MASK) == !RT_BOOL(Walk.fEffective & PGM_PTATTRS_EPT_X_SUPER_MASK)); # endif PGM_A20_ASSERT_MASKED(pVCpu, Walk.GCPhys); Assert(!(fFlags & X86_PTE_RW) || (Walk.fEffective & PGM_PTATTRS_W_MASK)); /* Update the nested-guest physical address with the translated guest-physical address. */ GCPtr = Walk.GCPhys; /* Get the PD. */ PSHWPD pEptPd; rc = pgmShwGetNestedEPTPDPtr(pVCpu, GCPhysNestedPage, NULL /*ppPdpt*/, &pEptPd, &GstWalkAll); AssertRCReturn(rc, rc); Assert(pEptPd); Assert(iPd < EPT_PG_ENTRIES); Pde = pEptPd->a[iPd]; } else { Log(("Failed to translate nested-guest physical address %#RGp rc=%Rrc\n", GCPhysNestedPage, rc)); return rc; } # else /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ AssertFailed(); return VERR_PGM_SHW_NONE_IPE; # endif /* !VBOX_WITH_NESTED_HWVIRT_VMX_EPT */ } # else /* PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_NESTED_32BIT */ X86PDE Pde = pgmShwGet32BitPDE(pVCpu, GCPtr); # endif if (!SHW_PDE_IS_P(Pde)) return VERR_PAGE_TABLE_NOT_PRESENT; AssertFatalMsg(!SHW_PDE_IS_BIG(Pde), ("Pde=%#RX64\n", (uint64_t)Pde.u)); /* * Map the page table. */ PSHWPT pPT; rc = PGM_HCPHYS_2_PTR(pVM, pVCpu, Pde.u & SHW_PDE_PG_MASK, &pPT); if (RT_FAILURE(rc)) return rc; unsigned iPTE = (GCPtr >> SHW_PT_SHIFT) & SHW_PT_MASK; while (iPTE < RT_ELEMENTS(pPT->a)) { if (SHW_PTE_IS_P(pPT->a[iPTE])) { SHWPTE const OrgPte = pPT->a[iPTE]; SHWPTE NewPte; SHW_PTE_SET(NewPte, (SHW_PTE_GET_U(OrgPte) & (fMask | SHW_PTE_PG_MASK)) | (fFlags & ~SHW_PTE_PG_MASK)); if (!SHW_PTE_IS_P(NewPte)) { /** @todo Some CSAM code path might end up here and upset * the page pool. */ AssertMsgFailed(("NewPte=%#RX64 OrgPte=%#RX64 GCPtr=%#RGv\n", SHW_PTE_LOG64(NewPte), SHW_PTE_LOG64(OrgPte), GCPtr)); } else if ( SHW_PTE_IS_RW(NewPte) && !SHW_PTE_IS_RW(OrgPte) && !(fOpFlags & PGM_MK_PG_IS_MMIO2) ) { /** @todo Optimize \#PF handling by caching data. We can * then use this when PGM_MK_PG_IS_WRITE_FAULT is * set instead of resolving the guest physical * address yet again. */ PGMPTWALK GstWalk; rc = PGMGstGetPage(pVCpu, GCPtr, &GstWalk); AssertRC(rc); if (RT_SUCCESS(rc)) { Assert((GstWalk.fEffective & X86_PTE_RW) || !(CPUMGetGuestCR0(pVCpu) & X86_CR0_WP /* allow netware hack */)); PPGMPAGE pPage = pgmPhysGetPage(pVM, GstWalk.GCPhys); Assert(pPage); if (pPage) { rc = pgmPhysPageMakeWritable(pVM, pPage, GstWalk.GCPhys); AssertRCReturn(rc, rc); Log(("%s: pgmPhysPageMakeWritable on %RGv / %RGp %R[pgmpage]\n", __PRETTY_FUNCTION__, GCPtr, GstWalk.GCPhys, pPage)); } } } SHW_PTE_ATOMIC_SET2(pPT->a[iPTE], NewPte); Assert((SHW_PTE_GET_U(NewPte) & EPT_E_LEAF) == (SHW_PTE_GET_U(OrgPte) & EPT_E_LEAF)); # if PGM_SHW_TYPE == PGM_TYPE_EPT HMInvalidatePhysPage(pVM, (RTGCPHYS)GCPtr); # else PGM_INVL_PG_ALL_VCPU(pVM, GCPtr); # endif } /* next page */ cb -= HOST_PAGE_SIZE; if (!cb) return VINF_SUCCESS; GCPtr += HOST_PAGE_SIZE; iPTE++; } } #endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */ } #ifdef IN_RING3 /** * Relocate any GC pointers related to shadow mode paging. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param offDelta The relocation offset. */ PGM_SHW_DECL(int, Relocate)(PVMCPUCC pVCpu, RTGCPTR offDelta) { RT_NOREF(pVCpu, offDelta); return VINF_SUCCESS; } #endif