/* $Id: HWACCMR0.cpp 41312 2012-05-15 13:43:43Z vboxsync $ */ /** @file * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0. */ /* * Copyright (C) 2006-2011 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_HWACCM #include #include #include "HWACCMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "HWVMXR0.h" #include "HWSVMR0.h" /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2); static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser); static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData); /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * This is used to manage the status code of a RTMpOnAll in HM. */ typedef struct HMR0FIRSTRC { /** The status code. */ int32_t volatile rc; /** The ID of the CPU reporting the first failure. */ RTCPUID volatile idCpu; } HMR0FIRSTRC; /** Pointer to a first return code structure. */ typedef HMR0FIRSTRC *PHMR0FIRSTRC; /******************************************************************************* * Global Variables * *******************************************************************************/ /** * Global data. */ static struct { /** Per CPU globals. */ HMGLOBLCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS]; /** @name Ring-0 method table for AMD-V and VT-x specific operations. * @{ */ DECLR0CALLBACKMEMBER(int, pfnEnterSession,(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)); DECLR0CALLBACKMEMBER(int, pfnLeaveSession,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)); DECLR0CALLBACKMEMBER(int, pfnSaveHostState,(PVM pVM, PVMCPU pVCpu)); DECLR0CALLBACKMEMBER(int, pfnLoadGuestState,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)); DECLR0CALLBACKMEMBER(int, pfnRunGuestCode,(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)); DECLR0CALLBACKMEMBER(int, pfnEnableCpu,(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)); DECLR0CALLBACKMEMBER(int, pfnDisableCpu,(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)); DECLR0CALLBACKMEMBER(int, pfnInitVM,(PVM pVM)); DECLR0CALLBACKMEMBER(int, pfnTermVM,(PVM pVM)); DECLR0CALLBACKMEMBER(int, pfnSetupVM,(PVM pVM)); /** @} */ /** Maximum ASID allowed. */ uint32_t uMaxASID; /** VT-x data. */ struct { /** Set to by us to indicate VMX is supported by the CPU. */ bool fSupported; /** Whether we're using SUPR0EnableVTx or not. */ bool fUsingSUPR0EnableVTx; /** Whether we're using the preemption timer or not. */ bool fUsePreemptTimer; /** The shift mask employed by the VMX-Preemption timer. */ uint8_t cPreemptTimerShift; /** Host CR4 value (set by ring-0 VMX init) */ uint64_t hostCR4; /** Host EFER value (set by ring-0 VMX init) */ uint64_t hostEFER; /** VMX MSR values */ struct { uint64_t feature_ctrl; uint64_t vmx_basic_info; VMX_CAPABILITY vmx_pin_ctls; VMX_CAPABILITY vmx_proc_ctls; VMX_CAPABILITY vmx_proc_ctls2; VMX_CAPABILITY vmx_exit; VMX_CAPABILITY vmx_entry; uint64_t vmx_misc; uint64_t vmx_cr0_fixed0; uint64_t vmx_cr0_fixed1; uint64_t vmx_cr4_fixed0; uint64_t vmx_cr4_fixed1; uint64_t vmx_vmcs_enum; uint64_t vmx_eptcaps; } msr; /* Last instruction error */ uint32_t ulLastInstrError; } vmx; /** AMD-V information. */ struct { /* HWCR msr (for diagnostics) */ uint64_t msrHWCR; /** SVM revision. */ uint32_t u32Rev; /** SVM feature bits from cpuid 0x8000000a */ uint32_t u32Features; /** Set by us to indicate SVM is supported by the CPU. */ bool fSupported; } svm; /** Saved error from detection */ int32_t lLastError; struct { uint32_t u32AMDFeatureECX; uint32_t u32AMDFeatureEDX; } cpuid; /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's * enabled and disabled each time it's used to execute guest code. */ bool fGlobalInit; /** Indicates whether the host is suspending or not. We'll refuse a few * actions when the host is being suspended to speed up the suspending and * avoid trouble. */ volatile bool fSuspended; /** Whether we've already initialized all CPUs. * @remarks We could check the EnableAllCpusOnce state, but this is * simpler and hopefully easier to understand. */ bool fEnabled; /** Serialize initialization in HWACCMR0EnableAllCpus. */ RTONCE EnableAllCpusOnce; } g_HvmR0; /** * Initializes a first return code structure. * * @param pFirstRc The structure to init. */ static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc) { pFirstRc->rc = VINF_SUCCESS; pFirstRc->idCpu = NIL_RTCPUID; } /** * Try se the status code (success ignored). * * @param pFirstRc The first return code structure. * @param rc The status code. */ static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc) { if ( RT_FAILURE(rc) && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS)) pFirstRc->idCpu = RTMpCpuId(); } /** * Get the status code of a first return code structure. * * @returns The status code; VINF_SUCCESS or error status, no informational or * warning errors. * @param pFirstRc The first return code structure. */ static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc) { return pFirstRc->rc; } #ifdef VBOX_STRICT /** * Get the CPU ID on which the failure status code was reported. * * @returns The CPU ID, NIL_RTCPUID if no failure was reported. * @param pFirstRc The first return code structure. */ static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc) { return pFirstRc->idCpu; } #endif /* VBOX_STRICT */ /** @name Dummy callback handlers. * @{ */ static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu) { NOREF(pVM); NOREF(pVCpu); NOREF(pCpu); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM) { NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM) { NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM) { NOREF(pVM); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu) { NOREF(pVM); NOREF(pVCpu); return VINF_SUCCESS; } static DECLCALLBACK(int) hmR0DummyLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { NOREF(pVM); NOREF(pVCpu); NOREF(pCtx); return VINF_SUCCESS; } /** @} */ /** * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count * Down at the Rate Specified" erratum. * * Errata names and related steppings: * - BA86 - D0. * - AAX65 - C2. * - AAU65 - C2, K0. * - AAO95 - B1. * - AAT59 - C2. * - AAK139 - D0. * - AAM126 - C0, C1, D0. * - AAN92 - B1. * - AAJ124 - C0, D0. * * - AAP86 - B1. * * Steppings: B1, C0, C1, C2, D0, K0. * * @returns true if subject to it, false if not. */ static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void) { uint32_t u = ASMCpuId_EAX(1); u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31)); if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */ || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */ || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */ || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */ || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */ || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */ || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */ || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */ || u == UINT32_C(0x000106A0) /*?321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */ || u == UINT32_C(0x000106A1) /*?321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */ || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */ || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */ || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */ || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */ ) return true; return false; } /** * Intel specific initialization code. * * @returns VBox status code (will only fail if out of memory). */ static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX) { /* * Check that all the required VT-x features are present. * We also assume all VT-x-enabled CPUs support fxsave/fxrstor. */ if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX) && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR) && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR) ) { /** @todo move this into a separate function. */ g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL); /* * First try use native kernel API for controlling VT-x. * (This is only supported by some Mac OS X kernels atm.) */ int rc = g_HvmR0.lLastError = SUPR0EnableVTx(true /* fEnable */); g_HvmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED; if (g_HvmR0.vmx.fUsingSUPR0EnableVTx) { AssertMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc)); if (RT_SUCCESS(rc)) { g_HvmR0.vmx.fSupported = true; rc = SUPR0EnableVTx(false /* fEnable */); AssertRC(rc); } } else { /* We need to check if VT-x has been properly initialized on all CPUs. Some BIOSes do a lousy job. */ HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); g_HvmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL); if (RT_SUCCESS(g_HvmR0.lLastError)) g_HvmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc); } if (RT_SUCCESS(g_HvmR0.lLastError)) { /* Reread in case we've changed it. */ g_HvmR0.vmx.msr.feature_ctrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL); if ( (g_HvmR0.vmx.msr.feature_ctrl & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) { /* * Read all relevant MSR. */ g_HvmR0.vmx.msr.vmx_basic_info = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO); g_HvmR0.vmx.msr.vmx_pin_ctls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS); g_HvmR0.vmx.msr.vmx_proc_ctls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS); g_HvmR0.vmx.msr.vmx_exit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS); g_HvmR0.vmx.msr.vmx_entry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS); g_HvmR0.vmx.msr.vmx_misc = ASMRdMsr(MSR_IA32_VMX_MISC); g_HvmR0.vmx.msr.vmx_cr0_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0); g_HvmR0.vmx.msr.vmx_cr0_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1); g_HvmR0.vmx.msr.vmx_cr4_fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0); g_HvmR0.vmx.msr.vmx_cr4_fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1); g_HvmR0.vmx.msr.vmx_vmcs_enum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM); g_HvmR0.vmx.hostCR4 = ASMGetCR4(); g_HvmR0.vmx.hostEFER = ASMRdMsr(MSR_K6_EFER); /* VPID 16 bits ASID. */ g_HvmR0.uMaxASID = 0x10000; /* exclusive */ if (g_HvmR0.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL) { g_HvmR0.vmx.msr.vmx_proc_ctls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2); if ( g_HvmR0.vmx.msr.vmx_proc_ctls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID)) g_HvmR0.vmx.msr.vmx_eptcaps = ASMRdMsr(MSR_IA32_VMX_EPT_CAPS); } if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx) { /* * Enter root mode */ RTR0MEMOBJ hScatchMemObj; rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, true /* executable R0 mapping */); if (RT_FAILURE(rc)) return rc; void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj); RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0); ASMMemZeroPage(pvScatchPage); /* Set revision dword at the beginning of the structure. */ *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HvmR0.vmx.msr.vmx_basic_info); /* Make sure we don't get rescheduled to another cpu during this probe. */ RTCCUINTREG fFlags = ASMIntDisableFlags(); /* * Check CR4.VMXE */ g_HvmR0.vmx.hostCR4 = ASMGetCR4(); if (!(g_HvmR0.vmx.hostCR4 & X86_CR4_VMXE)) { /* In theory this bit could be cleared behind our back. Which would cause #UD faults when we try to execute the VMX instructions... */ ASMSetCR4(g_HvmR0.vmx.hostCR4 | X86_CR4_VMXE); } /* Enter VMX Root Mode */ rc = VMXEnable(HCPhysScratchPage); if (RT_SUCCESS(rc)) { g_HvmR0.vmx.fSupported = true; VMXDisable(); /* * Check for the VMX-Preemption Timer and adjust for the * "VMX-Preemption * Timer Does Not Count Down at the Rate Specified" erratum. */ if ( g_HvmR0.vmx.msr.vmx_pin_ctls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER) { g_HvmR0.vmx.fUsePreemptTimer = true; g_HvmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HvmR0.vmx.msr.vmx_misc); if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum()) g_HvmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */ } } else { /* * KVM leaves the CPU in VMX root mode. Not only is this not allowed, * it will crash the host when we enter raw mode, because: * * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify * this bit), and * (b) turning off paging causes a #GP (unavoidable when switching * from long to 32 bits mode or 32 bits to PAE). * * They should fix their code, but until they do we simply refuse to run. */ g_HvmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE; } /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set if it wasn't so before (some software could incorrectly think it's in VMX mode). */ ASMSetCR4(g_HvmR0.vmx.hostCR4); ASMSetFlags(fFlags); RTR0MemObjFree(hScatchMemObj, false); } } else { AssertFailed(); /* can't hit this case anymore */ g_HvmR0.lLastError = VERR_VMX_ILLEGAL_FEATURE_CONTROL_MSR; } /* * Install the VT-x methods. */ if (g_HvmR0.vmx.fSupported) { g_HvmR0.pfnEnterSession = VMXR0Enter; g_HvmR0.pfnLeaveSession = VMXR0Leave; g_HvmR0.pfnSaveHostState = VMXR0SaveHostState; g_HvmR0.pfnLoadGuestState = VMXR0LoadGuestState; g_HvmR0.pfnRunGuestCode = VMXR0RunGuestCode; g_HvmR0.pfnEnableCpu = VMXR0EnableCpu; g_HvmR0.pfnDisableCpu = VMXR0DisableCpu; g_HvmR0.pfnInitVM = VMXR0InitVM; g_HvmR0.pfnTermVM = VMXR0TermVM; g_HvmR0.pfnSetupVM = VMXR0SetupVM; } } #ifdef LOG_ENABLED else SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HvmR0.lLastError); #endif } else g_HvmR0.lLastError = VERR_VMX_NO_VMX; return VINF_SUCCESS; } /** * AMD specific initialization code. */ static void hmR0InitAmd(uint32_t u32FeaturesEDX) { /* * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR) * We also assume all SVM-enabled CPUs support fxsave/fxrstor. */ if ( (g_HvmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM) && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR) && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR) ) { g_HvmR0.pfnEnterSession = SVMR0Enter; g_HvmR0.pfnLeaveSession = SVMR0Leave; g_HvmR0.pfnSaveHostState = SVMR0SaveHostState; g_HvmR0.pfnLoadGuestState = SVMR0LoadGuestState; g_HvmR0.pfnRunGuestCode = SVMR0RunGuestCode; g_HvmR0.pfnEnableCpu = SVMR0EnableCpu; g_HvmR0.pfnDisableCpu = SVMR0DisableCpu; g_HvmR0.pfnInitVM = SVMR0InitVM; g_HvmR0.pfnTermVM = SVMR0TermVM; g_HvmR0.pfnSetupVM = SVMR0SetupVM; /* Query AMD features. */ uint32_t u32Dummy; ASMCpuId(0x8000000A, &g_HvmR0.svm.u32Rev, &g_HvmR0.uMaxASID, &u32Dummy, &g_HvmR0.svm.u32Features); /* * We need to check if AMD-V has been properly initialized on all CPUs. * Some BIOSes might do a poor job. */ HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); int rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL); AssertRC(rc); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); #ifndef DEBUG_bird AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE, ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc)); #endif if (RT_SUCCESS(rc)) { /* Read the HWCR msr for diagnostics. */ g_HvmR0.svm.msrHWCR = ASMRdMsr(MSR_K8_HWCR); g_HvmR0.svm.fSupported = true; } else g_HvmR0.lLastError = rc; } else g_HvmR0.lLastError = VERR_SVM_NO_SVM; } /** * Does global Ring-0 HM initialization (at module init). * * @returns VBox status code. */ VMMR0DECL(int) HWACCMR0Init(void) { /* * Initialize the globals. */ g_HvmR0.fEnabled = false; static RTONCE s_OnceInit = RTONCE_INITIALIZER; g_HvmR0.EnableAllCpusOnce = s_OnceInit; for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++) g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ; /* Fill in all callbacks with placeholders. */ g_HvmR0.pfnEnterSession = hmR0DummyEnter; g_HvmR0.pfnLeaveSession = hmR0DummyLeave; g_HvmR0.pfnSaveHostState = hmR0DummySaveHostState; g_HvmR0.pfnLoadGuestState = hmR0DummyLoadGuestState; g_HvmR0.pfnRunGuestCode = hmR0DummyRunGuestCode; g_HvmR0.pfnEnableCpu = hmR0DummyEnableCpu; g_HvmR0.pfnDisableCpu = hmR0DummyDisableCpu; g_HvmR0.pfnInitVM = hmR0DummyInitVM; g_HvmR0.pfnTermVM = hmR0DummyTermVM; g_HvmR0.pfnSetupVM = hmR0DummySetupVM; /* Default is global VT-x/AMD-V init */ g_HvmR0.fGlobalInit = true; /* * Make sure aCpuInfo is big enough for all the CPUs on this system. */ if (RTMpGetArraySize() > RT_ELEMENTS(g_HvmR0.aCpuInfo)) { LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HvmR0.aCpuInfo))); return VERR_TOO_MANY_CPUS; } /* * Check for VT-x and AMD-V capabilities */ int rc; if (ASMHasCpuId()) { uint32_t u32FeaturesECX, u32FeaturesEDX; uint32_t u32VendorEBX, u32VendorECX, u32VendorEDX; uint32_t u32Dummy; /* Standard features. */ ASMCpuId(0, &u32Dummy, &u32VendorEBX, &u32VendorECX, &u32VendorEDX); ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX); /* Query AMD features. */ ASMCpuId(0x80000001, &u32Dummy, &u32Dummy, &g_HvmR0.cpuid.u32AMDFeatureECX, &g_HvmR0.cpuid.u32AMDFeatureEDX); /* Go to CPU specific initialization code. */ if ( u32VendorEBX == X86_CPUID_VENDOR_INTEL_EBX && u32VendorECX == X86_CPUID_VENDOR_INTEL_ECX && u32VendorEDX == X86_CPUID_VENDOR_INTEL_EDX) { rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX); if (RT_FAILURE(rc)) return rc; } else if ( u32VendorEBX == X86_CPUID_VENDOR_AMD_EBX && u32VendorECX == X86_CPUID_VENDOR_AMD_ECX && u32VendorEDX == X86_CPUID_VENDOR_AMD_EDX) hmR0InitAmd(u32FeaturesEDX); else g_HvmR0.lLastError = VERR_HWACCM_UNKNOWN_CPU; } else g_HvmR0.lLastError = VERR_HWACCM_NO_CPUID; /* * Register notification callbacks that we can use to disable/enable CPUs * when brought offline/online or suspending/resuming. */ if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx) { rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL); AssertRC(rc); rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL); AssertRC(rc); } /* We return success here because module init shall not fail if HM fails to initialize. */ return VINF_SUCCESS; } /** * Does global Ring-0 HM termination (at module termination). * * @returns VBox status code. */ VMMR0DECL(int) HWACCMR0Term(void) { int rc; if ( g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx) { /* * Simple if the host OS manages VT-x. */ Assert(g_HvmR0.fGlobalInit); rc = SUPR0EnableVTx(false /* fEnable */); for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++) { g_HvmR0.aCpuInfo[iCpu].fConfigured = false; Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ); } } else { Assert(!g_HvmR0.vmx.fUsingSUPR0EnableVTx); if (!g_HvmR0.vmx.fUsingSUPR0EnableVTx) { /* Doesn't really matter if this fails. */ rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc); rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc); } else rc = VINF_SUCCESS; /* * Disable VT-x/AMD-V on all CPUs if we enabled it before. */ if (g_HvmR0.fGlobalInit) { HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) { rc = hmR0FirstRcGetStatus(&FirstRc); AssertMsgRC(rc, ("%u: %Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc)); } } /* * Free the per-cpu pages used for VT-x and AMD-V. */ for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++) { if (g_HvmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ) { RTR0MemObjFree(g_HvmR0.aCpuInfo[i].hMemObj, false); g_HvmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ; } } } return rc; } /** * Worker function used by hmR0PowerCallback and HWACCMR0Init to initalize * VT-x on a CPU. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Pointer to the first RC structure. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1; Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day) NOREF(pvUser2); /* * Both the LOCK and VMXON bit must be set; otherwise VMXON will generate a #GP. * Once the lock bit is set, this MSR can no longer be modified. */ uint64_t fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL); if ( !(fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) || ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) == MSR_IA32_FEATURE_CONTROL_VMXON ) /* Some BIOSes forget to set the locked bit. */ ) { /* MSR is not yet locked; we can change it ourselves here */ ASMWrMsr(MSR_IA32_FEATURE_CONTROL, g_HvmR0.vmx.msr.feature_ctrl | MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK); fFC = ASMRdMsr(MSR_IA32_FEATURE_CONTROL); } int rc; if ( (fFC & (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) == (MSR_IA32_FEATURE_CONTROL_VMXON | MSR_IA32_FEATURE_CONTROL_LOCK)) rc = VINF_SUCCESS; else rc = VERR_VMX_MSR_LOCKED_OR_DISABLED; hmR0FirstRcSetStatus(pFirstRc, rc); } /** * Worker function used by hmR0PowerCallback and HWACCMR0Init to initalize * VT-x / AMD-V on a CPU. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 Pointer to the first RC structure. * @param pvUser2 Ignored. */ static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1; Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day) NOREF(pvUser2); /* Check if SVM is disabled. */ int rc; uint64_t fVmCr = ASMRdMsr(MSR_K8_VM_CR); if (!(fVmCr & MSR_K8_VM_CR_SVM_DISABLE)) { /* Turn on SVM in the EFER MSR. */ uint64_t fEfer = ASMRdMsr(MSR_K6_EFER); if (fEfer & MSR_K6_EFER_SVME) rc = VERR_SVM_IN_USE; else { ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME); /* Paranoia. */ fEfer = ASMRdMsr(MSR_K6_EFER); if (fEfer & MSR_K6_EFER_SVME) { /* Restore previous value. */ ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME); rc = VINF_SUCCESS; } else rc = VERR_SVM_ILLEGAL_EFER_MSR; } } else rc = VERR_SVM_DISABLED; hmR0FirstRcSetStatus(pFirstRc, rc); } /** * Disable VT-x or AMD-V on the current CPU * * @returns VBox status code. * @param pVM VM handle (can be 0!) * @param idCpu The identifier for the CPU the function is called on. */ static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu) { PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu]; Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx); Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day) Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo)); Assert(!pCpu->fConfigured); Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false); pCpu->idCpu = idCpu; pCpu->uCurrentASID = 0; /* we'll aways increment this the first time (host uses ASID 0) */ pCpu->cTLBFlushes = 0; /* Should never happen */ AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1); void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj); RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); int rc = g_HvmR0.pfnEnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage); AssertRC(rc); if (RT_SUCCESS(rc)) pCpu->fConfigured = true; return rc; } /** * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that * is to be called on the target cpus. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 The 1st user argument. * @param pvUser2 The 2nd user argument. */ static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PVM pVM = (PVM)pvUser1; /* can be NULL! */ PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; AssertReturnVoid(g_HvmR0.fGlobalInit); hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu)); } /** * RTOnce callback employed by HWACCMR0EnableAllCpus. * * @returns VBox status code * @param pvUser The VM handle. * @param pvUserIgnore NULL, ignored. */ static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser, void *pvUserIgnore) { PVM pVM = (PVM)pvUser; NOREF(pvUserIgnore); /* * Indicate that we've initialized. * * Note! There is a potential race between this function and the suspend * notification. Kind of unlikely though, so ignored for now. */ AssertReturn(!g_HvmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE); ASMAtomicWriteBool(&g_HvmR0.fEnabled, true); /* * The global init variable is set by the first VM. */ g_HvmR0.fGlobalInit = pVM->hwaccm.s.fGlobalInit; int rc; if ( g_HvmR0.vmx.fSupported && g_HvmR0.vmx.fUsingSUPR0EnableVTx) { /* * Global VT-x initialization API (only darwin for now). */ rc = SUPR0EnableVTx(true /* fEnable */); if (RT_SUCCESS(rc)) { for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo); iCpu++) { g_HvmR0.aCpuInfo[iCpu].fConfigured = true; Assert(g_HvmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ); } /* If the host provides a VT-x init API, then we'll rely on that for global init. */ g_HvmR0.fGlobalInit = pVM->hwaccm.s.fGlobalInit = true; } else AssertMsgFailed(("HWACCMR0EnableAllCpus/SUPR0EnableVTx: rc=%Rrc\n", rc)); } else { /* * We're doing the job ourselves. */ /* Allocate one page per cpu for the global vt-x and amd-v pages */ for (unsigned i = 0; i < RT_ELEMENTS(g_HvmR0.aCpuInfo); i++) { Assert(g_HvmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ); if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i))) { rc = RTR0MemObjAllocCont(&g_HvmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, true /* executable R0 mapping */); AssertLogRelRCReturn(rc, rc); void *pvR0 = RTR0MemObjAddress(g_HvmR0.aCpuInfo[i].hMemObj); Assert(pvR0); ASMMemZeroPage(pvR0); } g_HvmR0.aCpuInfo[i].fConfigured = false; } if (g_HvmR0.fGlobalInit) { /* First time, so initialize each cpu/core. */ HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); AssertMsgRC(rc, ("HWACCMR0EnableAllCpus failed for cpu %d with rc=%d\n", hmR0FirstRcGetCpuId(&FirstRc), rc)); } else rc = VINF_SUCCESS; } return rc; } /** * Sets up HWACCM on all cpus. * * @returns VBox status code. * @param pVM The VM handle. */ VMMR0DECL(int) HWACCMR0EnableAllCpus(PVM pVM) { /* Make sure we don't touch hwaccm after we've disabled hwaccm in preparation of a suspend. */ if (ASMAtomicReadBool(&g_HvmR0.fSuspended)) return VERR_HWACCM_SUSPEND_PENDING; return RTOnce(&g_HvmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM, NULL); } /** * Disable VT-x or AMD-V on the current CPU * * @returns VBox status code. * @param idCpu The identifier for the CPU the function is called on. */ static int hmR0DisableCpu(RTCPUID idCpu) { PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu]; Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx); Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /// @todo fix idCpu == index assumption (rainy day) Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo)); Assert(!g_HvmR0.fGlobalInit || ASMAtomicReadBool(&pCpu->fInUse) == false); Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ); if (pCpu->hMemObj == NIL_RTR0MEMOBJ) return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */; int rc; if (pCpu->fConfigured) { void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj); RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); if (idCpu == RTMpCpuId()) { rc = g_HvmR0.pfnDisableCpu(pCpu, pvCpuPage, HCPhysCpuPage); AssertRC(rc); } else { pCpu->fIgnoreAMDVInUseError = true; rc = VINF_SUCCESS; } pCpu->fConfigured = false; } else rc = VINF_SUCCESS; /* nothing to do */ pCpu->uCurrentASID = 0; return rc; } /** * Worker function passed to RTMpOnAll, RTMpOnOthers and RTMpOnSpecific that * is to be called on the target cpus. * * @param idCpu The identifier for the CPU the function is called on. * @param pvUser1 The 1st user argument. * @param pvUser2 The 2nd user argument. */ static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2) { PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1); AssertReturnVoid(g_HvmR0.fGlobalInit); hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu)); } /** * Callback function invoked when a cpu goes online or offline. * * @param enmEvent The Mp event. * @param idCpu The identifier for the CPU the function is called on. * @param pvData Opaque data (PVM pointer). */ static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData) { NOREF(pvData); /* * We only care about uninitializing a CPU that is going offline. When a * CPU comes online, the initialization is done lazily in HWACCMR0Enter(). */ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); switch (enmEvent) { case RTMPEVENT_OFFLINE: { int rc = hmR0DisableCpu(idCpu); AssertRC(rc); break; } default: break; } } /** * Called whenever a system power state change occurs. * * @param enmEvent Power event * @param pvUser User argument */ static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser) { NOREF(pvUser); Assert(!g_HvmR0.vmx.fSupported || !g_HvmR0.vmx.fUsingSUPR0EnableVTx); #ifdef LOG_ENABLED if (enmEvent == RTPOWEREVENT_SUSPEND) SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n"); else SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n"); #endif if (enmEvent == RTPOWEREVENT_SUSPEND) ASMAtomicWriteBool(&g_HvmR0.fSuspended, true); if (g_HvmR0.fEnabled) { int rc; HMR0FIRSTRC FirstRc; hmR0FirstRcInit(&FirstRc); if (enmEvent == RTPOWEREVENT_SUSPEND) { if (g_HvmR0.fGlobalInit) { /* Turn off VT-x or AMD-V on all CPUs. */ rc = RTMpOnAll(hmR0DisableCpuCallback, NULL, &FirstRc); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); } /* else nothing to do here for the local init case */ } else { /* Reinit the CPUs from scratch as the suspend state might have messed with the MSRs. (lousy BIOSes as usual) */ if (g_HvmR0.vmx.fSupported) rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL); else rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) rc = hmR0FirstRcGetStatus(&FirstRc); #ifdef LOG_ENABLED if (RT_FAILURE(rc)) SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc); #endif if (g_HvmR0.fGlobalInit) { /* Turn VT-x or AMD-V back on on all CPUs. */ rc = RTMpOnAll(hmR0EnableCpuCallback, NULL, &FirstRc /* output ignored */); Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED); } /* else nothing to do here for the local init case */ } } if (enmEvent == RTPOWEREVENT_RESUME) ASMAtomicWriteBool(&g_HvmR0.fSuspended, false); } /** * Does Ring-0 per VM HM initialization. * * This will copy HM global into the VM structure and call the CPU specific * init routine which will allocate resources for each virtual CPU and such. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR0DECL(int) HWACCMR0InitVM(PVM pVM) { AssertReturn(pVM, VERR_INVALID_PARAMETER); #ifdef LOG_ENABLED SUPR0Printf("HWACCMR0InitVM: %p\n", pVM); #endif /* Make sure we don't touch hwaccm after we've disabled hwaccm in preparation of a suspend. */ if (ASMAtomicReadBool(&g_HvmR0.fSuspended)) return VERR_HWACCM_SUSPEND_PENDING; /* * Copy globals to the VM structure. */ pVM->hwaccm.s.vmx.fSupported = g_HvmR0.vmx.fSupported; pVM->hwaccm.s.svm.fSupported = g_HvmR0.svm.fSupported; pVM->hwaccm.s.vmx.fUsePreemptTimer = g_HvmR0.vmx.fUsePreemptTimer; pVM->hwaccm.s.vmx.cPreemptTimerShift = g_HvmR0.vmx.cPreemptTimerShift; pVM->hwaccm.s.vmx.msr.feature_ctrl = g_HvmR0.vmx.msr.feature_ctrl; pVM->hwaccm.s.vmx.hostCR4 = g_HvmR0.vmx.hostCR4; pVM->hwaccm.s.vmx.hostEFER = g_HvmR0.vmx.hostEFER; pVM->hwaccm.s.vmx.msr.vmx_basic_info = g_HvmR0.vmx.msr.vmx_basic_info; pVM->hwaccm.s.vmx.msr.vmx_pin_ctls = g_HvmR0.vmx.msr.vmx_pin_ctls; pVM->hwaccm.s.vmx.msr.vmx_proc_ctls = g_HvmR0.vmx.msr.vmx_proc_ctls; pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2 = g_HvmR0.vmx.msr.vmx_proc_ctls2; pVM->hwaccm.s.vmx.msr.vmx_exit = g_HvmR0.vmx.msr.vmx_exit; pVM->hwaccm.s.vmx.msr.vmx_entry = g_HvmR0.vmx.msr.vmx_entry; pVM->hwaccm.s.vmx.msr.vmx_misc = g_HvmR0.vmx.msr.vmx_misc; pVM->hwaccm.s.vmx.msr.vmx_cr0_fixed0 = g_HvmR0.vmx.msr.vmx_cr0_fixed0; pVM->hwaccm.s.vmx.msr.vmx_cr0_fixed1 = g_HvmR0.vmx.msr.vmx_cr0_fixed1; pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0 = g_HvmR0.vmx.msr.vmx_cr4_fixed0; pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed1 = g_HvmR0.vmx.msr.vmx_cr4_fixed1; pVM->hwaccm.s.vmx.msr.vmx_vmcs_enum = g_HvmR0.vmx.msr.vmx_vmcs_enum; pVM->hwaccm.s.vmx.msr.vmx_eptcaps = g_HvmR0.vmx.msr.vmx_eptcaps; pVM->hwaccm.s.svm.msrHWCR = g_HvmR0.svm.msrHWCR; pVM->hwaccm.s.svm.u32Rev = g_HvmR0.svm.u32Rev; pVM->hwaccm.s.svm.u32Features = g_HvmR0.svm.u32Features; pVM->hwaccm.s.cpuid.u32AMDFeatureECX = g_HvmR0.cpuid.u32AMDFeatureECX; pVM->hwaccm.s.cpuid.u32AMDFeatureEDX = g_HvmR0.cpuid.u32AMDFeatureEDX; pVM->hwaccm.s.lLastError = g_HvmR0.lLastError; pVM->hwaccm.s.uMaxASID = g_HvmR0.uMaxASID; if (!pVM->hwaccm.s.cMaxResumeLoops) /* allow ring-3 overrides */ { pVM->hwaccm.s.cMaxResumeLoops = 1024; #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION if (RTThreadPreemptIsPendingTrusty()) pVM->hwaccm.s.cMaxResumeLoops = 8192; #endif } /* * Initialize some per CPU fields. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID; /* Invalidate the last cpu we were running on. */ pVCpu->hwaccm.s.idLastCpu = NIL_RTCPUID; /* we'll aways increment this the first time (host uses ASID 0) */ pVCpu->hwaccm.s.uCurrentASID = 0; } /* * Call the hardware specific initialization method. * * Note! The fInUse handling here isn't correct as we can we can be * rescheduled to a different cpu, but the fInUse case is mostly for * debugging... Disabling preemption isn't an option when allocating * memory, so we'll let it slip for now. */ RTCCUINTREG fFlags = ASMIntDisableFlags(); PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu(); ASMAtomicWriteBool(&pCpu->fInUse, true); ASMSetFlags(fFlags); int rc = g_HvmR0.pfnInitVM(pVM); ASMAtomicWriteBool(&pCpu->fInUse, false); return rc; } /** * Does Ring-0 per VM HM termination. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR0DECL(int) HWACCMR0TermVM(PVM pVM) { Log(("HWACCMR0TermVM: %p\n", pVM)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* Make sure we don't touch hm after we've disabled hwaccm in preparation of a suspend. */ /** @todo r=bird: This cannot be right, the termination functions are * just freeing memory and resetting pVM/pVCpu members... * ==> memory leak. */ AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING); /* * Call the hardware specific method. * * Note! Not correct as we can be rescheduled to a different cpu, but the * fInUse case is mostly for debugging. */ RTCCUINTREG fFlags = ASMIntDisableFlags(); PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu(); ASMAtomicWriteBool(&pCpu->fInUse, true); ASMSetFlags(fFlags); int rc = g_HvmR0.pfnTermVM(pVM); ASMAtomicWriteBool(&pCpu->fInUse, false); return rc; } /** * Sets up a VT-x or AMD-V session. * * This is mostly about setting up the hardware VM state. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR0DECL(int) HWACCMR0SetupVM(PVM pVM) { Log(("HWACCMR0SetupVM: %p\n", pVM)); AssertReturn(pVM, VERR_INVALID_PARAMETER); /* Make sure we don't touch hwaccm after we've disabled hwaccm in preparation of a suspend. */ AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING); /* * Call the hardware specific setup VM method. This requires the CPU to be * enabled for AMD-V/VT-x and preemption to be prevented. */ RTCCUINTREG fFlags = ASMIntDisableFlags(); RTCPUID idCpu = RTMpCpuId(); PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu]; ASMAtomicWriteBool(&pCpu->fInUse, true); /* On first entry we'll sync everything. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->aCpus[i].hwaccm.s.fContextUseFlags = HWACCM_CHANGED_ALL; /* Enable VT-x or AMD-V if local init is required. */ int rc; if (!g_HvmR0.fGlobalInit) { rc = hmR0EnableCpu(pVM, idCpu); AssertReturnStmt(RT_SUCCESS_NP(rc), ASMSetFlags(fFlags), rc); } /* Setup VT-x or AMD-V. */ rc = g_HvmR0.pfnSetupVM(pVM); /* Disable VT-x or AMD-V if local init was done before. */ if (!g_HvmR0.fGlobalInit) { int rc2 = hmR0DisableCpu(idCpu); AssertRC(rc2); } ASMAtomicWriteBool(&pCpu->fInUse, false); ASMSetFlags(fFlags); return rc; } /** * Enters the VT-x or AMD-V session * * @returns VBox status code. * @param pVM The VM to operate on. * @param pVCpu VMCPU handle. * * @remarks This is called with preemption disabled. */ VMMR0DECL(int) HWACCMR0Enter(PVM pVM, PVMCPU pVCpu) { RTCPUID idCpu = RTMpCpuId(); PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu]; /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */ AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING); ASMAtomicWriteBool(&pCpu->fInUse, true); AssertMsg(pVCpu->hwaccm.s.idEnteredCpu == NIL_RTCPUID, ("%d", (int)pVCpu->hwaccm.s.idEnteredCpu)); pVCpu->hwaccm.s.idEnteredCpu = idCpu; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); /* Always load the guest's FPU/XMM state on-demand. */ CPUMDeactivateGuestFPUState(pVCpu); /* Always load the guest's debug state on-demand. */ CPUMDeactivateGuestDebugState(pVCpu); /* Always reload the host context and the guest's CR0 register. (!!!!) */ pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0 | HWACCM_CHANGED_HOST_CONTEXT; /* Setup the register and mask according to the current execution mode. */ if (pCtx->msrEFER & MSR_K6_EFER_LMA) pVM->hwaccm.s.u64RegisterMask = UINT64_C(0xFFFFFFFFFFFFFFFF); else pVM->hwaccm.s.u64RegisterMask = UINT64_C(0xFFFFFFFF); /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */ int rc; if ( !pCpu->fConfigured || !g_HvmR0.fGlobalInit) { rc = hmR0EnableCpu(pVM, idCpu); AssertRCReturn(rc, rc); } #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu); #endif rc = g_HvmR0.pfnEnterSession(pVM, pVCpu, pCpu); AssertRC(rc); /* We must save the host context here (VT-x) as we might be rescheduled on a different cpu after a long jump back to ring 3. */ rc |= g_HvmR0.pfnSaveHostState(pVM, pVCpu); AssertRC(rc); rc |= g_HvmR0.pfnLoadGuestState(pVM, pVCpu, pCtx); AssertRC(rc); #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE if (fStartedSet) PGMRZDynMapReleaseAutoSet(pVCpu); #endif /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */ if (RT_FAILURE(rc)) pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID; return rc; } /** * Leaves the VT-x or AMD-V session * * @returns VBox status code. * @param pVM The VM to operate on. * @param pVCpu VMCPU handle. * * @remarks Called with preemption disabled just like HWACCMR0Enter, our * counterpart. */ VMMR0DECL(int) HWACCMR0Leave(PVM pVM, PVMCPU pVCpu) { int rc; RTCPUID idCpu = RTMpCpuId(); PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[idCpu]; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); /** @todo r=bird: This can't be entirely right? */ AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING); /* * Save the guest FPU and XMM state if necessary. * * Note! It's rather tricky with longjmps done by e.g. Log statements or * the page fault handler. We must restore the host FPU here to make * absolutely sure we don't leave the guest FPU state active or trash * somebody else's FPU state. */ if (CPUMIsGuestFPUStateActive(pVCpu)) { Log2(("CPUMR0SaveGuestFPU\n")); CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx); pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0; Assert(!CPUMIsGuestFPUStateActive(pVCpu)); } rc = g_HvmR0.pfnLeaveSession(pVM, pVCpu, pCtx); /* We don't pass on invlpg information to the recompiler for nested paging guests, so we must make sure the recompiler flushes its TLB the next time it executes code. */ if ( pVM->hwaccm.s.fNestedPaging && CPUMIsGuestInPagedProtectedModeEx(pCtx)) CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH); /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */ AssertMsgStmt( pVCpu->hwaccm.s.idEnteredCpu == idCpu || RT_FAILURE_NP(rc), ("Owner is %u, I'm %u", pVCpu->hwaccm.s.idEnteredCpu, idCpu), rc = VERR_HM_WRONG_CPU_1); pVCpu->hwaccm.s.idEnteredCpu = NIL_RTCPUID; /* * Disable VT-x or AMD-V if local init was done before. */ if (!g_HvmR0.fGlobalInit) { rc = hmR0DisableCpu(idCpu); AssertRC(rc); /* Reset these to force a TLB flush for the next entry. (-> EXPENSIVE) */ pVCpu->hwaccm.s.idLastCpu = NIL_RTCPUID; pVCpu->hwaccm.s.uCurrentASID = 0; VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); } ASMAtomicWriteBool(&pCpu->fInUse, false); return rc; } /** * Runs guest code in a hardware accelerated VM. * * @returns VBox status code. * @param pVM The VM to operate on. * @param pVCpu VMCPUD id. * * @remarks Called with preemption disabled and after first having called * HWACCMR0Enter. */ VMMR0DECL(int) HWACCMR0RunGuestCode(PVM pVM, PVMCPU pVCpu) { #ifdef VBOX_STRICT PHMGLOBLCPUINFO pCpu = &g_HvmR0.aCpuInfo[RTMpCpuId()]; Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)); Assert(pCpu->fConfigured); AssertReturn(!ASMAtomicReadBool(&g_HvmR0.fSuspended), VERR_HWACCM_SUSPEND_PENDING); Assert(ASMAtomicReadBool(&pCpu->fInUse) == true); #endif #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE PGMRZDynMapStartAutoSet(pVCpu); #endif int rc = g_HvmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu)); #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE PGMRZDynMapReleaseAutoSet(pVCpu); #endif return rc; } #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) /** * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only) * * @returns VBox status code. * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pCtx CPU context */ VMMR0DECL(int) HWACCMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFpu64SwitchBack); if (pVM->hwaccm.s.vmx.fSupported) return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestFPU64, 0, NULL); return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestFPU64, 0, NULL); } /** * Save guest debug state (64 bits guest mode & 32 bits host only) * * @returns VBox status code. * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pCtx CPU context */ VMMR0DECL(int) HWACCMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDebug64SwitchBack); if (pVM->hwaccm.s.vmx.fSupported) return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestDebug64, 0, NULL); return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSaveGuestDebug64, 0, NULL); } /** * Test the 32->64 bits switcher * * @returns VBox status code. * @param pVM VM handle. */ VMMR0DECL(int) HWACCMR0TestSwitcher3264(PVM pVM) { PVMCPU pVCpu = &pVM->aCpus[0]; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); uint32_t aParam[5] = {0, 1, 2, 3, 4}; int rc; STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z); if (pVM->hwaccm.s.vmx.fSupported) rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnTest64, 5, &aParam[0]); else rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnTest64, 5, &aParam[0]); STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z); return rc; } #endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */ /** * Returns suspend status of the host * * @returns Suspend pending or not */ VMMR0DECL(bool) HWACCMR0SuspendPending(void) { return ASMAtomicReadBool(&g_HvmR0.fSuspended); } /** * Returns the cpu structure for the current cpu. * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!). * * @returns cpu structure pointer */ VMMR0DECL(PHMGLOBLCPUINFO) HWACCMR0GetCurrentCpu(void) { RTCPUID idCpu = RTMpCpuId(); Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo)); return &g_HvmR0.aCpuInfo[idCpu]; } /** * Returns the cpu structure for the current cpu. * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!). * * @returns cpu structure pointer * @param idCpu id of the VCPU */ VMMR0DECL(PHMGLOBLCPUINFO) HWACCMR0GetCurrentCpuEx(RTCPUID idCpu) { Assert(idCpu < RT_ELEMENTS(g_HvmR0.aCpuInfo)); return &g_HvmR0.aCpuInfo[idCpu]; } /** * Save a pending IO read. * * @param pVCpu The VMCPU to operate on. * @param GCPtrRip Address of IO instruction * @param GCPtrRipNext Address of the next instruction * @param uPort Port address * @param uAndVal And mask for saving the result in eax * @param cbSize Read size */ VMMR0DECL(void) HWACCMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext, unsigned uPort, unsigned uAndVal, unsigned cbSize) { pVCpu->hwaccm.s.PendingIO.enmType = HWACCMPENDINGIO_PORT_READ; pVCpu->hwaccm.s.PendingIO.GCPtrRip = GCPtrRip; pVCpu->hwaccm.s.PendingIO.GCPtrRipNext = GCPtrRipNext; pVCpu->hwaccm.s.PendingIO.s.Port.uPort = uPort; pVCpu->hwaccm.s.PendingIO.s.Port.uAndVal = uAndVal; pVCpu->hwaccm.s.PendingIO.s.Port.cbSize = cbSize; return; } /** * Save a pending IO write. * * @param pVCpu The VMCPU to operate on. * @param GCPtrRIP Address of IO instruction * @param uPort Port address * @param uAndVal And mask for fetching the result from eax * @param cbSize Read size */ VMMR0DECL(void) HWACCMR0SavePendingIOPortWrite(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext, unsigned uPort, unsigned uAndVal, unsigned cbSize) { pVCpu->hwaccm.s.PendingIO.enmType = HWACCMPENDINGIO_PORT_WRITE; pVCpu->hwaccm.s.PendingIO.GCPtrRip = GCPtrRip; pVCpu->hwaccm.s.PendingIO.GCPtrRipNext = GCPtrRipNext; pVCpu->hwaccm.s.PendingIO.s.Port.uPort = uPort; pVCpu->hwaccm.s.PendingIO.s.Port.uAndVal = uAndVal; pVCpu->hwaccm.s.PendingIO.s.Port.cbSize = cbSize; return; } /** * Raw-mode switcher hook - disable VT-x if it's active *and* the current * switcher turns off paging. * * @returns VBox status code. * @param pVM VM handle. * @param pfVTxDisabled VT-x was disabled or not (out). */ VMMR0DECL(int) HWACCMR0EnterSwitcher(PVM pVM, bool *pfVTxDisabled) { Assert(!(ASMGetFlags() & X86_EFL_IF) || !RTThreadPreemptIsEnabled(NIL_RTTHREAD)); *pfVTxDisabled = false; if ( !g_HvmR0.fEnabled || !g_HvmR0.vmx.fSupported /* no such issues with AMD-V */ || !g_HvmR0.fGlobalInit /* Local init implies the CPU is currently not in VMX root mode. */) return VINF_SUCCESS; /* nothing to do */ switch (VMMGetSwitcher(pVM)) { case VMMSWITCHER_32_TO_32: case VMMSWITCHER_PAE_TO_PAE: return VINF_SUCCESS; /* safe switchers as they don't turn off paging */ case VMMSWITCHER_32_TO_PAE: case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */ case VMMSWITCHER_AMD64_TO_32: case VMMSWITCHER_AMD64_TO_PAE: break; /* unsafe switchers */ default: AssertFailedReturn(VERR_HM_WRONG_SWITCHER); } PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu(); AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2); *pfVTxDisabled = true; void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj); RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); return VMXR0DisableCpu(pCpu, pvCpuPage, HCPhysCpuPage); } /** * Raw-mode switcher hook - re-enable VT-x if was active *and* the current * switcher turned off paging. * * @returns VBox status code. * @param pVM VM handle. * @param fVTxDisabled VT-x was disabled or not. */ VMMR0DECL(int) HWACCMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled) { Assert(!(ASMGetFlags() & X86_EFL_IF)); if (!fVTxDisabled) return VINF_SUCCESS; /* nothing to do */ Assert(g_HvmR0.fEnabled); Assert(g_HvmR0.vmx.fSupported); Assert(g_HvmR0.fGlobalInit); PHMGLOBLCPUINFO pCpu = HWACCMR0GetCurrentCpu(); AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ, VERR_HM_IPE_2); void *pvCpuPage = RTR0MemObjAddress(pCpu->hMemObj); RTHCPHYS HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0); return VMXR0EnableCpu(pCpu, pVM, pvCpuPage, HCPhysCpuPage); } #ifdef VBOX_STRICT /** * Dumps a descriptor. * * @param pDesc Descriptor to dump. * @param Sel Selector number. * @param pszMsg Message to prepend the log entry with. */ VMMR0DECL(void) HWACCMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg) { /* * Make variable description string. */ static struct { unsigned cch; const char *psz; } const s_aTypes[32] = { # define STRENTRY(str) { sizeof(str) - 1, str } /* system */ # if HC_ARCH_BITS == 64 STRENTRY("Reserved0 "), /* 0x00 */ STRENTRY("Reserved1 "), /* 0x01 */ STRENTRY("LDT "), /* 0x02 */ STRENTRY("Reserved3 "), /* 0x03 */ STRENTRY("Reserved4 "), /* 0x04 */ STRENTRY("Reserved5 "), /* 0x05 */ STRENTRY("Reserved6 "), /* 0x06 */ STRENTRY("Reserved7 "), /* 0x07 */ STRENTRY("Reserved8 "), /* 0x08 */ STRENTRY("TSS64Avail "), /* 0x09 */ STRENTRY("ReservedA "), /* 0x0a */ STRENTRY("TSS64Busy "), /* 0x0b */ STRENTRY("Call64 "), /* 0x0c */ STRENTRY("ReservedD "), /* 0x0d */ STRENTRY("Int64 "), /* 0x0e */ STRENTRY("Trap64 "), /* 0x0f */ # else STRENTRY("Reserved0 "), /* 0x00 */ STRENTRY("TSS16Avail "), /* 0x01 */ STRENTRY("LDT "), /* 0x02 */ STRENTRY("TSS16Busy "), /* 0x03 */ STRENTRY("Call16 "), /* 0x04 */ STRENTRY("Task "), /* 0x05 */ STRENTRY("Int16 "), /* 0x06 */ STRENTRY("Trap16 "), /* 0x07 */ STRENTRY("Reserved8 "), /* 0x08 */ STRENTRY("TSS32Avail "), /* 0x09 */ STRENTRY("ReservedA "), /* 0x0a */ STRENTRY("TSS32Busy "), /* 0x0b */ STRENTRY("Call32 "), /* 0x0c */ STRENTRY("ReservedD "), /* 0x0d */ STRENTRY("Int32 "), /* 0x0e */ STRENTRY("Trap32 "), /* 0x0f */ # endif /* non system */ STRENTRY("DataRO "), /* 0x10 */ STRENTRY("DataRO Accessed "), /* 0x11 */ STRENTRY("DataRW "), /* 0x12 */ STRENTRY("DataRW Accessed "), /* 0x13 */ STRENTRY("DataDownRO "), /* 0x14 */ STRENTRY("DataDownRO Accessed "), /* 0x15 */ STRENTRY("DataDownRW "), /* 0x16 */ STRENTRY("DataDownRW Accessed "), /* 0x17 */ STRENTRY("CodeEO "), /* 0x18 */ STRENTRY("CodeEO Accessed "), /* 0x19 */ STRENTRY("CodeER "), /* 0x1a */ STRENTRY("CodeER Accessed "), /* 0x1b */ STRENTRY("CodeConfEO "), /* 0x1c */ STRENTRY("CodeConfEO Accessed "), /* 0x1d */ STRENTRY("CodeConfER "), /* 0x1e */ STRENTRY("CodeConfER Accessed ") /* 0x1f */ # undef SYSENTRY }; # define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0) char szMsg[128]; char *psz = &szMsg[0]; unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type; memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch); psz += s_aTypes[i].cch; if (pDesc->Gen.u1Present) ADD_STR(psz, "Present "); else ADD_STR(psz, "Not-Present "); # if HC_ARCH_BITS == 64 if (pDesc->Gen.u1Long) ADD_STR(psz, "64-bit "); else ADD_STR(psz, "Comp "); # else if (pDesc->Gen.u1Granularity) ADD_STR(psz, "Page "); if (pDesc->Gen.u1DefBig) ADD_STR(psz, "32-bit "); else ADD_STR(psz, "16-bit "); # endif # undef ADD_STR *psz = '\0'; /* * Limit and Base and format the output. */ uint32_t u32Limit = X86DESC_LIMIT(*pDesc); if (pDesc->Gen.u1Granularity) u32Limit = u32Limit << PAGE_SHIFT | PAGE_OFFSET_MASK; # if HC_ARCH_BITS == 64 uint64_t u32Base = X86DESC64_BASE(*pDesc); Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg, Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg)); # else uint32_t u32Base = X86DESC_BASE(*pDesc); Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg, Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg)); # endif } /** * Formats a full register dump. * * @param pVM The VM to operate on. * @param pVCpu The VMCPU to operate on. * @param pCtx The context to format. */ VMMR0DECL(void) HWACCMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { NOREF(pVM); /* * Format the flags. */ static struct { const char *pszSet; const char *pszClear; uint32_t fFlag; } const s_aFlags[] = { { "vip",NULL, X86_EFL_VIP }, { "vif",NULL, X86_EFL_VIF }, { "ac", NULL, X86_EFL_AC }, { "vm", NULL, X86_EFL_VM }, { "rf", NULL, X86_EFL_RF }, { "nt", NULL, X86_EFL_NT }, { "ov", "nv", X86_EFL_OF }, { "dn", "up", X86_EFL_DF }, { "ei", "di", X86_EFL_IF }, { "tf", NULL, X86_EFL_TF }, { "nt", "pl", X86_EFL_SF }, { "nz", "zr", X86_EFL_ZF }, { "ac", "na", X86_EFL_AF }, { "po", "pe", X86_EFL_PF }, { "cy", "nc", X86_EFL_CF }, }; char szEFlags[80]; char *psz = szEFlags; uint32_t efl = pCtx->eflags.u32; for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++) { const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear; if (pszAdd) { strcpy(psz, pszAdd); psz += strlen(pszAdd); *psz++ = ' '; } } psz[-1] = '\0'; /* * Format the registers. */ if (CPUMIsGuestIn64BitCode(pVCpu, CPUMCTX2CORE(pCtx))) { Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n" "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n" "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n" "r14=%016RX64 r15=%016RX64\n" "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n" "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n" "es={%04x base=%016RX64 limit=%08x flags=%08x}\n" "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n" "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n" "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n" "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n" "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n" "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n" , pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi, pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13, pCtx->r14, pCtx->r15, pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(efl), 31, szEFlags, (RTSEL)pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, (RTSEL)pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, (RTSEL)pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, (RTSEL)pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, (RTSEL)pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, (RTSEL)pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4, pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3], pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7], pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp)); } else Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n" "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n" "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n" "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n" "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n" "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n" "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n" "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n" "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n" "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n" , pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi, pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), 31, szEFlags, (RTSEL)pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pCtx->dr[0], pCtx->dr[1], (RTSEL)pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pCtx->dr[2], pCtx->dr[3], (RTSEL)pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pCtx->dr[4], pCtx->dr[5], (RTSEL)pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pCtx->dr[6], pCtx->dr[7], (RTSEL)pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pCtx->cr0, pCtx->cr2, (RTSEL)pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pCtx->cr3, pCtx->cr4, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, efl, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp)); Log(("FPU:\n" "FCW=%04x FSW=%04x FTW=%02x\n" "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n" "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n" , pCtx->fpu.FCW, pCtx->fpu.FSW, pCtx->fpu.FTW, pCtx->fpu.FOP, pCtx->fpu.FPUIP, pCtx->fpu.CS, pCtx->fpu.Rsrvd1, pCtx->fpu.FPUDP, pCtx->fpu.DS, pCtx->fpu.Rsrvd2, pCtx->fpu.MXCSR, pCtx->fpu.MXCSR_MASK)); Log(("MSR:\n" "EFER =%016RX64\n" "PAT =%016RX64\n" "STAR =%016RX64\n" "CSTAR =%016RX64\n" "LSTAR =%016RX64\n" "SFMASK =%016RX64\n" "KERNELGSBASE =%016RX64\n", pCtx->msrEFER, pCtx->msrPAT, pCtx->msrSTAR, pCtx->msrCSTAR, pCtx->msrLSTAR, pCtx->msrSFMASK, pCtx->msrKERNELGSBASE)); } #endif /* VBOX_STRICT */