/* $Id: CPUMR3Db.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */ /** @file * CPUM - CPU database part. */ /* * Copyright (C) 2013-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include "CPUMInternal.h" #include #include #include #if !defined(RT_ARCH_ARM64) # include #endif #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** @def NULL_ALONE * For eliminating an unnecessary data dependency in standalone builds (for * VBoxSVC). */ /** @def ZERO_ALONE * For eliminating an unnecessary data size dependency in standalone builds (for * VBoxSVC). */ #ifndef CPUM_DB_STANDALONE # define NULL_ALONE(a_aTable) a_aTable # define ZERO_ALONE(a_cTable) a_cTable #else # define NULL_ALONE(a_aTable) NULL # define ZERO_ALONE(a_cTable) 0 #endif /** @name Short macros for the MSR range entries. * * These are rather cryptic, but this is to reduce the attack on the right * margin. * * @{ */ /** Alias one MSR onto another (a_uTarget). */ #define MAL(a_uMsr, a_szName, a_uTarget) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_MsrAlias, kCpumMsrWrFn_MsrAlias, 0, a_uTarget, 0, 0, a_szName) /** Functions handles everything. */ #define MFN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName) /** Functions handles everything, with GP mask. */ #define MFG(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, a_fWrGpMask, a_szName) /** Function handlers, read-only. */ #define MFO(a_uMsr, a_szName, a_enmRdFnSuff) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_ReadOnly, 0, 0, 0, UINT64_MAX, a_szName) /** Function handlers, ignore all writes. */ #define MFI(a_uMsr, a_szName, a_enmRdFnSuff) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_IgnoreWrite, 0, 0, UINT64_MAX, 0, a_szName) /** Function handlers, with value. */ #define MFV(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, 0, 0, a_szName) /** Function handlers, with write ignore mask. */ #define MFW(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_fWrIgnMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, a_fWrIgnMask, 0, a_szName) /** Function handlers, extended version. */ #define MFX(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uValue, a_fWrIgnMask, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName) /** Function handlers, with CPUMCPU storage variable. */ #define MFS(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \ RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, 0, 0, a_szName) /** Function handlers, with CPUMCPU storage variable, ignore mask and GP mask. */ #define MFZ(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_CpumCpuMember, a_fWrIgnMask, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, \ RT_OFFSETOF(CPUMCPU, a_CpumCpuMember), 0, a_fWrIgnMask, a_fWrGpMask, a_szName) /** Read-only fixed value. */ #define MVO(a_uMsr, a_szName, a_uValue) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName) /** Read-only fixed value, ignores all writes. */ #define MVI(a_uMsr, a_szName, a_uValue) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName) /** Read fixed value, ignore writes outside GP mask. */ #define MVG(a_uMsr, a_szName, a_uValue, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, 0, a_fWrGpMask, a_szName) /** Read fixed value, extended version with both GP and ignore masks. */ #define MVX(a_uMsr, a_szName, a_uValue, a_fWrIgnMask, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, a_fWrIgnMask, a_fWrGpMask, a_szName) /** The short form, no CPUM backing. */ #define MSN(a_uMsr, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \ RINT(a_uMsr, a_uMsr, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \ a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) /** Range: Functions handles everything. */ #define RFN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff) \ RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, 0, 0, 0, a_szName) /** Range: Read fixed value, read-only. */ #define RVO(a_uFirst, a_uLast, a_szName, a_uValue) \ RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_ReadOnly, 0, a_uValue, 0, UINT64_MAX, a_szName) /** Range: Read fixed value, ignore writes. */ #define RVI(a_uFirst, a_uLast, a_szName, a_uValue) \ RINT(a_uFirst, a_uLast, kCpumMsrRdFn_FixedValue, kCpumMsrWrFn_IgnoreWrite, 0, a_uValue, UINT64_MAX, 0, a_szName) /** Range: The short form, no CPUM backing. */ #define RSN(a_uFirst, a_uLast, a_szName, a_enmRdFnSuff, a_enmWrFnSuff, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask) \ RINT(a_uFirst, a_uLast, kCpumMsrRdFn_##a_enmRdFnSuff, kCpumMsrWrFn_##a_enmWrFnSuff, 0, \ a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) /** Internal form used by the macros. */ #ifdef VBOX_WITH_STATISTICS # define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \ { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName, \ { 0 }, { 0 }, { 0 }, { 0 } } #else # define RINT(a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName) \ { a_uFirst, a_uLast, a_enmRdFn, a_enmWrFn, a_offCpumCpu, 0, a_uInitOrReadValue, a_fWrIgnMask, a_fWrGpMask, a_szName } #endif /** @} */ #ifndef CPUM_DB_STANDALONE #include "cpus/Intel_Core_i7_6700K.h" #include "cpus/Intel_Core_i7_5600U.h" #include "cpus/Intel_Core_i7_3960X.h" #include "cpus/Intel_Core_i5_3570.h" #include "cpus/Intel_Core_i7_2635QM.h" #include "cpus/Intel_Xeon_X5482_3_20GHz.h" #include "cpus/Intel_Core2_X6800_2_93GHz.h" #include "cpus/Intel_Core2_T7600_2_33GHz.h" #include "cpus/Intel_Core_Duo_T2600_2_16GHz.h" #include "cpus/Intel_Pentium_M_processor_2_00GHz.h" #include "cpus/Intel_Pentium_4_3_00GHz.h" #include "cpus/Intel_Pentium_N3530_2_16GHz.h" #include "cpus/Intel_Atom_330_1_60GHz.h" #include "cpus/Intel_80486.h" #include "cpus/Intel_80386.h" #include "cpus/Intel_80286.h" #include "cpus/Intel_80186.h" #include "cpus/Intel_8086.h" #include "cpus/AMD_Ryzen_7_1800X_Eight_Core.h" #include "cpus/AMD_FX_8150_Eight_Core.h" #include "cpus/AMD_Phenom_II_X6_1100T.h" #include "cpus/Quad_Core_AMD_Opteron_2384.h" #include "cpus/AMD_Athlon_64_X2_Dual_Core_4200.h" #include "cpus/AMD_Athlon_64_3200.h" #include "cpus/VIA_QuadCore_L4700_1_2_GHz.h" #include "cpus/ZHAOXIN_KaiXian_KX_U5581_1_8GHz.h" #include "cpus/Hygon_C86_7185_32_core.h" /** * The database entries. * * 1. The first entry is special. It is the fallback for unknown * processors. Thus, it better be pretty representative. * * 2. The first entry for a CPU vendor is likewise important as it is * the default entry for that vendor. * * Generally we put the most recent CPUs first, since these tend to have the * most complicated and backwards compatible list of MSRs. */ static CPUMDBENTRY const * const g_apCpumDbEntries[] = { #ifdef VBOX_CPUDB_Intel_Core_i7_6700K_h &g_Entry_Intel_Core_i7_6700K, #endif #ifdef VBOX_CPUDB_Intel_Core_i7_5600U_h &g_Entry_Intel_Core_i7_5600U, #endif #ifdef VBOX_CPUDB_Intel_Core_i5_3570_h &g_Entry_Intel_Core_i5_3570, #endif #ifdef VBOX_CPUDB_Intel_Core_i7_3960X_h &g_Entry_Intel_Core_i7_3960X, #endif #ifdef VBOX_CPUDB_Intel_Core_i7_2635QM_h &g_Entry_Intel_Core_i7_2635QM, #endif #ifdef VBOX_CPUDB_Intel_Pentium_N3530_2_16GHz_h &g_Entry_Intel_Pentium_N3530_2_16GHz, #endif #ifdef VBOX_CPUDB_Intel_Atom_330_1_60GHz_h &g_Entry_Intel_Atom_330_1_60GHz, #endif #ifdef VBOX_CPUDB_Intel_Pentium_M_processor_2_00GHz_h &g_Entry_Intel_Pentium_M_processor_2_00GHz, #endif #ifdef VBOX_CPUDB_Intel_Xeon_X5482_3_20GHz_h &g_Entry_Intel_Xeon_X5482_3_20GHz, #endif #ifdef VBOX_CPUDB_Intel_Core2_X6800_2_93GHz_h &g_Entry_Intel_Core2_X6800_2_93GHz, #endif #ifdef VBOX_CPUDB_Intel_Core2_T7600_2_33GHz_h &g_Entry_Intel_Core2_T7600_2_33GHz, #endif #ifdef VBOX_CPUDB_Intel_Core_Duo_T2600_2_16GHz_h &g_Entry_Intel_Core_Duo_T2600_2_16GHz, #endif #ifdef VBOX_CPUDB_Intel_Pentium_4_3_00GHz_h &g_Entry_Intel_Pentium_4_3_00GHz, #endif #ifdef VBOX_CPUDB_Intel_Pentium_4_3_00GHz_h &g_Entry_Intel_Pentium_4_3_00GHz, #endif /** @todo pentium, pentium mmx, pentium pro, pentium II, pentium III */ #ifdef VBOX_CPUDB_Intel_80486_h &g_Entry_Intel_80486, #endif #ifdef VBOX_CPUDB_Intel_80386_h &g_Entry_Intel_80386, #endif #ifdef VBOX_CPUDB_Intel_80286_h &g_Entry_Intel_80286, #endif #ifdef VBOX_CPUDB_Intel_80186_h &g_Entry_Intel_80186, #endif #ifdef VBOX_CPUDB_Intel_8086_h &g_Entry_Intel_8086, #endif #ifdef VBOX_CPUDB_AMD_Ryzen_7_1800X_Eight_Core_h &g_Entry_AMD_Ryzen_7_1800X_Eight_Core, #endif #ifdef VBOX_CPUDB_AMD_FX_8150_Eight_Core_h &g_Entry_AMD_FX_8150_Eight_Core, #endif #ifdef VBOX_CPUDB_AMD_Phenom_II_X6_1100T_h &g_Entry_AMD_Phenom_II_X6_1100T, #endif #ifdef VBOX_CPUDB_Quad_Core_AMD_Opteron_2384_h &g_Entry_Quad_Core_AMD_Opteron_2384, #endif #ifdef VBOX_CPUDB_AMD_Athlon_64_X2_Dual_Core_4200_h &g_Entry_AMD_Athlon_64_X2_Dual_Core_4200, #endif #ifdef VBOX_CPUDB_AMD_Athlon_64_3200_h &g_Entry_AMD_Athlon_64_3200, #endif #ifdef VBOX_CPUDB_ZHAOXIN_KaiXian_KX_U5581_1_8GHz_h &g_Entry_ZHAOXIN_KaiXian_KX_U5581_1_8GHz, #endif #ifdef VBOX_CPUDB_VIA_QuadCore_L4700_1_2_GHz_h &g_Entry_VIA_QuadCore_L4700_1_2_GHz, #endif #ifdef VBOX_CPUDB_NEC_V20_h &g_Entry_NEC_V20, #endif #ifdef VBOX_CPUDB_Hygon_C86_7185_32_core_h &g_Entry_Hygon_C86_7185_32_core, #endif }; /** * Returns the number of entries in the CPU database. * * @returns Number of entries. * @sa PFNCPUMDBGETENTRIES */ VMMR3DECL(uint32_t) CPUMR3DbGetEntries(void) { return RT_ELEMENTS(g_apCpumDbEntries); } /** * Returns CPU database entry for the given index. * * @returns Pointer the CPU database entry, NULL if index is out of bounds. * @param idxCpuDb The index (0..CPUMR3DbGetEntries). * @sa PFNCPUMDBGETENTRYBYINDEX */ VMMR3DECL(PCCPUMDBENTRY) CPUMR3DbGetEntryByIndex(uint32_t idxCpuDb) { AssertReturn(idxCpuDb <= RT_ELEMENTS(g_apCpumDbEntries), NULL); return g_apCpumDbEntries[idxCpuDb]; } /** * Returns CPU database entry with the given name. * * @returns Pointer the CPU database entry, NULL if not found. * @param pszName The name of the profile to return. * @sa PFNCPUMDBGETENTRYBYNAME */ VMMR3DECL(PCCPUMDBENTRY) CPUMR3DbGetEntryByName(const char *pszName) { AssertPtrReturn(pszName, NULL); AssertReturn(*pszName, NULL); for (size_t i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++) if (strcmp(g_apCpumDbEntries[i]->pszName, pszName) == 0) return g_apCpumDbEntries[i]; return NULL; } /** * Binary search used by cpumR3MsrRangesInsert and has some special properties * wrt to mismatches. * * @returns Insert location. * @param paMsrRanges The MSR ranges to search. * @param cMsrRanges The number of MSR ranges. * @param uMsr What to search for. */ static uint32_t cpumR3MsrRangesBinSearch(PCCPUMMSRRANGE paMsrRanges, uint32_t cMsrRanges, uint32_t uMsr) { if (!cMsrRanges) return 0; uint32_t iStart = 0; uint32_t iLast = cMsrRanges - 1; for (;;) { uint32_t i = iStart + (iLast - iStart + 1) / 2; if ( uMsr >= paMsrRanges[i].uFirst && uMsr <= paMsrRanges[i].uLast) return i; if (uMsr < paMsrRanges[i].uFirst) { if (i <= iStart) return i; iLast = i - 1; } else { if (i >= iLast) { if (i < cMsrRanges) i++; return i; } iStart = i + 1; } } } /** * Ensures that there is space for at least @a cNewRanges in the table, * reallocating the table if necessary. * * @returns Pointer to the MSR ranges on success, NULL on failure. On failure * @a *ppaMsrRanges is freed and set to NULL. * @param pVM The cross context VM structure. If NULL, * use the process heap, otherwise the VM's hyper heap. * @param ppaMsrRanges The variable pointing to the ranges (input/output). * @param cMsrRanges The current number of ranges. * @param cNewRanges The number of ranges to be added. */ static PCPUMMSRRANGE cpumR3MsrRangesEnsureSpace(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t cMsrRanges, uint32_t cNewRanges) { if ( cMsrRanges + cNewRanges > RT_ELEMENTS(pVM->cpum.s.GuestInfo.aMsrRanges) + (pVM ? 0 : 128 /* Catch too many MSRs in CPU reporter! */)) { LogRel(("CPUM: Too many MSR ranges! %#x, max %#x\n", cMsrRanges + cNewRanges, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aMsrRanges))); return NULL; } if (pVM) { Assert(cMsrRanges == pVM->cpum.s.GuestInfo.cMsrRanges); Assert(*ppaMsrRanges == pVM->cpum.s.GuestInfo.aMsrRanges); } else { if (cMsrRanges + cNewRanges > RT_ALIGN_32(cMsrRanges, 16)) { uint32_t const cNew = RT_ALIGN_32(cMsrRanges + cNewRanges, 16); void *pvNew = RTMemRealloc(*ppaMsrRanges, cNew * sizeof(**ppaMsrRanges)); if (pvNew) *ppaMsrRanges = (PCPUMMSRRANGE)pvNew; else { RTMemFree(*ppaMsrRanges); *ppaMsrRanges = NULL; return NULL; } } } return *ppaMsrRanges; } /** * Inserts a new MSR range in into an sorted MSR range array. * * If the new MSR range overlaps existing ranges, the existing ones will be * adjusted/removed to fit in the new one. * * @returns VBox status code. * @retval VINF_SUCCESS * @retval VERR_NO_MEMORY * * @param pVM The cross context VM structure. If NULL, * use the process heap, otherwise the VM's hyper heap. * @param ppaMsrRanges The variable pointing to the ranges (input/output). * Must be NULL if using the hyper heap. * @param pcMsrRanges The variable holding number of ranges. Must be NULL * if using the hyper heap. * @param pNewRange The new range. */ int cpumR3MsrRangesInsert(PVM pVM, PCPUMMSRRANGE *ppaMsrRanges, uint32_t *pcMsrRanges, PCCPUMMSRRANGE pNewRange) { Assert(pNewRange->uLast >= pNewRange->uFirst); Assert(pNewRange->enmRdFn > kCpumMsrRdFn_Invalid && pNewRange->enmRdFn < kCpumMsrRdFn_End); Assert(pNewRange->enmWrFn > kCpumMsrWrFn_Invalid && pNewRange->enmWrFn < kCpumMsrWrFn_End); /* * Validate and use the VM's MSR ranges array if we are using the hyper heap. */ if (pVM) { AssertReturn(!ppaMsrRanges, VERR_INVALID_PARAMETER); AssertReturn(!pcMsrRanges, VERR_INVALID_PARAMETER); AssertReturn(pVM->cpum.s.GuestInfo.paMsrRangesR3 == pVM->cpum.s.GuestInfo.aMsrRanges, VERR_INTERNAL_ERROR_3); ppaMsrRanges = &pVM->cpum.s.GuestInfo.paMsrRangesR3; pcMsrRanges = &pVM->cpum.s.GuestInfo.cMsrRanges; } else { AssertReturn(ppaMsrRanges, VERR_INVALID_POINTER); AssertReturn(pcMsrRanges, VERR_INVALID_POINTER); } uint32_t cMsrRanges = *pcMsrRanges; PCPUMMSRRANGE paMsrRanges = *ppaMsrRanges; /* * Optimize the linear insertion case where we add new entries at the end. */ if ( cMsrRanges > 0 && paMsrRanges[cMsrRanges - 1].uLast < pNewRange->uFirst) { paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1); if (!paMsrRanges) return VERR_NO_MEMORY; paMsrRanges[cMsrRanges] = *pNewRange; *pcMsrRanges += 1; } else { uint32_t i = cpumR3MsrRangesBinSearch(paMsrRanges, cMsrRanges, pNewRange->uFirst); Assert(i == cMsrRanges || pNewRange->uFirst <= paMsrRanges[i].uLast); Assert(i == 0 || pNewRange->uFirst > paMsrRanges[i - 1].uLast); /* * Adding an entirely new entry? */ if ( i >= cMsrRanges || pNewRange->uLast < paMsrRanges[i].uFirst) { paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1); if (!paMsrRanges) return VERR_NO_MEMORY; if (i < cMsrRanges) memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0])); paMsrRanges[i] = *pNewRange; *pcMsrRanges += 1; } /* * Replace existing entry? */ else if ( pNewRange->uFirst == paMsrRanges[i].uFirst && pNewRange->uLast == paMsrRanges[i].uLast) paMsrRanges[i] = *pNewRange; /* * Splitting an existing entry? */ else if ( pNewRange->uFirst > paMsrRanges[i].uFirst && pNewRange->uLast < paMsrRanges[i].uLast) { paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 2); if (!paMsrRanges) return VERR_NO_MEMORY; if (i < cMsrRanges) memmove(&paMsrRanges[i + 2], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0])); paMsrRanges[i + 1] = *pNewRange; paMsrRanges[i + 2] = paMsrRanges[i]; paMsrRanges[i ].uLast = pNewRange->uFirst - 1; paMsrRanges[i + 2].uFirst = pNewRange->uLast + 1; *pcMsrRanges += 2; } /* * Complicated scenarios that can affect more than one range. * * The current code does not optimize memmove calls when replacing * one or more existing ranges, because it's tedious to deal with and * not expected to be a frequent usage scenario. */ else { /* Adjust start of first match? */ if ( pNewRange->uFirst <= paMsrRanges[i].uFirst && pNewRange->uLast < paMsrRanges[i].uLast) paMsrRanges[i].uFirst = pNewRange->uLast + 1; else { /* Adjust end of first match? */ if (pNewRange->uFirst > paMsrRanges[i].uFirst) { Assert(paMsrRanges[i].uLast >= pNewRange->uFirst); paMsrRanges[i].uLast = pNewRange->uFirst - 1; i++; } /* Replace the whole first match (lazy bird). */ else { if (i + 1 < cMsrRanges) memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0])); cMsrRanges = *pcMsrRanges -= 1; } /* Do the new range affect more ranges? */ while ( i < cMsrRanges && pNewRange->uLast >= paMsrRanges[i].uFirst) { if (pNewRange->uLast < paMsrRanges[i].uLast) { /* Adjust the start of it, then we're done. */ paMsrRanges[i].uFirst = pNewRange->uLast + 1; break; } /* Remove it entirely. */ if (i + 1 < cMsrRanges) memmove(&paMsrRanges[i], &paMsrRanges[i + 1], (cMsrRanges - i - 1) * sizeof(paMsrRanges[0])); cMsrRanges = *pcMsrRanges -= 1; } } /* Now, perform a normal insertion. */ paMsrRanges = cpumR3MsrRangesEnsureSpace(pVM, ppaMsrRanges, cMsrRanges, 1); if (!paMsrRanges) return VERR_NO_MEMORY; if (i < cMsrRanges) memmove(&paMsrRanges[i + 1], &paMsrRanges[i], (cMsrRanges - i) * sizeof(paMsrRanges[0])); paMsrRanges[i] = *pNewRange; *pcMsrRanges += 1; } } return VINF_SUCCESS; } /** * Reconciles CPUID info with MSRs (selected ones). * * @returns VBox status code. * @param pVM The cross context VM structure. */ int cpumR3MsrReconcileWithCpuId(PVM pVM) { PCCPUMMSRRANGE papToAdd[10]; uint32_t cToAdd = 0; /* * The IA32_FLUSH_CMD MSR was introduced in MCUs for CVS-2018-3646 and associates. */ if (pVM->cpum.s.GuestFeatures.fFlushCmd && !cpumLookupMsrRange(pVM, MSR_IA32_FLUSH_CMD)) { static CPUMMSRRANGE const s_FlushCmd = { /*.uFirst =*/ MSR_IA32_FLUSH_CMD, /*.uLast =*/ MSR_IA32_FLUSH_CMD, /*.enmRdFn =*/ kCpumMsrRdFn_WriteOnly, /*.enmWrFn =*/ kCpumMsrWrFn_Ia32FlushCmd, /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ ~MSR_IA32_FLUSH_CMD_F_L1D, /*.szName = */ "IA32_FLUSH_CMD" }; papToAdd[cToAdd++] = &s_FlushCmd; } /* * The MSR_IA32_ARCH_CAPABILITIES was introduced in various spectre MCUs, or at least * documented in relation to such. */ if (pVM->cpum.s.GuestFeatures.fArchCap && !cpumLookupMsrRange(pVM, MSR_IA32_ARCH_CAPABILITIES)) { static CPUMMSRRANGE const s_ArchCaps = { /*.uFirst =*/ MSR_IA32_ARCH_CAPABILITIES, /*.uLast =*/ MSR_IA32_ARCH_CAPABILITIES, /*.enmRdFn =*/ kCpumMsrRdFn_Ia32ArchCapabilities, /*.enmWrFn =*/ kCpumMsrWrFn_ReadOnly, /*.offCpumCpu =*/ UINT16_MAX, /*.fReserved =*/ 0, /*.uValue =*/ 0, /*.fWrIgnMask =*/ 0, /*.fWrGpMask =*/ UINT64_MAX, /*.szName = */ "IA32_ARCH_CAPABILITIES" }; papToAdd[cToAdd++] = &s_ArchCaps; } /* * Do the adding. */ for (uint32_t i = 0; i < cToAdd; i++) { PCCPUMMSRRANGE pRange = papToAdd[i]; LogRel(("CPUM: MSR/CPUID reconciliation insert: %#010x %s\n", pRange->uFirst, pRange->szName)); int rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges, pRange); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Worker for cpumR3MsrApplyFudge that applies one table. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param paRanges Array of MSRs to fudge. * @param cRanges Number of MSRs in the array. */ static int cpumR3MsrApplyFudgeTable(PVM pVM, PCCPUMMSRRANGE paRanges, size_t cRanges) { for (uint32_t i = 0; i < cRanges; i++) if (!cpumLookupMsrRange(pVM, paRanges[i].uFirst)) { LogRel(("CPUM: MSR fudge: %#010x %s\n", paRanges[i].uFirst, paRanges[i].szName)); int rc = cpumR3MsrRangesInsert(NULL /* pVM */, &pVM->cpum.s.GuestInfo.paMsrRangesR3, &pVM->cpum.s.GuestInfo.cMsrRanges, &paRanges[i]); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Fudges the MSRs that guest are known to access in some odd cases. * * A typical example is a VM that has been moved between different hosts where * for instance the cpu vendor differs. * * Another example is older CPU profiles (e.g. Atom Bonnet) for newer CPUs (e.g. * Atom Silvermont), where features reported thru CPUID aren't present in the * MSRs (e.g. AMD64_TSC_AUX). * * * @returns VBox status code. * @param pVM The cross context VM structure. */ int cpumR3MsrApplyFudge(PVM pVM) { /* * Basic. */ static CPUMMSRRANGE const s_aFudgeMsrs[] = { MFO(0x00000000, "IA32_P5_MC_ADDR", Ia32P5McAddr), MFX(0x00000001, "IA32_P5_MC_TYPE", Ia32P5McType, Ia32P5McType, 0, 0, UINT64_MAX), MVO(0x00000017, "IA32_PLATFORM_ID", 0), MFN(0x0000001b, "IA32_APIC_BASE", Ia32ApicBase, Ia32ApicBase), MVI(0x0000008b, "BIOS_SIGN", 0), MFX(0x000000fe, "IA32_MTRRCAP", Ia32MtrrCap, ReadOnly, 0x508, 0, 0), MFX(0x00000179, "IA32_MCG_CAP", Ia32McgCap, ReadOnly, 0x005, 0, 0), MFX(0x0000017a, "IA32_MCG_STATUS", Ia32McgStatus, Ia32McgStatus, 0, ~(uint64_t)UINT32_MAX, 0), MFN(0x000001a0, "IA32_MISC_ENABLE", Ia32MiscEnable, Ia32MiscEnable), MFN(0x000001d9, "IA32_DEBUGCTL", Ia32DebugCtl, Ia32DebugCtl), MFO(0x000001db, "P6_LAST_BRANCH_FROM_IP", P6LastBranchFromIp), MFO(0x000001dc, "P6_LAST_BRANCH_TO_IP", P6LastBranchToIp), MFO(0x000001dd, "P6_LAST_INT_FROM_IP", P6LastIntFromIp), MFO(0x000001de, "P6_LAST_INT_TO_IP", P6LastIntToIp), MFS(0x00000277, "IA32_PAT", Ia32Pat, Ia32Pat, Guest.msrPAT), MFZ(0x000002ff, "IA32_MTRR_DEF_TYPE", Ia32MtrrDefType, Ia32MtrrDefType, GuestMsrs.msr.MtrrDefType, 0, ~(uint64_t)0xc07), MFN(0x00000400, "IA32_MCi_CTL_STATUS_ADDR_MISC", Ia32McCtlStatusAddrMiscN, Ia32McCtlStatusAddrMiscN), }; int rc = cpumR3MsrApplyFudgeTable(pVM, &s_aFudgeMsrs[0], RT_ELEMENTS(s_aFudgeMsrs)); AssertLogRelRCReturn(rc, rc); /* * XP might mistake opterons and other newer CPUs for P4s. */ if (pVM->cpum.s.GuestFeatures.uFamily >= 0xf) { static CPUMMSRRANGE const s_aP4FudgeMsrs[] = { MFX(0x0000002c, "P4_EBC_FREQUENCY_ID", IntelP4EbcFrequencyId, IntelP4EbcFrequencyId, 0xf12010f, UINT64_MAX, 0), }; rc = cpumR3MsrApplyFudgeTable(pVM, &s_aP4FudgeMsrs[0], RT_ELEMENTS(s_aP4FudgeMsrs)); AssertLogRelRCReturn(rc, rc); } if (pVM->cpum.s.GuestFeatures.fRdTscP) { static CPUMMSRRANGE const s_aRdTscPFudgeMsrs[] = { MFX(0xc0000103, "AMD64_TSC_AUX", Amd64TscAux, Amd64TscAux, 0, 0, ~(uint64_t)UINT32_MAX), }; rc = cpumR3MsrApplyFudgeTable(pVM, &s_aRdTscPFudgeMsrs[0], RT_ELEMENTS(s_aRdTscPFudgeMsrs)); AssertLogRelRCReturn(rc, rc); } /* * Windows 10 incorrectly writes to MSR_IA32_TSX_CTRL without checking * CPUID.ARCH_CAP(EAX=7h,ECX=0):EDX[bit 29] or the MSR feature bits in * MSR_IA32_ARCH_CAPABILITIES[bit 7], see @bugref{9630}. * Ignore writes to this MSR and return 0 on reads. */ if (pVM->cpum.s.GuestFeatures.fArchCap) { static CPUMMSRRANGE const s_aTsxCtrl[] = { MVI(MSR_IA32_TSX_CTRL, "IA32_TSX_CTRL", 0), }; rc = cpumR3MsrApplyFudgeTable(pVM, &s_aTsxCtrl[0], RT_ELEMENTS(s_aTsxCtrl)); AssertLogRelRCReturn(rc, rc); } return rc; } #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /** * Do we consider @a enmConsider a better match for @a enmTarget than * @a enmFound? * * Only called when @a enmConsider isn't exactly what we're looking for. * * @returns true/false. * @param enmConsider The new microarch to consider. * @param enmTarget The target microarch. * @param enmFound The best microarch match we've found thus far. */ DECLINLINE(bool) cpumR3DbIsBetterMarchMatch(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound) { Assert(enmConsider != enmTarget); /* * If we've got an march match, don't bother with enmConsider. */ if (enmFound == enmTarget) return false; /* * Found is below: Pick 'consider' if it's closer to the target or above it. */ if (enmFound < enmTarget) return enmConsider > enmFound; /* * Found is above: Pick 'consider' if it's also above (paranoia: or equal) * and but closer to the target. */ return enmConsider >= enmTarget && enmConsider < enmFound; } /** * Do we consider @a enmConsider a better match for @a enmTarget than * @a enmFound? * * Only called for intel family 06h CPUs. * * @returns true/false. * @param enmConsider The new microarch to consider. * @param enmTarget The target microarch. * @param enmFound The best microarch match we've found thus far. */ static bool cpumR3DbIsBetterIntelFam06Match(CPUMMICROARCH enmConsider, CPUMMICROARCH enmTarget, CPUMMICROARCH enmFound) { /* Check intel family 06h claims. */ AssertReturn(enmConsider >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmConsider <= kCpumMicroarch_Intel_P6_Core_Atom_End, false); AssertReturn( (enmTarget >= kCpumMicroarch_Intel_P6_Core_Atom_First && enmTarget <= kCpumMicroarch_Intel_P6_Core_Atom_End) || enmTarget == kCpumMicroarch_Intel_Unknown, false); /* Put matches out of the way. */ if (enmConsider == enmTarget) return true; if (enmFound == enmTarget) return false; /* If found isn't a family 06h march, whatever we're considering must be a better choice. */ if ( enmFound < kCpumMicroarch_Intel_P6_Core_Atom_First || enmFound > kCpumMicroarch_Intel_P6_Core_Atom_End) return true; /* * The family 06h stuff is split into three categories: * - Common P6 heritage * - Core * - Atom * * Determin which of the three arguments are Atom marchs, because that's * all we need to make the right choice. */ bool const fConsiderAtom = enmConsider >= kCpumMicroarch_Intel_Atom_First; bool const fTargetAtom = enmTarget >= kCpumMicroarch_Intel_Atom_First; bool const fFoundAtom = enmFound >= kCpumMicroarch_Intel_Atom_First; /* * Want atom: */ if (fTargetAtom) { /* Pick the atom if we've got one of each.*/ if (fConsiderAtom != fFoundAtom) return fConsiderAtom; /* If we haven't got any atoms under consideration, pick a P6 or the earlier core. Note! Not entirely sure Dothan is the best choice, but it'll do for now. */ if (!fConsiderAtom) { if (enmConsider > enmFound) return enmConsider <= kCpumMicroarch_Intel_P6_M_Dothan; return enmFound > kCpumMicroarch_Intel_P6_M_Dothan; } /* else: same category, default comparison rules. */ Assert(fConsiderAtom && fFoundAtom); } /* * Want non-atom: */ /* Pick the non-atom if we've got one of each. */ else if (fConsiderAtom != fFoundAtom) return fFoundAtom; /* If we've only got atoms under consideration, pick the older one just to pick something. */ else if (fConsiderAtom) return enmConsider < enmFound; else Assert(!fConsiderAtom && !fFoundAtom); /* * Same basic category. Do same compare as caller. */ return cpumR3DbIsBetterMarchMatch(enmConsider, enmTarget, enmFound); } #endif /* RT_ARCH_X86 || RT_ARCH_AMD64 */ int cpumR3DbGetCpuInfo(const char *pszName, PCPUMINFO pInfo) { CPUMDBENTRY const *pEntry = NULL; int rc; if (!strcmp(pszName, "host")) #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) { /* * Create a CPU database entry for the host CPU. This means getting * the CPUID bits from the real CPU and grabbing the closest matching * database entry for MSRs. */ rc = CPUMR3CpuIdDetectUnknownLeafMethod(&pInfo->enmUnknownCpuIdMethod, &pInfo->DefCpuId); if (RT_FAILURE(rc)) return rc; rc = CPUMCpuIdCollectLeavesX86(&pInfo->paCpuIdLeavesR3, &pInfo->cCpuIdLeaves); if (RT_FAILURE(rc)) return rc; pInfo->fMxCsrMask = CPUMR3DeterminHostMxCsrMask(); /* Lookup database entry for MSRs. */ CPUMCPUVENDOR const enmVendor = CPUMCpuIdDetectX86VendorEx(pInfo->paCpuIdLeavesR3[0].uEax, pInfo->paCpuIdLeavesR3[0].uEbx, pInfo->paCpuIdLeavesR3[0].uEcx, pInfo->paCpuIdLeavesR3[0].uEdx); uint32_t const uStd1Eax = pInfo->paCpuIdLeavesR3[1].uEax; uint8_t const uFamily = RTX86GetCpuFamily(uStd1Eax); uint8_t const uModel = RTX86GetCpuModel(uStd1Eax, enmVendor == CPUMCPUVENDOR_INTEL); uint8_t const uStepping = RTX86GetCpuStepping(uStd1Eax); CPUMMICROARCH const enmMicroarch = CPUMCpuIdDetermineX86MicroarchEx(enmVendor, uFamily, uModel, uStepping); for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++) { CPUMDBENTRY const *pCur = g_apCpumDbEntries[i]; if ((CPUMCPUVENDOR)pCur->enmVendor == enmVendor) { /* Match against Family, Microarch, model and stepping. Except for family, always match the closer with preference given to the later/older ones. */ if (pCur->uFamily == uFamily) { if (pCur->enmMicroarch == enmMicroarch) { if (pCur->uModel == uModel) { if (pCur->uStepping == uStepping) { /* Perfect match. */ pEntry = pCur; break; } if ( !pEntry || pEntry->uModel != uModel || pEntry->enmMicroarch != enmMicroarch || pEntry->uFamily != uFamily) pEntry = pCur; else if ( pCur->uStepping >= uStepping ? pCur->uStepping < pEntry->uStepping || pEntry->uStepping < uStepping : pCur->uStepping > pEntry->uStepping) pEntry = pCur; } else if ( !pEntry || pEntry->enmMicroarch != enmMicroarch || pEntry->uFamily != uFamily) pEntry = pCur; else if ( pCur->uModel >= uModel ? pCur->uModel < pEntry->uModel || pEntry->uModel < uModel : pCur->uModel > pEntry->uModel) pEntry = pCur; } else if ( !pEntry || pEntry->uFamily != uFamily) pEntry = pCur; /* Special march matching rules applies to intel family 06h. */ else if ( enmVendor == CPUMCPUVENDOR_INTEL && uFamily == 6 ? cpumR3DbIsBetterIntelFam06Match(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch) : cpumR3DbIsBetterMarchMatch(pCur->enmMicroarch, enmMicroarch, pEntry->enmMicroarch)) pEntry = pCur; } /* We don't do closeness matching on family, we use the first entry for the CPU vendor instead. (P4 workaround.) */ else if (!pEntry) pEntry = pCur; } } if (pEntry) LogRel(("CPUM: Matched host CPU %s %#x/%#x/%#x %s with CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n", CPUMCpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMMicroarchName(enmMicroarch), pEntry->pszName, CPUMCpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor), pEntry->uFamily, pEntry->uModel, pEntry->uStepping, CPUMMicroarchName(pEntry->enmMicroarch) )); else { pEntry = g_apCpumDbEntries[0]; LogRel(("CPUM: No matching processor database entry %s %#x/%#x/%#x %s, falling back on '%s'\n", CPUMCpuVendorName(enmVendor), uFamily, uModel, uStepping, CPUMMicroarchName(enmMicroarch), pEntry->pszName)); } } else #else pszName = g_apCpumDbEntries[0]->pszName; /* Just pick the first entry for non-x86 hosts. */ #endif { /* * We're supposed to be emulating a specific CPU that is included in * our CPU database. The CPUID tables needs to be copied onto the * heap so the caller can modify them and so they can be freed like * in the host case above. */ for (unsigned i = 0; i < RT_ELEMENTS(g_apCpumDbEntries); i++) if (!strcmp(pszName, g_apCpumDbEntries[i]->pszName)) { pEntry = g_apCpumDbEntries[i]; break; } if (!pEntry) { LogRel(("CPUM: Cannot locate any CPU by the name '%s'\n", pszName)); return VERR_CPUM_DB_CPU_NOT_FOUND; } pInfo->cCpuIdLeaves = pEntry->cCpuIdLeaves; if (pEntry->cCpuIdLeaves) { /* Must allocate a multiple of 16 here, matching cpumR3CpuIdEnsureSpace. */ size_t cbExtra = sizeof(pEntry->paCpuIdLeaves[0]) * (RT_ALIGN(pEntry->cCpuIdLeaves, 16) - pEntry->cCpuIdLeaves); pInfo->paCpuIdLeavesR3 = (PCPUMCPUIDLEAF)RTMemDupEx(pEntry->paCpuIdLeaves, sizeof(pEntry->paCpuIdLeaves[0]) * pEntry->cCpuIdLeaves, cbExtra); if (!pInfo->paCpuIdLeavesR3) return VERR_NO_MEMORY; } else pInfo->paCpuIdLeavesR3 = NULL; pInfo->enmUnknownCpuIdMethod = pEntry->enmUnknownCpuId; pInfo->DefCpuId = pEntry->DefUnknownCpuId; pInfo->fMxCsrMask = pEntry->fMxCsrMask; LogRel(("CPUM: Using CPU DB entry '%s' (%s %#x/%#x/%#x %s)\n", pEntry->pszName, CPUMCpuVendorName((CPUMCPUVENDOR)pEntry->enmVendor), pEntry->uFamily, pEntry->uModel, pEntry->uStepping, CPUMMicroarchName(pEntry->enmMicroarch) )); } pInfo->fMsrMask = pEntry->fMsrMask; pInfo->iFirstExtCpuIdLeaf = 0; /* Set by caller. */ pInfo->uScalableBusFreq = pEntry->uScalableBusFreq; /* * Copy the MSR range. */ uint32_t cMsrs = 0; PCPUMMSRRANGE paMsrs = NULL; PCCPUMMSRRANGE pCurMsr = pEntry->paMsrRanges; uint32_t cLeft = pEntry->cMsrRanges; while (cLeft-- > 0) { rc = cpumR3MsrRangesInsert(NULL /* pVM */, &paMsrs, &cMsrs, pCurMsr); if (RT_FAILURE(rc)) { Assert(!paMsrs); /* The above function frees this. */ RTMemFree(pInfo->paCpuIdLeavesR3); pInfo->paCpuIdLeavesR3 = NULL; return rc; } pCurMsr++; } pInfo->paMsrRangesR3 = paMsrs; pInfo->cMsrRanges = cMsrs; return VINF_SUCCESS; } /** * Insert an MSR range into the VM. * * If the new MSR range overlaps existing ranges, the existing ones will be * adjusted/removed to fit in the new one. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pNewRange Pointer to the MSR range being inserted. */ VMMR3DECL(int) CPUMR3MsrRangesInsert(PVM pVM, PCCPUMMSRRANGE pNewRange) { AssertReturn(pVM, VERR_INVALID_PARAMETER); AssertReturn(pNewRange, VERR_INVALID_PARAMETER); return cpumR3MsrRangesInsert(pVM, NULL /* ppaMsrRanges */, NULL /* pcMsrRanges */, pNewRange); } /** * Register statistics for the MSRs. * * This must not be called before the MSRs have been finalized and moved to the * hyper heap. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int cpumR3MsrRegStats(PVM pVM) { /* * Global statistics. */ PCPUM pCpum = &pVM->cpum.s; STAM_REL_REG(pVM, &pCpum->cMsrReads, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Reads", STAMUNIT_OCCURENCES, "All RDMSRs making it to CPUM."); STAM_REL_REG(pVM, &pCpum->cMsrReadsRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsRaisingGP", STAMUNIT_OCCURENCES, "RDMSR raising #GPs, except unknown MSRs."); STAM_REL_REG(pVM, &pCpum->cMsrReadsUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/ReadsUnknown", STAMUNIT_OCCURENCES, "RDMSR on unknown MSRs (raises #GP)."); STAM_REL_REG(pVM, &pCpum->cMsrWrites, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/Writes", STAMUNIT_OCCURENCES, "All WRMSRs making it to CPUM."); STAM_REL_REG(pVM, &pCpum->cMsrWritesRaiseGp, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesRaisingGP", STAMUNIT_OCCURENCES, "WRMSR raising #GPs, except unknown MSRs."); STAM_REL_REG(pVM, &pCpum->cMsrWritesToIgnoredBits, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesToIgnoredBits", STAMUNIT_OCCURENCES, "Writing of ignored bits."); STAM_REL_REG(pVM, &pCpum->cMsrWritesUnknown, STAMTYPE_COUNTER, "/CPUM/MSR-Totals/WritesUnknown", STAMUNIT_OCCURENCES, "WRMSR on unknown MSRs (raises #GP)."); # ifdef VBOX_WITH_STATISTICS /* * Per range. */ PCPUMMSRRANGE paRanges = pVM->cpum.s.GuestInfo.paMsrRangesR3; uint32_t cRanges = pVM->cpum.s.GuestInfo.cMsrRanges; for (uint32_t i = 0; i < cRanges; i++) { char szName[160]; ssize_t cchName; if (paRanges[i].uFirst == paRanges[i].uLast) cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%s", paRanges[i].uFirst, paRanges[i].szName); else cchName = RTStrPrintf(szName, sizeof(szName), "/CPUM/MSRs/%#010x-%#010x-%s", paRanges[i].uFirst, paRanges[i].uLast, paRanges[i].szName); RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-reads"); STAMR3Register(pVM, &paRanges[i].cReads, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, szName, STAMUNIT_OCCURENCES, "RDMSR"); RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-writes"); STAMR3Register(pVM, &paRanges[i].cWrites, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR"); RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-GPs"); STAMR3Register(pVM, &paRanges[i].cGps, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "#GPs"); RTStrCopy(&szName[cchName], sizeof(szName) - cchName, "-ign-bits-writes"); STAMR3Register(pVM, &paRanges[i].cIgnoredBits, STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "WRMSR w/ ignored bits"); } # endif /* VBOX_WITH_STATISTICS */ return VINF_SUCCESS; } #endif /* !CPUM_DB_STANDALONE */