/* $Id: DBGFMem.cpp 73346 2018-07-25 09:24:03Z vboxsync $ */ /** @file * DBGF - Debugger Facility, Memory Methods. */ /* * Copyright (C) 2007-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGF #include #include #include #include #include "DBGFInternal.h" #include #include #include #include #include /** * Scan guest memory for an exact byte string. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param idCpu The ID of the CPU context to search in. * @param pAddress Where to store the mixed address. * @param puAlign The alignment restriction imposed on the search result. * @param pcbRange The number of bytes to scan. Passed as a pointer because * it may be 64-bit. * @param pabNeedle What to search for - exact search. * @param cbNeedle Size of the search byte string. * @param pHitAddress Where to put the address of the first hit. */ static DECLCALLBACK(int) dbgfR3MemScan(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, PCRTGCUINTPTR pcbRange, RTGCUINTPTR *puAlign, const uint8_t *pabNeedle, size_t cbNeedle, PDBGFADDRESS pHitAddress) { PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); Assert(idCpu == VMMGetCpuId(pVM)); /* * Validate the input we use, PGM does the rest. */ RTGCUINTPTR cbRange = *pcbRange; if (!DBGFR3AddrIsValid(pUVM, pAddress)) return VERR_INVALID_POINTER; if (!VALID_PTR(pHitAddress)) return VERR_INVALID_POINTER; if (DBGFADDRESS_IS_HMA(pAddress)) return VERR_INVALID_POINTER; /* * Select DBGF worker by addressing mode. */ int rc; PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); PGMMODE enmMode = PGMGetGuestMode(pVCpu); if ( enmMode == PGMMODE_REAL || enmMode == PGMMODE_PROTECTED || DBGFADDRESS_IS_PHYS(pAddress) ) { RTGCPHYS GCPhysAlign = *puAlign; if (GCPhysAlign != *puAlign) return VERR_OUT_OF_RANGE; RTGCPHYS PhysHit; rc = PGMR3DbgScanPhysical(pVM, pAddress->FlatPtr, cbRange, GCPhysAlign, pabNeedle, cbNeedle, &PhysHit); if (RT_SUCCESS(rc)) DBGFR3AddrFromPhys(pUVM, pHitAddress, PhysHit); } else { #if GC_ARCH_BITS > 32 if ( ( pAddress->FlatPtr >= _4G || pAddress->FlatPtr + cbRange > _4G) && enmMode != PGMMODE_AMD64 && enmMode != PGMMODE_AMD64_NX) return VERR_DBGF_MEM_NOT_FOUND; #endif RTGCUINTPTR GCPtrHit; rc = PGMR3DbgScanVirtual(pVM, pVCpu, pAddress->FlatPtr, cbRange, *puAlign, pabNeedle, cbNeedle, &GCPtrHit); if (RT_SUCCESS(rc)) DBGFR3AddrFromFlat(pUVM, pHitAddress, GCPtrHit); } return rc; } /** * Scan guest memory for an exact byte string. * * @returns VBox status codes: * @retval VINF_SUCCESS and *pGCPtrHit on success. * @retval VERR_DBGF_MEM_NOT_FOUND if not found. * @retval VERR_INVALID_POINTER if any of the pointer arguments are invalid. * @retval VERR_INVALID_ARGUMENT if any other arguments are invalid. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the CPU context to search in. * @param pAddress Where to store the mixed address. * @param cbRange The number of bytes to scan. * @param uAlign The alignment restriction imposed on the result. * Usually set to 1. * @param pvNeedle What to search for - exact search. * @param cbNeedle Size of the search byte string. * @param pHitAddress Where to put the address of the first hit. * * @thread Any thread. */ VMMR3DECL(int) DBGFR3MemScan(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, RTGCUINTPTR cbRange, RTGCUINTPTR uAlign, const void *pvNeedle, size_t cbNeedle, PDBGFADDRESS pHitAddress) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3MemScan, 8, pUVM, idCpu, pAddress, &cbRange, &uAlign, pvNeedle, cbNeedle, pHitAddress); } /** * Read guest memory. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param idCpu The ID of the CPU context to read memory from. * @param pAddress Where to start reading. * @param pvBuf Where to store the data we've read. * @param cbRead The number of bytes to read. */ static DECLCALLBACK(int) dbgfR3MemRead(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, void *pvBuf, size_t cbRead) { PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); Assert(idCpu == VMMGetCpuId(pVM)); /* * Validate the input we use, PGM does the rest. */ if (!DBGFR3AddrIsValid(pUVM, pAddress)) return VERR_INVALID_POINTER; if (!VALID_PTR(pvBuf)) return VERR_INVALID_POINTER; /* * HMA is special. */ int rc; if (DBGFADDRESS_IS_HMA(pAddress)) { if (DBGFADDRESS_IS_PHYS(pAddress)) rc = VERR_INVALID_POINTER; else rc = MMR3HyperReadGCVirt(pVM, pvBuf, pAddress->FlatPtr, cbRead); } else { /* * Select PGM worker by addressing mode. */ PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); PGMMODE enmMode = PGMGetGuestMode(pVCpu); if ( enmMode == PGMMODE_REAL || enmMode == PGMMODE_PROTECTED || DBGFADDRESS_IS_PHYS(pAddress) ) rc = PGMPhysSimpleReadGCPhys(pVM, pvBuf, pAddress->FlatPtr, cbRead); else { #if GC_ARCH_BITS > 32 if ( ( pAddress->FlatPtr >= _4G || pAddress->FlatPtr + cbRead > _4G) && enmMode != PGMMODE_AMD64 && enmMode != PGMMODE_AMD64_NX) return VERR_PAGE_TABLE_NOT_PRESENT; #endif rc = PGMPhysSimpleReadGCPtr(pVCpu, pvBuf, pAddress->FlatPtr, cbRead); } } return rc; } /** * Read guest memory. * * @returns VBox status code. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the source CPU context (for the address). * @param pAddress Where to start reading. * @param pvBuf Where to store the data we've read. * @param cbRead The number of bytes to read. */ VMMR3DECL(int) DBGFR3MemRead(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, void *pvBuf, size_t cbRead) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); if ((pAddress->fFlags & DBGFADDRESS_FLAGS_TYPE_MASK) == DBGFADDRESS_FLAGS_RING0) { AssertCompile(sizeof(RTHCUINTPTR) <= sizeof(pAddress->FlatPtr)); VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE); return VMMR3ReadR0Stack(pUVM->pVM, idCpu, (RTHCUINTPTR)pAddress->FlatPtr, pvBuf, cbRead); } return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3MemRead, 5, pUVM, idCpu, pAddress, pvBuf, cbRead); } /** * Read a zero terminated string from guest memory. * * @returns VBox status code. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the source CPU context (for the address). * @param pAddress Where to start reading. * @param pszBuf Where to store the string. * @param cchBuf The size of the buffer. */ static DECLCALLBACK(int) dbgfR3MemReadString(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, char *pszBuf, size_t cchBuf) { /* * Validate the input we use, PGM does the rest. */ if (!DBGFR3AddrIsValid(pUVM, pAddress)) return VERR_INVALID_POINTER; if (!VALID_PTR(pszBuf)) return VERR_INVALID_POINTER; /* * Let dbgfR3MemRead do the job. */ int rc = dbgfR3MemRead(pUVM, idCpu, pAddress, pszBuf, cchBuf); /* * Make sure the result is terminated and that overflow is signaled. * This may look a bit reckless with the rc but, it should be fine. */ if (!RTStrEnd(pszBuf, cchBuf)) { pszBuf[cchBuf - 1] = '\0'; rc = VINF_BUFFER_OVERFLOW; } /* * Handle partial reads (not perfect). */ else if (RT_FAILURE(rc)) { if (pszBuf[0]) rc = VINF_SUCCESS; } return rc; } /** * Read a zero terminated string from guest memory. * * @returns VBox status code. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the source CPU context (for the address). * @param pAddress Where to start reading. * @param pszBuf Where to store the string. * @param cchBuf The size of the buffer. */ VMMR3DECL(int) DBGFR3MemReadString(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, char *pszBuf, size_t cchBuf) { /* * Validate and zero output. */ if (!VALID_PTR(pszBuf)) return VERR_INVALID_POINTER; if (cchBuf <= 0) return VERR_INVALID_PARAMETER; memset(pszBuf, 0, cchBuf); UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); /* * Pass it on to the EMT. */ return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3MemReadString, 5, pUVM, idCpu, pAddress, pszBuf, cchBuf); } /** * Writes guest memory. * * @returns VBox status code. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the target CPU context (for the address). * @param pAddress Where to start writing. * @param pvBuf The data to write. * @param cbWrite The number of bytes to write. */ static DECLCALLBACK(int) dbgfR3MemWrite(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, void const *pvBuf, size_t cbWrite) { /* * Validate the input we use, PGM does the rest. */ if (!DBGFR3AddrIsValid(pUVM, pAddress)) return VERR_INVALID_POINTER; if (!VALID_PTR(pvBuf)) return VERR_INVALID_POINTER; PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); /* * HMA is always special. */ int rc; if (DBGFADDRESS_IS_HMA(pAddress)) { /** @todo write to HMA. */ rc = VERR_ACCESS_DENIED; } else { /* * Select PGM function by addressing mode. */ PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); PGMMODE enmMode = PGMGetGuestMode(pVCpu); if ( enmMode == PGMMODE_REAL || enmMode == PGMMODE_PROTECTED || DBGFADDRESS_IS_PHYS(pAddress) ) rc = PGMPhysSimpleWriteGCPhys(pVM, pAddress->FlatPtr, pvBuf, cbWrite); else { #if GC_ARCH_BITS > 32 if ( ( pAddress->FlatPtr >= _4G || pAddress->FlatPtr + cbWrite > _4G) && enmMode != PGMMODE_AMD64 && enmMode != PGMMODE_AMD64_NX) return VERR_PAGE_TABLE_NOT_PRESENT; #endif rc = PGMPhysSimpleWriteGCPtr(pVCpu, pAddress->FlatPtr, pvBuf, cbWrite); } } return rc; } /** * Read guest memory. * * @returns VBox status code. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the target CPU context (for the address). * @param pAddress Where to start writing. * @param pvBuf The data to write. * @param cbWrite The number of bytes to write. */ VMMR3DECL(int) DBGFR3MemWrite(PUVM pUVM, VMCPUID idCpu, PCDBGFADDRESS pAddress, void const *pvBuf, size_t cbWrite) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3MemWrite, 5, pUVM, idCpu, pAddress, pvBuf, cbWrite); } /** * Worker for DBGFR3SelQueryInfo that calls into SELM. */ static DECLCALLBACK(int) dbgfR3SelQueryInfo(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, uint32_t fFlags, PDBGFSELINFO pSelInfo) { PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); /* * Make the query. */ int rc; if (!(fFlags & DBGFSELQI_FLAGS_DT_SHADOW)) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); rc = SELMR3GetSelectorInfo(pVM, pVCpu, Sel, pSelInfo); /* * 64-bit mode HACKS for making data and stack selectors wide open when * queried. This is voodoo magic. */ if (fFlags & DBGFSELQI_FLAGS_DT_ADJ_64BIT_MODE) { /* Expand 64-bit data and stack selectors. The check is a bit bogus... */ if ( RT_SUCCESS(rc) && (pSelInfo->fFlags & ( DBGFSELINFO_FLAGS_LONG_MODE | DBGFSELINFO_FLAGS_REAL_MODE | DBGFSELINFO_FLAGS_PROT_MODE | DBGFSELINFO_FLAGS_GATE | DBGFSELINFO_FLAGS_HYPER | DBGFSELINFO_FLAGS_INVALID | DBGFSELINFO_FLAGS_NOT_PRESENT)) == DBGFSELINFO_FLAGS_LONG_MODE && pSelInfo->cbLimit != ~(RTGCPTR)0 && CPUMIsGuestIn64BitCode(pVCpu) ) { pSelInfo->GCPtrBase = 0; pSelInfo->cbLimit = ~(RTGCPTR)0; } else if ( Sel == 0 && CPUMIsGuestIn64BitCode(pVCpu)) { pSelInfo->GCPtrBase = 0; pSelInfo->cbLimit = ~(RTGCPTR)0; pSelInfo->Sel = 0; pSelInfo->SelGate = 0; pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE; pSelInfo->u.Raw64.Gen.u1Present = 1; pSelInfo->u.Raw64.Gen.u1Long = 1; pSelInfo->u.Raw64.Gen.u1DescType = 1; rc = VINF_SUCCESS; } } } else { if (!VM_IS_RAW_MODE_ENABLED(pVM)) rc = VERR_INVALID_STATE; else rc = SELMR3GetShadowSelectorInfo(pVM, Sel, pSelInfo); } return rc; } /** * Gets information about a selector. * * Intended for the debugger mostly and will prefer the guest * descriptor tables over the shadow ones. * * @returns VBox status code, the following are the common ones. * @retval VINF_SUCCESS on success. * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the * descriptor table. * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This * is not returned if the selector itself isn't present, you have to * check that for yourself (see DBGFSELINFO::fFlags). * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the * pagetable or page backing the selector table wasn't present. * * @param pUVM The user mode VM handle. * @param idCpu The ID of the virtual CPU context. * @param Sel The selector to get info about. * @param fFlags Flags, see DBGFQSEL_FLAGS_*. * @param pSelInfo Where to store the information. This will always be * updated. * * @remarks This is a wrapper around SELMR3GetSelectorInfo and * SELMR3GetShadowSelectorInfo. */ VMMR3DECL(int) DBGFR3SelQueryInfo(PUVM pUVM, VMCPUID idCpu, RTSEL Sel, uint32_t fFlags, PDBGFSELINFO pSelInfo) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); AssertReturn(!(fFlags & ~(DBGFSELQI_FLAGS_DT_GUEST | DBGFSELQI_FLAGS_DT_SHADOW | DBGFSELQI_FLAGS_DT_ADJ_64BIT_MODE)), VERR_INVALID_PARAMETER); AssertReturn( (fFlags & (DBGFSELQI_FLAGS_DT_SHADOW | DBGFSELQI_FLAGS_DT_ADJ_64BIT_MODE)) != (DBGFSELQI_FLAGS_DT_SHADOW | DBGFSELQI_FLAGS_DT_ADJ_64BIT_MODE), VERR_INVALID_PARAMETER); /* Clear the return data here on this thread. */ memset(pSelInfo, 0, sizeof(*pSelInfo)); /* * Dispatch the request to a worker running on the target CPU. */ return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3SelQueryInfo, 5, pUVM, idCpu, Sel, fFlags, pSelInfo); } /** * Validates a CS selector. * * @returns VBox status code. * @param pSelInfo Pointer to the selector information for the CS selector. * @param SelCPL The selector defining the CPL (SS). */ VMMDECL(int) DBGFR3SelInfoValidateCS(PCDBGFSELINFO pSelInfo, RTSEL SelCPL) { /* * Check if present. */ if (pSelInfo->u.Raw.Gen.u1Present) { /* * Type check. */ if ( pSelInfo->u.Raw.Gen.u1DescType == 1 && (pSelInfo->u.Raw.Gen.u4Type & X86_SEL_TYPE_CODE)) { /* * Check level. */ unsigned uLevel = RT_MAX(SelCPL & X86_SEL_RPL, pSelInfo->Sel & X86_SEL_RPL); if ( !(pSelInfo->u.Raw.Gen.u4Type & X86_SEL_TYPE_CONF) ? uLevel <= pSelInfo->u.Raw.Gen.u2Dpl : uLevel >= pSelInfo->u.Raw.Gen.u2Dpl /* hope I got this right now... */ ) return VINF_SUCCESS; return VERR_INVALID_RPL; } return VERR_NOT_CODE_SELECTOR; } return VERR_SELECTOR_NOT_PRESENT; } /** * Converts a PGM paging mode to a set of DBGFPGDMP_XXX flags. * * @returns Flags. UINT32_MAX if the mode is invalid (asserted). * @param enmMode The mode. */ static uint32_t dbgfR3PagingDumpModeToFlags(PGMMODE enmMode) { switch (enmMode) { case PGMMODE_32_BIT: return DBGFPGDMP_FLAGS_PSE; case PGMMODE_PAE: return DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE; case PGMMODE_PAE_NX: return DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE; case PGMMODE_AMD64: return DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME; case PGMMODE_AMD64_NX: return DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE; case PGMMODE_NESTED_32BIT: return DBGFPGDMP_FLAGS_NP | DBGFPGDMP_FLAGS_PSE; case PGMMODE_NESTED_PAE: return DBGFPGDMP_FLAGS_NP | DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_NXE; case PGMMODE_NESTED_AMD64: return DBGFPGDMP_FLAGS_NP | DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_NXE; case PGMMODE_EPT: return DBGFPGDMP_FLAGS_EPT; case PGMMODE_NONE: return 0; default: AssertFailedReturn(UINT32_MAX); } } /** * EMT worker for DBGFR3PagingDumpEx. * * @returns VBox status code. * @param pUVM The shared VM handle. * @param idCpu The current CPU ID. * @param fFlags The flags, DBGFPGDMP_FLAGS_XXX. Valid. * @param pcr3 The CR3 to use (unless we're getting the current * state, see @a fFlags). * @param pu64FirstAddr The first address. * @param pu64LastAddr The last address. * @param cMaxDepth The depth. * @param pHlp The output callbacks. */ static DECLCALLBACK(int) dbgfR3PagingDumpEx(PUVM pUVM, VMCPUID idCpu, uint32_t fFlags, uint64_t *pcr3, uint64_t *pu64FirstAddr, uint64_t *pu64LastAddr, uint32_t cMaxDepth, PCDBGFINFOHLP pHlp) { /* * Implement dumping both context by means of recursion. */ if ((fFlags & (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) == (DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_SHADOW)) { int rc1 = dbgfR3PagingDumpEx(pUVM, idCpu, fFlags & ~DBGFPGDMP_FLAGS_GUEST, pcr3, pu64FirstAddr, pu64LastAddr, cMaxDepth, pHlp); int rc2 = dbgfR3PagingDumpEx(pUVM, idCpu, fFlags & ~DBGFPGDMP_FLAGS_SHADOW, pcr3, pu64FirstAddr, pu64LastAddr, cMaxDepth, pHlp); return RT_FAILURE(rc1) ? rc1 : rc2; } PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); /* * Get the current CR3/mode if required. */ uint64_t cr3 = *pcr3; if (fFlags & (DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE)) { PVMCPU pVCpu = &pVM->aCpus[idCpu]; if (fFlags & DBGFPGDMP_FLAGS_SHADOW) { if (PGMGetShadowMode(pVCpu) == PGMMODE_NONE) { pHlp->pfnPrintf(pHlp, "Shadow paging mode is 'none' (NEM)\n"); return VINF_SUCCESS; } if (fFlags & DBGFPGDMP_FLAGS_CURRENT_CR3) cr3 = PGMGetHyperCR3(pVCpu); if (fFlags & DBGFPGDMP_FLAGS_CURRENT_MODE) fFlags |= dbgfR3PagingDumpModeToFlags(PGMGetShadowMode(pVCpu)); } else { if (fFlags & DBGFPGDMP_FLAGS_CURRENT_CR3) cr3 = CPUMGetGuestCR3(pVCpu); if (fFlags & DBGFPGDMP_FLAGS_CURRENT_MODE) { AssertCompile(DBGFPGDMP_FLAGS_PSE == X86_CR4_PSE); AssertCompile(DBGFPGDMP_FLAGS_PAE == X86_CR4_PAE); fFlags |= CPUMGetGuestCR4(pVCpu) & (X86_CR4_PSE | X86_CR4_PAE); AssertCompile(DBGFPGDMP_FLAGS_LME == MSR_K6_EFER_LME); AssertCompile(DBGFPGDMP_FLAGS_NXE == MSR_K6_EFER_NXE); fFlags |= CPUMGetGuestEFER(pVCpu) & (MSR_K6_EFER_LME | MSR_K6_EFER_NXE); } } } fFlags &= ~(DBGFPGDMP_FLAGS_CURRENT_MODE | DBGFPGDMP_FLAGS_CURRENT_CR3); /* * Call PGM to do the real work. */ int rc; if (fFlags & DBGFPGDMP_FLAGS_SHADOW) rc = PGMR3DumpHierarchyShw(pVM, cr3, fFlags, *pu64FirstAddr, *pu64LastAddr, cMaxDepth, pHlp); else rc = PGMR3DumpHierarchyGst(pVM, cr3, fFlags, *pu64FirstAddr, *pu64LastAddr, cMaxDepth, pHlp); return rc; } /** * Dump paging structures. * * This API can be used to dump both guest and shadow structures. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param idCpu The current CPU ID. * @param fFlags The flags, DBGFPGDMP_FLAGS_XXX. * @param cr3 The CR3 to use (unless we're getting the current * state, see @a fFlags). * @param u64FirstAddr The address to start dumping at. * @param u64LastAddr The address to end dumping after. * @param cMaxDepth The depth. * @param pHlp The output callbacks. Defaults to the debug log if * NULL. */ VMMDECL(int) DBGFR3PagingDumpEx(PUVM pUVM, VMCPUID idCpu, uint32_t fFlags, uint64_t cr3, uint64_t u64FirstAddr, uint64_t u64LastAddr, uint32_t cMaxDepth, PCDBGFINFOHLP pHlp) { /* * Input validation. */ UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pUVM->cCpus, VERR_INVALID_CPU_ID); AssertReturn(!(fFlags & ~DBGFPGDMP_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER); AssertReturn(fFlags & (DBGFPGDMP_FLAGS_SHADOW | DBGFPGDMP_FLAGS_GUEST), VERR_INVALID_PARAMETER); AssertReturn((fFlags & DBGFPGDMP_FLAGS_CURRENT_MODE) || !(fFlags & DBGFPGDMP_FLAGS_MODE_MASK), VERR_INVALID_PARAMETER); AssertReturn( !(fFlags & DBGFPGDMP_FLAGS_EPT) || !(fFlags & (DBGFPGDMP_FLAGS_LME | DBGFPGDMP_FLAGS_PAE | DBGFPGDMP_FLAGS_PSE | DBGFPGDMP_FLAGS_NXE)) , VERR_INVALID_PARAMETER); AssertPtrReturn(pHlp, VERR_INVALID_POINTER); AssertReturn(cMaxDepth, VERR_INVALID_PARAMETER); /* * Forward the request to the target CPU. */ return VMR3ReqPriorityCallWaitU(pUVM, idCpu, (PFNRT)dbgfR3PagingDumpEx, 8, pUVM, idCpu, fFlags, &cr3, &u64FirstAddr, &u64LastAddr, cMaxDepth, pHlp); }