/* $Id: MM.cpp 99079 2023-03-21 11:05:38Z vboxsync $ */ /** @file * MM - Memory Manager. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /** @page pg_mm MM - The Memory Manager * * The memory manager is in charge of the following memory: * - Hypervisor Memory Area (HMA) - Address space management (obsolete in 6.1). * - Hypervisor Heap - A memory heap that lives in all contexts. * - User-Kernel Heap - A memory heap lives in both host context. * - Tagged ring-3 heap. * - Page pools - Primarily used by PGM for shadow page tables. * - Locked process memory - Guest RAM and other. (reduce/obsolete this) * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this) * * The global memory manager (GMM) is the global counter part / partner of MM. * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs * related to resource tracking (PGM is the user). * * @see grp_mm * * * @section sec_mm_hma Hypervisor Memory Area - Obsolete in 6.1 * * The HMA is used when executing in raw-mode. We borrow, with the help of * PGMMap, some unused space (one or more page directory entries to be precise) * in the guest's virtual memory context. PGM will monitor the guest's virtual * address space for changes and relocate the HMA when required. * * To give some idea what's in the HMA, study the 'info hma' output: * @verbatim VBoxDbg> info hma Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes 00000000a05cc000-00000000a05cd000 DYNAMIC fence 00000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping 00000000a05c3000-00000000a05c4000 DYNAMIC fence 00000000a05b8000-00000000a05c3000 DYNAMIC Paging 00000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem 00000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam 00000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE) 00000000a0522000-00000000a0523000 DYNAMIC fence 00000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2RC.rc 00000000a051d000-00000000a051e000 DYNAMIC fence 00000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDRC.rc 00000000a04ea000-00000000a04eb000 DYNAMIC fence 00000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region) 00000000a04e8000-00000000a04e9000 DYNAMIC fence 00000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMRC.rc 00000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM) 00000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM) 00000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM) 00000000a01e6000-00000000a01e7000 DYNAMIC fence 00000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code 00000000a01e4000-00000000a01e5000 DYNAMIC fence 00000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP 00000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS) 00000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL) 00000000a016a000-00000000a016b000 DYNAMIC fence 00000000a0165000-00000000a016a000 DYNAMIC CR3 mapping 00000000a0164000-00000000a0165000 DYNAMIC fence 00000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap 00000000a0023000-00000000a0024000 DYNAMIC fence 00000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM 00000000a0000000-00000000a0001000 DYNAMIC fence @endverbatim * * * @section sec_mm_hyperheap Hypervisor Heap * * The heap is accessible from ring-3, ring-0 and the raw-mode context. That * said, it's not necessarily mapped into ring-0 on if that's possible since we * don't wish to waste kernel address space without a good reason. * * Allocations within the heap are always in the same relative position in all * contexts, so, it's possible to use offset based linking. In fact, the heap is * internally using offset based linked lists tracking heap blocks. We use * offset linked AVL trees and lists in a lot of places where share structures * between RC, R3 and R0, so this is a strict requirement of the heap. However * this means that we cannot easily extend the heap since the extension won't * necessarily be in the continuation of the current heap memory in all (or any) * context. * * All allocations are tagged. Per tag allocation statistics will be maintaining * and exposed thru STAM when VBOX_WITH_STATISTICS is defined. * * * @section sec_mm_r3heap Tagged Ring-3 Heap * * The ring-3 heap is a wrapper around the RTMem API adding allocation * statistics and automatic cleanup on VM destruction. * * Per tag allocation statistics will be maintaining and exposed thru STAM when * VBOX_WITH_STATISTICS is defined. * * * @section sec_mm_page Page Pool * * The MM manages a page pool from which other components can allocate locked, * page aligned and page sized memory objects. The pool provides facilities to * convert back and forth between (host) physical and virtual addresses (within * the pool of course). Several specialized interfaces are provided for the most * common allocations and conversions to save the caller from bothersome casting * and extra parameter passing. * * * @section sec_mm_locked Locked Process Memory * * MM manages the locked process memory. This is used for a bunch of things * (count the LOCKED entries in the 'info hma' output found in @ref sec_mm_hma), * but the main consumer of memory is currently for guest RAM. There is an * ongoing rewrite that will move all the guest RAM allocation to PGM and * GMM. * * The locking of memory is something doing in cooperation with the VirtualBox * support driver, SUPDrv (aka. VBoxDrv), thru the support library API, * SUPR3 (aka. SUPLib). * * * @section sec_mm_phys Physical Guest Memory * * MM is currently managing the physical memory for the guest. It relies heavily * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The * rewrite is driven by the need for more flexible guest ram allocation, but * also motivated by the fact that MMPhys is just adding stupid bureaucracy and * that MMR3PhysReserve is a totally weird artifact that must go away.) * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_MM #include #include #include #include #include #include "MMInternal.h" #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The current saved state version of MM. */ #define MM_SAVED_STATE_VERSION 2 /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); /** * Initializes the MM members of the UVM. * * This is currently only the ring-3 heap. * * @returns VBox status code. * @param pUVM Pointer to the user mode VM structure. */ VMMR3DECL(int) MMR3InitUVM(PUVM pUVM) { /* * Assert sizes and order. */ AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding)); AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding)); Assert(!pUVM->mm.s.pHeap); /* * Init the heap. */ int rc = mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap); if (RT_SUCCESS(rc)) return VINF_SUCCESS; return rc; } /** * Initializes the MM. * * MM is managing the virtual address space (among other things) and * setup the hypervisor memory area mapping in the VM structure and * the hypervisor alloc-only-heap. Assuming the current init order * and components the hypervisor memory area looks like this: * -# VM Structure. * -# Hypervisor alloc only heap (also call Hypervisor memory region). * -# Core code. * * MM determines the virtual address of the hypervisor memory area by * checking for location at previous run. If that property isn't available * it will choose a default starting location, currently 0xa0000000. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) MMR3Init(PVM pVM) { LogFlow(("MMR3Init\n")); /* * Assert alignment, sizes and order. */ AssertRelease(!(RT_UOFFSETOF(VM, mm.s) & 31)); AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding)); /* * Register the saved state data unit. */ int rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2, NULL, NULL, NULL, NULL, mmR3Save, NULL, NULL, mmR3Load, NULL); if (RT_SUCCESS(rc)) { /* * Statistics. */ STAM_REG(pVM, &pVM->mm.s.cBasePages, STAMTYPE_U64, "/MM/Reserved/cBasePages", STAMUNIT_PAGES, "Reserved number of base pages, ROM and Shadow ROM included."); STAM_REG(pVM, &pVM->mm.s.cHandyPages, STAMTYPE_U32, "/MM/Reserved/cHandyPages", STAMUNIT_PAGES, "Reserved number of handy pages."); STAM_REG(pVM, &pVM->mm.s.cShadowPages, STAMTYPE_U32, "/MM/Reserved/cShadowPages", STAMUNIT_PAGES, "Reserved number of shadow paging pages."); STAM_REG(pVM, &pVM->mm.s.cFixedPages, STAMTYPE_U32, "/MM/Reserved/cFixedPages", STAMUNIT_PAGES, "Reserved number of fixed pages (MMIO2)."); STAM_REG(pVM, &pVM->mm.s.cbRamBase, STAMTYPE_U64, "/MM/cbRamBase", STAMUNIT_BYTES, "Size of the base RAM."); return rc; } return rc; } #if defined(VBOX_VMM_TARGET_ARMV8) /** * This sets up the RAM ranges from the VM config. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pMMCfg Pointer to the CFGM node holding the RAM config. * * @note On ARM there is no "standard" way to handle RAM like on x86. * Every SoC can have multiple RAM regions scattered across the whole * address space so we have to be much more flexible here. */ static int mmR3InitRamArmV8(PVM pVM, PCFGMNODE pMMCfg) { int rc = VINF_SUCCESS; PCFGMNODE pMemRegions = CFGMR3GetChild(pMMCfg, "MemRegions"); pVM->mm.s.cbRamBase = 0; pVM->mm.s.cbRamHole = 0; pVM->mm.s.cbRamBelow4GB = 0; pVM->mm.s.cbRamAbove4GB = 0; for (PCFGMNODE pCur = CFGMR3GetFirstChild(pMemRegions); pCur; pCur = CFGMR3GetNextChild(pCur)) { char szMemRegion[512]; RT_ZERO(szMemRegion); rc = CFGMR3GetName(pCur, &szMemRegion[0], sizeof(szMemRegion)); if (RT_FAILURE(rc)) { LogRel(("Failed to query memory region name -> %Rrc\n", rc)); break; } uint64_t u64GCPhysStart = 0; rc = CFGMR3QueryU64(pCur, "GCPhysStart", &u64GCPhysStart); if (RT_FAILURE(rc)) { LogRel(("Failed to query \"GCPhysStart\" for memory region %s -> %Rrc\n", szMemRegion, rc)); break; } uint64_t u64MemSize = 0; rc = CFGMR3QueryU64(pCur, "Size", &u64MemSize); if (RT_FAILURE(rc)) { LogRel(("Failed to query \"Size\" for memory region %s -> %Rrc\n", szMemRegion, rc)); break; } rc = PGMR3PhysRegisterRam(pVM, u64GCPhysStart, u64MemSize, "Conventional RAM"); if (RT_FAILURE(rc)) { LogRel(("Failed to register memory region '%s' GCPhysStart=%RGp Size=%#RX64 -> %Rrc\n", szMemRegion, u64GCPhysStart, u64MemSize)); break; } pVM->mm.s.cbRamBase += u64MemSize; if (u64GCPhysStart >= _4G) pVM->mm.s.cbRamAbove4GB += u64MemSize; else if (u64GCPhysStart + u64MemSize > _4G) { uint64_t cbRamAbove4GB = (u64GCPhysStart + u64MemSize) - _4G; pVM->mm.s.cbRamAbove4GB += cbRamAbove4GB; pVM->mm.s.cbRamBelow4GB += (u64MemSize - cbRamAbove4GB); } else pVM->mm.s.cbRamBelow4GB += (uint32_t)u64MemSize; } return rc; } #endif /** * Initializes the MM parts which depends on PGM being initialized. * * @returns VBox status code. * @param pVM The cross context VM structure. * @remark No cleanup necessary since MMR3Term() will be called on failure. */ VMMR3DECL(int) MMR3InitPaging(PVM pVM) { LogFlow(("MMR3InitPaging:\n")); /* * Query the CFGM values. */ int rc; PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM"); if (!pMMCfg) { rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg); AssertRCReturn(rc, rc); } #if defined(VBOX_VMM_TARGET_ARMV8) rc = mmR3InitRamArmV8(pVM, pMMCfg); #else /** @cfgm{/RamSize, uint64_t, 0, 16TB, 0} * Specifies the size of the base RAM that is to be set up during * VM initialization. */ uint64_t cbRam; rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam); if (rc == VERR_CFGM_VALUE_NOT_FOUND) cbRam = 0; else AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc); AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK)); AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE); cbRam &= X86_PTE_PAE_PG_MASK; pVM->mm.s.cbRamBase = cbRam; /** @cfgm{/RamHoleSize, uint32_t, 0, 4032MB, 512MB} * Specifies the size of the memory hole. The memory hole is used * to avoid mapping RAM to the range normally used for PCI memory regions. * Must be aligned on a 4MB boundary. */ uint32_t cbRamHole; rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT); AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc); AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M, ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE); AssertLogRelMsgReturn(cbRamHole > 16 * _1M, ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE); AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)), ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE); uint64_t const offRamHole = _4G - cbRamHole; if (cbRam < offRamHole) Log(("MM: %RU64 bytes of RAM\n", cbRam)); else Log(("MM: %RU64 bytes of RAM with a hole at %RU64 up to 4GB.\n", cbRam, offRamHole)); /** @cfgm{/MM/Policy, string, no overcommitment} * Specifies the policy to use when reserving memory for this VM. The recognized * value is 'no overcommitment' (default). See GMMPOLICY. */ GMMOCPOLICY enmOcPolicy; char sz[64]; rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz)); if (RT_SUCCESS(rc)) { if ( !RTStrICmp(sz, "no_oc") || !RTStrICmp(sz, "no overcommitment")) enmOcPolicy = GMMOCPOLICY_NO_OC; else return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz); } else if (rc == VERR_CFGM_VALUE_NOT_FOUND) enmOcPolicy = GMMOCPOLICY_NO_OC; else AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc); /** @cfgm{/MM/Priority, string, normal} * Specifies the memory priority of this VM. The priority comes into play when the * system is overcommitted and the VMs needs to be milked for memory. The recognized * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY. */ GMMPRIORITY enmPriority; rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz)); if (RT_SUCCESS(rc)) { if (!RTStrICmp(sz, "low")) enmPriority = GMMPRIORITY_LOW; else if (!RTStrICmp(sz, "normal")) enmPriority = GMMPRIORITY_NORMAL; else if (!RTStrICmp(sz, "high")) enmPriority = GMMPRIORITY_HIGH; else return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz); } else if (rc == VERR_CFGM_VALUE_NOT_FOUND) enmPriority = GMMPRIORITY_NORMAL; else AssertMsgFailedReturn(("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc); /* * Make the initial memory reservation with GMM. */ uint32_t const cbUma = _1M - 640*_1K; uint64_t cBasePages = ((cbRam - cbUma) >> GUEST_PAGE_SHIFT) + pVM->mm.s.cBasePages; rc = GMMR3InitialReservation(pVM, RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1), RT_MAX(pVM->mm.s.cShadowPages, 1), RT_MAX(pVM->mm.s.cFixedPages, 1), enmOcPolicy, enmPriority); if (RT_FAILURE(rc)) { if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED) return VMSetError(pVM, rc, RT_SRC_POS, N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"), cbRam, enmOcPolicy, enmPriority); return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)", cbRam >> GUEST_PAGE_SHIFT, enmOcPolicy, enmPriority); } /* * If RamSize is 0 we're done now. */ if (cbRam < GUEST_PAGE_SIZE) { Log(("MM: No RAM configured\n")); return VINF_SUCCESS; } /* * Setup the base ram (PGM). */ pVM->mm.s.cbRamHole = cbRamHole; pVM->mm.s.cbRamBelow4GB = cbRam > offRamHole ? offRamHole : cbRam; pVM->mm.s.cbRamAbove4GB = cbRam > offRamHole ? cbRam - offRamHole : 0; /* First the conventional memory: */ rc = PGMR3PhysRegisterRam(pVM, 0, RT_MIN(cbRam, 640*_1K), "Conventional RAM"); if (RT_SUCCESS(rc) && cbRam >= _1M) { /* The extended memory from 1MiB to 2MiB to align better with large pages in NEM mode: */ rc = PGMR3PhysRegisterRam(pVM, _1M, RT_MIN(_1M, cbRam - _1M), "Extended RAM, 1-2MB"); if (cbRam > _2M) { /* The extended memory from 2MiB up to 4GiB: */ rc = PGMR3PhysRegisterRam(pVM, _2M, pVM->mm.s.cbRamBelow4GB - _2M, "Extended RAM, >2MB"); /* Then all the memory above 4GiB: */ if (RT_SUCCESS(rc) && pVM->mm.s.cbRamAbove4GB > 0) rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM"); } } #endif /* !VBOX_VMM_TARGET_ARMV8 */ /* * Enabled mmR3UpdateReservation here since we don't want the * PGMR3PhysRegisterRam calls above mess things up. */ pVM->mm.s.fDoneMMR3InitPaging = true; #if !defined(VBOX_VMM_TARGET_ARMV8) AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages)); #endif LogFlow(("MMR3InitPaging: returns %Rrc\n", rc)); return rc; } /** * Terminates the MM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) MMR3Term(PVM pVM) { RT_NOREF(pVM); return VINF_SUCCESS; } /** * Terminates the UVM part of MM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pUVM Pointer to the user mode VM structure. */ VMMR3DECL(void) MMR3TermUVM(PUVM pUVM) { /* * Destroy the heap. */ mmR3HeapDestroy(pUVM->mm.s.pHeap); pUVM->mm.s.pHeap = NULL; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM) { LogFlow(("mmR3Save:\n")); /* (PGM saves the physical memory.) */ SSMR3PutU64(pSSM, pVM->mm.s.cBasePages); return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase); } /** * Execute state load operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. * @param uVersion Data layout version. * @param uPass The data pass. */ static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { LogFlow(("mmR3Load:\n")); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Validate version. */ if ( SSM_VERSION_MAJOR_CHANGED(uVersion, MM_SAVED_STATE_VERSION) || !uVersion) { AssertMsgFailed(("mmR3Load: Invalid version uVersion=%d!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Check the cBasePages and cbRamBase values. */ int rc; RTUINT cb1; /* cBasePages (ignored) */ uint64_t cGuestPages; if (uVersion >= 2) rc = SSMR3GetU64(pSSM, &cGuestPages); else { rc = SSMR3GetUInt(pSSM, &cb1); cGuestPages = cb1 >> GUEST_PAGE_SHIFT; } if (RT_FAILURE(rc)) return rc; /* cbRamBase */ uint64_t cb; if (uVersion != 1) rc = SSMR3GetU64(pSSM, &cb); else { rc = SSMR3GetUInt(pSSM, &cb1); cb = cb1; } if (RT_FAILURE(rc)) return rc; AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase, ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb), VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH); /* (PGM restores the physical memory.) */ return rc; } /** * Updates GMM with memory reservation changes. * * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes. * * @returns VBox status code - see GMMR0UpdateReservation. * @param pVM The cross context VM structure. */ int mmR3UpdateReservation(PVM pVM) { VM_ASSERT_EMT(pVM); if (pVM->mm.s.fDoneMMR3InitPaging) return GMMR3UpdateReservation(pVM, RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1), RT_MAX(pVM->mm.s.cShadowPages, 1), RT_MAX(pVM->mm.s.cFixedPages, 1)); return VINF_SUCCESS; } /** * Interface for PGM to increase the reservation of RAM and ROM pages. * * This can be called before MMR3InitPaging. * * @returns VBox status code. Will set VM error on failure. * @param pVM The cross context VM structure. * @param cAddBasePages The number of pages to add. */ VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages) { uint64_t cOld = pVM->mm.s.cBasePages; pVM->mm.s.cBasePages += cAddBasePages; LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64)\n", cAddBasePages, cOld, pVM->mm.s.cBasePages)); int rc = mmR3UpdateReservation(pVM); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"), cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages); pVM->mm.s.cBasePages = cOld; } return rc; } /** * Interface for PGM to make reservations for handy pages in addition to the * base memory. * * This can be called before MMR3InitPaging. * * @returns VBox status code. Will set VM error on failure. * @param pVM The cross context VM structure. * @param cHandyPages The number of handy pages. */ VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages) { AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER); pVM->mm.s.cHandyPages = cHandyPages; LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages)); int rc = mmR3UpdateReservation(pVM); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"), pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages); pVM->mm.s.cHandyPages = 0; } return rc; } /** * Interface for PGM to adjust the reservation of fixed pages. * * This can be called before MMR3InitPaging. * * @returns VBox status code. Will set VM error on failure. * @param pVM The cross context VM structure. * @param cDeltaFixedPages The number of guest pages to add (positive) or * subtract (negative). * @param pszDesc Some description associated with the reservation. */ VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc) { const uint32_t cOld = pVM->mm.s.cFixedPages; pVM->mm.s.cFixedPages += cDeltaFixedPages; LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages)); int rc = mmR3UpdateReservation(pVM); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"), cOld, pVM->mm.s.cFixedPages, pszDesc); pVM->mm.s.cFixedPages = cOld; } return rc; } /** * Interface for PGM to update the reservation of shadow pages. * * This can be called before MMR3InitPaging. * * @returns VBox status code. Will set VM error on failure. * @param pVM The cross context VM structure. * @param cShadowPages The new page count. */ VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages) { const uint32_t cOld = pVM->mm.s.cShadowPages; pVM->mm.s.cShadowPages = cShadowPages; LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages)); int rc = mmR3UpdateReservation(pVM); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages); pVM->mm.s.cShadowPages = cOld; } return rc; } /** * Get the size of the base RAM. * This usually means the size of the first contiguous block of physical memory. * * @returns The guest base RAM size. * @param pVM The cross context VM structure. * @thread Any. * * @deprecated */ VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM) { return pVM->mm.s.cbRamBase; } /** * Get the size of RAM below 4GB (starts at address 0x00000000). * * @returns The amount of RAM below 4GB in bytes. * @param pVM The cross context VM structure. * @thread Any. */ VMMR3DECL(uint32_t) MMR3PhysGetRamSizeBelow4GB(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); return pVM->mm.s.cbRamBelow4GB; } /** * Get the size of RAM above 4GB (starts at address 0x000100000000). * * @returns The amount of RAM above 4GB in bytes. * @param pVM The cross context VM structure. * @thread Any. */ VMMR3DECL(uint64_t) MMR3PhysGetRamSizeAbove4GB(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); return pVM->mm.s.cbRamAbove4GB; } /** * Get the size of the RAM hole below 4GB. * * @returns Size in bytes. * @param pVM The cross context VM structure. * @thread Any. */ VMMR3DECL(uint32_t) MMR3PhysGet4GBRamHoleSize(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); return pVM->mm.s.cbRamHole; }