/* $Id: PGMPhys.cpp 100970 2023-08-25 13:05:20Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor, Physical Memory Addressing. */ /* * Copyright (C) 2006-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_PHYS #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */ #include #include #include #include #include #include #include #include "PGMInternal.h" #include #include "PGMInline.h" #include #include #include #include #include #include #include #ifdef VBOX_STRICT # include #endif #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The number of pages to free in one batch. */ #define PGMPHYS_FREE_PAGE_BATCH_SIZE 128 /********************************************************************************************************************************* * Reading and Writing Guest Pysical Memory * *********************************************************************************************************************************/ /* * PGMR3PhysReadU8-64 * PGMR3PhysWriteU8-64 */ #define PGMPHYSFN_READNAME PGMR3PhysReadU8 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8 #define PGMPHYS_DATASIZE 1 #define PGMPHYS_DATATYPE uint8_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU16 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16 #define PGMPHYS_DATASIZE 2 #define PGMPHYS_DATATYPE uint16_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU32 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32 #define PGMPHYS_DATASIZE 4 #define PGMPHYS_DATATYPE uint32_t #include "PGMPhysRWTmpl.h" #define PGMPHYSFN_READNAME PGMR3PhysReadU64 #define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64 #define PGMPHYS_DATASIZE 8 #define PGMPHYS_DATATYPE uint64_t #include "PGMPhysRWTmpl.h" /** * EMT worker for PGMR3PhysReadExternal. */ static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin) { VBOXSTRICTRC rcStrict = PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead, enmOrigin); AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); return VINF_SUCCESS; } /** * Read from physical memory, external users. * * @returns VBox status code. * @retval VINF_SUCCESS. * * @param pVM The cross context VM structure. * @param GCPhys Physical address to read from. * @param pvBuf Where to read into. * @param cbRead How many bytes to read. * @param enmOrigin Who is calling. * * @thread Any but EMTs. */ VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin) { VM_ASSERT_OTHER_THREAD(pVM); AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead)); PGM_LOCK_VOID(pVM); /* * Copy loop on ram ranges. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPHYS off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { unsigned iPage = off >> GUEST_PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; /* * If the page has an ALL access handler, we'll have to * delegate the job to EMT. */ if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) { PGM_UNLOCK(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 5, pVM, &GCPhys, pvBuf, cbRead, enmOrigin); } Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); /* * Simple stuff, go ahead. */ size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK); if (cb > cbRead) cb = cbRead; PGMPAGEMAPLOCK PgMpLck; const void *pvSrc; int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc, &PgMpLck); if (RT_SUCCESS(rc)) { memcpy(pvBuf, pvSrc, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } else { AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); memset(pvBuf, 0xff, cb); } /* next page */ if (cb >= cbRead) { PGM_UNLOCK(pVM); return VINF_SUCCESS; } cbRead -= cb; off += cb; GCPhys += cb; pvBuf = (char *)pvBuf + cb; } /* walk pages in ram range. */ } else { LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead)); /* * Unassigned address space. */ size_t cb = pRam ? pRam->GCPhys - GCPhys : ~(size_t)0; if (cb >= cbRead) { memset(pvBuf, 0xff, cbRead); break; } memset(pvBuf, 0xff, cb); cbRead -= cb; pvBuf = (char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ PGM_UNLOCK(pVM); return VINF_SUCCESS; } /** * EMT worker for PGMR3PhysWriteExternal. */ static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin) { /** @todo VERR_EM_NO_MEMORY */ VBOXSTRICTRC rcStrict = PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite, enmOrigin); AssertMsg(rcStrict == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); NOREF(rcStrict); return VINF_SUCCESS; } /** * Write to physical memory, external users. * * @returns VBox status code. * @retval VINF_SUCCESS. * @retval VERR_EM_NO_MEMORY. * * @param pVM The cross context VM structure. * @param GCPhys Physical address to write to. * @param pvBuf What to write. * @param cbWrite How many bytes to write. * @param enmOrigin Who is calling. * * @thread Any but EMTs. */ VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, PGMACCESSORIGIN enmOrigin) { VM_ASSERT_OTHER_THREAD(pVM); AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x enmOrigin=%d\n", GCPhys, cbWrite, enmOrigin)); AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS); LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite)); PGM_LOCK_VOID(pVM); /* * Copy loop on ram ranges, stop when we hit something difficult. */ PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); for (;;) { /* Inside range or not? */ if (pRam && GCPhys >= pRam->GCPhys) { /* * Must work our way thru this page by page. */ RTGCPTR off = GCPhys - pRam->GCPhys; while (off < pRam->cb) { RTGCPTR iPage = off >> GUEST_PAGE_SHIFT; PPGMPAGE pPage = &pRam->aPages[iPage]; /* * Is the page problematic, we have to do the work on the EMT. * * Allocating writable pages and access handlers are * problematic, write monitored pages are simple and can be * dealt with here. */ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage)) { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); else { PGM_UNLOCK(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 5, pVM, &GCPhys, pvBuf, cbWrite, enmOrigin); } } Assert(!PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)); /* * Simple stuff, go ahead. */ size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK); if (cb > cbWrite) cb = cbWrite; PGMPAGEMAPLOCK PgMpLck; void *pvDst; int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst, &PgMpLck); if (RT_SUCCESS(rc)) { memcpy(pvDst, pvBuf, cb); pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck); } else AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n", pRam->GCPhys + off, pPage, rc)); /* next page */ if (cb >= cbWrite) { PGM_UNLOCK(pVM); return VINF_SUCCESS; } cbWrite -= cb; off += cb; GCPhys += cb; pvBuf = (const char *)pvBuf + cb; } /* walk pages in ram range */ } else { /* * Unassigned address space, skip it. */ if (!pRam) break; size_t cb = pRam->GCPhys - GCPhys; if (cb >= cbWrite) break; cbWrite -= cb; pvBuf = (const char *)pvBuf + cb; GCPhys += cb; } /* Advance range if necessary. */ while (pRam && GCPhys > pRam->GCPhysLast) pRam = pRam->CTX_SUFF(pNext); } /* Ram range walk */ PGM_UNLOCK(pVM); return VINF_SUCCESS; } /********************************************************************************************************************************* * Mapping Guest Physical Memory * *********************************************************************************************************************************/ /** * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable. * * @returns see PGMR3PhysGCPhys2CCPtrExternal * @param pVM The cross context VM structure. * @param pGCPhys Pointer to the guest physical address. * @param ppv Where to store the mapping address. * @param pLock Where to store the lock. */ static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { /* * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with * an access handler after it succeeds. */ int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock); if (RT_SUCCESS(rc)) { PPGMPAGEMAPTLBE pTlbe; int rc2 = pgmPhysPageQueryTlbe(pVM, *pGCPhys, &pTlbe); AssertFatalRC(rc2); PPGMPAGE pPage = pTlbe->pPage; if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) { PGMPhysReleasePageMappingLock(pVM, pLock); rc = VERR_PGM_PHYS_PAGE_RESERVED; } else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT || pgmPoolIsDirtyPage(pVM, *pGCPhys) #endif ) { /* We *must* flush any corresponding pgm pool page here, otherwise we'll * not be informed about writes and keep bogus gst->shw mappings around. */ pgmPoolFlushPageByGCPhys(pVM, *pGCPhys); Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)); /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */ } } PGM_UNLOCK(pVM); return rc; } /** * Requests the mapping of a guest page into ring-3, external threads. * * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to * release it. * * This API will assume your intention is to write to the page, and will * therefore replace shared and zero pages. If you do not intend to modify the * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical * backing or if the page has any active access handlers. The caller * must fall back on using PGMR3PhysWriteExternal. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The cross context VM structure. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than the * PGM one) because of the deadlock risk when we have to delegating the * task to an EMT. * @thread Any. */ VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock) { AssertPtr(ppv); AssertPtr(pLock); Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { PPGMPAGE pPage = pTlbe->pPage; if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; else { /* * If the page is shared, the zero page, or being write monitored * it must be converted to an page that's writable if possible. * We can only deal with write monitored pages here, the rest have * to be on an EMT. */ if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT || pgmPoolIsDirtyPage(pVM, GCPhys) #endif ) { if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && !pgmPoolIsDirtyPage(pVM, GCPhys) /** @todo we're very likely doing this twice. */ #endif ) pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, GCPhys); else { PGM_UNLOCK(pVM); return VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, pVM, &GCPhys, ppv, pLock); } } /* * Now, just perform the locking and calculate the return address. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cWriteLockedPages++; PGM_PAGE_INC_WRITE_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage)) { PGM_PAGE_INC_WRITE_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK)); pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; pLock->pvMap = pMap; } } PGM_UNLOCK(pVM); return rc; } /** * Requests the mapping of a guest page into ring-3, external threads. * * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to * release it. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical * backing or if the page as an active ALL access handler. The caller * must fall back on using PGMPhysRead. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address. * * @param pVM The cross context VM structure. * @param GCPhys The guest physical address of the page that should be mapped. * @param ppv Where to store the address corresponding to GCPhys. * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs. * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread Any. */ VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock) { int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); if (RT_SUCCESS(rc)) { PPGMPAGE pPage = pTlbe->pPage; #if 1 /* MMIO pages doesn't have any readable backing. */ if (PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; #else if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) rc = VERR_PGM_PHYS_PAGE_RESERVED; #endif else { /* * Now, just perform the locking and calculate the return address. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cReadLockedPages++; PGM_PAGE_INC_READ_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage)) { PGM_PAGE_INC_READ_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK)); pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; pLock->pvMap = pMap; } } PGM_UNLOCK(pVM); return rc; } /** * Requests the mapping of multiple guest page into ring-3, external threads. * * When you're done with the pages, call PGMPhysBulkReleasePageMappingLock() * ASAP to release them. * * This API will assume your intention is to write to the pages, and will * therefore replace shared and zero pages. If you do not intend to modify the * pages, use the PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal() API. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical * backing or if any of the pages the page has any active access * handlers. The caller must fall back on using PGMR3PhysWriteExternal. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains * an invalid physical address. * * @param pVM The cross context VM structure. * @param cPages Number of pages to lock. * @param paGCPhysPages The guest physical address of the pages that * should be mapped (@a cPages entries). * @param papvPages Where to store the ring-3 mapping addresses * corresponding to @a paGCPhysPages. * @param paLocks Where to store the locking information that * pfnPhysBulkReleasePageMappingLock needs (@a cPages * in length). * * @remark Avoid calling this API from within critical sections (other than the * PGM one) because of the deadlock risk when we have to delegating the * task to an EMT. * @thread Any. */ VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages, void **papvPages, PPGMPAGEMAPLOCK paLocks) { Assert(cPages > 0); AssertPtr(papvPages); AssertPtr(paLocks); Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * Lock the pages one by one. * The loop body is similar to PGMR3PhysGCPhys2CCPtrExternal. */ int32_t cNextYield = 128; uint32_t iPage; for (iPage = 0; iPage < cPages; iPage++) { if (--cNextYield > 0) { /* likely */ } else { PGM_UNLOCK(pVM); ASMNopPause(); PGM_LOCK_VOID(pVM); cNextYield = 128; } /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe); if (RT_SUCCESS(rc)) { } else break; PPGMPAGE pPage = pTlbe->pPage; /* * No MMIO or active access handlers. */ if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { } else { rc = VERR_PGM_PHYS_PAGE_RESERVED; break; } /* * The page must be in the allocated state and not be a dirty pool page. * We can handle converting a write monitored page to an allocated one, but * anything more complicated must be delegated to an EMT. */ bool fDelegateToEmt = false; if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT fDelegateToEmt = pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage]); #else fDelegateToEmt = false; #endif else if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) { #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT if (!pgmPoolIsDirtyPage(pVM, paGCPhysPages[iPage])) pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage, paGCPhysPages[iPage]); else fDelegateToEmt = true; #endif } else fDelegateToEmt = true; if (!fDelegateToEmt) { } else { /* We could do this delegation in bulk, but considered too much work vs gain. */ PGM_UNLOCK(pVM); rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, pVM, &paGCPhysPages[iPage], &papvPages[iPage], &paLocks[iPage]); PGM_LOCK_VOID(pVM); if (RT_FAILURE(rc)) break; cNextYield = 128; } /* * Now, just perform the locking and address calculation. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cWriteLockedPages++; PGM_PAGE_INC_WRITE_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage)) { PGM_PAGE_INC_WRITE_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", paGCPhysPages[iPage], pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK)); paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE; paLocks[iPage].pvMap = pMap; } PGM_UNLOCK(pVM); /* * On failure we must unlock any pages we managed to get already. */ if (RT_FAILURE(rc) && iPage > 0) PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks); return rc; } /** * Requests the mapping of multiple guest page into ring-3, for reading only, * external threads. * * When you're done with the pages, call PGMPhysReleasePageMappingLock() ASAP * to release them. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VERR_PGM_PHYS_PAGE_RESERVED if any of the pages has no physical * backing or if any of the pages the page has an active ALL access * handler. The caller must fall back on using PGMR3PhysWriteExternal. * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if @a paGCPhysPages contains * an invalid physical address. * * @param pVM The cross context VM structure. * @param cPages Number of pages to lock. * @param paGCPhysPages The guest physical address of the pages that * should be mapped (@a cPages entries). * @param papvPages Where to store the ring-3 mapping addresses * corresponding to @a paGCPhysPages. * @param paLocks Where to store the lock information that * pfnPhysReleasePageMappingLock needs (@a cPages * in length). * * @remark Avoid calling this API from within critical sections (other than * the PGM one) because of the deadlock risk. * @thread Any. */ VMMR3DECL(int) PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal(PVM pVM, uint32_t cPages, PCRTGCPHYS paGCPhysPages, void const **papvPages, PPGMPAGEMAPLOCK paLocks) { Assert(cPages > 0); AssertPtr(papvPages); AssertPtr(paLocks); Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM)); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * Lock the pages one by one. * The loop body is similar to PGMR3PhysGCPhys2CCPtrReadOnlyExternal. */ int32_t cNextYield = 256; uint32_t iPage; for (iPage = 0; iPage < cPages; iPage++) { if (--cNextYield > 0) { /* likely */ } else { PGM_UNLOCK(pVM); ASMNopPause(); PGM_LOCK_VOID(pVM); cNextYield = 256; } /* * Query the Physical TLB entry for the page (may fail). */ PPGMPAGEMAPTLBE pTlbe; rc = pgmPhysPageQueryTlbe(pVM, paGCPhysPages[iPage], &pTlbe); if (RT_SUCCESS(rc)) { } else break; PPGMPAGE pPage = pTlbe->pPage; /* * No MMIO or active all access handlers, everything else can be accessed. */ if ( !PGM_PAGE_IS_MMIO_OR_SPECIAL_ALIAS(pPage) && !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) { } else { rc = VERR_PGM_PHYS_PAGE_RESERVED; break; } /* * Now, just perform the locking and address calculation. */ PPGMPAGEMAP pMap = pTlbe->pMap; if (pMap) pMap->cRefs++; unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage); if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1)) { if (cLocks == 0) pVM->pgm.s.cReadLockedPages++; PGM_PAGE_INC_READ_LOCKS(pPage); } else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage)) { PGM_PAGE_INC_READ_LOCKS(pPage); AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", paGCPhysPages[iPage], pPage)); if (pMap) pMap->cRefs++; /* Extra ref to prevent it from going away. */ } papvPages[iPage] = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(paGCPhysPages[iPage] & GUEST_PAGE_OFFSET_MASK)); paLocks[iPage].uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ; paLocks[iPage].pvMap = pMap; } PGM_UNLOCK(pVM); /* * On failure we must unlock any pages we managed to get already. */ if (RT_FAILURE(rc) && iPage > 0) PGMPhysBulkReleasePageMappingLocks(pVM, iPage, paLocks); return rc; } /** * Converts a GC physical address to a HC ring-3 pointer, with some * additional checks. * * @returns VBox status code. * @retval VINF_SUCCESS on success. * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write * access handler of some kind. * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all * accesses or is odd in any way. * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist. * * @param pVM The cross context VM structure. * @param GCPhys The GC physical address to convert. Since this is only * used for filling the REM TLB, the A20 mask must be * applied before calling this API. * @param fWritable Whether write access is required. * @param ppv Where to store the pointer corresponding to GCPhys on * success. */ VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv) { PGM_LOCK_VOID(pVM); PGM_A20_ASSERT_MASKED(VMMGetCpu(pVM), GCPhys); PPGMRAMRANGE pRam; PPGMPAGE pPage; int rc = pgmPhysGetPageAndRangeEx(pVM, GCPhys, &pPage, &pRam); if (RT_SUCCESS(rc)) { if (PGM_PAGE_IS_BALLOONED(pPage)) rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage)) rc = VINF_SUCCESS; else { if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */ rc = VERR_PGM_PHYS_TLB_CATCH_ALL; else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) { /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work * in -norawr0 mode. */ if (fWritable) rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; } else { /* Temporarily disabled physical handler(s), since the recompiler doesn't get notified when it's reset we'll have to pretend it's operating normally. */ if (pgmHandlerPhysicalIsAll(pVM, GCPhys)) rc = VERR_PGM_PHYS_TLB_CATCH_ALL; else rc = VINF_PGM_PHYS_TLB_CATCH_WRITE; } } if (RT_SUCCESS(rc)) { int rc2; /* Make sure what we return is writable. */ if (fWritable) switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ALLOCATED: break; case PGM_PAGE_STATE_BALLOONED: AssertFailed(); break; case PGM_PAGE_STATE_ZERO: case PGM_PAGE_STATE_SHARED: if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE) break; RT_FALL_THRU(); case PGM_PAGE_STATE_WRITE_MONITORED: rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); AssertLogRelRCReturn(rc2, rc2); break; } /* Get a ring-3 mapping of the address. */ PPGMPAGER3MAPTLBE pTlbe; rc2 = pgmPhysPageQueryTlbe(pVM, GCPhys, &pTlbe); AssertLogRelRCReturn(rc2, rc2); *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & GUEST_PAGE_OFFSET_MASK)); /** @todo mapping/locking hell; this isn't horribly efficient since * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */ Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv)); } else Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage)); /* else: handler catching all access, no pointer returned. */ } else rc = VERR_PGM_PHYS_TLB_UNASSIGNED; PGM_UNLOCK(pVM); return rc; } /********************************************************************************************************************************* * RAM Range Management * *********************************************************************************************************************************/ #define MAKE_LEAF(a_pNode) \ do { \ (a_pNode)->pLeftR3 = NIL_RTR3PTR; \ (a_pNode)->pRightR3 = NIL_RTR3PTR; \ (a_pNode)->pLeftR0 = NIL_RTR0PTR; \ (a_pNode)->pRightR0 = NIL_RTR0PTR; \ } while (0) #define INSERT_LEFT(a_pParent, a_pNode) \ do { \ (a_pParent)->pLeftR3 = (a_pNode); \ (a_pParent)->pLeftR0 = (a_pNode)->pSelfR0; \ } while (0) #define INSERT_RIGHT(a_pParent, a_pNode) \ do { \ (a_pParent)->pRightR3 = (a_pNode); \ (a_pParent)->pRightR0 = (a_pNode)->pSelfR0; \ } while (0) /** * Recursive tree builder. * * @param ppRam Pointer to the iterator variable. * @param iDepth The current depth. Inserts a leaf node if 0. */ static PPGMRAMRANGE pgmR3PhysRebuildRamRangeSearchTreesRecursively(PPGMRAMRANGE *ppRam, int iDepth) { PPGMRAMRANGE pRam; if (iDepth <= 0) { /* * Leaf node. */ pRam = *ppRam; if (pRam) { *ppRam = pRam->pNextR3; MAKE_LEAF(pRam); } } else { /* * Intermediate node. */ PPGMRAMRANGE pLeft = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); pRam = *ppRam; if (!pRam) return pLeft; *ppRam = pRam->pNextR3; MAKE_LEAF(pRam); INSERT_LEFT(pRam, pLeft); PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(ppRam, iDepth - 1); if (pRight) INSERT_RIGHT(pRam, pRight); } return pRam; } /** * Rebuilds the RAM range search trees. * * @param pVM The cross context VM structure. */ static void pgmR3PhysRebuildRamRangeSearchTrees(PVM pVM) { /* * Create the reasonably balanced tree in a sequential fashion. * For simplicity (laziness) we use standard recursion here. */ int iDepth = 0; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; PPGMRAMRANGE pRoot = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, 0); while (pRam) { PPGMRAMRANGE pLeft = pRoot; pRoot = pRam; pRam = pRam->pNextR3; MAKE_LEAF(pRoot); INSERT_LEFT(pRoot, pLeft); PPGMRAMRANGE pRight = pgmR3PhysRebuildRamRangeSearchTreesRecursively(&pRam, iDepth); if (pRight) INSERT_RIGHT(pRoot, pRight); /** @todo else: rotate the tree. */ iDepth++; } pVM->pgm.s.pRamRangeTreeR3 = pRoot; pVM->pgm.s.pRamRangeTreeR0 = pRoot ? pRoot->pSelfR0 : NIL_RTR0PTR; #ifdef VBOX_STRICT /* * Verify that the above code works. */ unsigned cRanges = 0; for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) cRanges++; Assert(cRanges > 0); unsigned cMaxDepth = ASMBitLastSetU32(cRanges); if ((1U << cMaxDepth) < cRanges) cMaxDepth++; for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { unsigned cDepth = 0; PPGMRAMRANGE pRam2 = pVM->pgm.s.pRamRangeTreeR3; for (;;) { if (pRam == pRam2) break; Assert(pRam2); if (pRam->GCPhys < pRam2->GCPhys) pRam2 = pRam2->pLeftR3; else pRam2 = pRam2->pRightR3; } AssertMsg(cDepth <= cMaxDepth, ("cDepth=%d cMaxDepth=%d\n", cDepth, cMaxDepth)); } #endif /* VBOX_STRICT */ } #undef MAKE_LEAF #undef INSERT_LEFT #undef INSERT_RIGHT /** * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers. * * Called when anything was relocated. * * @param pVM The cross context VM structure. */ void pgmR3PhysRelinkRamRanges(PVM pVM) { PPGMRAMRANGE pCur; #ifdef VBOX_STRICT for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3) { Assert((pCur->GCPhys & GUEST_PAGE_OFFSET_MASK) == 0); Assert((pCur->GCPhysLast & GUEST_PAGE_OFFSET_MASK) == GUEST_PAGE_OFFSET_MASK); Assert((pCur->cb & GUEST_PAGE_OFFSET_MASK) == 0); Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1); for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesXR3; pCur2; pCur2 = pCur2->pNextR3) Assert( pCur2 == pCur || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */ } #endif pCur = pVM->pgm.s.pRamRangesXR3; if (pCur) { pVM->pgm.s.pRamRangesXR0 = pCur->pSelfR0; for (; pCur->pNextR3; pCur = pCur->pNextR3) pCur->pNextR0 = pCur->pNextR3->pSelfR0; Assert(pCur->pNextR0 == NIL_RTR0PTR); } else { Assert(pVM->pgm.s.pRamRangesXR0 == NIL_RTR0PTR); } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); } /** * Links a new RAM range into the list. * * @param pVM The cross context VM structure. * @param pNew Pointer to the new list entry. * @param pPrev Pointer to the previous list entry. If NULL, insert as head. */ static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev) { AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast)); PGM_LOCK_VOID(pVM); PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesXR3; pNew->pNextR3 = pRam; pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR; if (pPrev) { pPrev->pNextR3 = pNew; pPrev->pNextR0 = pNew->pSelfR0; } else { pVM->pgm.s.pRamRangesXR3 = pNew; pVM->pgm.s.pRamRangesXR0 = pNew->pSelfR0; } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); PGM_UNLOCK(pVM); } /** * Unlink an existing RAM range from the list. * * @param pVM The cross context VM structure. * @param pRam Pointer to the new list entry. * @param pPrev Pointer to the previous list entry. If NULL, insert as head. */ static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev) { Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesXR3 == pRam); PGM_LOCK_VOID(pVM); PPGMRAMRANGE pNext = pRam->pNextR3; if (pPrev) { pPrev->pNextR3 = pNext; pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; } else { Assert(pVM->pgm.s.pRamRangesXR3 == pRam); pVM->pgm.s.pRamRangesXR3 = pNext; pVM->pgm.s.pRamRangesXR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR; } ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen); pgmR3PhysRebuildRamRangeSearchTrees(pVM); PGM_UNLOCK(pVM); } /** * Unlink an existing RAM range from the list. * * @param pVM The cross context VM structure. * @param pRam Pointer to the new list entry. */ static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam) { PGM_LOCK_VOID(pVM); /* find prev. */ PPGMRAMRANGE pPrev = NULL; PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; while (pCur != pRam) { pPrev = pCur; pCur = pCur->pNextR3; } AssertFatal(pCur); pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev); PGM_UNLOCK(pVM); } /** * Gets the number of ram ranges. * * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid. * @param pVM The cross context VM structure. */ VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM) { VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); PGM_LOCK_VOID(pVM); uint32_t cRamRanges = 0; for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext)) cRamRanges++; PGM_UNLOCK(pVM); return cRamRanges; } /** * Get information about a range. * * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE. * @param pVM The cross context VM structure. * @param iRange The ordinal of the range. * @param pGCPhysStart Where to return the start of the range. Optional. * @param pGCPhysLast Where to return the address of the last byte in the * range. Optional. * @param ppszDesc Where to return the range description. Optional. * @param pfIsMmio Where to indicate that this is a pure MMIO range. * Optional. */ VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast, const char **ppszDesc, bool *pfIsMmio) { VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); PGM_LOCK_VOID(pVM); uint32_t iCurRange = 0; for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRangesX); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++) if (iCurRange == iRange) { if (pGCPhysStart) *pGCPhysStart = pCur->GCPhys; if (pGCPhysLast) *pGCPhysLast = pCur->GCPhysLast; if (ppszDesc) *ppszDesc = pCur->pszDesc; if (pfIsMmio) *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO); PGM_UNLOCK(pVM); return VINF_SUCCESS; } PGM_UNLOCK(pVM); return VERR_OUT_OF_RANGE; } /********************************************************************************************************************************* * RAM * *********************************************************************************************************************************/ /** * Frees the specified RAM page and replaces it with the ZERO page. * * This is used by ballooning, remapping MMIO2, RAM reset and state loading. * * @param pVM The cross context VM structure. * @param pReq Pointer to the request. This is NULL when doing a * bulk free in NEM memory mode. * @param pcPendingPages Where the number of pages waiting to be freed are * kept. This will normally be incremented. This is * NULL when doing a bulk free in NEM memory mode. * @param pPage Pointer to the page structure. * @param GCPhys The guest physical address of the page, if applicable. * @param enmNewType New page type for NEM notification, since several * callers will change the type upon successful return. * * @remarks The caller must own the PGM lock. */ int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys, PGMPAGETYPE enmNewType) { /* * Assert sanity. */ PGM_LOCK_ASSERT_OWNER(pVM); if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW)) { AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage)); } /** @todo What about ballooning of large pages??! */ Assert( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED); if ( PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage)) return VINF_SUCCESS; const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage); Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage)); if (RT_UNLIKELY(!PGM_IS_IN_NEM_MODE(pVM) ? idPage == NIL_GMM_PAGEID || idPage > GMM_PAGEID_LAST || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID : idPage != NIL_GMM_PAGEID)) { AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage)); return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage); } #ifdef VBOX_WITH_NATIVE_NEM const RTHCPHYS HCPhysPrev = PGM_PAGE_GET_HCPHYS(pPage); #endif /* update page count stats. */ if (PGM_PAGE_IS_SHARED(pPage)) pVM->pgm.s.cSharedPages--; else pVM->pgm.s.cPrivatePages--; pVM->pgm.s.cZeroPages++; /* Deal with write monitored pages. */ if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED) { PGM_PAGE_SET_WRITTEN_TO(pVM, pPage); pVM->pgm.s.cWrittenToPages++; } PGM_PAGE_CLEAR_CODE_PAGE(pVM, pPage); /* No callback needed, IEMTlbInvalidateAllPhysicalAllCpus is called below. */ /* * pPage = ZERO page. */ PGM_PAGE_SET_HCPHYS(pVM, pPage, pVM->pgm.s.HCPhysZeroPg); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); PGM_PAGE_SET_PAGEID(pVM, pPage, NIL_GMM_PAGEID); PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pPage, 0); PGM_PAGE_SET_TRACKING(pVM, pPage, 0); /* Flush physical page map TLB entry. */ pgmPhysInvalidatePageMapTLBEntry(pVM, GCPhys); IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_FREED); /// @todo move to the perform step. #ifdef VBOX_WITH_PGM_NEM_MODE /* * Skip the rest if we're doing a bulk free in NEM memory mode. */ if (!pReq) return VINF_SUCCESS; AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE); #endif #ifdef VBOX_WITH_NATIVE_NEM /* Notify NEM. */ /** @todo Remove this one? */ if (VM_IS_NEM_ENABLED(pVM)) { uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pPage); NEMHCNotifyPhysPageChanged(pVM, GCPhys, HCPhysPrev, pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.abZeroPg, pgmPhysPageCalcNemProtection(pPage, enmNewType), enmNewType, &u2State); PGM_PAGE_SET_NEM_STATE(pPage, u2State); } #else RT_NOREF(enmNewType); #endif /* * Make sure it's not in the handy page array. */ for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) { if (pVM->pgm.s.aHandyPages[i].idPage == idPage) { pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS; pVM->pgm.s.aHandyPages[i].fZeroed = false; pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID; break; } if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage) { pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID; break; } } /* * Push it onto the page array. */ uint32_t iPage = *pcPendingPages; Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE); *pcPendingPages += 1; pReq->aPages[iPage].idPage = idPage; if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE) return VINF_SUCCESS; /* * Flush the pages. */ int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE); if (RT_SUCCESS(rc)) { GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); *pcPendingPages = 0; } return rc; } /** * Frees a range of pages, replacing them with ZERO pages of the specified type. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pRam The RAM range in which the pages resides. * @param GCPhys The address of the first page. * @param GCPhysLast The address of the last page. * @param pvMmio2 Pointer to the ring-3 mapping of any MMIO2 memory that * will replace the pages we're freeing up. */ static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, void *pvMmio2) { PGM_LOCK_ASSERT_OWNER(pVM); #ifdef VBOX_WITH_PGM_NEM_MODE /* * In simplified memory mode we don't actually free the memory, * we just unmap it and let NEM do any unlocking of it. */ if (pVM->pgm.s.fNemMode) { Assert(VM_IS_NEM_ENABLED(pVM) || VM_IS_EXEC_ENGINE_IEM(pVM)); uint8_t u2State = 0; /* (We don't support UINT8_MAX here.) */ if (VM_IS_NEM_ENABLED(pVM)) { uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE; int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pvMmio2, &u2State, NULL /*puNemRange*/); AssertLogRelRCReturn(rc, rc); } /* Iterate the pages. */ PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1; while (cPagesLeft-- > 0) { int rc = pgmPhysFreePage(pVM, NULL, NULL, pPageDst, GCPhys, PGMPAGETYPE_MMIO); AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */ PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO); PGM_PAGE_SET_NEM_STATE(pPageDst, u2State); GCPhys += GUEST_PAGE_SIZE; pPageDst++; } return VINF_SUCCESS; } #else /* !VBOX_WITH_PGM_NEM_MODE */ RT_NOREF(pvMmio2); #endif /* !VBOX_WITH_PGM_NEM_MODE */ /* * Regular mode. */ /* Prepare. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); #ifdef VBOX_WITH_NATIVE_NEM /* Tell NEM up-front. */ uint8_t u2State = UINT8_MAX; if (VM_IS_NEM_ENABLED(pVM)) { uint32_t const fNemNotify = (pvMmio2 ? NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 : 0) | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE; rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, NULL, pvMmio2, &u2State, NULL /*puNemRange*/); AssertLogRelRCReturnStmt(rc, GMMR3FreePagesCleanup(pReq), rc); } #endif /* Iterate the pages. */ PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> GUEST_PAGE_SHIFT) + 1; while (cPagesLeft-- > 0) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys, PGMPAGETYPE_MMIO); AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */ PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO); #ifdef VBOX_WITH_NATIVE_NEM if (u2State != UINT8_MAX) PGM_PAGE_SET_NEM_STATE(pPageDst, u2State); #endif GCPhys += GUEST_PAGE_SIZE; pPageDst++; } /* Finish pending and cleanup. */ if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); return rc; } /** * PGMR3PhysRegisterRam worker that initializes and links a RAM range. * * In NEM mode, this will allocate the pages backing the RAM range and this may * fail. NEM registration may also fail. (In regular HM mode it won't fail.) * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pNew The new RAM range. * @param GCPhys The address of the RAM range. * @param GCPhysLast The last address of the RAM range. * @param R0PtrNew Ditto for R0. * @param fFlags PGM_RAM_RANGE_FLAGS_FLOATING or zero. * @param pszDesc The description. * @param pPrev The previous RAM range (for linking). */ static int pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, RTR0PTR R0PtrNew, uint32_t fFlags, const char *pszDesc, PPGMRAMRANGE pPrev) { /* * Initialize the range. */ pNew->pSelfR0 = R0PtrNew; pNew->GCPhys = GCPhys; pNew->GCPhysLast = GCPhysLast; pNew->cb = GCPhysLast - GCPhys + 1; pNew->pszDesc = pszDesc; pNew->fFlags = fFlags; pNew->uNemRange = UINT32_MAX; pNew->pvR3 = NULL; pNew->paLSPages = NULL; uint32_t const cPages = pNew->cb >> GUEST_PAGE_SHIFT; #ifdef VBOX_WITH_PGM_NEM_MODE if (!pVM->pgm.s.fNemMode) #endif { RTGCPHYS iPage = cPages; while (iPage-- > 0) PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM); /* Update the page count stats. */ pVM->pgm.s.cZeroPages += cPages; pVM->pgm.s.cAllPages += cPages; } #ifdef VBOX_WITH_PGM_NEM_MODE else { int rc = SUPR3PageAlloc(RT_ALIGN_Z(pNew->cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT, pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, &pNew->pvR3); if (RT_FAILURE(rc)) return rc; RTGCPHYS iPage = cPages; while (iPage-- > 0) PGM_PAGE_INIT(&pNew->aPages[iPage], UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID, PGMPAGETYPE_RAM, PGM_PAGE_STATE_ALLOCATED); /* Update the page count stats. */ pVM->pgm.s.cPrivatePages += cPages; pVM->pgm.s.cAllPages += cPages; } #endif /* * Link it. */ pgmR3PhysLinkRamRange(pVM, pNew, pPrev); #ifdef VBOX_WITH_NATIVE_NEM /* * Notify NEM now that it has been linked. */ if (VM_IS_NEM_ENABLED(pVM)) { uint8_t u2State = UINT8_MAX; int rc = NEMR3NotifyPhysRamRegister(pVM, GCPhys, pNew->cb, pNew->pvR3, &u2State, &pNew->uNemRange); if (RT_SUCCESS(rc)) { if (u2State != UINT8_MAX) pgmPhysSetNemStateForPages(&pNew->aPages[0], cPages, u2State); } else pgmR3PhysUnlinkRamRange2(pVM, pNew, pPrev); return rc; } #endif return VINF_SUCCESS; } /** * PGMR3PhysRegisterRam worker that registers a high chunk. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The address of the RAM. * @param cRamPages The number of RAM pages to register. * @param iChunk The chunk number. * @param pszDesc The RAM range description. * @param ppPrev Previous RAM range pointer. In/Out. */ static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages, uint32_t iChunk, const char *pszDesc, PPGMRAMRANGE *ppPrev) { const char *pszDescChunk = iChunk == 0 ? pszDesc : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1); AssertReturn(pszDescChunk, VERR_NO_MEMORY); /* * Allocate memory for the new chunk. */ size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cRamPages]), HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages); AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY); RTR0PTR R0PtrChunk = NIL_RTR0PTR; void *pvChunk = NULL; int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, paChunkPages); if (RT_SUCCESS(rc)) { Assert(R0PtrChunk != NIL_RTR0PTR || PGM_IS_IN_NEM_MODE(pVM)); memset(pvChunk, 0, cChunkPages << HOST_PAGE_SHIFT); PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk; /* * Ok, init and link the range. */ rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << GUEST_PAGE_SHIFT) - 1, R0PtrChunk, PGM_RAM_RANGE_FLAGS_FLOATING, pszDescChunk, *ppPrev); if (RT_SUCCESS(rc)) *ppPrev = pNew; if (RT_FAILURE(rc)) SUPR3PageFreeEx(pvChunk, cChunkPages); } RTMemTmpFree(paChunkPages); return rc; } /** * Sets up a range RAM. * * This will check for conflicting registrations, make a resource * reservation for the memory (with GMM), and setup the per-page * tracking structures (PGMPAGE). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The physical address of the RAM. * @param cb The size of the RAM. * @param pszDesc The description - not copied, so, don't free or change it. */ VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc) { /* * Validate input. */ Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc)); AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); AssertReturn(cb > 0, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); PGM_LOCK_VOID(pVM); /* * Find range location and check for conflicts. */ PPGMRAMRANGE pPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { AssertLogRelMsgReturnStmt( GCPhysLast < pRam->GCPhys || GCPhys > pRam->GCPhysLast, ("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT); /* next */ pPrev = pRam; pRam = pRam->pNextR3; } /* * Register it with GMM (the API bitches). */ const RTGCPHYS cPages = cb >> GUEST_PAGE_SHIFT; int rc = MMR3IncreaseBaseReservation(pVM, cPages); if (RT_FAILURE(rc)) { PGM_UNLOCK(pVM); return rc; } if ( GCPhys >= _4G && cPages > 256) { /* * The PGMRAMRANGE structures for the high memory can get very big. * There used to be some limitations on SUPR3PageAllocEx allocation * sizes, so traditionally we limited this to 16MB chunks. These days * we do ~64 MB chunks each covering 16GB of guest RAM, making sure * each range is a multiple of 1GB to enable eager hosts to use 1GB * pages in NEM mode. * * See also pgmR3PhysMmio2CalcChunkCount. */ uint32_t const cPagesPerChunk = _4M; Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */ RTGCPHYS cPagesLeft = cPages; RTGCPHYS GCPhysChunk = GCPhys; uint32_t iChunk = 0; while (cPagesLeft > 0) { uint32_t cPagesInChunk = cPagesLeft; if (cPagesInChunk > cPagesPerChunk) cPagesInChunk = cPagesPerChunk; rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, iChunk, pszDesc, &pPrev); AssertRCReturn(rc, rc); /* advance */ GCPhysChunk += (RTGCPHYS)cPagesInChunk << GUEST_PAGE_SHIFT; cPagesLeft -= cPagesInChunk; iChunk++; } } else { /* * Allocate, initialize and link the new RAM range. */ const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); PPGMRAMRANGE pNew = NULL; RTR0PTR pNewR0 = NIL_RTR0PTR; rc = SUPR3PageAllocEx(RT_ALIGN_Z(cbRamRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT, 0 /*fFlags*/, (void **)&pNew, &pNewR0, NULL /*paPages*/); AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc); rc = pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, pNewR0, 0 /*fFlags*/, pszDesc, pPrev); AssertLogRelMsgRCReturn(rc, ("rc=%Rrc cbRamRange=%zu\n", rc, cbRamRange), rc); } pgmPhysInvalidatePageMapTLB(pVM); PGM_UNLOCK(pVM); return rc; } /** * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM. * * We do this late in the init process so that all the ROM and MMIO ranges have * been registered already and we don't go wasting memory on them. * * @returns VBox status code. * * @param pVM The cross context VM structure. */ int pgmR3PhysRamPreAllocate(PVM pVM) { Assert(pVM->pgm.s.fRamPreAlloc); Log(("pgmR3PhysRamPreAllocate: enter\n")); #ifdef VBOX_WITH_PGM_NEM_MODE AssertLogRelReturn(!pVM->pgm.s.fNemMode, VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE); #endif /* * Walk the RAM ranges and allocate all RAM pages, halt at * the first allocation error. */ uint64_t cPages = 0; uint64_t NanoTS = RTTimeNanoTS(); PGM_LOCK_VOID(pVM); for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { PPGMPAGE pPage = &pRam->aPages[0]; RTGCPHYS GCPhys = pRam->GCPhys; uint32_t cLeft = pRam->cb >> GUEST_PAGE_SHIFT; while (cLeft-- > 0) { if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) { switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ZERO: { int rc = pgmPhysAllocPage(pVM, pPage, GCPhys); if (RT_FAILURE(rc)) { LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc)); PGM_UNLOCK(pVM); return rc; } cPages++; break; } case PGM_PAGE_STATE_BALLOONED: case PGM_PAGE_STATE_ALLOCATED: case PGM_PAGE_STATE_WRITE_MONITORED: case PGM_PAGE_STATE_SHARED: /* nothing to do here. */ break; } } /* next */ pPage++; GCPhys += GUEST_PAGE_SIZE; } } PGM_UNLOCK(pVM); NanoTS = RTTimeNanoTS() - NanoTS; LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000)); Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Checks shared page checksums. * * @param pVM The cross context VM structure. */ void pgmR3PhysAssertSharedPageChecksums(PVM pVM) { #ifdef VBOX_STRICT PGM_LOCK_VOID(pVM); if (pVM->pgm.s.cSharedPages > 0) { /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb)); while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; if (PGM_PAGE_IS_SHARED(pPage)) { uint32_t u32Checksum = pPage->s.u2Unused0/* | ((uint32_t)pPage->s.u2Unused1 << 8)*/; if (!u32Checksum) { RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT); void const *pvPage; int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhysPage, &pvPage); if (RT_SUCCESS(rc)) { uint32_t u32Checksum2 = RTCrc32(pvPage, GUEST_PAGE_SIZE); # if 0 AssertMsg((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum, ("GCPhysPage=%RGp\n", GCPhysPage)); # else if ((u32Checksum2 & /*UINT32_C(0x00000303)*/ 0x3) == u32Checksum) LogFlow(("shpg %#x @ %RGp %#x [OK]\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); else AssertMsgFailed(("shpg %#x @ %RGp %#x\n", PGM_PAGE_GET_PAGEID(pPage), GCPhysPage, u32Checksum2)); # endif } else AssertRC(rc); } } } /* for each page */ } /* for each ram range */ } PGM_UNLOCK(pVM); #endif /* VBOX_STRICT */ NOREF(pVM); } /** * Resets the physical memory state. * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamReset(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* Reset the memory balloon. */ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); AssertRC(rc); #ifdef VBOX_WITH_PAGE_SHARING /* Clear all registered shared modules. */ pgmR3PhysAssertSharedPageChecksums(pVM); rc = GMMR3ResetSharedModules(pVM); AssertRC(rc); #endif /* Reset counters. */ pVM->pgm.s.cReusedSharedPages = 0; pVM->pgm.s.cBalloonedPages = 0; return VINF_SUCCESS; } /** * Resets (zeros) the RAM after all devices and components have been reset. * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamZeroAll(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* * We batch up pages that should be freed instead of calling GMM for * each and every one of them. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb)); if ( !pVM->pgm.s.fRamPreAlloc #ifdef VBOX_WITH_PGM_NEM_MODE && !pVM->pgm.s.fNemMode #endif && pVM->pgm.s.fZeroRamPagesOnReset) { /* Replace all RAM pages by ZERO pages. */ while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */ if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE || PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED) { void *pvPage; rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage); AssertLogRelRCReturn(rc, rc); RT_BZERO(pvPage, GUEST_PAGE_SIZE); } else if (PGM_PAGE_IS_BALLOONED(pPage)) { /* Turn into a zero page; the balloon status is lost when the VM reboots. */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); } else if (!PGM_PAGE_IS_ZERO(pPage)) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM); AssertLogRelRCReturn(rc, rc); } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/); break; case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } else { /* Zero the memory. */ while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ZERO: break; case PGM_PAGE_STATE_BALLOONED: /* Turn into a zero page; the balloon status is lost when the VM reboots. */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); break; case PGM_PAGE_STATE_SHARED: case PGM_PAGE_STATE_WRITE_MONITORED: rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT)); AssertLogRelRCReturn(rc, rc); RT_FALL_THRU(); case PGM_PAGE_STATE_ALLOCATED: if (pVM->pgm.s.fZeroRamPagesOnReset) { void *pvPage; rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pvPage); AssertLogRelRCReturn(rc, rc); RT_BZERO(pvPage, GUEST_PAGE_SIZE); } break; } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: /** @todo perhaps leave the special page alone? I don't think VT-x copes with this code. */ pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pRam, true /*fDoAccounting*/, false /*fFlushIemTlbs*/); break; case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } } /* * Finish off any pages pending freeing. */ if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); /* * Flush the IEM TLB, just to be sure it really is done. */ IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ZERO_ALL); return VINF_SUCCESS; } /** * Frees all RAM during VM termination * * ASSUMES that the caller owns the PGM lock. * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PhysRamTerm(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* Reset the memory balloon. */ int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0); AssertRC(rc); #ifdef VBOX_WITH_PAGE_SHARING /* * Clear all registered shared modules. */ pgmR3PhysAssertSharedPageChecksums(pVM); rc = GMMR3ResetSharedModules(pVM); AssertRC(rc); /* * Flush the handy pages updates to make sure no shared pages are hiding * in there. (Not unlikely if the VM shuts down, apparently.) */ # ifdef VBOX_WITH_PGM_NEM_MODE if (!pVM->pgm.s.fNemMode) # endif rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_FLUSH_HANDY_PAGES, 0, NULL); #endif /* * We batch up pages that should be freed instead of calling GMM for * each and every one of them. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertLogRelRCReturn(rc, rc); /* * Walk the ram ranges. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t iPage = pRam->cb >> GUEST_PAGE_SHIFT; AssertMsg(((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << GUEST_PAGE_SHIFT, pRam->cb)); while (iPage-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */ /** @todo change this to explicitly free private pages here. */ if (PGM_PAGE_IS_SHARED(pPage)) { rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), PGMPAGETYPE_RAM); AssertLogRelRCReturn(rc, rc); } break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: case PGMPAGETYPE_MMIO2: case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */ case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO: break; default: AssertFailed(); } } /* for each page */ } /* * Finish off any pages pending freeing. */ if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); return VINF_SUCCESS; } /********************************************************************************************************************************* * MMIO * *********************************************************************************************************************************/ /** * This is the interface IOM is using to register an MMIO region. * * It will check for conflicts and ensure that a RAM range structure * is present before calling the PGMR3HandlerPhysicalRegister API to * register the callbacks. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param GCPhys The start of the MMIO region. * @param cb The size of the MMIO region. * @param hType The physical access handler type registration. * @param uUser The user argument. * @param pszDesc The description of the MMIO region. */ VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMPHYSHANDLERTYPE hType, uint64_t uUser, const char *pszDesc) { /* * Assert on some assumption. */ VM_ASSERT_EMT(pVM); AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); #ifdef VBOX_STRICT PCPGMPHYSHANDLERTYPEINT pType = pgmHandlerPhysicalTypeHandleToPtr(pVM, hType); Assert(pType); Assert(pType->enmKind == PGMPHYSHANDLERKIND_MMIO); #endif int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * Make sure there's a RAM range structure for the region. */ RTGCPHYS GCPhysLast = GCPhys + (cb - 1); bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhysLast >= pRam->GCPhys && GCPhys <= pRam->GCPhysLast) { /* Simplification: all within the same range. */ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT); /* Check that it's all RAM or MMIO pages. */ PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cLeft = cb >> GUEST_PAGE_SHIFT; while (cLeft-- > 0) { AssertLogRelMsgReturnStmt( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO, ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc), PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT); pPage++; } /* Looks good. */ fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } PPGMRAMRANGE pNew; if (fRamExists) { pNew = NULL; /* * Make all the pages in the range MMIO/ZERO pages, freeing any * RAM pages currently mapped here. This might not be 100% correct * for PCI memory, but we're doing the same thing for MMIO2 pages. */ rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, NULL); AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc); /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes * care of this internally (not touch mapped mmio while changing the * mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } else { /* * No RAM range, insert an ad hoc one. * * Note that we don't have to tell REM about this range because * PGMHandlerPhysicalRegisterEx will do that for us. */ Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc)); /* Alloc. */ const uint32_t cPages = cb >> GUEST_PAGE_SHIFT; const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); const size_t cRangePages = RT_ALIGN_Z(cbRamRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; RTR0PTR pNewR0 = NIL_RTR0PTR; rc = SUPR3PageAllocEx(cRangePages, 0 /*fFlags*/, (void **)&pNew, &pNewR0, NULL /*paPages*/); AssertLogRelMsgRCReturnStmt(rc, ("cbRamRange=%zu\n", cbRamRange), PGM_UNLOCK(pVM), rc); #ifdef VBOX_WITH_NATIVE_NEM /* Notify NEM. */ uint8_t u2State = 0; /* (must have valid state as there can't be anything to preserve) */ if (VM_IS_NEM_ENABLED(pVM)) { rc = NEMR3NotifyPhysMmioExMapEarly(pVM, GCPhys, cPages << GUEST_PAGE_SHIFT, 0 /*fFlags*/, NULL, NULL, &u2State, &pNew->uNemRange); AssertLogRelRCReturnStmt(rc, SUPR3PageFreeEx(pNew, cRangePages), rc); } #endif /* Initialize the range. */ pNew->pSelfR0 = pNewR0; pNew->GCPhys = GCPhys; pNew->GCPhysLast = GCPhysLast; pNew->cb = cb; pNew->pszDesc = pszDesc; pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO; pNew->pvR3 = NULL; pNew->paLSPages = NULL; uint32_t iPage = cPages; while (iPage-- > 0) { PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO); #ifdef VBOX_WITH_NATIVE_NEM PGM_PAGE_SET_NEM_STATE(&pNew->aPages[iPage], u2State); #endif } Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO); /* update the page count stats. */ pVM->pgm.s.cPureMmioPages += cPages; pVM->pgm.s.cAllPages += cPages; /* link it */ pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev); } /* * Register the access handler. */ rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, hType, uUser, pszDesc); if (RT_SUCCESS(rc)) { #ifdef VBOX_WITH_NATIVE_NEM /* Late NEM notification. */ if (VM_IS_NEM_ENABLED(pVM)) { uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE : 0); rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemNotify, fRamExists ? (uint8_t *)pRam->pvR3 + (uintptr_t)(GCPhys - pRam->GCPhys) : NULL, NULL, !fRamExists ? &pRam->uNemRange : NULL); AssertLogRelRCReturn(rc, rc); } #endif } /** @todo the phys handler failure handling isn't complete, esp. wrt NEM. */ else if (!fRamExists) { pVM->pgm.s.cPureMmioPages -= cb >> GUEST_PAGE_SHIFT; pVM->pgm.s.cAllPages -= cb >> GUEST_PAGE_SHIFT; /* remove the ad hoc range. */ pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev); pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS; SUPR3PageFreeEx(pRam, RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cb >> GUEST_PAGE_SHIFT]), HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT); } pgmPhysInvalidatePageMapTLB(pVM); PGM_UNLOCK(pVM); return rc; } /** * This is the interface IOM is using to register an MMIO region. * * It will take care of calling PGMHandlerPhysicalDeregister and clean up * any ad hoc PGMRAMRANGE left behind. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param GCPhys The start of the MMIO region. * @param cb The size of the MMIO region. */ VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb) { VM_ASSERT_EMT(pVM); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); /* * First deregister the handler, then check if we should remove the ram range. */ rc = PGMHandlerPhysicalDeregister(pVM, GCPhys); if (RT_SUCCESS(rc)) { RTGCPHYS GCPhysLast = GCPhys + (cb - 1); PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { /** @todo We're being a bit too careful here. rewrite. */ if ( GCPhysLast == pRam->GCPhysLast && GCPhys == pRam->GCPhys) { Assert(pRam->cb == cb); /* * See if all the pages are dead MMIO pages. */ uint32_t const cGuestPages = cb >> GUEST_PAGE_SHIFT; bool fAllMMIO = true; uint32_t iPage = 0; uint32_t cLeft = cGuestPages; while (cLeft-- > 0) { PPGMPAGE pPage = &pRam->aPages[iPage]; if ( !PGM_PAGE_IS_MMIO_OR_ALIAS(pPage) /*|| not-out-of-action later */) { fAllMMIO = false; AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pPage)); break; } Assert( PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO); pPage++; } if (fAllMMIO) { /* * Ad-hoc range, unlink and free it. */ Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pRam->pszDesc)); /** @todo check the ad-hoc flags? */ #ifdef VBOX_WITH_NATIVE_NEM if (VM_IS_NEM_ENABLED(pVM)) /* Notify REM before we unlink the range. */ { rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, 0 /*fFlags*/, NULL, NULL, NULL, &pRam->uNemRange); AssertLogRelRCReturn(rc, rc); } #endif pVM->pgm.s.cAllPages -= cGuestPages; pVM->pgm.s.cPureMmioPages -= cGuestPages; pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev); const uint32_t cPages = pRam->cb >> GUEST_PAGE_SHIFT; const size_t cbRamRange = RT_UOFFSETOF_DYN(PGMRAMRANGE, aPages[cPages]); pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS; SUPR3PageFreeEx(pRam, RT_ALIGN_Z(cbRamRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT); break; } } /* * Range match? It will all be within one range (see PGMAllHandler.cpp). */ if ( GCPhysLast >= pRam->GCPhys && GCPhys <= pRam->GCPhysLast) { Assert(GCPhys >= pRam->GCPhys); Assert(GCPhysLast <= pRam->GCPhysLast); /* * Turn the pages back into RAM pages. */ uint32_t iPage = (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT; uint32_t cLeft = cb >> GUEST_PAGE_SHIFT; while (cLeft--) { PPGMPAGE pPage = &pRam->aPages[iPage]; AssertMsg( (PGM_PAGE_IS_MMIO(pPage) && PGM_PAGE_IS_ZERO(pPage)) || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO2_ALIAS_MMIO || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO, ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), pPage)); if (PGM_PAGE_IS_MMIO_OR_ALIAS(pPage)) PGM_PAGE_SET_TYPE(pVM, pPage, PGMPAGETYPE_RAM); iPage++; } #ifdef VBOX_WITH_NATIVE_NEM /* Notify REM (failure will probably leave things in a non-working state). */ if (VM_IS_NEM_ENABLED(pVM)) { uint8_t u2State = UINT8_MAX; rc = NEMR3NotifyPhysMmioExUnmap(pVM, GCPhys, GCPhysLast - GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE, pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, NULL, &u2State, &pRam->uNemRange); AssertLogRelRCReturn(rc, rc); if (u2State != UINT8_MAX) pgmPhysSetNemStateForPages(&pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT], cb >> GUEST_PAGE_SHIFT, u2State); } #endif break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } } /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo Not entirely SMP safe; assuming for now the guest takes care of * this internally (not touch mapped mmio while changing the mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmPhysInvalidatePageMapTLB(pVM); pgmPhysInvalidRamRangeTlbs(pVM); PGM_UNLOCK(pVM); return rc; } /********************************************************************************************************************************* * MMIO2 * *********************************************************************************************************************************/ /** * Locate a MMIO2 range. * * @returns Pointer to the MMIO2 range. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. * @param iRegion The region. * @param hMmio2 Handle to look up. If NIL, use the @a iSubDev and * @a iRegion. */ DECLINLINE(PPGMREGMMIO2RANGE) pgmR3PhysMmio2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, PGMMMIO2HANDLE hMmio2) { if (hMmio2 != NIL_PGMMMIO2HANDLE) { if (hMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3) && hMmio2 != 0) { PPGMREGMMIO2RANGE pCur = pVM->pgm.s.apMmio2RangesR3[hMmio2 - 1]; if (pCur && pCur->pDevInsR3 == pDevIns) { Assert(pCur->idMmio2 == hMmio2); AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL); return pCur; } Assert(!pCur); } for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3) if (pCur->idMmio2 == hMmio2) { AssertBreak(pCur->pDevInsR3 == pDevIns); AssertReturn(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, NULL); return pCur; } } else { /* * Search the list. There shouldn't be many entries. */ /** @todo Optimize this lookup! There may now be many entries and it'll * become really slow when doing MMR3HyperMapMMIO2 and similar. */ for (PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3) if ( pCur->pDevInsR3 == pDevIns && pCur->iRegion == iRegion && pCur->iSubDev == iSubDev) return pCur; } return NULL; } /** * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Map. */ static int pgmR3PhysMmio2EnableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2) { int rc = VINF_SUCCESS; for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3) { Assert(!(pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING)); int rc2 = pgmHandlerPhysicalExRegister(pVM, pCurMmio2->pPhysHandlerR3, pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast); AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast, pCurMmio2->RamRange.pszDesc, rc2)); if (RT_SUCCESS(rc2)) pCurMmio2->fFlags |= PGMREGMMIO2RANGE_F_IS_TRACKING; else if (RT_SUCCESS(rc)) rc = rc2; if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) return rc; } AssertFailed(); return rc; } /** * Worker for PGMR3PhysMmio2ControlDirtyPageTracking and PGMR3PhysMmio2Unmap. */ static int pgmR3PhysMmio2DisableDirtyPageTracing(PVM pVM, PPGMREGMMIO2RANGE pFirstMmio2) { for (PPGMREGMMIO2RANGE pCurMmio2 = pFirstMmio2; pCurMmio2; pCurMmio2 = pCurMmio2->pNextR3) { if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_IS_TRACKING) { int rc2 = pgmHandlerPhysicalExDeregister(pVM, pCurMmio2->pPhysHandlerR3); AssertLogRelMsgRC(rc2, ("%#RGp-%#RGp %s failed -> %Rrc\n", pCurMmio2->RamRange.GCPhys, pCurMmio2->RamRange.GCPhysLast, pCurMmio2->RamRange.pszDesc, rc2)); pCurMmio2->fFlags &= ~PGMREGMMIO2RANGE_F_IS_TRACKING; } if (pCurMmio2->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) return VINF_SUCCESS; } AssertFailed(); return VINF_SUCCESS; } /** * Calculates the number of chunks * * @returns Number of registration chunk needed. * @param pVM The cross context VM structure. * @param cb The size of the MMIO/MMIO2 range. * @param pcPagesPerChunk Where to return the number of pages tracked by each * chunk. Optional. * @param pcbChunk Where to return the guest mapping size for a chunk. */ static uint16_t pgmR3PhysMmio2CalcChunkCount(PVM pVM, RTGCPHYS cb, uint32_t *pcPagesPerChunk, uint32_t *pcbChunk) { RT_NOREF_PV(pVM); /* without raw mode */ /* * This is the same calculation as PGMR3PhysRegisterRam does, except we'll be * needing a few bytes extra the PGMREGMMIO2RANGE structure. * * Note! In additions, we've got a 24 bit sub-page range for MMIO2 ranges, leaving * us with an absolute maximum of 16777215 pages per chunk (close to 64 GB). */ uint32_t const cPagesPerChunk = _4M; Assert(RT_ALIGN_32(cPagesPerChunk, X86_PD_PAE_SHIFT - X86_PAGE_SHIFT)); /* NEM large page requirement: 1GB pages. */ uint32_t const cbChunk = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesPerChunk]); AssertRelease(cPagesPerChunk < _16M); if (pcbChunk) *pcbChunk = cbChunk; if (pcPagesPerChunk) *pcPagesPerChunk = cPagesPerChunk; /* Calc the number of chunks we need. */ RTGCPHYS const cGuestPages = cb >> GUEST_PAGE_SHIFT; uint16_t cChunks = (uint16_t)((cGuestPages + cPagesPerChunk - 1) / cPagesPerChunk); AssertRelease((RTGCPHYS)cChunks * cPagesPerChunk >= cGuestPages); return cChunks; } /** * Worker for PGMR3PhysMMIO2Register that allocates and the PGMREGMMIO2RANGE * structures and does basic initialization. * * Caller must set type specfic members and initialize the PGMPAGE structures. * * This was previously also used by PGMR3PhysMmio2PreRegister, a function for * pre-registering MMIO that was later (6.1) replaced by a new handle based IOM * interface. The reference to caller and type above is purely historical. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number (internal PCI config number). * @param iRegion The region number. If the MMIO2 memory is a PCI * I/O region this number has to be the number of that * region. Otherwise it can be any number safe * UINT8_MAX. * @param cb The size of the region. Must be page aligned. * @param fFlags PGMPHYS_MMIO2_FLAGS_XXX. * @param idMmio2 The MMIO2 ID for the first chunk. * @param pszDesc The description. * @param ppHeadRet Where to return the pointer to the first * registration chunk. * * @thread EMT */ static int pgmR3PhysMmio2Create(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, uint8_t idMmio2, const char *pszDesc, PPGMREGMMIO2RANGE *ppHeadRet) { /* * Figure out how many chunks we need and of which size. */ uint32_t cPagesPerChunk; uint16_t cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, &cPagesPerChunk, NULL); AssertReturn(cChunks, VERR_PGM_PHYS_MMIO_EX_IPE); /* * Allocate the chunks. */ PPGMREGMMIO2RANGE *ppNext = ppHeadRet; *ppNext = NULL; int rc = VINF_SUCCESS; uint32_t cPagesLeft = cb >> GUEST_PAGE_SHIFT; for (uint16_t iChunk = 0; iChunk < cChunks && RT_SUCCESS(rc); iChunk++, idMmio2++) { /* * We currently do a single RAM range for the whole thing. This will * probably have to change once someone needs really large MMIO regions, * as we will be running into SUPR3PageAllocEx limitations and such. */ const uint32_t cPagesTrackedByChunk = RT_MIN(cPagesLeft, cPagesPerChunk); const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cPagesTrackedByChunk]); PPGMREGMMIO2RANGE pNew = NULL; /* * Allocate memory for the registration structure. */ size_t const cChunkPages = RT_ALIGN_Z(cbRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; size_t const cbChunk = (1 + cChunkPages + 1) << HOST_PAGE_SHIFT; AssertLogRelBreakStmt(cbChunk == (uint32_t)cbChunk, rc = VERR_OUT_OF_RANGE); RTR0PTR R0PtrChunk = NIL_RTR0PTR; void *pvChunk = NULL; rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk, &R0PtrChunk, NULL /*paPages*/); AssertLogRelMsgRCBreak(rc, ("rc=%Rrc, cChunkPages=%#zx\n", rc, cChunkPages)); Assert(R0PtrChunk != NIL_RTR0PTR || PGM_IS_IN_NEM_MODE(pVM)); RT_BZERO(pvChunk, cChunkPages << HOST_PAGE_SHIFT); pNew = (PPGMREGMMIO2RANGE)pvChunk; pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_FLOATING; pNew->RamRange.pSelfR0 = R0PtrChunk + RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange); /* * Initialize the registration structure (caller does specific bits). */ pNew->pDevInsR3 = pDevIns; //pNew->pvR3 = NULL; //pNew->pNext = NULL; if (iChunk == 0) pNew->fFlags |= PGMREGMMIO2RANGE_F_FIRST_CHUNK; if (iChunk + 1 == cChunks) pNew->fFlags |= PGMREGMMIO2RANGE_F_LAST_CHUNK; if (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES) pNew->fFlags |= PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES; pNew->iSubDev = iSubDev; pNew->iRegion = iRegion; pNew->idSavedState = UINT8_MAX; pNew->idMmio2 = idMmio2; //pNew->pPhysHandlerR3 = NULL; //pNew->paLSPages = NULL; pNew->RamRange.GCPhys = NIL_RTGCPHYS; pNew->RamRange.GCPhysLast = NIL_RTGCPHYS; pNew->RamRange.pszDesc = pszDesc; pNew->RamRange.cb = pNew->cbReal = (RTGCPHYS)cPagesTrackedByChunk << X86_PAGE_SHIFT; pNew->RamRange.fFlags |= PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO_EX; pNew->RamRange.uNemRange = UINT32_MAX; //pNew->RamRange.pvR3 = NULL; //pNew->RamRange.paLSPages = NULL; *ppNext = pNew; ASMCompilerBarrier(); cPagesLeft -= cPagesTrackedByChunk; ppNext = &pNew->pNextR3; /* * Pre-allocate a handler if we're tracking dirty pages, unless NEM takes care of this. */ if ( (fFlags & PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES) #ifdef VBOX_WITH_PGM_NEM_MODE && (!VM_IS_NEM_ENABLED(pVM) || !NEMR3IsMmio2DirtyPageTrackingSupported(pVM)) #endif ) { rc = pgmHandlerPhysicalExCreate(pVM, pVM->pgm.s.hMmio2DirtyPhysHandlerType, idMmio2, pszDesc, &pNew->pPhysHandlerR3); AssertLogRelMsgRCBreak(rc, ("idMmio2=%zu\n", idMmio2)); } } Assert(cPagesLeft == 0); if (RT_SUCCESS(rc)) { Assert((*ppHeadRet)->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); return VINF_SUCCESS; } /* * Free floating ranges. */ while (*ppHeadRet) { PPGMREGMMIO2RANGE pFree = *ppHeadRet; *ppHeadRet = pFree->pNextR3; if (pFree->pPhysHandlerR3) { pgmHandlerPhysicalExDestroy(pVM, pFree->pPhysHandlerR3); pFree->pPhysHandlerR3 = NULL; } if (pFree->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) { const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[pFree->RamRange.cb >> X86_PAGE_SHIFT]); size_t const cChunkPages = RT_ALIGN_Z(cbRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; SUPR3PageFreeEx(pFree, cChunkPages); } } return rc; } /** * Common worker PGMR3PhysMmio2PreRegister & PGMR3PhysMMIO2Register that links a * complete registration entry into the lists and lookup tables. * * @param pVM The cross context VM structure. * @param pNew The new MMIO / MMIO2 registration to link. */ static void pgmR3PhysMmio2Link(PVM pVM, PPGMREGMMIO2RANGE pNew) { Assert(pNew->idMmio2 != UINT8_MAX); /* * Link it into the list (order doesn't matter, so insert it at the head). * * Note! The range we're linking may consist of multiple chunks, so we * have to find the last one. */ PPGMREGMMIO2RANGE pLast = pNew; for (pLast = pNew; ; pLast = pLast->pNextR3) { if (pLast->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; Assert(pLast->pNextR3); Assert(pLast->pNextR3->pDevInsR3 == pNew->pDevInsR3); Assert(pLast->pNextR3->iSubDev == pNew->iSubDev); Assert(pLast->pNextR3->iRegion == pNew->iRegion); Assert(pLast->pNextR3->idMmio2 == pLast->idMmio2 + 1); } PGM_LOCK_VOID(pVM); /* Link in the chain of ranges at the head of the list. */ pLast->pNextR3 = pVM->pgm.s.pRegMmioRangesR3; pVM->pgm.s.pRegMmioRangesR3 = pNew; /* Insert the MMIO2 range/page IDs. */ uint8_t idMmio2 = pNew->idMmio2; for (;;) { Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == NULL); Assert(pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] == NIL_RTR0PTR); pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = pNew; pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = pNew->RamRange.pSelfR0 - RT_UOFFSETOF(PGMREGMMIO2RANGE, RamRange); if (pNew->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pNew = pNew->pNextR3; idMmio2++; } pgmPhysInvalidatePageMapTLB(pVM); PGM_UNLOCK(pVM); } /** * Allocate and register an MMIO2 region. * * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM * associated with a device. It is also non-shared memory with a permanent * ring-3 mapping and page backing (presently). * * A MMIO2 range may overlap with base memory if a lot of RAM is configured for * the VM, in which case we'll drop the base memory pages. Presently we will * make no attempt to preserve anything that happens to be present in the base * memory that is replaced, this is of course incorrect but it's too much * effort. * * @returns VBox status code. * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the * memory. * @retval VERR_ALREADY_EXISTS if the region already exists. * * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param iSubDev The sub-device number. * @param iRegion The region number. If the MMIO2 memory is a PCI * I/O region this number has to be the number of that * region. Otherwise it can be any number save * UINT8_MAX. * @param cb The size of the region. Must be page aligned. * @param fFlags Reserved for future use, must be zero. * @param pszDesc The description. * @param ppv Where to store the pointer to the ring-3 mapping of * the memory. * @param phRegion Where to return the MMIO2 region handle. Optional. * @thread EMT */ VMMR3_INT_DECL(int) PGMR3PhysMmio2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iSubDev, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, const char *pszDesc, void **ppv, PGMMMIO2HANDLE *phRegion) { /* * Validate input. */ AssertPtrReturn(ppv, VERR_INVALID_POINTER); *ppv = NULL; if (phRegion) { AssertPtrReturn(phRegion, VERR_INVALID_POINTER); *phRegion = NIL_PGMMMIO2HANDLE; } VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(iSubDev <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(*pszDesc, VERR_INVALID_PARAMETER); AssertReturn(pgmR3PhysMmio2Find(pVM, pDevIns, iSubDev, iRegion, NIL_PGMMMIO2HANDLE) == NULL, VERR_ALREADY_EXISTS); AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(cb, VERR_INVALID_PARAMETER); AssertReturn(!(fFlags & ~PGMPHYS_MMIO2_FLAGS_VALID_MASK), VERR_INVALID_FLAGS); const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT; AssertLogRelReturn(((RTGCPHYS)cGuestPages << GUEST_PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER); AssertLogRelReturn(cGuestPages <= (MM_MMIO_64_MAX >> X86_PAGE_SHIFT), VERR_OUT_OF_RANGE); AssertLogRelReturn(cGuestPages <= PGM_MMIO2_MAX_PAGE_COUNT, VERR_OUT_OF_RANGE); /* * For the 2nd+ instance, mangle the description string so it's unique. */ if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */ { pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance); if (!pszDesc) return VERR_NO_MEMORY; } /* * Allocate an MMIO2 range ID (not freed on failure). * * The zero ID is not used as it could be confused with NIL_GMM_PAGEID, so * the IDs goes from 1 thru PGM_MMIO2_MAX_RANGES. */ unsigned cChunks = pgmR3PhysMmio2CalcChunkCount(pVM, cb, NULL, NULL); PGM_LOCK_VOID(pVM); AssertCompile(PGM_MMIO2_MAX_RANGES < 255); uint8_t const idMmio2 = pVM->pgm.s.cMmio2Regions + 1; unsigned const cNewMmio2Regions = pVM->pgm.s.cMmio2Regions + cChunks; if (cNewMmio2Regions > PGM_MMIO2_MAX_RANGES) { PGM_UNLOCK(pVM); AssertLogRelFailedReturn(VERR_PGM_TOO_MANY_MMIO2_RANGES); } pVM->pgm.s.cMmio2Regions = cNewMmio2Regions; PGM_UNLOCK(pVM); /* * Try reserve and allocate the backing memory first as this is what is * most likely to fail. */ int rc = MMR3AdjustFixedReservation(pVM, cGuestPages, pszDesc); if (RT_SUCCESS(rc)) { const uint32_t cHostPages = RT_ALIGN_T(cb, HOST_PAGE_SIZE, RTGCPHYS) >> HOST_PAGE_SHIFT; PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cHostPages * sizeof(SUPPAGE)); if (RT_SUCCESS(rc)) { void *pvPages = NULL; #ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM RTR0PTR pvPagesR0 = NIL_RTR0PTR; #endif #ifdef VBOX_WITH_PGM_NEM_MODE if (PGM_IS_IN_NEM_MODE(pVM)) rc = SUPR3PageAlloc(cHostPages, pVM->pgm.s.fUseLargePages ? SUP_PAGE_ALLOC_F_LARGE_PAGES : 0, &pvPages); else #endif { #ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM rc = SUPR3PageAllocEx(cHostPages, 0 /*fFlags*/, &pvPages, &pvPagesR0, paPages); #else rc = SUPR3PageAllocEx(cHostPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages); #endif } if (RT_SUCCESS(rc)) { memset(pvPages, 0, cGuestPages * GUEST_PAGE_SIZE); /* * Create the registered MMIO range record for it. */ PPGMREGMMIO2RANGE pNew; rc = pgmR3PhysMmio2Create(pVM, pDevIns, iSubDev, iRegion, cb, fFlags, idMmio2, pszDesc, &pNew); if (RT_SUCCESS(rc)) { if (phRegion) *phRegion = idMmio2; /* The ID of the first chunk. */ uint32_t iSrcPage = 0; uint8_t *pbCurPages = (uint8_t *)pvPages; for (PPGMREGMMIO2RANGE pCur = pNew; pCur; pCur = pCur->pNextR3) { pCur->pvR3 = pbCurPages; #ifndef VBOX_WITH_LINEAR_HOST_PHYS_MEM pCur->pvR0 = pvPagesR0 + (iSrcPage << GUEST_PAGE_SHIFT); #endif pCur->RamRange.pvR3 = pbCurPages; uint32_t iDstPage = pCur->RamRange.cb >> GUEST_PAGE_SHIFT; #ifdef VBOX_WITH_PGM_NEM_MODE if (PGM_IS_IN_NEM_MODE(pVM)) while (iDstPage-- > 0) PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage], UINT64_C(0x0000ffffffff0000), PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage), PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED); else #endif { AssertRelease(HOST_PAGE_SHIFT == GUEST_PAGE_SHIFT); while (iDstPage-- > 0) PGM_PAGE_INIT(&pNew->RamRange.aPages[iDstPage], paPages[iDstPage + iSrcPage].Phys, PGM_MMIO2_PAGEID_MAKE(idMmio2, iDstPage), PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED); } /* advance. */ iSrcPage += pCur->RamRange.cb >> GUEST_PAGE_SHIFT; pbCurPages += pCur->RamRange.cb; } RTMemTmpFree(paPages); /* * Update the page count stats, link the registration and we're done. */ pVM->pgm.s.cAllPages += cGuestPages; pVM->pgm.s.cPrivatePages += cGuestPages; pgmR3PhysMmio2Link(pVM, pNew); *ppv = pvPages; return VINF_SUCCESS; } SUPR3PageFreeEx(pvPages, cHostPages); } } RTMemTmpFree(paPages); MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pszDesc); } if (pDevIns->iInstance > 0) MMR3HeapFree((void *)pszDesc); return rc; } /** * Deregisters and frees an MMIO2 region. * * Any physical access handlers registered for the region must be deregistered * before calling this function. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param hMmio2 The MMIO2 handle to deregister, or NIL if all * regions for the given device is to be deregistered. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2Deregister(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) { /* * Validate input. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); /* * The loop here scanning all registrations will make sure that multi-chunk ranges * get properly deregistered, though it's original purpose was the wildcard iRegion. */ PGM_LOCK_VOID(pVM); int rc = VINF_SUCCESS; unsigned cFound = 0; PPGMREGMMIO2RANGE pPrev = NULL; PPGMREGMMIO2RANGE pCur = pVM->pgm.s.pRegMmioRangesR3; while (pCur) { uint32_t const fFlags = pCur->fFlags; if ( pCur->pDevInsR3 == pDevIns && ( hMmio2 == NIL_PGMMMIO2HANDLE || pCur->idMmio2 == hMmio2)) { cFound++; /* * Unmap it if it's mapped. */ if (fFlags & PGMREGMMIO2RANGE_F_MAPPED) { int rc2 = PGMR3PhysMmio2Unmap(pVM, pCur->pDevInsR3, pCur->idMmio2, pCur->RamRange.GCPhys); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } /* * Unlink it */ PPGMREGMMIO2RANGE pNext = pCur->pNextR3; if (pPrev) pPrev->pNextR3 = pNext; else pVM->pgm.s.pRegMmioRangesR3 = pNext; pCur->pNextR3 = NULL; uint8_t idMmio2 = pCur->idMmio2; Assert(idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3)); if (idMmio2 <= RT_ELEMENTS(pVM->pgm.s.apMmio2RangesR3)) { Assert(pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] == pCur); pVM->pgm.s.apMmio2RangesR3[idMmio2 - 1] = NULL; pVM->pgm.s.apMmio2RangesR0[idMmio2 - 1] = NIL_RTR0PTR; } /* * Free the memory. */ uint32_t const cGuestPages = pCur->cbReal >> GUEST_PAGE_SHIFT; uint32_t const cHostPages = RT_ALIGN_T(pCur->cbReal, HOST_PAGE_SIZE, RTGCPHYS) >> HOST_PAGE_SHIFT; #ifdef VBOX_WITH_PGM_NEM_MODE if (!pVM->pgm.s.fNemMode) #endif { int rc2 = SUPR3PageFreeEx(pCur->pvR3, cHostPages); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cGuestPages, pCur->RamRange.pszDesc); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } #ifdef VBOX_WITH_PGM_NEM_MODE else { int rc2 = SUPR3PageFreeEx(pCur->pvR3, cHostPages); AssertRC(rc2); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; } #endif if (pCur->pPhysHandlerR3) { pgmHandlerPhysicalExDestroy(pVM, pCur->pPhysHandlerR3); pCur->pPhysHandlerR3 = NULL; } /* we're leaking hyper memory here if done at runtime. */ #ifdef VBOX_STRICT VMSTATE const enmState = VMR3GetState(pVM); AssertMsg( enmState == VMSTATE_POWERING_OFF || enmState == VMSTATE_POWERING_OFF_LS || enmState == VMSTATE_OFF || enmState == VMSTATE_OFF_LS || enmState == VMSTATE_DESTROYING || enmState == VMSTATE_TERMINATED || enmState == VMSTATE_CREATING , ("%s\n", VMR3GetStateName(enmState))); #endif if (pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) { const size_t cbRange = RT_UOFFSETOF_DYN(PGMREGMMIO2RANGE, RamRange.aPages[cGuestPages]); size_t const cChunkPages = RT_ALIGN_Z(cbRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; SUPR3PageFreeEx(pCur, cChunkPages); } /*else { rc = MMHyperFree(pVM, pCur); - does not work, see the alloc call. AssertRCReturn(rc, rc); } */ /* update page count stats */ pVM->pgm.s.cAllPages -= cGuestPages; pVM->pgm.s.cPrivatePages -= cGuestPages; /* next */ pCur = pNext; if (hMmio2 != NIL_PGMMMIO2HANDLE) { if (fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; hMmio2++; Assert(pCur->idMmio2 == hMmio2); Assert(pCur->pDevInsR3 == pDevIns); Assert(!(pCur->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK)); } } else { pPrev = pCur; pCur = pCur->pNextR3; } } pgmPhysInvalidatePageMapTLB(pVM); PGM_UNLOCK(pVM); return !cFound && hMmio2 != NIL_PGMMMIO2HANDLE ? VERR_NOT_FOUND : rc; } /** * Maps a MMIO2 region. * * This is typically done when a guest / the bios / state loading changes the * PCI config. The replacing of base memory has the same restrictions as during * registration, of course. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param hMmio2 The handle of the region to map. * @param GCPhys The guest-physical address to be remapped. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2Map(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys) { /* * Validate input. * * Note! It's safe to walk the MMIO/MMIO2 list since registrations only * happens during VM construction. */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER); AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturn(pFirstMmio, VERR_NOT_FOUND); Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); PPGMREGMMIO2RANGE pLastMmio = pFirstMmio; RTGCPHYS cbRange = 0; for (;;) { AssertReturn(!(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), VERR_WRONG_ORDER); Assert(pLastMmio->RamRange.GCPhys == NIL_RTGCPHYS); Assert(pLastMmio->RamRange.GCPhysLast == NIL_RTGCPHYS); Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); Assert(pLastMmio->iRegion == pFirstMmio->iRegion); cbRange += pLastMmio->RamRange.cb; if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pLastMmio = pLastMmio->pNextR3; } RTGCPHYS GCPhysLast = GCPhys + cbRange - 1; AssertLogRelReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); /* * Find our location in the ram range list, checking for restriction * we don't bother implementing yet (partially overlapping, multiple * ram ranges). */ PGM_LOCK_VOID(pVM); AssertReturnStmt(!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED), PGM_UNLOCK(pVM), VERR_WRONG_ORDER); bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhys <= pRam->GCPhysLast && GCPhysLast >= pRam->GCPhys) { /* Completely within? */ AssertLogRelMsgReturnStmt( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (MMIOEx/%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT); /* Check that all the pages are RAM pages. */ PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = cbRange >> GUEST_PAGE_SHIFT; while (cPagesLeft-- > 0) { AssertLogRelMsgReturnStmt(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n", GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc), PGM_UNLOCK(pVM), VERR_PGM_RAM_CONFLICT); pPage++; } /* There can only be one MMIO/MMIO2 chunk matching here! */ AssertLogRelMsgReturnStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, ("%RGp-%RGp (MMIOEx/%s, flags %#X) consists of multiple chunks whereas the RAM somehow doesn't!\n", GCPhys, GCPhysLast, pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), PGM_UNLOCK(pVM), VERR_PGM_PHYS_MMIO_EX_IPE); fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } Log(("PGMR3PhysMmio2Map: %RGp-%RGp fRamExists=%RTbool %s\n", GCPhys, GCPhysLast, fRamExists, pFirstMmio->RamRange.pszDesc)); /* * Make the changes. */ RTGCPHYS GCPhysCur = GCPhys; for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { pCurMmio->RamRange.GCPhys = GCPhysCur; pCurMmio->RamRange.GCPhysLast = GCPhysCur + pCurMmio->RamRange.cb - 1; if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) { Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); break; } GCPhysCur += pCurMmio->RamRange.cb; } if (fRamExists) { /* * Make all the pages in the range MMIO/ZERO pages, freeing any * RAM pages currently mapped here. This might not be 100% correct * for PCI memory, but we're doing the same thing for MMIO2 pages. * * We replace these MMIO/ZERO pages with real pages in the MMIO2 case. */ Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Only one chunk */ Assert(pFirstMmio->pvR3 == pFirstMmio->RamRange.pvR3); Assert(pFirstMmio->RamRange.pvR3 != NULL); #ifdef VBOX_WITH_PGM_NEM_MODE /* We cannot mix MMIO2 into a RAM range in simplified memory mode because pRam->pvR3 can't point both at the RAM and MMIO2, so we won't ever write & read from the actual MMIO2 memory if we try. */ AssertLogRelMsgReturn(!pVM->pgm.s.fNemMode, ("%s at %RGp-%RGp\n", pFirstMmio->RamRange.pszDesc, GCPhys, GCPhysLast), VERR_PGM_NOT_SUPPORTED_FOR_NEM_MODE); #endif int rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, pFirstMmio->RamRange.pvR3); AssertRCReturnStmt(rc, PGM_UNLOCK(pVM), rc); /* Replace the pages, freeing all present RAM pages. */ PPGMPAGE pPageSrc = &pFirstMmio->RamRange.aPages[0]; PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> GUEST_PAGE_SHIFT; while (cPagesLeft-- > 0) { Assert(PGM_PAGE_IS_MMIO(pPageDst)); RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc); uint32_t const idPage = PGM_PAGE_GET_PAGEID(pPageSrc); PGM_PAGE_SET_PAGEID(pVM, pPageDst, idPage); PGM_PAGE_SET_HCPHYS(pVM, pPageDst, HCPhys); PGM_PAGE_SET_TYPE(pVM, pPageDst, PGMPAGETYPE_MMIO2); PGM_PAGE_SET_STATE(pVM, pPageDst, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PDE_TYPE(pVM, pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pPageDst, 0); PGM_PAGE_SET_TRACKING(pVM, pPageDst, 0); /* NEM state is set by pgmR3PhysFreePageRange. */ pVM->pgm.s.cZeroPages--; GCPhys += GUEST_PAGE_SIZE; pPageSrc++; pPageDst++; } /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes care of * this internally (not touch mapped mmio while changing the mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); } else { /* * No RAM range, insert the ones prepared during registration. */ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { #ifdef VBOX_WITH_NATIVE_NEM /* Tell NEM and get the new NEM state for the pages. */ uint8_t u2NemState = 0; if (VM_IS_NEM_ENABLED(pVM)) { int rc = NEMR3NotifyPhysMmioExMapEarly(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.GCPhysLast - pCurMmio->RamRange.GCPhys + 1, NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 | (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0), NULL /*pvRam*/, pCurMmio->RamRange.pvR3, &u2NemState, &pCurMmio->RamRange.uNemRange); AssertLogRelRCReturnStmt(rc, PGM_UNLOCK(pVM), rc); } #endif /* Clear the tracking data of pages we're going to reactivate. */ PPGMPAGE pPageSrc = &pCurMmio->RamRange.aPages[0]; uint32_t cPagesLeft = pCurMmio->RamRange.cb >> GUEST_PAGE_SHIFT; while (cPagesLeft-- > 0) { PGM_PAGE_SET_TRACKING(pVM, pPageSrc, 0); PGM_PAGE_SET_PTE_INDEX(pVM, pPageSrc, 0); #ifdef VBOX_WITH_NATIVE_NEM PGM_PAGE_SET_NEM_STATE(pPageSrc, u2NemState); #endif pPageSrc++; } /* link in the ram range */ pgmR3PhysLinkRamRange(pVM, &pCurMmio->RamRange, pRamPrev); if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) { Assert(pCurMmio->RamRange.GCPhysLast == GCPhysLast); break; } pRamPrev = &pCurMmio->RamRange; } } /* * If the range have dirty page monitoring enabled, enable that. * * We ignore failures here for now because if we fail, the whole mapping * will have to be reversed and we'll end up with nothing at all on the * screen and a grumpy guest, whereas if we just go on, we'll only have * visual distortions to gripe about. There will be something in the * release log. */ if ( pFirstMmio->pPhysHandlerR3 && (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstMmio); /* * We're good, set the flags and invalid the mapping TLB. */ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_MAPPED; if (fRamExists) pCurMmio->fFlags |= PGMREGMMIO2RANGE_F_OVERLAPPING; else pCurMmio->fFlags &= ~PGMREGMMIO2RANGE_F_OVERLAPPING; if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; } pgmPhysInvalidatePageMapTLB(pVM); #ifdef VBOX_WITH_NATIVE_NEM /* * Late NEM notification. */ if (VM_IS_NEM_ENABLED(pVM)) { int rc; uint32_t fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2; if (pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES) fNemFlags |= NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES; if (fRamExists) rc = NEMR3NotifyPhysMmioExMapLate(pVM, GCPhys, GCPhysLast - GCPhys + 1, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE, pRam->pvR3 ? (uint8_t *)pRam->pvR3 + GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3, NULL /*puNemRange*/); else { rc = VINF_SUCCESS; for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { rc = NEMR3NotifyPhysMmioExMapLate(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags, NULL, pCurMmio->RamRange.pvR3, &pCurMmio->RamRange.uNemRange); if ((pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) || RT_FAILURE(rc)) break; } } AssertLogRelRCReturnStmt(rc, PGMR3PhysMmio2Unmap(pVM, pDevIns, hMmio2, GCPhys); PGM_UNLOCK(pVM), rc); } #endif PGM_UNLOCK(pVM); return VINF_SUCCESS; } /** * Unmaps an MMIO2 region. * * This is typically done when a guest / the bios / state loading changes the * PCI config. The replacing of base memory has the same restrictions as during * registration, of course. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2Unmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS GCPhys) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); if (GCPhys != NIL_RTGCPHYS) { AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER); AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); } PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturn(pFirstMmio, VERR_NOT_FOUND); Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); PPGMREGMMIO2RANGE pLastMmio = pFirstMmio; RTGCPHYS cbRange = 0; for (;;) { AssertReturnStmt(pLastMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER); AssertReturnStmt(pLastMmio->RamRange.GCPhys == GCPhys + cbRange || GCPhys == NIL_RTGCPHYS, PGM_UNLOCK(pVM), VERR_INVALID_PARAMETER); Assert(pLastMmio->pDevInsR3 == pFirstMmio->pDevInsR3); Assert(pLastMmio->iSubDev == pFirstMmio->iSubDev); Assert(pLastMmio->iRegion == pFirstMmio->iRegion); cbRange += pLastMmio->RamRange.cb; if (pLastMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pLastMmio = pLastMmio->pNextR3; } Log(("PGMR3PhysMmio2Unmap: %RGp-%RGp %s\n", pFirstMmio->RamRange.GCPhys, pLastMmio->RamRange.GCPhysLast, pFirstMmio->RamRange.pszDesc)); uint16_t const fOldFlags = pFirstMmio->fFlags; AssertReturnStmt(fOldFlags & PGMREGMMIO2RANGE_F_MAPPED, PGM_UNLOCK(pVM), VERR_WRONG_ORDER); /* * If monitoring dirty pages, we must deregister the handlers first. */ if ( pFirstMmio->pPhysHandlerR3 && (fOldFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstMmio); /* * Unmap it. */ int rcRet = VINF_SUCCESS; #ifdef VBOX_WITH_NATIVE_NEM uint32_t const fNemFlags = NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2 | (fOldFlags & PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES ? NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES : 0); #endif if (fOldFlags & PGMREGMMIO2RANGE_F_OVERLAPPING) { /* * We've replaced RAM, replace with zero pages. * * Note! This is where we might differ a little from a real system, because * it's likely to just show the RAM pages as they were before the * MMIO/MMIO2 region was mapped here. */ /* Only one chunk allowed when overlapping! */ Assert(fOldFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK); /* Restore the RAM pages we've replaced. */ PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam->GCPhys > pFirstMmio->RamRange.GCPhysLast) pRam = pRam->pNextR3; PPGMPAGE pPageDst = &pRam->aPages[(pFirstMmio->RamRange.GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = pFirstMmio->RamRange.cb >> GUEST_PAGE_SHIFT; pVM->pgm.s.cZeroPages += cPagesLeft; /** @todo not correct for NEM mode */ #ifdef VBOX_WITH_NATIVE_NEM if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. Note! we cannot be here in simple memory mode, see mapping function. */ { uint8_t u2State = UINT8_MAX; rc = NEMR3NotifyPhysMmioExUnmap(pVM, pFirstMmio->RamRange.GCPhys, pFirstMmio->RamRange.cb, fNemFlags | NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE, pRam->pvR3 ? (uint8_t *)pRam->pvR3 + pFirstMmio->RamRange.GCPhys - pRam->GCPhys : NULL, pFirstMmio->pvR3, &u2State, &pRam->uNemRange); AssertRCStmt(rc, rcRet = rc); if (u2State != UINT8_MAX) pgmPhysSetNemStateForPages(pPageDst, cPagesLeft, u2State); } #endif while (cPagesLeft-- > 0) { PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM); pPageDst++; } /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* Update range state. */ pFirstMmio->RamRange.GCPhys = NIL_RTGCPHYS; pFirstMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; pFirstMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED); } else { /* * Unlink the chunks related to the MMIO/MMIO2 region. */ for (PPGMREGMMIO2RANGE pCurMmio = pFirstMmio; ; pCurMmio = pCurMmio->pNextR3) { #ifdef VBOX_WITH_NATIVE_NEM if (VM_IS_NEM_ENABLED(pVM)) /* Notify NEM. */ { uint8_t u2State = UINT8_MAX; rc = NEMR3NotifyPhysMmioExUnmap(pVM, pCurMmio->RamRange.GCPhys, pCurMmio->RamRange.cb, fNemFlags, NULL, pCurMmio->pvR3, &u2State, &pCurMmio->RamRange.uNemRange); AssertRCStmt(rc, rcRet = rc); if (u2State != UINT8_MAX) pgmPhysSetNemStateForPages(pCurMmio->RamRange.aPages, pCurMmio->RamRange.cb >> GUEST_PAGE_SHIFT, u2State); } #endif pgmR3PhysUnlinkRamRange(pVM, &pCurMmio->RamRange); pCurMmio->RamRange.GCPhys = NIL_RTGCPHYS; pCurMmio->RamRange.GCPhysLast = NIL_RTGCPHYS; pCurMmio->fFlags &= ~(PGMREGMMIO2RANGE_F_OVERLAPPING | PGMREGMMIO2RANGE_F_MAPPED); if (pCurMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; } } /* Force a PGM pool flush as guest ram references have been changed. */ /** @todo not entirely SMP safe; assuming for now the guest takes care * of this internally (not touch mapped mmio while changing the * mapping). */ PVMCPU pVCpu = VMMGetCpu(pVM); pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmPhysInvalidatePageMapTLB(pVM); pgmPhysInvalidRamRangeTlbs(pVM); PGM_UNLOCK(pVM); return rcRet; } /** * Reduces the mapping size of a MMIO2 region. * * This is mainly for dealing with old saved states after changing the default * size of a mapping region. See PGMDevHlpMMIOExReduce and * PDMPCIDEV::pfnRegionLoadChangeHookR3. * * The region must not currently be mapped when making this call. The VM state * must be state restore or VM construction. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the region. * @param hMmio2 The handle of the region to reduce. * @param cbRegion The new mapping size. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2Reduce(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, RTGCPHYS cbRegion) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); AssertReturn(cbRegion >= X86_PAGE_SIZE, VERR_INVALID_PARAMETER); AssertReturn(!(cbRegion & X86_PAGE_OFFSET_MASK), VERR_UNSUPPORTED_ALIGNMENT); VMSTATE enmVmState = VMR3GetState(pVM); AssertLogRelMsgReturn( enmVmState == VMSTATE_CREATING || enmVmState == VMSTATE_LOADING, ("enmVmState=%d (%s)\n", enmVmState, VMR3GetStateName(enmVmState)), VERR_VM_INVALID_VM_STATE); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); if (pFirstMmio) { Assert(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK); if (!(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED)) { /* * NOTE! Current implementation does not support multiple ranges. * Implement when there is a real world need and thus a testcase. */ AssertLogRelMsgStmt(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK, ("%s: %#x\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->fFlags), rc = VERR_NOT_SUPPORTED); if (RT_SUCCESS(rc)) { /* * Make the change. */ Log(("PGMR3PhysMmio2Reduce: %s changes from %RGp bytes (%RGp) to %RGp bytes.\n", pFirstMmio->RamRange.pszDesc, pFirstMmio->RamRange.cb, pFirstMmio->cbReal, cbRegion)); AssertLogRelMsgStmt(cbRegion <= pFirstMmio->cbReal, ("%s: cbRegion=%#RGp cbReal=%#RGp\n", pFirstMmio->RamRange.pszDesc, cbRegion, pFirstMmio->cbReal), rc = VERR_OUT_OF_RANGE); if (RT_SUCCESS(rc)) { pFirstMmio->RamRange.cb = cbRegion; } } } else rc = VERR_WRONG_ORDER; } else rc = VERR_NOT_FOUND; PGM_UNLOCK(pVM); return rc; } /** * Validates @a hMmio2, making sure it belongs to @a pDevIns. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device which allegedly owns @a hMmio2. * @param hMmio2 The handle to validate. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2ValidateHandle(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) { /* * Validate input */ VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); AssertPtrReturn(pDevIns, VERR_INVALID_POINTER); /* * Just do this the simple way. No need for locking as this is only taken at */ PGM_LOCK_VOID(pVM); PPGMREGMMIO2RANGE pFirstMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); PGM_UNLOCK(pVM); AssertReturn(pFirstMmio, VERR_INVALID_HANDLE); AssertReturn(pFirstMmio->fFlags & PGMREGMMIO2RANGE_F_FIRST_CHUNK, VERR_INVALID_HANDLE); return VINF_SUCCESS; } /** * Gets the mapping address of an MMIO2 region. * * @returns Mapping address, NIL_RTGCPHYS if not mapped or invalid handle. * * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 handle. * @param hMmio2 The region handle. */ VMMR3_INT_DECL(RTGCPHYS) PGMR3PhysMmio2GetMappingAddress(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2) { AssertPtrReturn(pDevIns, NIL_RTGCPHYS); PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturn(pFirstRegMmio, NIL_RTGCPHYS); if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED) return pFirstRegMmio->RamRange.GCPhys; return NIL_RTGCPHYS; } /** * Worker for PGMR3PhysMmio2QueryAndResetDirtyBitmap. * * Called holding the PGM lock. */ static int pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, void *pvBitmap, size_t cbBitmap) { /* * Continue validation. */ PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE); AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)) == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK), VERR_INVALID_FUNCTION); AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER); RTGCPHYS cbTotal = 0; uint16_t fTotalDirty = 0; for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;) { cbTotal += pCur->RamRange.cb; /* Not using cbReal here, because NEM is not in on the creating, only the mapping. */ fTotalDirty |= pCur->fFlags; if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pCur = pCur->pNextR3; AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5); AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)) == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES, VERR_INTERNAL_ERROR_4); } size_t const cbTotalBitmap = RT_ALIGN_T(cbTotal, GUEST_PAGE_SIZE * 64, RTGCPHYS) / GUEST_PAGE_SIZE / 8; if (cbBitmap) { AssertPtrReturn(pvBitmap, VERR_INVALID_POINTER); AssertReturn(RT_ALIGN_P(pvBitmap, sizeof(uint64_t)) == pvBitmap, VERR_INVALID_POINTER); AssertReturn(cbBitmap == cbTotalBitmap, VERR_INVALID_PARAMETER); } /* * Do the work. */ int rc = VINF_SUCCESS; if (pvBitmap) { #ifdef VBOX_WITH_PGM_NEM_MODE if (pFirstRegMmio->pPhysHandlerR3 == NULL) { /** @todo This does not integrate at all with --execute-all-in-iem, leaving the * screen blank when using it together with --driverless. Fixing this won't be * entirely easy as we take the PGM_PAGE_HNDL_PHYS_STATE_DISABLED page status to * mean a dirty page. */ AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4); uint8_t *pbBitmap = (uint8_t *)pvBitmap; for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3) { size_t const cbBitmapChunk = pCur->RamRange.cb / GUEST_PAGE_SIZE / 8; Assert((RTGCPHYS)cbBitmapChunk * GUEST_PAGE_SIZE * 8 == pCur->RamRange.cb); int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb, pCur->RamRange.uNemRange, pbBitmap, cbBitmapChunk); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pbBitmap += pCur->RamRange.cb / GUEST_PAGE_SIZE / 8; } } else #endif if (fTotalDirty & PGMREGMMIO2RANGE_F_IS_DIRTY) { if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) { /* * Reset each chunk, gathering dirty bits. */ RT_BZERO(pvBitmap, cbBitmap); /* simpler for now. */ uint32_t iPageNo = 0; for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3) { if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY) { int rc2 = pgmHandlerPhysicalResetMmio2WithBitmap(pVM, pCur->RamRange.GCPhys, pvBitmap, iPageNo); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY; } if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; iPageNo += pCur->RamRange.cb >> GUEST_PAGE_SHIFT; } } else { /* * If not mapped or tracking is disabled, we return the * PGMREGMMIO2RANGE_F_IS_DIRTY status for all pages. We cannot * get more accurate data than that after unmapping or disabling. */ RT_BZERO(pvBitmap, cbBitmap); uint32_t iPageNo = 0; for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3) { if (pCur->fFlags & PGMREGMMIO2RANGE_F_IS_DIRTY) { ASMBitSetRange(pvBitmap, iPageNo, iPageNo + (pCur->RamRange.cb >> GUEST_PAGE_SHIFT)); pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY; } if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; iPageNo += pCur->RamRange.cb >> GUEST_PAGE_SHIFT; } } } /* * No dirty chunks. */ else RT_BZERO(pvBitmap, cbBitmap); } /* * No bitmap. Reset the region if tracking is currently enabled. */ else if ( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) == (PGMREGMMIO2RANGE_F_MAPPED | PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) { #ifdef VBOX_WITH_PGM_NEM_MODE if (pFirstRegMmio->pPhysHandlerR3 == NULL) { AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4); for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3) { int rc2 = NEMR3PhysMmio2QueryAndResetDirtyBitmap(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb, pCur->RamRange.uNemRange, NULL, 0); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; } } else #endif { for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio; pCur; pCur = pCur->pNextR3) { pCur->fFlags &= ~PGMREGMMIO2RANGE_F_IS_DIRTY; int rc2 = PGMHandlerPhysicalReset(pVM, pCur->RamRange.GCPhys); if (RT_FAILURE(rc2) && RT_SUCCESS(rc)) rc = rc2; if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; } } } return rc; } /** * Queries the dirty page bitmap and resets the monitoring. * * The PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES flag must be specified when * creating the range for this to work. * * @returns VBox status code. * @retval VERR_INVALID_FUNCTION if not created using * PGMPHYS_MMIO2_FLAGS_TRACK_DIRTY_PAGES. * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 handle. * @param hMmio2 The region handle. * @param pvBitmap The output bitmap. Must be 8-byte aligned. Ignored * when @a cbBitmap is zero. * @param cbBitmap The size of the bitmap. Must be the size of the whole * MMIO2 range, rounded up to the nearest 8 bytes. * When zero only a reset is done. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, void *pvBitmap, size_t cbBitmap) { /* * Do some basic validation before grapping the PGM lock and continuing. */ AssertPtrReturn(pDevIns, VERR_INVALID_POINTER); AssertReturn(RT_ALIGN_Z(cbBitmap, sizeof(uint64_t)) == cbBitmap, VERR_INVALID_PARAMETER); int rc = PGM_LOCK(pVM); if (RT_SUCCESS(rc)) { STAM_PROFILE_START(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a); rc = pgmR3PhysMmio2QueryAndResetDirtyBitmapLocked(pVM, pDevIns, hMmio2, pvBitmap, cbBitmap); STAM_PROFILE_STOP(&pVM->pgm.s.StatMmio2QueryAndResetDirtyBitmap, a); PGM_UNLOCK(pVM); } return rc; } /** * Worker for PGMR3PhysMmio2ControlDirtyPageTracking * * Called owning the PGM lock. */ static int pgmR3PhysMmio2ControlDirtyPageTrackingLocked(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled) { /* * Continue validation. */ PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturn(pFirstRegMmio, VERR_INVALID_HANDLE); AssertReturn( (pFirstRegMmio->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)) == (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK) , VERR_INVALID_FUNCTION); AssertReturn(pDevIns == pFirstRegMmio->pDevInsR3, VERR_NOT_OWNER); #ifdef VBOX_WITH_PGM_NEM_MODE /* * This is a nop if NEM is responsible for doing the tracking, we simply * leave the tracking on all the time there. */ if (pFirstRegMmio->pPhysHandlerR3 == NULL) { AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_INTERNAL_ERROR_4); return VINF_SUCCESS; } #endif /* * Anyting needing doing? */ if (fEnabled != RT_BOOL(pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_TRACKING_ENABLED)) { LogFlowFunc(("fEnabled=%RTbool %s\n", fEnabled, pFirstRegMmio->RamRange.pszDesc)); /* * Update the PGMREGMMIO2RANGE_F_TRACKING_ENABLED flag. */ for (PPGMREGMMIO2RANGE pCur = pFirstRegMmio;;) { if (fEnabled) pCur->fFlags |= PGMREGMMIO2RANGE_F_TRACKING_ENABLED; else pCur->fFlags &= ~PGMREGMMIO2RANGE_F_TRACKING_ENABLED; if (pCur->fFlags & PGMREGMMIO2RANGE_F_LAST_CHUNK) break; pCur = pCur->pNextR3; AssertPtrReturn(pCur, VERR_INTERNAL_ERROR_5); AssertReturn( (pCur->fFlags & (PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES | PGMREGMMIO2RANGE_F_FIRST_CHUNK)) == PGMREGMMIO2RANGE_F_TRACK_DIRTY_PAGES , VERR_INTERNAL_ERROR_4); } /* * Enable/disable handlers if currently mapped. * * We ignore status codes here as we've already changed the flags and * returning a failure status now would be confusing. Besides, the two * functions will continue past failures. As argued in the mapping code, * it's in the release log. */ if (pFirstRegMmio->fFlags & PGMREGMMIO2RANGE_F_MAPPED) { if (fEnabled) pgmR3PhysMmio2EnableDirtyPageTracing(pVM, pFirstRegMmio); else pgmR3PhysMmio2DisableDirtyPageTracing(pVM, pFirstRegMmio); } } else LogFlowFunc(("fEnabled=%RTbool %s - no change\n", fEnabled, pFirstRegMmio->RamRange.pszDesc)); return VINF_SUCCESS; } /** * Controls the dirty page tracking for an MMIO2 range. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 memory. * @param hMmio2 The handle of the region. * @param fEnabled The new tracking state. */ VMMR3_INT_DECL(int) PGMR3PhysMmio2ControlDirtyPageTracking(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, bool fEnabled) { /* * Do some basic validation before grapping the PGM lock and continuing. */ AssertPtrReturn(pDevIns, VERR_INVALID_POINTER); int rc = PGM_LOCK(pVM); if (RT_SUCCESS(rc)) { rc = pgmR3PhysMmio2ControlDirtyPageTrackingLocked(pVM, pDevIns, hMmio2, fEnabled); PGM_UNLOCK(pVM); } return rc; } /** * Changes the region number of an MMIO2 region. * * This is only for dealing with save state issues, nothing else. * * @return VBox status code. * * @param pVM The cross context VM structure. * @param pDevIns The device owning the MMIO2 memory. * @param hMmio2 The handle of the region. * @param iNewRegion The new region index. * * @thread EMT(0) * @sa @bugref{9359} */ VMMR3_INT_DECL(int) PGMR3PhysMmio2ChangeRegionNo(PVM pVM, PPDMDEVINS pDevIns, PGMMMIO2HANDLE hMmio2, uint32_t iNewRegion) { /* * Validate input. */ VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); VM_ASSERT_STATE_RETURN(pVM, VMSTATE_LOADING, VERR_VM_INVALID_VM_STATE); AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(hMmio2 != NIL_PGMMMIO2HANDLE, VERR_INVALID_HANDLE); AssertReturn(iNewRegion <= UINT8_MAX, VERR_INVALID_PARAMETER); AssertReturn(pVM->enmVMState == VMSTATE_LOADING, VERR_INVALID_STATE); int rc = PGM_LOCK(pVM); AssertRCReturn(rc, rc); PPGMREGMMIO2RANGE pFirstRegMmio = pgmR3PhysMmio2Find(pVM, pDevIns, UINT32_MAX, UINT32_MAX, hMmio2); AssertReturnStmt(pFirstRegMmio, PGM_UNLOCK(pVM), VERR_NOT_FOUND); AssertReturnStmt(pgmR3PhysMmio2Find(pVM, pDevIns, pFirstRegMmio->iSubDev, iNewRegion, NIL_PGMMMIO2HANDLE) == NULL, PGM_UNLOCK(pVM), VERR_RESOURCE_IN_USE); /* * Make the change. */ pFirstRegMmio->iRegion = (uint8_t)iNewRegion; PGM_UNLOCK(pVM); return VINF_SUCCESS; } /********************************************************************************************************************************* * ROM * *********************************************************************************************************************************/ /** * Worker for PGMR3PhysRomRegister. * * This is here to simplify lock management, i.e. the caller does all the * locking and we can simply return without needing to remember to unlock * anything first. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the ROM. * @param GCPhys First physical address in the range. * Must be page aligned! * @param cb The size of the range (in bytes). * Must be page aligned! * @param pvBinary Pointer to the binary data backing the ROM image. * @param cbBinary The size of the binary data pvBinary points to. * This must be less or equal to @a cb. * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY. * @param pszDesc Pointer to description string. This must not be freed. */ static int pgmR3PhysRomRegisterLocked(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc) { /* * Validate input. */ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(GCPhys, GUEST_PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(cb, GUEST_PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER); AssertPtrReturn(pszDesc, VERR_INVALID_POINTER); AssertReturn(!(fFlags & ~PGMPHYS_ROM_FLAGS_VALID_MASK), VERR_INVALID_PARAMETER); VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); const uint32_t cGuestPages = cb >> GUEST_PAGE_SHIFT; #ifdef VBOX_WITH_PGM_NEM_MODE const uint32_t cHostPages = RT_ALIGN_T(cb, HOST_PAGE_SIZE, RTGCPHYS) >> HOST_PAGE_SHIFT; #endif /* * Find the ROM location in the ROM list first. */ PPGMROMRANGE pRomPrev = NULL; PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; while (pRom && GCPhysLast >= pRom->GCPhys) { if ( GCPhys <= pRom->GCPhysLast && GCPhysLast >= pRom->GCPhys) AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc), VERR_PGM_RAM_CONFLICT); /* next */ pRomPrev = pRom; pRom = pRom->pNextR3; } /* * Find the RAM location and check for conflicts. * * Conflict detection is a bit different than for RAM registration since a * ROM can be located within a RAM range. So, what we have to check for is * other memory types (other than RAM that is) and that we don't span more * than one RAM range (lazy). */ bool fRamExists = false; PPGMRAMRANGE pRamPrev = NULL; PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; while (pRam && GCPhysLast >= pRam->GCPhys) { if ( GCPhys <= pRam->GCPhysLast && GCPhysLast >= pRam->GCPhys) { /* completely within? */ AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys && GCPhysLast <= pRam->GCPhysLast, ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n", GCPhys, GCPhysLast, pszDesc, pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc), VERR_PGM_RAM_CONFLICT); fRamExists = true; break; } /* next */ pRamPrev = pRam; pRam = pRam->pNextR3; } if (fRamExists) { PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT]; uint32_t cPagesLeft = cGuestPages; while (cPagesLeft-- > 0) { AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM, ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n", pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << GUEST_PAGE_SHIFT), pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT); Assert(PGM_PAGE_IS_ZERO(pPage) || PGM_IS_IN_NEM_MODE(pVM)); pPage++; } } /* * Update the base memory reservation if necessary. */ uint32_t cExtraBaseCost = fRamExists ? 0 : cGuestPages; if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) cExtraBaseCost += cGuestPages; if (cExtraBaseCost) { int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost); if (RT_FAILURE(rc)) return rc; } #ifdef VBOX_WITH_NATIVE_NEM /* * Early NEM notification before we've made any changes or anything. */ uint32_t const fNemNotify = (fRamExists ? NEM_NOTIFY_PHYS_ROM_F_REPLACE : 0) | (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED ? NEM_NOTIFY_PHYS_ROM_F_SHADOW : 0); uint8_t u2NemState = UINT8_MAX; uint32_t uNemRange = 0; if (VM_IS_NEM_ENABLED(pVM)) { int rc = NEMR3NotifyPhysRomRegisterEarly(pVM, GCPhys, cGuestPages << GUEST_PAGE_SHIFT, fRamExists ? PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhys) : NULL, fNemNotify, &u2NemState, fRamExists ? &pRam->uNemRange : &uNemRange); AssertLogRelRCReturn(rc, rc); } #endif /* * Allocate memory for the virgin copy of the RAM. In simplified memory mode, * we allocate memory for any ad-hoc RAM range and for shadow pages. */ PGMMALLOCATEPAGESREQ pReq = NULL; #ifdef VBOX_WITH_PGM_NEM_MODE void *pvRam = NULL; void *pvAlt = NULL; if (pVM->pgm.s.fNemMode) { if (!fRamExists) { int rc = SUPR3PageAlloc(cHostPages, 0, &pvRam); if (RT_FAILURE(rc)) return rc; } if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { int rc = SUPR3PageAlloc(cHostPages, 0, &pvAlt); if (RT_FAILURE(rc)) { if (pvRam) SUPR3PageFree(pvRam, cHostPages); return rc; } } } else #endif { int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cGuestPages, GMMACCOUNT_BASE); AssertRCReturn(rc, rc); for (uint32_t iPage = 0; iPage < cGuestPages; iPage++) { pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << GUEST_PAGE_SHIFT); pReq->aPages[iPage].fZeroed = false; pReq->aPages[iPage].idPage = NIL_GMM_PAGEID; pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID; } rc = GMMR3AllocatePagesPerform(pVM, pReq); if (RT_FAILURE(rc)) { GMMR3AllocatePagesCleanup(pReq); return rc; } } /* * Allocate the new ROM range and RAM range (if necessary). */ PPGMROMRANGE pRomNew = NULL; RTR0PTR pRomNewR0 = NIL_RTR0PTR; size_t const cbRomRange = RT_ALIGN_Z(RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cGuestPages]), 128); size_t const cbRamRange = fRamExists ? 0 : RT_UOFFSETOF_DYN(PGMROMRANGE, aPages[cGuestPages]); size_t const cRangePages = RT_ALIGN_Z(cbRomRange + cbRamRange, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT; int rc = SUPR3PageAllocEx(cRangePages, 0 /*fFlags*/, (void **)&pRomNew, &pRomNewR0, NULL /*paPages*/); if (RT_SUCCESS(rc)) { /* * Initialize and insert the RAM range (if required). */ PPGMRAMRANGE pRamNew; uint32_t const idxFirstRamPage = fRamExists ? (GCPhys - pRam->GCPhys) >> GUEST_PAGE_SHIFT : 0; PPGMROMPAGE pRomPage = &pRomNew->aPages[0]; if (!fRamExists) { /* New RAM range. */ pRamNew = (PPGMRAMRANGE)((uintptr_t)pRomNew + cbRomRange); pRamNew->pSelfR0 = !pRomNewR0 ? NIL_RTR0PTR : pRomNewR0 + cbRomRange; pRamNew->GCPhys = GCPhys; pRamNew->GCPhysLast = GCPhysLast; pRamNew->cb = cb; pRamNew->pszDesc = pszDesc; pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM; pRamNew->pvR3 = NULL; pRamNew->paLSPages = NULL; #ifdef VBOX_WITH_NATIVE_NEM pRamNew->uNemRange = uNemRange; #endif PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage]; #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) { AssertPtr(pvRam); Assert(pReq == NULL); pRamNew->pvR3 = pvRam; for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++) { PGM_PAGE_INIT(pRamPage, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID, PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED); pRomPage->Virgin = *pRamPage; } } else #endif for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++) { PGM_PAGE_INIT(pRamPage, pReq->aPages[iPage].HCPhysGCPhys, pReq->aPages[iPage].idPage, PGMPAGETYPE_ROM, PGM_PAGE_STATE_ALLOCATED); pRomPage->Virgin = *pRamPage; } pVM->pgm.s.cAllPages += cGuestPages; pVM->pgm.s.cPrivatePages += cGuestPages; pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev); } else { /* Existing RAM range. */ PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage]; #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) { Assert(pvRam == NULL); Assert(pReq == NULL); for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++) { Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000)); Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID); Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM); PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0); PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0); pRomPage->Virgin = *pRamPage; } } else #endif { for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++) { PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_ROM); PGM_PAGE_SET_HCPHYS(pVM, pRamPage, pReq->aPages[iPage].HCPhysGCPhys); PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_PAGEID(pVM, pRamPage, pReq->aPages[iPage].idPage); PGM_PAGE_SET_PDE_TYPE(pVM, pRamPage, PGM_PAGE_PDE_TYPE_DONTCARE); PGM_PAGE_SET_PTE_INDEX(pVM, pRamPage, 0); PGM_PAGE_SET_TRACKING(pVM, pRamPage, 0); pRomPage->Virgin = *pRamPage; } pVM->pgm.s.cZeroPages -= cGuestPages; pVM->pgm.s.cPrivatePages += cGuestPages; } pRamNew = pRam; } #ifdef VBOX_WITH_NATIVE_NEM /* Set the NEM state of the pages if needed. */ if (u2NemState != UINT8_MAX) pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cGuestPages, u2NemState); #endif /* Flush physical page map TLB. */ pgmPhysInvalidatePageMapTLB(pVM); /* * Register the ROM access handler. */ rc = PGMHandlerPhysicalRegister(pVM, GCPhys, GCPhysLast, pVM->pgm.s.hRomPhysHandlerType, GCPhys, pszDesc); if (RT_SUCCESS(rc)) { /* * Copy the image over to the virgin pages. * This must be done after linking in the RAM range. */ size_t cbBinaryLeft = cbBinary; PPGMPAGE pRamPage = &pRamNew->aPages[idxFirstRamPage]; for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++) { void *pvDstPage; rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << GUEST_PAGE_SHIFT), &pvDstPage); if (RT_FAILURE(rc)) { VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys); break; } if (cbBinaryLeft >= GUEST_PAGE_SIZE) { memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), GUEST_PAGE_SIZE); cbBinaryLeft -= GUEST_PAGE_SIZE; } else { RT_BZERO(pvDstPage, GUEST_PAGE_SIZE); /* (shouldn't be necessary, but can't hurt either) */ if (cbBinaryLeft > 0) { memcpy(pvDstPage, (uint8_t const *)pvBinary + ((size_t)iPage << GUEST_PAGE_SHIFT), cbBinaryLeft); cbBinaryLeft = 0; } } } if (RT_SUCCESS(rc)) { /* * Initialize the ROM range. * Note that the Virgin member of the pages has already been initialized above. */ pRomNew->pSelfR0 = pRomNewR0; pRomNew->GCPhys = GCPhys; pRomNew->GCPhysLast = GCPhysLast; pRomNew->cb = cb; pRomNew->fFlags = fFlags; pRomNew->idSavedState = UINT8_MAX; pRomNew->cbOriginal = cbBinary; pRomNew->pszDesc = pszDesc; #ifdef VBOX_WITH_PGM_NEM_MODE pRomNew->pbR3Alternate = (uint8_t *)pvAlt; #endif pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : RTMemDup(pvBinary, cbBinary); if (pRomNew->pvOriginal) { for (unsigned iPage = 0; iPage < cGuestPages; iPage++) { PPGMROMPAGE pPage = &pRomNew->aPages[iPage]; pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE; #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) PGM_PAGE_INIT(&pPage->Shadow, UINT64_C(0x0000fffffffff000), NIL_GMM_PAGEID, PGMPAGETYPE_ROM_SHADOW, PGM_PAGE_STATE_ALLOCATED); else #endif PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW); } /* update the page count stats for the shadow pages. */ if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) pVM->pgm.s.cPrivatePages += cGuestPages; else #endif pVM->pgm.s.cZeroPages += cGuestPages; pVM->pgm.s.cAllPages += cGuestPages; } /* * Insert the ROM range, tell REM and return successfully. */ pRomNew->pNextR3 = pRom; pRomNew->pNextR0 = pRom ? pRom->pSelfR0 : NIL_RTR0PTR; if (pRomPrev) { pRomPrev->pNextR3 = pRomNew; pRomPrev->pNextR0 = pRomNew->pSelfR0; } else { pVM->pgm.s.pRomRangesR3 = pRomNew; pVM->pgm.s.pRomRangesR0 = pRomNew->pSelfR0; } pgmPhysInvalidatePageMapTLB(pVM); #ifdef VBOX_WITH_PGM_NEM_MODE if (!pVM->pgm.s.fNemMode) #endif GMMR3AllocatePagesCleanup(pReq); #ifdef VBOX_WITH_NATIVE_NEM /* * Notify NEM again. */ if (VM_IS_NEM_ENABLED(pVM)) { u2NemState = UINT8_MAX; rc = NEMR3NotifyPhysRomRegisterLate(pVM, GCPhys, cb, PGM_RAMRANGE_CALC_PAGE_R3PTR(pRamNew, GCPhys), fNemNotify, &u2NemState, fRamExists ? &pRam->uNemRange : &pRamNew->uNemRange); if (u2NemState != UINT8_MAX) pgmPhysSetNemStateForPages(&pRamNew->aPages[idxFirstRamPage], cGuestPages, u2NemState); if (RT_SUCCESS(rc)) return rc; } else #endif return rc; /* * bail out */ #ifdef VBOX_WITH_NATIVE_NEM /* unlink */ if (pRomPrev) { pRomPrev->pNextR3 = pRom; pRomPrev->pNextR0 = pRom ? pRom->pSelfR0 : NIL_RTR0PTR; } else { pVM->pgm.s.pRomRangesR3 = pRom; pVM->pgm.s.pRomRangesR0 = pRom ? pRom->pSelfR0 : NIL_RTR0PTR; } if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { # ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) pVM->pgm.s.cPrivatePages -= cGuestPages; else # endif pVM->pgm.s.cZeroPages -= cGuestPages; pVM->pgm.s.cAllPages -= cGuestPages; } #endif } else rc = VERR_NO_MEMORY; } int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys); AssertRC(rc2); } if (!fRamExists) pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev); else { PPGMPAGE pRamPage = &pRam->aPages[idxFirstRamPage]; #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) { Assert(pvRam == NULL); Assert(pReq == NULL); for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++, pRomPage++) { Assert(PGM_PAGE_GET_HCPHYS(pRamPage) == UINT64_C(0x0000fffffffff000)); Assert(PGM_PAGE_GET_PAGEID(pRamPage) == NIL_GMM_PAGEID); Assert(PGM_PAGE_GET_STATE(pRamPage) == PGM_PAGE_STATE_ALLOCATED); PGM_PAGE_SET_TYPE(pVM, pRamPage, PGMPAGETYPE_RAM); PGM_PAGE_SET_STATE(pVM, pRamPage, PGM_PAGE_STATE_ALLOCATED); } } else #endif { for (uint32_t iPage = 0; iPage < cGuestPages; iPage++, pRamPage++) PGM_PAGE_INIT_ZERO(pRamPage, pVM, PGMPAGETYPE_RAM); pVM->pgm.s.cZeroPages += cGuestPages; pVM->pgm.s.cPrivatePages -= cGuestPages; } } SUPR3PageFreeEx(pRomNew, cRangePages); } /** @todo Purge the mapping cache or something... */ #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) { Assert(!pReq); if (pvRam) SUPR3PageFree(pvRam, cHostPages); if (pvAlt) SUPR3PageFree(pvAlt, cHostPages); } else #endif { GMMR3FreeAllocatedPages(pVM, pReq); GMMR3AllocatePagesCleanup(pReq); } return rc; } /** * Registers a ROM image. * * Shadowed ROM images requires double the amount of backing memory, so, * don't use that unless you have to. Shadowing of ROM images is process * where we can select where the reads go and where the writes go. On real * hardware the chipset provides means to configure this. We provide * PGMR3PhysProtectROM() for this purpose. * * A read-only copy of the ROM image will always be kept around while we * will allocate RAM pages for the changes on demand (unless all memory * is configured to be preallocated). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns The device instance owning the ROM. * @param GCPhys First physical address in the range. * Must be page aligned! * @param cb The size of the range (in bytes). * Must be page aligned! * @param pvBinary Pointer to the binary data backing the ROM image. * @param cbBinary The size of the binary data pvBinary points to. * This must be less or equal to @a cb. * @param fFlags Mask of flags, PGMPHYS_ROM_FLAGS_XXX. * @param pszDesc Pointer to description string. This must not be freed. * * @remark There is no way to remove the rom, automatically on device cleanup or * manually from the device yet. This isn't difficult in any way, it's * just not something we expect to be necessary for a while. */ VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb, const void *pvBinary, uint32_t cbBinary, uint8_t fFlags, const char *pszDesc) { Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p cbBinary=%#x fFlags=%#x pszDesc=%s\n", pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, cbBinary, fFlags, pszDesc)); PGM_LOCK_VOID(pVM); int rc = pgmR3PhysRomRegisterLocked(pVM, pDevIns, GCPhys, cb, pvBinary, cbBinary, fFlags, pszDesc); PGM_UNLOCK(pVM); return rc; } /** * Called by PGMR3MemSetup to reset the shadow, switch to the virgin, and verify * that the virgin part is untouched. * * This is done after the normal memory has been cleared. * * ASSUMES that the caller owns the PGM lock. * * @param pVM The cross context VM structure. */ int pgmR3PhysRomReset(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { const uint32_t cGuestPages = pRom->cb >> GUEST_PAGE_SHIFT; if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED) { /* * Reset the physical handler. */ int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE); AssertRCReturn(rc, rc); /* * What we do with the shadow pages depends on the memory * preallocation option. If not enabled, we'll just throw * out all the dirty pages and replace them by the zero page. */ #ifdef VBOX_WITH_PGM_NEM_MODE if (pVM->pgm.s.fNemMode) { /* Clear all the shadow pages (currently using alternate backing). */ RT_BZERO(pRom->pbR3Alternate, pRom->cb); } else #endif if (!pVM->pgm.s.fRamPreAlloc) { /* Free the dirty pages. */ uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); AssertRCReturn(rc, rc); for (uint32_t iPage = 0; iPage < cGuestPages; iPage++) if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)) { Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED); rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT), (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pRom->aPages[iPage].Shadow)); AssertLogRelRCReturn(rc, rc); } if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); AssertLogRelRCReturn(rc, rc); } GMMR3FreePagesCleanup(pReq); } else { /* clear all the shadow pages. */ for (uint32_t iPage = 0; iPage < cGuestPages; iPage++) { if (PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)) continue; Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow)); void *pvDstPage; const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT); rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage); if (RT_FAILURE(rc)) break; RT_BZERO(pvDstPage, GUEST_PAGE_SIZE); } AssertRCReturn(rc, rc); } } /* * Restore the original ROM pages after a saved state load. * Also, in strict builds check that ROM pages remain unmodified. */ #ifndef VBOX_STRICT if (pVM->pgm.s.fRestoreRomPagesOnReset) #endif { size_t cbSrcLeft = pRom->cbOriginal; uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal; uint32_t cRestored = 0; for (uint32_t iPage = 0; iPage < cGuestPages && cbSrcLeft > 0; iPage++, pbSrcPage += GUEST_PAGE_SIZE) { const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT); PPGMPAGE const pPage = pgmPhysGetPage(pVM, GCPhys); void const *pvDstPage = NULL; int rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvDstPage); if (RT_FAILURE(rc)) break; if (memcmp(pvDstPage, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE))) { if (pVM->pgm.s.fRestoreRomPagesOnReset) { void *pvDstPageW = NULL; rc = pgmPhysPageMap(pVM, pPage, GCPhys, &pvDstPageW); AssertLogRelRCReturn(rc, rc); memcpy(pvDstPageW, pbSrcPage, RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE)); cRestored++; } else LogRel(("pgmR3PhysRomReset: %RGp: ROM page changed (%s)\n", GCPhys, pRom->pszDesc)); } cbSrcLeft -= RT_MIN(cbSrcLeft, GUEST_PAGE_SIZE); } if (cRestored > 0) LogRel(("PGM: ROM \"%s\": Reloaded %u of %u pages.\n", pRom->pszDesc, cRestored, cGuestPages)); } } /* Clear the ROM restore flag now as we only need to do this once after loading saved state. */ pVM->pgm.s.fRestoreRomPagesOnReset = false; return VINF_SUCCESS; } /** * Called by PGMR3Term to free resources. * * ASSUMES that the caller owns the PGM lock. * * @param pVM The cross context VM structure. */ void pgmR3PhysRomTerm(PVM pVM) { /* * Free the heap copy of the original bits. */ for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { if ( pRom->pvOriginal && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)) { RTMemFree((void *)pRom->pvOriginal); pRom->pvOriginal = NULL; } } } /** * Change the shadowing of a range of ROM pages. * * This is intended for implementing chipset specific memory registers * and will not be very strict about the input. It will silently ignore * any pages that are not the part of a shadowed ROM. * * @returns VBox status code. * @retval VINF_PGM_SYNC_CR3 * * @param pVM The cross context VM structure. * @param GCPhys Where to start. Page aligned. * @param cb How much to change. Page aligned. * @param enmProt The new ROM protection. */ VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt) { LogFlow(("PGMR3PhysRomProtect: GCPhys=%RGp cb=%RGp enmProt=%d\n", GCPhys, cb, enmProt)); /* * Check input */ if (!cb) return VINF_SUCCESS; AssertReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); AssertReturn(!(cb & GUEST_PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER); /* * Process the request. */ PGM_LOCK_VOID(pVM); int rc = VINF_SUCCESS; bool fFlushTLB = false; for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3) { if ( GCPhys <= pRom->GCPhysLast && GCPhysLast >= pRom->GCPhys && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)) { /* * Iterate the relevant pages and make necessary the changes. */ #ifdef VBOX_WITH_NATIVE_NEM PPGMRAMRANGE const pRam = pgmPhysGetRange(pVM, GCPhys); AssertPtrReturn(pRam, VERR_INTERNAL_ERROR_3); #endif bool fChanges = false; uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast ? pRom->cb >> GUEST_PAGE_SHIFT : (GCPhysLast - pRom->GCPhys + 1) >> GUEST_PAGE_SHIFT; for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> GUEST_PAGE_SHIFT; iPage < cPages; iPage++) { PPGMROMPAGE pRomPage = &pRom->aPages[iPage]; if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt)) { fChanges = true; /* flush references to the page. */ RTGCPHYS const GCPhysPage = pRom->GCPhys + (iPage << GUEST_PAGE_SHIFT); PPGMPAGE pRamPage = pgmPhysGetPage(pVM, GCPhysPage); int rc2 = pgmPoolTrackUpdateGCPhys(pVM, GCPhysPage, pRamPage, true /*fFlushPTEs*/, &fFlushTLB); if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2))) rc = rc2; #ifdef VBOX_WITH_NATIVE_NEM uint8_t u2State = PGM_PAGE_GET_NEM_STATE(pRamPage); #endif PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow; PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin; *pOld = *pRamPage; *pRamPage = *pNew; /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */ #ifdef VBOX_WITH_NATIVE_NEM # ifdef VBOX_WITH_PGM_NEM_MODE /* In simplified mode we have to switch the page data around too. */ if (pVM->pgm.s.fNemMode) { uint8_t abPage[GUEST_PAGE_SIZE]; uint8_t * const pbRamPage = PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage); memcpy(abPage, &pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], sizeof(abPage)); memcpy(&pRom->pbR3Alternate[(size_t)iPage << GUEST_PAGE_SHIFT], pbRamPage, sizeof(abPage)); memcpy(pbRamPage, abPage, sizeof(abPage)); } # endif /* Tell NEM about the backing and protection change. */ if (VM_IS_NEM_ENABLED(pVM)) { PGMPAGETYPE enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pNew); NEMHCNotifyPhysPageChanged(pVM, GCPhys, PGM_PAGE_GET_HCPHYS(pOld), PGM_PAGE_GET_HCPHYS(pNew), PGM_RAMRANGE_CALC_PAGE_R3PTR(pRam, GCPhysPage), pgmPhysPageCalcNemProtection(pRamPage, enmType), enmType, &u2State); PGM_PAGE_SET_NEM_STATE(pRamPage, u2State); } #endif } pRomPage->enmProt = enmProt; } /* * Reset the access handler if we made changes, no need to optimize this. */ if (fChanges) { int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys); if (RT_FAILURE(rc2)) { PGM_UNLOCK(pVM); AssertRC(rc); return rc2; } /* Explicitly flush IEM. Not sure if this is really necessary, but better be on the safe side. This shouldn't be a high volume flush source. */ IEMTlbInvalidateAllPhysicalAllCpus(pVM, NIL_VMCPUID, IEMTLBPHYSFLUSHREASON_ROM_PROTECT); } /* Advance - cb isn't updated. */ GCPhys = pRom->GCPhys + (cPages << GUEST_PAGE_SHIFT); } } PGM_UNLOCK(pVM); if (fFlushTLB) PGM_INVL_ALL_VCPU_TLBS(pVM); return rc; } /********************************************************************************************************************************* * Ballooning * *********************************************************************************************************************************/ #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) /** * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User parameter */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { uintptr_t *paUser = (uintptr_t *)pvUser; bool fInflate = !!paUser[0]; unsigned cPages = paUser[1]; RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2]; uint32_t cPendingPages = 0; PGMMFREEPAGESREQ pReq; int rc; Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages)); PGM_LOCK_VOID(pVM); if (fInflate) { /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */ pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL); /* Replace pages with ZERO pages. */ rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE); if (RT_FAILURE(rc)) { PGM_UNLOCK(pVM); AssertLogRelRC(rc); return rc; } /* Iterate the pages. */ for (unsigned i = 0; i < cPages; i++) { PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); if ( pPage == NULL || PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM) { Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], pPage ? PGM_PAGE_GET_TYPE(pPage) : 0)); break; } LogFlow(("balloon page: %RGp\n", paPhysPage[i])); /* Flush the shadow PT if this page was previously used as a guest page table. */ pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]); rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i], (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage)); if (RT_FAILURE(rc)) { PGM_UNLOCK(pVM); AssertLogRelRC(rc); return rc; } Assert(PGM_PAGE_IS_ZERO(pPage)); PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED); } if (cPendingPages) { rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages); if (RT_FAILURE(rc)) { PGM_UNLOCK(pVM); AssertLogRelRC(rc); return rc; } } GMMR3FreePagesCleanup(pReq); } else { /* Iterate the pages. */ for (unsigned i = 0; i < cPages; i++) { PPGMPAGE pPage = pgmPhysGetPage(pVM, paPhysPage[i]); AssertBreak(pPage && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM); LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i])); Assert(PGM_PAGE_IS_BALLOONED(pPage)); /* Change back to zero page. (NEM does not need to be informed.) */ PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO); } /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */ } /* Notify GMM about the balloon change. */ rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages); if (RT_SUCCESS(rc)) { if (!fInflate) { Assert(pVM->pgm.s.cBalloonedPages >= cPages); pVM->pgm.s.cBalloonedPages -= cPages; } else pVM->pgm.s.cBalloonedPages += cPages; } PGM_UNLOCK(pVM); /* Flush the recompiler's TLB as well. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) CPUMSetChangedFlags(pVM->apCpusR3[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH); AssertLogRelRC(rc); return rc; } /** * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages * * @param pVM The cross context VM structure. * @param fInflate Inflate or deflate memory balloon * @param cPages Number of pages to free * @param paPhysPage Array of guest physical addresses */ static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) { uintptr_t paUser[3]; paUser[0] = fInflate; paUser[1] = cPages; paUser[2] = (uintptr_t)paPhysPage; int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); AssertRC(rc); /* Made a copy in PGMR3PhysFreeRamPages; free it here. */ RTMemFree(paPhysPage); } #endif /* 64-bit host && (Windows || Solaris || Linux || FreeBSD) */ /** * Inflate or deflate a memory balloon * * @returns VBox status code. * @param pVM The cross context VM structure. * @param fInflate Inflate or deflate memory balloon * @param cPages Number of pages to free * @param paPhysPage Array of guest physical addresses */ VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage) { /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */ #if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD)) int rc; /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */ AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER); /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock. * In the SMP case we post a request packet to postpone the job. */ if (pVM->cCpus > 1) { unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]); RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage); AssertReturn(paPhysPageCopy, VERR_NO_MEMORY); memcpy(paPhysPageCopy, paPhysPage, cbPhysPage); rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy); AssertRC(rc); } else { uintptr_t paUser[3]; paUser[0] = fInflate; paUser[1] = cPages; paUser[2] = (uintptr_t)paPhysPage; rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser); AssertRC(rc); } return rc; #else NOREF(pVM); NOREF(fInflate); NOREF(cPages); NOREF(paPhysPage); return VERR_NOT_IMPLEMENTED; #endif } /********************************************************************************************************************************* * Write Monitoring * *********************************************************************************************************************************/ /** * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all * physical RAM. * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User parameter, unused. */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { int rc = VINF_SUCCESS; NOREF(pvUser); NOREF(pVCpu); PGM_LOCK_VOID(pVM); #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT pgmPoolResetDirtyPages(pVM); #endif /** @todo pointless to write protect the physical page pointed to by RSP. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext)) { uint32_t cPages = pRam->cb >> GUEST_PAGE_SHIFT; for (uint32_t iPage = 0; iPage < cPages; iPage++) { PPGMPAGE pPage = &pRam->aPages[iPage]; PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage); if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM) || enmPageType == PGMPAGETYPE_MMIO2) { /* * A RAM page. */ switch (PGM_PAGE_GET_STATE(pPage)) { case PGM_PAGE_STATE_ALLOCATED: /** @todo Optimize this: Don't always re-enable write * monitoring if the page is known to be very busy. */ if (PGM_PAGE_IS_WRITTEN_TO(pPage)) PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage); pgmPhysPageWriteMonitor(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT)); break; case PGM_PAGE_STATE_SHARED: AssertFailed(); break; case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */ default: break; } } } } pgmR3PoolWriteProtectPages(pVM); PGM_INVL_ALL_VCPU_TLBS(pVM); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); PGM_UNLOCK(pVM); return rc; } /** * Protect all physical RAM to monitor writes * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM) { VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT); int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL); AssertRC(rc); return rc; } /********************************************************************************************************************************* * Stats. * *********************************************************************************************************************************/ /** * Query the amount of free memory inside VMMR0 * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pcbAllocMem Where to return the amount of memory allocated * by VMs. * @param pcbFreeMem Where to return the amount of memory that is * allocated from the host but not currently used * by any VMs. * @param pcbBallonedMem Where to return the sum of memory that is * currently ballooned by the VMs. * @param pcbSharedMem Where to return the amount of memory that is * currently shared. */ VMMR3DECL(int) PGMR3QueryGlobalMemoryStats(PUVM pUVM, uint64_t *pcbAllocMem, uint64_t *pcbFreeMem, uint64_t *pcbBallonedMem, uint64_t *pcbSharedMem) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, VERR_INVALID_VM_HANDLE); uint64_t cAllocPages = 0; uint64_t cFreePages = 0; uint64_t cBalloonPages = 0; uint64_t cSharedPages = 0; if (!SUPR3IsDriverless()) { int rc = GMMR3QueryHypervisorMemoryStats(pUVM->pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages); AssertRCReturn(rc, rc); } if (pcbAllocMem) *pcbAllocMem = cAllocPages * _4K; if (pcbFreeMem) *pcbFreeMem = cFreePages * _4K; if (pcbBallonedMem) *pcbBallonedMem = cBalloonPages * _4K; if (pcbSharedMem) *pcbSharedMem = cSharedPages * _4K; Log(("PGMR3QueryVMMMemoryStats: all=%llx free=%llx ballooned=%llx shared=%llx\n", cAllocPages, cFreePages, cBalloonPages, cSharedPages)); return VINF_SUCCESS; } /** * Query memory stats for the VM. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pcbTotalMem Where to return total amount memory the VM may * possibly use. * @param pcbPrivateMem Where to return the amount of private memory * currently allocated. * @param pcbSharedMem Where to return the amount of actually shared * memory currently used by the VM. * @param pcbZeroMem Where to return the amount of memory backed by * zero pages. * * @remarks The total mem is normally larger than the sum of the three * components. There are two reasons for this, first the amount of * shared memory is what we're sure is shared instead of what could * possibly be shared with someone. Secondly, because the total may * include some pure MMIO pages that doesn't go into any of the three * sub-counts. * * @todo Why do we return reused shared pages instead of anything that could * potentially be shared? Doesn't this mean the first VM gets a much * lower number of shared pages? */ VMMR3DECL(int) PGMR3QueryMemoryStats(PUVM pUVM, uint64_t *pcbTotalMem, uint64_t *pcbPrivateMem, uint64_t *pcbSharedMem, uint64_t *pcbZeroMem) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); if (pcbTotalMem) *pcbTotalMem = (uint64_t)pVM->pgm.s.cAllPages * GUEST_PAGE_SIZE; if (pcbPrivateMem) *pcbPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * GUEST_PAGE_SIZE; if (pcbSharedMem) *pcbSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * GUEST_PAGE_SIZE; if (pcbZeroMem) *pcbZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * GUEST_PAGE_SIZE; Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages)); return VINF_SUCCESS; } /********************************************************************************************************************************* * Chunk Mappings and Page Allocation * *********************************************************************************************************************************/ /** * Tree enumeration callback for dealing with age rollover. * It will perform a simple compression of the current age. */ static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser) { /* Age compression - ASSUMES iNow == 4. */ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; if (pChunk->iLastUsed >= UINT32_C(0xffffff00)) pChunk->iLastUsed = 3; else if (pChunk->iLastUsed >= UINT32_C(0xfffff000)) pChunk->iLastUsed = 2; else if (pChunk->iLastUsed) pChunk->iLastUsed = 1; else /* iLastUsed = 0 */ pChunk->iLastUsed = 4; NOREF(pvUser); return 0; } /** * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback(). */ typedef struct PGMR3PHYSCHUNKUNMAPCB { PVM pVM; /**< Pointer to the VM. */ PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */ } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB; /** * Callback used to find the mapping that's been unused for * the longest time. */ static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser) { PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode; PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser; /* * Check for locks and compare when last used. */ if (pChunk->cRefs) return 0; if (pChunk->cPermRefs) return 0; if ( pArg->pChunk && pChunk->iLastUsed >= pArg->pChunk->iLastUsed) return 0; /* * Check that it's not in any of the TLBs. */ PVM pVM = pArg->pVM; if ( pVM->pgm.s.ChunkR3Map.Tlb.aEntries[PGM_CHUNKR3MAPTLB_IDX(pChunk->Core.Key)].idChunk == pChunk->Core.Key) { pChunk = NULL; return 0; } #ifdef VBOX_STRICT for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) { Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk != pChunk); Assert(pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk != pChunk->Core.Key); } #endif for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbR3.aEntries); i++) if (pVM->pgm.s.PhysTlbR3.aEntries[i].pMap == pChunk) return 0; pArg->pChunk = pChunk; return 0; } /** * Finds a good candidate for unmapping when the ring-3 mapping cache is full. * * The candidate will not be part of any TLBs, so no need to flush * anything afterwards. * * @returns Chunk id. * @param pVM The cross context VM structure. */ static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); /* * Enumerate the age tree starting with the left most node. */ STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkFindCandidate, a); PGMR3PHYSCHUNKUNMAPCB Args; Args.pVM = pVM; Args.pChunk = NULL; RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args); Assert(Args.pChunk); if (Args.pChunk) { Assert(Args.pChunk->cRefs == 0); Assert(Args.pChunk->cPermRefs == 0); STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a); return Args.pChunk->Core.Key; } STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkFindCandidate, a); return INT32_MAX; } /** * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param pvUser User pointer. Unused * */ static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser) { int rc = VINF_SUCCESS; PGM_LOCK_VOID(pVM); NOREF(pVCpu); NOREF(pvUser); if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax) { /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */ /** @todo also not really efficient to unmap a chunk that contains PD * or PT pages. */ pgmR3PoolClearAllRendezvous(pVM, pVM->apCpusR3[0], NULL /* no need to flush the REM TLB as we already did that above */); /* * Request the ring-0 part to unmap a chunk to make space in the mapping cache. */ GMMMAPUNMAPCHUNKREQ Req; Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; Req.Hdr.cbReq = sizeof(Req); Req.pvR3 = NULL; Req.idChunkMap = NIL_GMM_CHUNKID; Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM); if (Req.idChunkUnmap != INT32_MAX) { STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkUnmap, a); rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkUnmap, a); if (RT_SUCCESS(rc)) { /* * Remove the unmapped one. */ PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap); AssertRelease(pUnmappedChunk); AssertRelease(!pUnmappedChunk->cRefs); AssertRelease(!pUnmappedChunk->cPermRefs); pUnmappedChunk->pv = NULL; pUnmappedChunk->Core.Key = UINT32_MAX; MMR3HeapFree(pUnmappedChunk); pVM->pgm.s.ChunkR3Map.c--; pVM->pgm.s.cUnmappedChunks++; /* * Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses). */ /** @todo We should not flush chunks which include cr3 mappings. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PPGMCPU pPGM = &pVM->apCpusR3[idCpu]->pgm.s; pPGM->pGst32BitPdR3 = NULL; pPGM->pGstPaePdptR3 = NULL; pPGM->pGstAmd64Pml4R3 = NULL; pPGM->pGstEptPml4R3 = NULL; pPGM->pGst32BitPdR0 = NIL_RTR0PTR; pPGM->pGstPaePdptR0 = NIL_RTR0PTR; pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR; pPGM->pGstEptPml4R0 = NIL_RTR0PTR; for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++) { pPGM->apGstPaePDsR3[i] = NULL; pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR; } /* Flush REM TLBs. */ CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); } } } } PGM_UNLOCK(pVM); return rc; } /** * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap) * * @param pVM The cross context VM structure. */ static DECLCALLBACK(void) pgmR3PhysUnmapChunk(PVM pVM) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL); AssertRC(rc); } /** * Maps the given chunk into the ring-3 mapping cache. * * This will call ring-0. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param idChunk The chunk in question. * @param ppChunk Where to store the chunk tracking structure. * * @remarks Called from within the PGM critical section. * @remarks Can be called from any thread! */ int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk) { int rc; PGM_LOCK_ASSERT_OWNER(pVM); /* * Move the chunk time forward. */ pVM->pgm.s.ChunkR3Map.iNow++; if (pVM->pgm.s.ChunkR3Map.iNow == 0) { pVM->pgm.s.ChunkR3Map.iNow = 4; RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, NULL); } /* * Allocate a new tracking structure first. */ PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk)); AssertReturn(pChunk, VERR_NO_MEMORY); pChunk->Core.Key = idChunk; pChunk->iLastUsed = pVM->pgm.s.ChunkR3Map.iNow; /* * Request the ring-0 part to map the chunk in question. */ GMMMAPUNMAPCHUNKREQ Req; Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC; Req.Hdr.cbReq = sizeof(Req); Req.pvR3 = NULL; Req.idChunkMap = idChunk; Req.idChunkUnmap = NIL_GMM_CHUNKID; /* Must be callable from any thread, so can't use VMMR3CallR0. */ STAM_PROFILE_START(&pVM->pgm.s.Stats.StatChunkMap, a); rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr); STAM_PROFILE_STOP(&pVM->pgm.s.Stats.StatChunkMap, a); if (RT_SUCCESS(rc)) { pChunk->pv = Req.pvR3; /* * If we're running out of virtual address space, then we should * unmap another chunk. * * Currently, an unmap operation requires that all other virtual CPUs * are idling and not by chance making use of the memory we're * unmapping. So, we create an async unmap operation here. * * Now, when creating or restoring a saved state this wont work very * well since we may want to restore all guest RAM + a little something. * So, we have to do the unmap synchronously. Fortunately for us * though, during these operations the other virtual CPUs are inactive * and it should be safe to do this. */ /** @todo Eventually we should lock all memory when used and do * map+unmap as one kernel call without any rendezvous or * other precautions. */ if (pVM->pgm.s.ChunkR3Map.c + 1 >= pVM->pgm.s.ChunkR3Map.cMax) { switch (VMR3GetState(pVM)) { case VMSTATE_LOADING: case VMSTATE_SAVING: { PVMCPU pVCpu = VMMGetCpu(pVM); if ( pVCpu && pVM->pgm.s.cDeprecatedPageLocks == 0) { pgmR3PhysUnmapChunkRendezvous(pVM, pVCpu, NULL); break; } } RT_FALL_THRU(); default: rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM); AssertRC(rc); break; } } /* * Update the tree. We must do this after any unmapping to make sure * the chunk we're going to return isn't unmapped by accident. */ AssertPtr(Req.pvR3); bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core); AssertRelease(fRc); pVM->pgm.s.ChunkR3Map.c++; pVM->pgm.s.cMappedChunks++; } else { /** @todo this may fail because of /proc/sys/vm/max_map_count, so we * should probably restrict ourselves on linux. */ AssertRC(rc); MMR3HeapFree(pChunk); pChunk = NULL; } *ppChunk = pChunk; return rc; } /** * Invalidates the TLB for the ring-3 mapping cache. * * @param pVM The cross context VM structure. */ VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM) { PGM_LOCK_VOID(pVM); for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) { pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID; pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL; } /* The page map TLB references chunks, so invalidate that one too. */ pgmPhysInvalidatePageMapTLB(pVM); PGM_UNLOCK(pVM); } /** * Response to VM_FF_PGM_NEED_HANDY_PAGES and helper for pgmPhysEnsureHandyPage. * * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to * signal and clear the out of memory condition. When called, this API is used * to try clear the condition when the user wants to resume. * * @returns The following VBox status codes. * @retval VINF_SUCCESS on success. FFs cleared. * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY. * * @param pVM The cross context VM structure. * * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing * in EM.cpp and shouldn't be propagated outside TRPM, HM, EM and * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF * handler. */ VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM) { PGM_LOCK_VOID(pVM); /* * Allocate more pages, noting down the index of the first new page. */ uint32_t iClear = pVM->pgm.s.cHandyPages; AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_PGM_HANDY_PAGE_IPE); Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages))); int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL); /** @todo we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */ if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT && pVM->pgm.s.cHandyPages > 0) { /* Still handy pages left, so don't panic. */ rc = VINF_SUCCESS; } if (RT_SUCCESS(rc)) { AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); Assert(pVM->pgm.s.cHandyPages > 0); #ifdef VBOX_STRICT uint32_t i; for (i = iClear; i < pVM->pgm.s.cHandyPages; i++) if ( pVM->pgm.s.aHandyPages[i].idPage == NIL_GMM_PAGEID || pVM->pgm.s.aHandyPages[i].idSharedPage != NIL_GMM_PAGEID || (pVM->pgm.s.aHandyPages[i].HCPhysGCPhys & GUEST_PAGE_OFFSET_MASK)) break; if (i != pVM->pgm.s.cHandyPages) { RTAssertMsg1Weak(NULL, __LINE__, __FILE__, __FUNCTION__); RTAssertMsg2Weak("i=%d iClear=%d cHandyPages=%d\n", i, iClear, pVM->pgm.s.cHandyPages); for (uint32_t j = iClear; j < pVM->pgm.s.cHandyPages; j++) RTAssertMsg2Add("%03d: idPage=%d HCPhysGCPhys=%RHp idSharedPage=%d%s\n", j, pVM->pgm.s.aHandyPages[j].idPage, pVM->pgm.s.aHandyPages[j].HCPhysGCPhys, pVM->pgm.s.aHandyPages[j].idSharedPage, j == i ? " <---" : ""); RTAssertPanic(); } #endif } else { /* * We should never get here unless there is a genuine shortage of * memory (or some internal error). Flag the error so the VM can be * suspended ASAP and the user informed. If we're totally out of * handy pages we will return failure. */ /* Report the failure. */ LogRel(("PGM: Failed to procure handy pages; rc=%Rrc cHandyPages=%#x\n" " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n", rc, pVM->pgm.s.cHandyPages, pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cSharedPages, pVM->pgm.s.cZeroPages)); if ( rc != VERR_NO_MEMORY && rc != VERR_NO_PHYS_MEMORY && rc != VERR_LOCK_FAILED) for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) { LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n", i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage, pVM->pgm.s.aHandyPages[i].idSharedPage)); uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage; if (idPage != NIL_GMM_PAGEID) { for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3) { uint32_t const cPages = pRam->cb >> GUEST_PAGE_SHIFT; for (uint32_t iPage = 0; iPage < cPages; iPage++) if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage) LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n", pRam->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc)); } } } if (rc == VERR_NO_MEMORY) { uint64_t cbHostRamAvail = 0; int rc2 = RTSystemQueryAvailableRam(&cbHostRamAvail); if (RT_SUCCESS(rc2)) LogRel(("Host RAM: %RU64MB available\n", cbHostRamAvail / _1M)); else LogRel(("Cannot determine the amount of available host memory\n")); } /* Set the FFs and adjust rc. */ VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES); VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY); if ( rc == VERR_NO_MEMORY || rc == VERR_NO_PHYS_MEMORY || rc == VERR_LOCK_FAILED) rc = VINF_EM_NO_MEMORY; } PGM_UNLOCK(pVM); return rc; } /********************************************************************************************************************************* * Other Stuff * *********************************************************************************************************************************/ #if !defined(VBOX_VMM_TARGET_ARMV8) /** * Sets the Address Gate 20 state. * * @param pVCpu The cross context virtual CPU structure. * @param fEnable True if the gate should be enabled. * False if the gate should be disabled. */ VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable) { LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled)); if (pVCpu->pgm.s.fA20Enabled != fEnable) { #ifdef VBOX_WITH_NESTED_HWVIRT_VMX PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); if ( CPUMIsGuestInVmxRootMode(pCtx) && !fEnable) { Log(("Cannot enter A20M mode while in VMX root mode\n")); return; } #endif pVCpu->pgm.s.fA20Enabled = fEnable; pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!fEnable << 20); if (VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM))) NEMR3NotifySetA20(pVCpu, fEnable); #ifdef PGM_WITH_A20 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmR3RefreshShadowModeAfterA20Change(pVCpu); HMFlushTlb(pVCpu); #endif #if 0 /* PGMGetPage will apply the A20 mask to the GCPhys it returns, so we must invalid both sides of the TLB. */ IEMTlbInvalidateAllPhysical(pVCpu); #else IEMTlbInvalidateAll(pVCpu); #endif STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cA20Changes); } } #endif