/* $Id: VMEmt.cpp 96407 2022-08-22 17:43:14Z vboxsync $ */ /** @file * VM - Virtual Machine, The Emulation Thread. */ /* * Copyright (C) 2006-2022 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_VM #include #include #include #include #include #include #include #include "VMInternal.h" #include #include #include #include #include #include #include #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ int vmR3EmulationThreadWithId(RTTHREAD hThreadSelf, PUVMCPU pUVCpu, VMCPUID idCpu); /** * The emulation thread main function. * * @returns Thread exit code. * @param hThreadSelf The handle to the executing thread. * @param pvArgs Pointer to the user mode per-VCpu structure (UVMPCU). */ DECLCALLBACK(int) vmR3EmulationThread(RTTHREAD hThreadSelf, void *pvArgs) { PUVMCPU pUVCpu = (PUVMCPU)pvArgs; return vmR3EmulationThreadWithId(hThreadSelf, pUVCpu, pUVCpu->idCpu); } /** * The emulation thread main function, with Virtual CPU ID for debugging. * * @returns Thread exit code. * @param hThreadSelf The handle to the executing thread. * @param pUVCpu Pointer to the user mode per-VCpu structure. * @param idCpu The virtual CPU ID, for backtrace purposes. */ int vmR3EmulationThreadWithId(RTTHREAD hThreadSelf, PUVMCPU pUVCpu, VMCPUID idCpu) { PUVM pUVM = pUVCpu->pUVM; int rc; RT_NOREF_PV(hThreadSelf); AssertReleaseMsg(RT_VALID_PTR(pUVM) && pUVM->u32Magic == UVM_MAGIC, ("Invalid arguments to the emulation thread!\n")); rc = RTTlsSet(pUVM->vm.s.idxTLS, pUVCpu); AssertReleaseMsgRCReturn(rc, ("RTTlsSet %x failed with %Rrc\n", pUVM->vm.s.idxTLS, rc), rc); if ( pUVM->pVmm2UserMethods && pUVM->pVmm2UserMethods->pfnNotifyEmtInit) pUVM->pVmm2UserMethods->pfnNotifyEmtInit(pUVM->pVmm2UserMethods, pUVM, pUVCpu); /* * The request loop. */ rc = VINF_SUCCESS; Log(("vmR3EmulationThread: Emulation thread starting the days work... Thread=%#x pUVM=%p\n", hThreadSelf, pUVM)); VMSTATE enmBefore = VMSTATE_CREATED; /* (only used for logging atm.) */ ASMAtomicIncU32(&pUVM->vm.s.cActiveEmts); for (;;) { /* * During early init there is no pVM and/or pVCpu, so make a special path * for that to keep things clearly separate. */ PVM pVM = pUVM->pVM; PVMCPU pVCpu = pUVCpu->pVCpu; if (!pVCpu || !pVM) { /* * Check for termination first. */ if (pUVM->vm.s.fTerminateEMT) { rc = VINF_EM_TERMINATE; break; } /* * Only the first VCPU may initialize the VM during early init * and must therefore service all VMCPUID_ANY requests. * See also VMR3Create */ if ( (pUVM->vm.s.pNormalReqs || pUVM->vm.s.pPriorityReqs) && pUVCpu->idCpu == 0) { /* * Service execute in any EMT request. */ rc = VMR3ReqProcessU(pUVM, VMCPUID_ANY, false /*fPriorityOnly*/); Log(("vmR3EmulationThread: Req rc=%Rrc, VM state %s -> %s\n", rc, VMR3GetStateName(enmBefore), pUVM->pVM ? VMR3GetStateName(pUVM->pVM->enmVMState) : "CREATING")); } else if (pUVCpu->vm.s.pNormalReqs || pUVCpu->vm.s.pPriorityReqs) { /* * Service execute in specific EMT request. */ rc = VMR3ReqProcessU(pUVM, pUVCpu->idCpu, false /*fPriorityOnly*/); Log(("vmR3EmulationThread: Req (cpu=%u) rc=%Rrc, VM state %s -> %s\n", pUVCpu->idCpu, rc, VMR3GetStateName(enmBefore), pUVM->pVM ? VMR3GetStateName(pUVM->pVM->enmVMState) : "CREATING")); } else { /* * Nothing important is pending, so wait for something. */ rc = VMR3WaitU(pUVCpu); if (RT_FAILURE(rc)) { AssertLogRelMsgFailed(("VMR3WaitU failed with %Rrc\n", rc)); break; } } } else { /* * Pending requests which needs servicing? * * We check for state changes in addition to status codes when * servicing requests. (Look after the ifs.) */ enmBefore = pVM->enmVMState; if (pUVM->vm.s.fTerminateEMT) { rc = VINF_EM_TERMINATE; break; } if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS)) { rc = VMMR3EmtRendezvousFF(pVM, pVM->apCpusR3[idCpu]); Log(("vmR3EmulationThread: Rendezvous rc=%Rrc, VM state %s -> %s\n", rc, VMR3GetStateName(enmBefore), VMR3GetStateName(pVM->enmVMState))); } else if (pUVM->vm.s.pNormalReqs || pUVM->vm.s.pPriorityReqs) { /* * Service execute in any EMT request. */ rc = VMR3ReqProcessU(pUVM, VMCPUID_ANY, false /*fPriorityOnly*/); Log(("vmR3EmulationThread: Req rc=%Rrc, VM state %s -> %s\n", rc, VMR3GetStateName(enmBefore), VMR3GetStateName(pVM->enmVMState))); } else if (pUVCpu->vm.s.pNormalReqs || pUVCpu->vm.s.pPriorityReqs) { /* * Service execute in specific EMT request. */ rc = VMR3ReqProcessU(pUVM, pUVCpu->idCpu, false /*fPriorityOnly*/); Log(("vmR3EmulationThread: Req (cpu=%u) rc=%Rrc, VM state %s -> %s\n", pUVCpu->idCpu, rc, VMR3GetStateName(enmBefore), VMR3GetStateName(pVM->enmVMState))); } else if ( VM_FF_IS_SET(pVM, VM_FF_DBGF) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_DBGF)) { /* * Service the debugger request. */ rc = DBGFR3VMMForcedAction(pVM, pVCpu); Log(("vmR3EmulationThread: Dbg rc=%Rrc, VM state %s -> %s\n", rc, VMR3GetStateName(enmBefore), VMR3GetStateName(pVM->enmVMState))); } else if (VM_FF_TEST_AND_CLEAR(pVM, VM_FF_RESET)) { /* * Service a delayed reset request. */ rc = VBOXSTRICTRC_VAL(VMR3ResetFF(pVM)); VM_FF_CLEAR(pVM, VM_FF_RESET); Log(("vmR3EmulationThread: Reset rc=%Rrc, VM state %s -> %s\n", rc, VMR3GetStateName(enmBefore), VMR3GetStateName(pVM->enmVMState))); } else { /* * Nothing important is pending, so wait for something. */ rc = VMR3WaitU(pUVCpu); if (RT_FAILURE(rc)) { AssertLogRelMsgFailed(("VMR3WaitU failed with %Rrc\n", rc)); break; } } /* * Check for termination requests, these have extremely high priority. */ if ( rc == VINF_EM_TERMINATE || pUVM->vm.s.fTerminateEMT) break; } /* * Some requests (both VMR3Req* and the DBGF) can potentially resume * or start the VM, in that case we'll get a change in VM status * indicating that we're now running. */ if (RT_SUCCESS(rc)) { pVM = pUVM->pVM; if (pVM) { pVCpu = pVM->apCpusR3[idCpu]; if ( pVM->enmVMState == VMSTATE_RUNNING && VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVCpu))) { rc = EMR3ExecuteVM(pVM, pVCpu); Log(("vmR3EmulationThread: EMR3ExecuteVM() -> rc=%Rrc, enmVMState=%d\n", rc, pVM->enmVMState)); } } } } /* forever */ /* * Decrement the active EMT count if we haven't done it yet in vmR3Destroy. */ if (!pUVCpu->vm.s.fBeenThruVmDestroy) ASMAtomicDecU32(&pUVM->vm.s.cActiveEmts); /* * Cleanup and exit. * EMT0 does the VM destruction after all other EMTs have deregistered and terminated. */ Log(("vmR3EmulationThread: Terminating emulation thread! Thread=%#x pUVM=%p rc=%Rrc enmBefore=%d enmVMState=%d\n", hThreadSelf, pUVM, rc, enmBefore, pUVM->pVM ? pUVM->pVM->enmVMState : VMSTATE_TERMINATED)); PVM pVM; if ( idCpu == 0 && (pVM = pUVM->pVM) != NULL) { /* Wait for any other EMTs to terminate before we destroy the VM (see vmR3DestroyVM). */ for (VMCPUID iCpu = 1; iCpu < pUVM->cCpus; iCpu++) { RTTHREAD hThread; ASMAtomicXchgHandle(&pUVM->aCpus[iCpu].vm.s.ThreadEMT, NIL_RTTHREAD, &hThread); if (hThread != NIL_RTTHREAD) { int rc2 = RTThreadWait(hThread, 5 * RT_MS_1SEC, NULL); AssertLogRelMsgRC(rc2, ("iCpu=%u rc=%Rrc\n", iCpu, rc2)); if (RT_FAILURE(rc2)) pUVM->aCpus[iCpu].vm.s.ThreadEMT = hThread; } } /* Switch to the terminated state, clearing the VM pointer and finally destroy the VM. */ vmR3SetTerminated(pVM); pUVM->pVM = NULL; for (VMCPUID iCpu = 0; iCpu < pUVM->cCpus; iCpu++) { pUVM->aCpus[iCpu].pVM = NULL; pUVM->aCpus[iCpu].pVCpu = NULL; } int rc2 = GVMMR3DestroyVM(pUVM, pVM); AssertLogRelRC(rc2); } /* Deregister the EMT with VMMR0. */ else if ( idCpu != 0 && (pVM = pUVM->pVM) != NULL) { int rc2 = GVMMR3DeregisterVCpu(pVM, idCpu); AssertLogRelRC(rc2); } if ( pUVM->pVmm2UserMethods && pUVM->pVmm2UserMethods->pfnNotifyEmtTerm) pUVM->pVmm2UserMethods->pfnNotifyEmtTerm(pUVM->pVmm2UserMethods, pUVM, pUVCpu); pUVCpu->vm.s.NativeThreadEMT = NIL_RTNATIVETHREAD; Log(("vmR3EmulationThread: EMT is terminated.\n")); return rc; } /** * Gets the name of a halt method. * * @returns Pointer to a read only string. * @param enmMethod The method. */ static const char *vmR3GetHaltMethodName(VMHALTMETHOD enmMethod) { switch (enmMethod) { case VMHALTMETHOD_BOOTSTRAP: return "bootstrap"; case VMHALTMETHOD_DEFAULT: return "default"; case VMHALTMETHOD_OLD: return "old"; case VMHALTMETHOD_1: return "method1"; //case VMHALTMETHOD_2: return "method2"; case VMHALTMETHOD_GLOBAL_1: return "global1"; default: return "unknown"; } } /** * Signal a fatal wait error. * * @returns Fatal error code to be propagated up the call stack. * @param pUVCpu The user mode per CPU structure of the calling * EMT. * @param pszFmt The error format with a single %Rrc in it. * @param rcFmt The status code to format. */ static int vmR3FatalWaitError(PUVMCPU pUVCpu, const char *pszFmt, int rcFmt) { /** @todo This is wrong ... raise a fatal error / guru meditation * instead. */ AssertLogRelMsgFailed((pszFmt, rcFmt)); ASMAtomicUoWriteBool(&pUVCpu->pUVM->vm.s.fTerminateEMT, true); if (pUVCpu->pVM) VM_FF_SET(pUVCpu->pVM, VM_FF_CHECK_VM_STATE); return VERR_VM_FATAL_WAIT_ERROR; } /** * The old halt loop. */ static DECLCALLBACK(int) vmR3HaltOldDoHalt(PUVMCPU pUVCpu, const uint32_t fMask, uint64_t /* u64Now*/) { /* * Halt loop. */ PVM pVM = pUVCpu->pVM; PVMCPU pVCpu = pUVCpu->pVCpu; int rc = VINF_SUCCESS; ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); //unsigned cLoops = 0; for (;;) { /* * Work the timers and check if we can exit. * The poll call gives us the ticks left to the next event in * addition to perhaps set an FF. */ uint64_t const u64StartTimers = RTTimeNanoTS(); TMR3TimerQueuesDo(pVM); uint64_t const cNsElapsedTimers = RTTimeNanoTS() - u64StartTimers; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltTimers, cNsElapsedTimers); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; uint64_t u64NanoTS; TMTimerPollGIP(pVM, pVCpu, &u64NanoTS); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; /* * Wait for a while. Someone will wake us up or interrupt the call if * anything needs our attention. */ if (u64NanoTS < 50000) { //RTLogPrintf("u64NanoTS=%RI64 cLoops=%d spin\n", u64NanoTS, cLoops++); /* spin */; } else { VMMR3YieldStop(pVM); //uint64_t u64Start = RTTimeNanoTS(); if (u64NanoTS < 870000) /* this is a bit speculative... works fine on linux. */ { //RTLogPrintf("u64NanoTS=%RI64 cLoops=%d yield", u64NanoTS, cLoops++); uint64_t const u64StartSchedYield = RTTimeNanoTS(); RTThreadYield(); /* this is the best we can do here */ uint64_t const cNsElapsedSchedYield = RTTimeNanoTS() - u64StartSchedYield; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltYield, cNsElapsedSchedYield); } else if (u64NanoTS < 2000000) { //RTLogPrintf("u64NanoTS=%RI64 cLoops=%d sleep 1ms", u64NanoTS, cLoops++); uint64_t const u64StartSchedHalt = RTTimeNanoTS(); rc = RTSemEventWait(pUVCpu->vm.s.EventSemWait, 1); uint64_t const cNsElapsedSchedHalt = RTTimeNanoTS() - u64StartSchedHalt; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlock, cNsElapsedSchedHalt); } else { //RTLogPrintf("u64NanoTS=%RI64 cLoops=%d sleep %dms", u64NanoTS, cLoops++, (uint32_t)RT_MIN((u64NanoTS - 500000) / 1000000, 15)); uint64_t const u64StartSchedHalt = RTTimeNanoTS(); rc = RTSemEventWait(pUVCpu->vm.s.EventSemWait, RT_MIN((u64NanoTS - 1000000) / 1000000, 15)); uint64_t const cNsElapsedSchedHalt = RTTimeNanoTS() - u64StartSchedHalt; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlock, cNsElapsedSchedHalt); } //uint64_t u64Slept = RTTimeNanoTS() - u64Start; //RTLogPrintf(" -> rc=%Rrc in %RU64 ns / %RI64 ns delta\n", rc, u64Slept, u64NanoTS - u64Slept); } if (rc == VERR_TIMEOUT) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "RTSemEventWait->%Rrc\n", rc); break; } } ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * Initialize the configuration of halt method 1 & 2. * * @return VBox status code. Failure on invalid CFGM data. * @param pUVM The user mode VM structure. */ static int vmR3HaltMethod12ReadConfigU(PUVM pUVM) { /* * The defaults. */ #if 1 /* DEBUGGING STUFF - REMOVE LATER */ pUVM->vm.s.Halt.Method12.u32LagBlockIntervalDivisorCfg = 4; pUVM->vm.s.Halt.Method12.u32MinBlockIntervalCfg = 2*1000000; pUVM->vm.s.Halt.Method12.u32MaxBlockIntervalCfg = 75*1000000; pUVM->vm.s.Halt.Method12.u32StartSpinningCfg = 30*1000000; pUVM->vm.s.Halt.Method12.u32StopSpinningCfg = 20*1000000; #else pUVM->vm.s.Halt.Method12.u32LagBlockIntervalDivisorCfg = 4; pUVM->vm.s.Halt.Method12.u32MinBlockIntervalCfg = 5*1000000; pUVM->vm.s.Halt.Method12.u32MaxBlockIntervalCfg = 200*1000000; pUVM->vm.s.Halt.Method12.u32StartSpinningCfg = 20*1000000; pUVM->vm.s.Halt.Method12.u32StopSpinningCfg = 2*1000000; #endif /* * Query overrides. * * I don't have time to bother with niceties such as invalid value checks * here right now. sorry. */ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pUVM->pVM), "/VMM/HaltedMethod1"); if (pCfg) { uint32_t u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "LagBlockIntervalDivisor", &u32))) pUVM->vm.s.Halt.Method12.u32LagBlockIntervalDivisorCfg = u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "MinBlockInterval", &u32))) pUVM->vm.s.Halt.Method12.u32MinBlockIntervalCfg = u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "MaxBlockInterval", &u32))) pUVM->vm.s.Halt.Method12.u32MaxBlockIntervalCfg = u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "StartSpinning", &u32))) pUVM->vm.s.Halt.Method12.u32StartSpinningCfg = u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "StopSpinning", &u32))) pUVM->vm.s.Halt.Method12.u32StopSpinningCfg = u32; LogRel(("VMEmt: HaltedMethod1 config: %d/%d/%d/%d/%d\n", pUVM->vm.s.Halt.Method12.u32LagBlockIntervalDivisorCfg, pUVM->vm.s.Halt.Method12.u32MinBlockIntervalCfg, pUVM->vm.s.Halt.Method12.u32MaxBlockIntervalCfg, pUVM->vm.s.Halt.Method12.u32StartSpinningCfg, pUVM->vm.s.Halt.Method12.u32StopSpinningCfg)); } return VINF_SUCCESS; } /** * Initialize halt method 1. * * @return VBox status code. * @param pUVM Pointer to the user mode VM structure. */ static DECLCALLBACK(int) vmR3HaltMethod1Init(PUVM pUVM) { return vmR3HaltMethod12ReadConfigU(pUVM); } /** * Method 1 - Block whenever possible, and when lagging behind * switch to spinning for 10-30ms with occasional blocking until * the lag has been eliminated. */ static DECLCALLBACK(int) vmR3HaltMethod1Halt(PUVMCPU pUVCpu, const uint32_t fMask, uint64_t u64Now) { PUVM pUVM = pUVCpu->pUVM; PVMCPU pVCpu = pUVCpu->pVCpu; PVM pVM = pUVCpu->pVM; /* * To simplify things, we decide up-front whether we should switch to spinning or * not. This makes some ASSUMPTIONS about the cause of the spinning (PIT/RTC/PCNet) * and that it will generate interrupts or other events that will cause us to exit * the halt loop. */ bool fBlockOnce = false; bool fSpinning = false; uint32_t u32CatchUpPct = TMVirtualSyncGetCatchUpPct(pVM); if (u32CatchUpPct /* non-zero if catching up */) { if (pUVCpu->vm.s.Halt.Method12.u64StartSpinTS) { fSpinning = TMVirtualSyncGetLag(pVM) >= pUVM->vm.s.Halt.Method12.u32StopSpinningCfg; if (fSpinning) { uint64_t u64Lag = TMVirtualSyncGetLag(pVM); fBlockOnce = u64Now - pUVCpu->vm.s.Halt.Method12.u64LastBlockTS > RT_MAX(pUVM->vm.s.Halt.Method12.u32MinBlockIntervalCfg, RT_MIN(u64Lag / pUVM->vm.s.Halt.Method12.u32LagBlockIntervalDivisorCfg, pUVM->vm.s.Halt.Method12.u32MaxBlockIntervalCfg)); } else { //RTLogRelPrintf("Stopped spinning (%u ms)\n", (u64Now - pUVCpu->vm.s.Halt.Method12.u64StartSpinTS) / 1000000); pUVCpu->vm.s.Halt.Method12.u64StartSpinTS = 0; } } else { fSpinning = TMVirtualSyncGetLag(pVM) >= pUVM->vm.s.Halt.Method12.u32StartSpinningCfg; if (fSpinning) pUVCpu->vm.s.Halt.Method12.u64StartSpinTS = u64Now; } } else if (pUVCpu->vm.s.Halt.Method12.u64StartSpinTS) { //RTLogRelPrintf("Stopped spinning (%u ms)\n", (u64Now - pUVCpu->vm.s.Halt.Method12.u64StartSpinTS) / 1000000); pUVCpu->vm.s.Halt.Method12.u64StartSpinTS = 0; } /* * Halt loop. */ int rc = VINF_SUCCESS; ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); unsigned cLoops = 0; for (;; cLoops++) { /* * Work the timers and check if we can exit. */ uint64_t const u64StartTimers = RTTimeNanoTS(); TMR3TimerQueuesDo(pVM); uint64_t const cNsElapsedTimers = RTTimeNanoTS() - u64StartTimers; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltTimers, cNsElapsedTimers); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; /* * Estimate time left to the next event. */ uint64_t u64NanoTS; TMTimerPollGIP(pVM, pVCpu, &u64NanoTS); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; /* * Block if we're not spinning and the interval isn't all that small. */ if ( ( !fSpinning || fBlockOnce) #if 1 /* DEBUGGING STUFF - REMOVE LATER */ && u64NanoTS >= 100000) /* 0.100 ms */ #else && u64NanoTS >= 250000) /* 0.250 ms */ #endif { const uint64_t Start = pUVCpu->vm.s.Halt.Method12.u64LastBlockTS = RTTimeNanoTS(); VMMR3YieldStop(pVM); uint32_t cMilliSecs = RT_MIN(u64NanoTS / 1000000, 15); if (cMilliSecs <= pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLongAvg) cMilliSecs = 1; else cMilliSecs -= pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLongAvg; //RTLogRelPrintf("u64NanoTS=%RI64 cLoops=%3d sleep %02dms (%7RU64) ", u64NanoTS, cLoops, cMilliSecs, u64NanoTS); uint64_t const u64StartSchedHalt = RTTimeNanoTS(); rc = RTSemEventWait(pUVCpu->vm.s.EventSemWait, cMilliSecs); uint64_t const cNsElapsedSchedHalt = RTTimeNanoTS() - u64StartSchedHalt; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlock, cNsElapsedSchedHalt); if (rc == VERR_TIMEOUT) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "RTSemEventWait->%Rrc\n", rc); break; } /* * Calc the statistics. * Update averages every 16th time, and flush parts of the history every 64th time. */ const uint64_t Elapsed = RTTimeNanoTS() - Start; pUVCpu->vm.s.Halt.Method12.cNSBlocked += Elapsed; if (Elapsed > u64NanoTS) pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLong += Elapsed - u64NanoTS; pUVCpu->vm.s.Halt.Method12.cBlocks++; if (!(pUVCpu->vm.s.Halt.Method12.cBlocks & 0xf)) { pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLongAvg = pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLong / pUVCpu->vm.s.Halt.Method12.cBlocks; if (!(pUVCpu->vm.s.Halt.Method12.cBlocks & 0x3f)) { pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLong = pUVCpu->vm.s.Halt.Method12.cNSBlockedTooLongAvg * 0x40; pUVCpu->vm.s.Halt.Method12.cBlocks = 0x40; } } //RTLogRelPrintf(" -> %7RU64 ns / %7RI64 ns delta%s\n", Elapsed, Elapsed - u64NanoTS, fBlockOnce ? " (block once)" : ""); /* * Clear the block once flag if we actually blocked. */ if ( fBlockOnce && Elapsed > 100000 /* 0.1 ms */) fBlockOnce = false; } } //if (fSpinning) RTLogRelPrintf("spun for %RU64 ns %u loops; lag=%RU64 pct=%d\n", RTTimeNanoTS() - u64Now, cLoops, TMVirtualSyncGetLag(pVM), u32CatchUpPct); ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * Initialize the global 1 halt method. * * @return VBox status code. * @param pUVM Pointer to the user mode VM structure. */ static DECLCALLBACK(int) vmR3HaltGlobal1Init(PUVM pUVM) { /* * The defaults. */ uint32_t cNsResolution = SUPSemEventMultiGetResolution(pUVM->vm.s.pSession); if (cNsResolution > 5*RT_NS_100US) pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg = 50000; else if (cNsResolution > RT_NS_100US) pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg = cNsResolution / 4; else pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg = 2000; /* * Query overrides. * * I don't have time to bother with niceties such as invalid value checks * here right now. sorry. */ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pUVM->pVM), "/VMM/HaltedGlobal1"); if (pCfg) { uint32_t u32; if (RT_SUCCESS(CFGMR3QueryU32(pCfg, "SpinBlockThreshold", &u32))) pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg = u32; } LogRel(("VMEmt: HaltedGlobal1 config: cNsSpinBlockThresholdCfg=%u\n", pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg)); return VINF_SUCCESS; } /** * The global 1 halt method - Block in GMM (ring-0) and let it * try take care of the global scheduling of EMT threads. */ static DECLCALLBACK(int) vmR3HaltGlobal1Halt(PUVMCPU pUVCpu, const uint32_t fMask, uint64_t u64Now) { PUVM pUVM = pUVCpu->pUVM; PVMCPU pVCpu = pUVCpu->pVCpu; PVM pVM = pUVCpu->pVM; Assert(VMMGetCpu(pVM) == pVCpu); NOREF(u64Now); /* * Halt loop. */ //uint64_t u64NowLog, u64Start; //u64Start = u64NowLog = RTTimeNanoTS(); int rc = VINF_SUCCESS; ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); unsigned cLoops = 0; for (;; cLoops++) { /* * Work the timers and check if we can exit. */ uint64_t const u64StartTimers = RTTimeNanoTS(); TMR3TimerQueuesDo(pVM); uint64_t const cNsElapsedTimers = RTTimeNanoTS() - u64StartTimers; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltTimers, cNsElapsedTimers); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; /* * Estimate time left to the next event. */ //u64NowLog = RTTimeNanoTS(); uint64_t u64Delta; uint64_t u64GipTime = TMTimerPollGIP(pVM, pVCpu, &u64Delta); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; /* * Block if we're not spinning and the interval isn't all that small. */ if (u64Delta >= pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg) { VMMR3YieldStop(pVM); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) break; //RTLogPrintf("loop=%-3d u64GipTime=%'llu / %'llu now=%'llu / %'llu\n", cLoops, u64GipTime, u64Delta, u64NowLog, u64GipTime - u64NowLog); uint64_t const u64StartSchedHalt = RTTimeNanoTS(); rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_GVMM_SCHED_HALT, u64GipTime, NULL); uint64_t const u64EndSchedHalt = RTTimeNanoTS(); uint64_t const cNsElapsedSchedHalt = u64EndSchedHalt - u64StartSchedHalt; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlock, cNsElapsedSchedHalt); if (rc == VERR_INTERRUPTED) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "vmR3HaltGlobal1Halt: VMMR0_DO_GVMM_SCHED_HALT->%Rrc\n", rc); break; } else { int64_t const cNsOverslept = u64EndSchedHalt - u64GipTime; if (cNsOverslept > 50000) STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlockOverslept, cNsOverslept); else if (cNsOverslept < -50000) STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlockInsomnia, cNsElapsedSchedHalt); else STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltBlockOnTime, cNsElapsedSchedHalt); } } /* * When spinning call upon the GVMM and do some wakups once * in a while, it's not like we're actually busy or anything. */ else if (!(cLoops & 0x1fff)) { uint64_t const u64StartSchedYield = RTTimeNanoTS(); rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_GVMM_SCHED_POLL, false /* don't yield */, NULL); uint64_t const cNsElapsedSchedYield = RTTimeNanoTS() - u64StartSchedYield; STAM_REL_PROFILE_ADD_PERIOD(&pUVCpu->vm.s.StatHaltYield, cNsElapsedSchedYield); } } //RTLogPrintf("*** %u loops %'llu; lag=%RU64\n", cLoops, u64NowLog - u64Start, TMVirtualSyncGetLag(pVM)); ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * The global 1 halt method - VMR3Wait() worker. * * @returns VBox status code. * @param pUVCpu Pointer to the user mode VMCPU structure. */ static DECLCALLBACK(int) vmR3HaltGlobal1Wait(PUVMCPU pUVCpu) { ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); PVM pVM = pUVCpu->pUVM->pVM; PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu->idCpu == pUVCpu->idCpu); int rc = VINF_SUCCESS; for (;;) { /* * Check Relevant FFs. */ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_SUSPENDED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_EXTERNAL_SUSPENDED_MASK)) break; /* * Wait for a while. Someone will wake us up or interrupt the call if * anything needs our attention. */ rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_GVMM_SCHED_HALT, RTTimeNanoTS() + 1000000000 /* +1s */, NULL); if (rc == VERR_INTERRUPTED) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "vmR3HaltGlobal1Wait: VMMR0_DO_GVMM_SCHED_HALT->%Rrc\n", rc); break; } } ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * The global 1 halt method - VMR3NotifyFF() worker. * * @param pUVCpu Pointer to the user mode VMCPU structure. * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_*. */ static DECLCALLBACK(void) vmR3HaltGlobal1NotifyCpuFF(PUVMCPU pUVCpu, uint32_t fFlags) { /* * With ring-0 halting, the fWait flag isn't set, so we have to check the * CPU state to figure out whether to do a wakeup call. */ PVMCPU pVCpu = pUVCpu->pVCpu; if (pVCpu) { VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu); if (enmState == VMCPUSTATE_STARTED_HALTED || pUVCpu->vm.s.fWait) { int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pUVCpu->pVM), pUVCpu->idCpu, VMMR0_DO_GVMM_SCHED_WAKE_UP, 0, NULL); AssertRC(rc); } else if ( (fFlags & VMNOTIFYFF_FLAGS_POKE) || !(fFlags & VMNOTIFYFF_FLAGS_DONE_REM)) { if (enmState == VMCPUSTATE_STARTED_EXEC) { if (fFlags & VMNOTIFYFF_FLAGS_POKE) { int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pUVCpu->pVM), pUVCpu->idCpu, VMMR0_DO_GVMM_SCHED_POKE, 0, NULL); AssertRC(rc); } } else if ( enmState == VMCPUSTATE_STARTED_EXEC_NEM || enmState == VMCPUSTATE_STARTED_EXEC_NEM_WAIT) NEMR3NotifyFF(pUVCpu->pVM, pVCpu, fFlags); } } /* This probably makes little sense: */ else if (pUVCpu->vm.s.fWait) { int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pUVCpu->pVM), pUVCpu->idCpu, VMMR0_DO_GVMM_SCHED_WAKE_UP, 0, NULL); AssertRC(rc); } } /** * Bootstrap VMR3Wait() worker. * * @returns VBox status code. * @param pUVCpu Pointer to the user mode VMCPU structure. */ static DECLCALLBACK(int) vmR3BootstrapWait(PUVMCPU pUVCpu) { PUVM pUVM = pUVCpu->pUVM; ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); int rc = VINF_SUCCESS; for (;;) { /* * Check Relevant FFs. */ if (pUVM->vm.s.pNormalReqs || pUVM->vm.s.pPriorityReqs) /* global requests pending? */ break; if (pUVCpu->vm.s.pNormalReqs || pUVCpu->vm.s.pPriorityReqs) /* local requests pending? */ break; if ( pUVCpu->pVM && ( VM_FF_IS_ANY_SET(pUVCpu->pVM, VM_FF_EXTERNAL_SUSPENDED_MASK) || VMCPU_FF_IS_ANY_SET(VMMGetCpu(pUVCpu->pVM), VMCPU_FF_EXTERNAL_SUSPENDED_MASK) ) ) break; if (pUVM->vm.s.fTerminateEMT) break; /* * Wait for a while. Someone will wake us up or interrupt the call if * anything needs our attention. */ rc = RTSemEventWait(pUVCpu->vm.s.EventSemWait, 1000); if (rc == VERR_TIMEOUT) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "RTSemEventWait->%Rrc\n", rc); break; } } ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * Bootstrap VMR3NotifyFF() worker. * * @param pUVCpu Pointer to the user mode VMCPU structure. * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_*. */ static DECLCALLBACK(void) vmR3BootstrapNotifyCpuFF(PUVMCPU pUVCpu, uint32_t fFlags) { if (pUVCpu->vm.s.fWait) { int rc = RTSemEventSignal(pUVCpu->vm.s.EventSemWait); AssertRC(rc); } NOREF(fFlags); } /** * Default VMR3Wait() worker. * * @returns VBox status code. * @param pUVCpu Pointer to the user mode VMCPU structure. */ static DECLCALLBACK(int) vmR3DefaultWait(PUVMCPU pUVCpu) { ASMAtomicWriteBool(&pUVCpu->vm.s.fWait, true); PVM pVM = pUVCpu->pVM; PVMCPU pVCpu = pUVCpu->pVCpu; int rc = VINF_SUCCESS; for (;;) { /* * Check Relevant FFs. */ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_SUSPENDED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_EXTERNAL_SUSPENDED_MASK)) break; /* * Wait for a while. Someone will wake us up or interrupt the call if * anything needs our attention. */ rc = RTSemEventWait(pUVCpu->vm.s.EventSemWait, 1000); if (rc == VERR_TIMEOUT) rc = VINF_SUCCESS; else if (RT_FAILURE(rc)) { rc = vmR3FatalWaitError(pUVCpu, "RTSemEventWait->%Rrc", rc); break; } } ASMAtomicUoWriteBool(&pUVCpu->vm.s.fWait, false); return rc; } /** * Default VMR3NotifyFF() worker. * * @param pUVCpu Pointer to the user mode VMCPU structure. * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_*. */ static DECLCALLBACK(void) vmR3DefaultNotifyCpuFF(PUVMCPU pUVCpu, uint32_t fFlags) { if (pUVCpu->vm.s.fWait) { int rc = RTSemEventSignal(pUVCpu->vm.s.EventSemWait); AssertRC(rc); } else { PVMCPU pVCpu = pUVCpu->pVCpu; if (pVCpu) { VMCPUSTATE enmState = pVCpu->enmState; if ( enmState == VMCPUSTATE_STARTED_EXEC_NEM || enmState == VMCPUSTATE_STARTED_EXEC_NEM_WAIT) NEMR3NotifyFF(pUVCpu->pVM, pVCpu, fFlags); } } } /** * Array with halt method descriptors. * VMINT::iHaltMethod contains an index into this array. */ static const struct VMHALTMETHODDESC { /** The halt method ID. */ VMHALTMETHOD enmHaltMethod; /** Set if the method support halting directly in ring-0. */ bool fMayHaltInRing0; /** The init function for loading config and initialize variables. */ DECLR3CALLBACKMEMBER(int, pfnInit,(PUVM pUVM)); /** The term function. */ DECLR3CALLBACKMEMBER(void, pfnTerm,(PUVM pUVM)); /** The VMR3WaitHaltedU function. */ DECLR3CALLBACKMEMBER(int, pfnHalt,(PUVMCPU pUVCpu, const uint32_t fMask, uint64_t u64Now)); /** The VMR3WaitU function. */ DECLR3CALLBACKMEMBER(int, pfnWait,(PUVMCPU pUVCpu)); /** The VMR3NotifyCpuFFU function. */ DECLR3CALLBACKMEMBER(void, pfnNotifyCpuFF,(PUVMCPU pUVCpu, uint32_t fFlags)); /** The VMR3NotifyGlobalFFU function. */ DECLR3CALLBACKMEMBER(void, pfnNotifyGlobalFF,(PUVM pUVM, uint32_t fFlags)); } g_aHaltMethods[] = { { VMHALTMETHOD_BOOTSTRAP, false, NULL, NULL, NULL, vmR3BootstrapWait, vmR3BootstrapNotifyCpuFF, NULL }, { VMHALTMETHOD_OLD, false, NULL, NULL, vmR3HaltOldDoHalt, vmR3DefaultWait, vmR3DefaultNotifyCpuFF, NULL }, { VMHALTMETHOD_1, false, vmR3HaltMethod1Init, NULL, vmR3HaltMethod1Halt, vmR3DefaultWait, vmR3DefaultNotifyCpuFF, NULL }, { VMHALTMETHOD_GLOBAL_1, true, vmR3HaltGlobal1Init, NULL, vmR3HaltGlobal1Halt, vmR3HaltGlobal1Wait, vmR3HaltGlobal1NotifyCpuFF, NULL }, }; /** * Notify the emulation thread (EMT) about pending Forced Action (FF). * * This function is called by thread other than EMT to make * sure EMT wakes up and promptly service an FF request. * * @param pUVM Pointer to the user mode VM structure. * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_*. * @internal */ VMMR3_INT_DECL(void) VMR3NotifyGlobalFFU(PUVM pUVM, uint32_t fFlags) { LogFlow(("VMR3NotifyGlobalFFU:\n")); uint32_t iHaltMethod = pUVM->vm.s.iHaltMethod; if (g_aHaltMethods[iHaltMethod].pfnNotifyGlobalFF) /** @todo make mandatory. */ g_aHaltMethods[iHaltMethod].pfnNotifyGlobalFF(pUVM, fFlags); else for (VMCPUID iCpu = 0; iCpu < pUVM->cCpus; iCpu++) g_aHaltMethods[iHaltMethod].pfnNotifyCpuFF(&pUVM->aCpus[iCpu], fFlags); } /** * Notify the emulation thread (EMT) about pending Forced Action (FF). * * This function is called by thread other than EMT to make * sure EMT wakes up and promptly service an FF request. * * @param pUVCpu Pointer to the user mode per CPU VM structure. * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_*. * @internal */ VMMR3_INT_DECL(void) VMR3NotifyCpuFFU(PUVMCPU pUVCpu, uint32_t fFlags) { PUVM pUVM = pUVCpu->pUVM; LogFlow(("VMR3NotifyCpuFFU:\n")); g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnNotifyCpuFF(pUVCpu, fFlags); } /** * Halted VM Wait. * Any external event will unblock the thread. * * @returns VINF_SUCCESS unless a fatal error occurred. In the latter * case an appropriate status code is returned. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param fIgnoreInterrupts If set the VM_FF_INTERRUPT flags is ignored. * @thread The emulation thread. * @remarks Made visible for implementing vmsvga sync register. * @internal */ VMMR3_INT_DECL(int) VMR3WaitHalted(PVM pVM, PVMCPU pVCpu, bool fIgnoreInterrupts) { LogFlow(("VMR3WaitHalted: fIgnoreInterrupts=%d\n", fIgnoreInterrupts)); /* * Check Relevant FFs. */ const uint32_t fMask = !fIgnoreInterrupts ? VMCPU_FF_EXTERNAL_HALTED_MASK : VMCPU_FF_EXTERNAL_HALTED_MASK & ~(VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC); if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_HALTED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, fMask)) { LogFlow(("VMR3WaitHalted: returns VINF_SUCCESS (FF %#x FFCPU %#RX64)\n", pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions)); return VINF_SUCCESS; } /* * The yielder is suspended while we're halting, while TM might have clock(s) running * only at certain times and need to be notified.. */ if (pVCpu->idCpu == 0) VMMR3YieldSuspend(pVM); TMNotifyStartOfHalt(pVCpu); /* * Record halt averages for the last second. */ PUVMCPU pUVCpu = pVCpu->pUVCpu; uint64_t u64Now = RTTimeNanoTS(); int64_t off = u64Now - pUVCpu->vm.s.u64HaltsStartTS; if (off > 1000000000) { if (off > _4G || !pUVCpu->vm.s.cHalts) { pUVCpu->vm.s.HaltInterval = 1000000000 /* 1 sec */; pUVCpu->vm.s.HaltFrequency = 1; } else { pUVCpu->vm.s.HaltInterval = (uint32_t)off / pUVCpu->vm.s.cHalts; pUVCpu->vm.s.HaltFrequency = ASMMultU64ByU32DivByU32(pUVCpu->vm.s.cHalts, 1000000000, (uint32_t)off); } pUVCpu->vm.s.u64HaltsStartTS = u64Now; pUVCpu->vm.s.cHalts = 0; } pUVCpu->vm.s.cHalts++; /* * Do the halt. */ VMCPU_ASSERT_STATE_2(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM); VMCPUSTATE enmStateOld = VMCPU_GET_STATE(pVCpu); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HALTED); PUVM pUVM = pUVCpu->pUVM; int rc = g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnHalt(pUVCpu, fMask, u64Now); VMCPU_SET_STATE(pVCpu, enmStateOld); /* * Notify TM and resume the yielder */ TMNotifyEndOfHalt(pVCpu); if (pVCpu->idCpu == 0) VMMR3YieldResume(pVM); LogFlow(("VMR3WaitHalted: returns %Rrc (FF %#x)\n", rc, pVM->fGlobalForcedActions)); return rc; } /** * Suspended VM Wait. * Only a handful of forced actions will cause the function to * return to the caller. * * @returns VINF_SUCCESS unless a fatal error occurred. In the latter * case an appropriate status code is returned. * @param pUVCpu Pointer to the user mode VMCPU structure. * @thread The emulation thread. * @internal */ VMMR3_INT_DECL(int) VMR3WaitU(PUVMCPU pUVCpu) { LogFlow(("VMR3WaitU:\n")); /* * Check Relevant FFs. */ PVM pVM = pUVCpu->pVM; PVMCPU pVCpu = pUVCpu->pVCpu; if ( pVM && ( VM_FF_IS_ANY_SET(pVM, VM_FF_EXTERNAL_SUSPENDED_MASK) || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_EXTERNAL_SUSPENDED_MASK) ) ) { LogFlow(("VMR3Wait: returns VINF_SUCCESS (FF %#x)\n", pVM->fGlobalForcedActions)); return VINF_SUCCESS; } /* * Do waiting according to the halt method (so VMR3NotifyFF * doesn't have to special case anything). */ PUVM pUVM = pUVCpu->pUVM; int rc = g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnWait(pUVCpu); LogFlow(("VMR3WaitU: returns %Rrc (FF %#x)\n", rc, pUVM->pVM ? pUVM->pVM->fGlobalForcedActions : 0)); return rc; } /** * Interface that PDMR3Suspend, PDMR3PowerOff and PDMR3Reset uses when they wait * for the handling of asynchronous notifications to complete. * * @returns VINF_SUCCESS unless a fatal error occurred. In the latter * case an appropriate status code is returned. * @param pUVCpu Pointer to the user mode VMCPU structure. * @thread The emulation thread. */ VMMR3_INT_DECL(int) VMR3AsyncPdmNotificationWaitU(PUVMCPU pUVCpu) { LogFlow(("VMR3AsyncPdmNotificationWaitU:\n")); return VMR3WaitU(pUVCpu); } /** * Interface that PDM the helper asynchronous notification completed methods * uses for EMT0 when it is waiting inside VMR3AsyncPdmNotificationWaitU(). * * @param pUVM Pointer to the user mode VM structure. */ VMMR3_INT_DECL(void) VMR3AsyncPdmNotificationWakeupU(PUVM pUVM) { LogFlow(("VMR3AsyncPdmNotificationWakeupU:\n")); VM_FF_SET(pUVM->pVM, VM_FF_REQUEST); /* this will have to do for now. */ g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnNotifyCpuFF(&pUVM->aCpus[0], 0 /*fFlags*/); } /** * Rendezvous callback that will be called once. * * @returns VBox strict status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pvUser The new g_aHaltMethods index. */ static DECLCALLBACK(VBOXSTRICTRC) vmR3SetHaltMethodCallback(PVM pVM, PVMCPU pVCpu, void *pvUser) { PUVM pUVM = pVM->pUVM; int rc = VINF_SUCCESS; uintptr_t i = (uintptr_t)pvUser; Assert(i < RT_ELEMENTS(g_aHaltMethods)); /* * Main job is done once on EMT0 (it goes thru here first). */ if (pVCpu->idCpu == 0) { /* * Terminate the old one. */ if ( pUVM->vm.s.enmHaltMethod != VMHALTMETHOD_INVALID && g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnTerm) { g_aHaltMethods[pUVM->vm.s.iHaltMethod].pfnTerm(pUVM); pUVM->vm.s.enmHaltMethod = VMHALTMETHOD_INVALID; } /* Assert that the failure fallback is where we expect. */ Assert(g_aHaltMethods[0].enmHaltMethod == VMHALTMETHOD_BOOTSTRAP); Assert(!g_aHaltMethods[0].pfnTerm && !g_aHaltMethods[0].pfnInit); /* * Init the new one. */ memset(&pUVM->vm.s.Halt, 0, sizeof(pUVM->vm.s.Halt)); if (g_aHaltMethods[i].pfnInit) { rc = g_aHaltMethods[i].pfnInit(pUVM); if (RT_FAILURE(rc)) { /* Fall back on the bootstrap method. This requires no init/term (see assertion above), and will always work. */ AssertLogRelRC(rc); i = 0; } } /* * Commit it. */ pUVM->vm.s.enmHaltMethod = g_aHaltMethods[i].enmHaltMethod; ASMAtomicWriteU32(&pUVM->vm.s.iHaltMethod, i); } else i = pUVM->vm.s.iHaltMethod; /* * All EMTs must update their ring-0 halt configuration. */ VMMR3SetMayHaltInRing0(pVCpu, g_aHaltMethods[i].fMayHaltInRing0, g_aHaltMethods[i].enmHaltMethod == VMHALTMETHOD_GLOBAL_1 ? pUVM->vm.s.Halt.Global1.cNsSpinBlockThresholdCfg : 0); return rc; } /** * Changes the halt method. * * @returns VBox status code. * @param pUVM Pointer to the user mode VM structure. * @param enmHaltMethod The new halt method. * @thread EMT. */ int vmR3SetHaltMethodU(PUVM pUVM, VMHALTMETHOD enmHaltMethod) { PVM pVM = pUVM->pVM; Assert(pVM); VM_ASSERT_EMT(pVM); AssertReturn(enmHaltMethod > VMHALTMETHOD_INVALID && enmHaltMethod < VMHALTMETHOD_END, VERR_INVALID_PARAMETER); /* * Resolve default (can be overridden in the configuration). */ if (enmHaltMethod == VMHALTMETHOD_DEFAULT) { uint32_t u32; int rc = CFGMR3QueryU32(CFGMR3GetChild(CFGMR3GetRoot(pVM), "VM"), "HaltMethod", &u32); if (RT_SUCCESS(rc)) { enmHaltMethod = (VMHALTMETHOD)u32; if (enmHaltMethod <= VMHALTMETHOD_INVALID || enmHaltMethod >= VMHALTMETHOD_END) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Invalid VM/HaltMethod value %d"), enmHaltMethod); } else if (rc == VERR_CFGM_VALUE_NOT_FOUND || rc == VERR_CFGM_CHILD_NOT_FOUND) return VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to Query VM/HaltMethod as uint32_t")); else enmHaltMethod = VMHALTMETHOD_GLOBAL_1; //enmHaltMethod = VMHALTMETHOD_1; //enmHaltMethod = VMHALTMETHOD_OLD; } /* * The global halt method doesn't work in driverless mode, so fall back on * method #1 instead. */ if (!SUPR3IsDriverless() || enmHaltMethod != VMHALTMETHOD_GLOBAL_1) LogRel(("VMEmt: Halt method %s (%d)\n", vmR3GetHaltMethodName(enmHaltMethod), enmHaltMethod)); else { LogRel(("VMEmt: Halt method %s (%d) not available in driverless mode, using %s (%d) instead\n", vmR3GetHaltMethodName(enmHaltMethod), enmHaltMethod, vmR3GetHaltMethodName(VMHALTMETHOD_1), VMHALTMETHOD_1)); enmHaltMethod = VMHALTMETHOD_1; } /* * Find the descriptor. */ unsigned i = 0; while ( i < RT_ELEMENTS(g_aHaltMethods) && g_aHaltMethods[i].enmHaltMethod != enmHaltMethod) i++; AssertReturn(i < RT_ELEMENTS(g_aHaltMethods), VERR_INVALID_PARAMETER); /* * This needs to be done while the other EMTs are not sleeping or otherwise messing around. */ return VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING, vmR3SetHaltMethodCallback, (void *)(uintptr_t)i); } /** * Special interface for implementing a HLT-like port on a device. * * This can be called directly from device code, provide the device is trusted * to access the VMM directly. Since we may not have an accurate register set * and the caller certainly shouldn't (device code does not access CPU * registers), this function will return when interrupts are pending regardless * of the actual EFLAGS.IF state. * * @returns VBox error status (never informational statuses). * @param pVM The cross context VM structure. * @param idCpu The id of the calling EMT. */ VMMR3DECL(int) VMR3WaitForDeviceReady(PVM pVM, VMCPUID idCpu) { /* * Validate caller and resolve the CPU ID. */ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); PVMCPU pVCpu = pVM->apCpusR3[idCpu]; VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT); /* * Tag along with the HLT mechanics for now. */ int rc = VMR3WaitHalted(pVM, pVCpu, false /*fIgnoreInterrupts*/); if (RT_SUCCESS(rc)) return VINF_SUCCESS; return rc; } /** * Wakes up a CPU that has called VMR3WaitForDeviceReady. * * @returns VBox error status (never informational statuses). * @param pVM The cross context VM structure. * @param idCpu The id of the calling EMT. */ VMMR3DECL(int) VMR3NotifyCpuDeviceReady(PVM pVM, VMCPUID idCpu) { /* * Validate caller and resolve the CPU ID. */ VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); PVMCPU pVCpu = pVM->apCpusR3[idCpu]; /* * Pretend it was an FF that got set since we've got logic for that already. */ VMR3NotifyCpuFFU(pVCpu->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM); return VINF_SUCCESS; } /** * Returns the number of active EMTs. * * This is used by the rendezvous code during VM destruction to avoid waiting * for EMTs that aren't around any more. * * @returns Number of active EMTs. 0 if invalid parameter. * @param pUVM The user mode VM structure. */ VMMR3_INT_DECL(uint32_t) VMR3GetActiveEmts(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, 0); return pUVM->vm.s.cActiveEmts; }