/* $Id: VMM.cpp 40294 2012-02-29 13:30:20Z vboxsync $ */ /** @file * VMM - The Virtual Machine Monitor Core. */ /* * Copyright (C) 2006-2007 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ //#define NO_SUPCALLR0VMM /** @page pg_vmm VMM - The Virtual Machine Monitor * * The VMM component is two things at the moment, it's a component doing a few * management and routing tasks, and it's the whole virtual machine monitor * thing. For hysterical reasons, it is not doing all the management that one * would expect, this is instead done by @ref pg_vm. We'll address this * misdesign eventually. * * @see grp_vmm, grp_vm * * * @section sec_vmmstate VMM State * * @image html VM_Statechart_Diagram.gif * * To be written. * * * @subsection subsec_vmm_init VMM Initialization * * To be written. * * * @subsection subsec_vmm_term VMM Termination * * To be written. * * * @sections sec_vmm_limits VMM Limits * * There are various resource limits imposed by the VMM and it's * sub-components. We'll list some of them here. * * On 64-bit hosts: * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES), * can be increased up to 64K - 1. * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and * ROM pages. The limit is imposed by the 32-bit page ID used by GMM. * - A VM can be assigned all the memory we can use (16TB), however, the * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB). * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). * * On 32-bit hosts: * - Max 127 VMs. Imposed by GMM's per page structure. * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and * ROM pages. The limit is imposed by the 28-bit page ID used * internally in GMM. It is also limited by PAE. * - A VM can be assigned all the memory GMM can allocate, however, the * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB). * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT). * */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_VMM #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_REM # include #endif #include #include #include "VMMInternal.h" #include "VMMSwitcher.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** The saved state version. */ #define VMM_SAVED_STATE_VERSION 4 /** The saved state version used by v3.0 and earlier. (Teleportation) */ #define VMM_SAVED_STATE_VERSION_3_0 3 /******************************************************************************* * Internal Functions * *******************************************************************************/ static int vmmR3InitStacks(PVM pVM); static int vmmR3InitLoggers(PVM pVM); static void vmmR3InitRegisterStats(PVM pVM); static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser); static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu); static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Initializes the VMM. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3_INT_DECL(int) VMMR3Init(PVM pVM) { LogFlow(("VMMR3Init\n")); /* * Assert alignment, sizes and order. */ AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n")); AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding)); AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding)); /* * Init basic VM VMM members. */ pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm); pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL; pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms} * The EMT yield interval. The EMT yielding is a hack we employ to play a * bit nicer with the rest of the system (like for instance the GUI). */ int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies, 23 /* Value arrived at after experimenting with the grub boot prompt. */); AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc); /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true} * Controls whether we employ per-cpu preemption timers to limit the time * spent executing guest code. This option is not available on all * platforms and we will silently ignore this setting then. If we are * running in VT-x mode, we will use the VMX-preemption timer instead of * this one when possible. */ PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM"); rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true); AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc); /* * Initialize the VMM rendezvous semaphores. */ pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus); if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered) return VERR_NO_MEMORY; for (VMCPUID i = 0; i < pVM->cCpus; i++) pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); AssertRCReturn(rc, rc); } rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertRCReturn(rc, rc); rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone); AssertRCReturn(rc, rc); rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller); AssertRCReturn(rc, rc); /* GC switchers are enabled by default. Turned off by HWACCM. */ pVM->vmm.s.fSwitcherDisabled = false; /* * Register the saved state data unit. */ rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR), NULL, NULL, NULL, NULL, vmmR3Save, NULL, NULL, vmmR3Load, NULL); if (RT_FAILURE(rc)) return rc; /* * Register the Ring-0 VM handle with the session for fast ioctl calls. */ rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0); if (RT_FAILURE(rc)) return rc; /* * Init various sub-components. */ rc = vmmR3SwitcherInit(pVM); if (RT_SUCCESS(rc)) { rc = vmmR3InitStacks(pVM); if (RT_SUCCESS(rc)) { rc = vmmR3InitLoggers(pVM); #ifdef VBOX_WITH_NMI /* * Allocate mapping for the host APIC. */ if (RT_SUCCESS(rc)) { rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase); AssertRC(rc); } #endif if (RT_SUCCESS(rc)) { /* * Debug info and statistics. */ DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF); vmmR3InitRegisterStats(pVM); vmmInitFormatTypes(); return VINF_SUCCESS; } } /** @todo: Need failure cleanup. */ //more todo in here? //if (RT_SUCCESS(rc)) //{ //} //int rc2 = vmmR3TermCoreCode(pVM); //AssertRC(rc2)); } return rc; } /** * Allocate & setup the VMM RC stack(s) (for EMTs). * * The stacks are also used for long jumps in Ring-0. * * @returns VBox status code. * @param pVM Pointer to the shared VM structure. * * @remarks The optional guard page gets it protection setup up during R3 init * completion because of init order issues. */ static int vmmR3InitStacks(PVM pVM) { int rc = VINF_SUCCESS; #ifdef VMM_R0_SWITCH_STACK uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING; #else uint32_t fFlags = 0; #endif for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = &pVM->aCpus[idCpu]; #ifdef VBOX_STRICT_VMM_STACK rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE, #else rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE, #endif PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3); if (RT_SUCCESS(rc)) { #ifdef VBOX_STRICT_VMM_STACK pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE; #endif #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */ if (!VMMIsHwVirtExtForced(pVM)) pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR; else #endif pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3); pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3); pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE; AssertRelease(pVCpu->vmm.s.pbEMTStackRC); CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); } } return rc; } /** * Initialize the loggers. * * @returns VBox status code. * @param pVM Pointer to the shared VM structure. */ static int vmmR3InitLoggers(PVM pVM) { int rc; #define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE) /* * Allocate RC & R0 Logger instances (they are finalized in the relocator). */ #ifdef LOG_ENABLED PRTLOGGER pLogger = RTLogDefaultInstance(); if (pLogger) { pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]); rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3); if (RT_FAILURE(rc)) return rc; pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3); # ifdef VBOX_WITH_R0_LOGGING size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pVCpu->vmm.s.pR0LoggerR3); if (RT_FAILURE(rc)) return rc; pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0; //pVCpu->vmm.s.pR0LoggerR3->fCreated = false; pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger; pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3); } # endif } #endif /* LOG_ENABLED */ #ifdef VBOX_WITH_RC_RELEASE_LOGGING /* * Allocate RC release logger instances (finalized in the relocator). */ PRTLOGGER pRelLogger = RTLogRelDefaultInstance(); if (pRelLogger) { pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]); rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3); if (RT_FAILURE(rc)) return rc; pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3); } #endif /* VBOX_WITH_RC_RELEASE_LOGGING */ return VINF_SUCCESS; } /** * VMMR3Init worker that register the statistics with STAM. * * @param pVM The shared VM structure. */ static void vmmR3InitRegisterStats(PVM pVM) { /* * Statistics. */ STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns."); STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls."); STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls."); #ifdef VBOX_WITH_STATISTICS for (VMCPUID i = 0; i < pVM->cCpus; i++) { STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i); STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i); STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i); } #endif } /** * Initializes the R0 VMM. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM) { int rc; PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu && pVCpu->idCpu == 0); #ifdef LOG_ENABLED /* * Initialize the ring-0 logger if we haven't done so yet. */ if ( pVCpu->vmm.s.pR0LoggerR3 && !pVCpu->vmm.s.pR0LoggerR3->fCreated) { rc = VMMR3UpdateLoggers(pVM); if (RT_FAILURE(rc)) return rc; } #endif /* * Call Ring-0 entry with init code. */ for (;;) { #ifdef NO_SUPCALLR0VMM //rc = VERR_GENERAL_FAILURE; rc = VINF_SUCCESS; #else rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL); #endif /* * Flush the logs. */ #ifdef LOG_ENABLED if ( pVCpu->vmm.s.pR0LoggerR3 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0) RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger); #endif if (rc != VINF_VMM_CALL_HOST) break; rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) break; /* Resume R0 */ } if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) { LogRel(("R0 init failed, rc=%Rra\n", rc)); if (RT_SUCCESS(rc)) rc = VERR_IPE_UNEXPECTED_INFO_STATUS; } return rc; } /** * Initializes the RC VMM. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM) { PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu && pVCpu->idCpu == 0); /* In VMX mode, there's no need to init RC. */ if (pVM->vmm.s.fSwitcherDisabled) return VINF_SUCCESS; AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP); /* * Call VMMGCInit(): * -# resolve the address. * -# setup stackframe and EIP to use the trampoline. * -# do a generic hypervisor call. */ RTRCPTR RCPtrEP; int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP); if (RT_SUCCESS(rc)) { CPUMHyperSetCtxCore(pVCpu, NULL); CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */ uint64_t u64TS = RTTimeProgramStartNanoTS(); CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */ CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */ CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */ CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */ CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */ CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */ CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */ CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC); Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); for (;;) { #ifdef NO_SUPCALLR0VMM //rc = VERR_GENERAL_FAILURE; rc = VINF_SUCCESS; #else rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL); #endif #ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); #endif #ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger); #endif if (rc != VINF_VMM_CALL_HOST) break; rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) break; } if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) { VMMR3FatalDump(pVM, pVCpu, rc); if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST) rc = VERR_IPE_UNEXPECTED_INFO_STATUS; } AssertRC(rc); } return rc; } /** * Called when an init phase completes. * * @returns VBox status code. * @param pVM The VM handle. * @param enmWhat Which init phase. */ VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { int rc = VINF_SUCCESS; switch (enmWhat) { case VMINITCOMPLETED_RING3: { /* * Set page attributes to r/w for stack pages. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW); AssertRCReturn(rc, rc); } /* * Create the EMT yield timer. */ rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer); AssertRCReturn(rc, rc); rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies); AssertRCReturn(rc, rc); #ifdef VBOX_WITH_NMI /* * Map the host APIC into GC - This is AMD/Intel + Host OS specific! */ rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE, X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D); AssertRCReturn(rc, rc); #endif #ifdef VBOX_STRICT_VMM_STACK /* * Setup the stack guard pages: Two inaccessible pages at each sides of the * stack to catch over/under-flows. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3; memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE); MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/); memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE); MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/); } pVM->vmm.s.fStackGuardsStationed = true; #endif break; } case VMINITCOMPLETED_RING0: { /* * Disable the periodic preemption timers if we can use the * VMX-preemption timer instead. */ if ( pVM->vmm.s.fUsePeriodicPreemptionTimers && HWACCMR3IsVmxPreemptionTimerUsed(pVM)) pVM->vmm.s.fUsePeriodicPreemptionTimers = false; LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers)); break; } default: /* shuts up gcc */ break; } return rc; } /** * Terminate the VMM bits. * * @returns VINF_SUCCESS. * @param pVM The VM handle. */ VMMR3_INT_DECL(int) VMMR3Term(PVM pVM) { PVMCPU pVCpu = VMMGetCpu(pVM); Assert(pVCpu && pVCpu->idCpu == 0); /* * Call Ring-0 entry with termination code. */ int rc; for (;;) { #ifdef NO_SUPCALLR0VMM //rc = VERR_GENERAL_FAILURE; rc = VINF_SUCCESS; #else rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL); #endif /* * Flush the logs. */ #ifdef LOG_ENABLED if ( pVCpu->vmm.s.pR0LoggerR3 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0) RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger); #endif if (rc != VINF_VMM_CALL_HOST) break; rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) break; /* Resume R0 */ } if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) { LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc)); if (RT_SUCCESS(rc)) rc = VERR_IPE_UNEXPECTED_INFO_STATUS; } for (VMCPUID i = 0; i < pVM->cCpus; i++) { RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]); pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT; } RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne); pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI; RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone); pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI; RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller); pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT; #ifdef VBOX_STRICT_VMM_STACK /* * Make the two stack guard pages present again. */ if (pVM->vmm.s.fStackGuardsStationed) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3; MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/); MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/); } pVM->vmm.s.fStackGuardsStationed = false; } #endif vmmTermFormatTypes(); return rc; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * The VMM will need to apply relocations to the core code. * * @param pVM The VM handle. * @param offDelta The relocation delta. */ VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta)); /* * Recalc the RC address. */ #ifdef VBOX_WITH_RAW_MODE pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3); #endif /* * The stack. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta); pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3); pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE; } /* * All the switchers. */ vmmR3SwitcherRelocate(pVM, offDelta); /* * Get other RC entry points. */ int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest); AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc)); rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86); AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc)); /* * Update the logger. */ VMMR3UpdateLoggers(pVM); } /** * Updates the settings for the RC and R0 loggers. * * @returns VBox status code. * @param pVM The VM handle. */ VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM) { /* * Simply clone the logger instance (for RC). */ int rc = VINF_SUCCESS; RTRCPTR RCPtrLoggerFlush = 0; if (pVM->vmm.s.pRCLoggerR3 #ifdef VBOX_WITH_RC_RELEASE_LOGGING || pVM->vmm.s.pRCRelLoggerR3 #endif ) { rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush); AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc)); } if (pVM->vmm.s.pRCLoggerR3) { RTRCPTR RCPtrLoggerWrapper = 0; rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper); AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc)); pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3); rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger, RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED); AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc)); } #ifdef VBOX_WITH_RC_RELEASE_LOGGING if (pVM->vmm.s.pRCRelLoggerR3) { RTRCPTR RCPtrLoggerWrapper = 0; rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper); AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc)); pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3); rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger, RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED); AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc)); } #endif /* VBOX_WITH_RC_RELEASE_LOGGING */ #ifdef LOG_ENABLED /* * For the ring-0 EMT logger, we use a per-thread logger instance * in ring-0. Only initialize it once. */ PRTLOGGER const pDefault = RTLogDefaultInstance(); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3; if (pR0LoggerR3) { if (!pR0LoggerR3->fCreated) { RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR; rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper); AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc); RTR0PTR pfnLoggerFlush = NIL_RTR0PTR; rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush); AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc); rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pfnLoggerWrapper, pfnLoggerFlush, RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY); AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc); RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR; rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix); AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc); rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pfnLoggerPrefix, NIL_RTR0PTR); AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc); pR0LoggerR3->idCpu = i; pR0LoggerR3->fCreated = true; pR0LoggerR3->fFlushingDisabled = false; } rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pDefault, RTLOGFLAGS_BUFFERED, UINT32_MAX); AssertRC(rc); } } #endif return rc; } /** * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output. * * @returns Pointer to the buffer. * @param pVM The VM handle. */ VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM) { if (HWACCMIsEnabled(pVM)) return pVM->vmm.s.szRing0AssertMsg1; RTRCPTR RCPtr; int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr); if (RT_SUCCESS(rc)) return (const char *)MMHyperRCToR3(pVM, RCPtr); return NULL; } /** * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output. * * @returns Pointer to the buffer. * @param pVM The VM handle. */ VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM) { if (HWACCMIsEnabled(pVM)) return pVM->vmm.s.szRing0AssertMsg2; RTRCPTR RCPtr; int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr); if (RT_SUCCESS(rc)) return (const char *)MMHyperRCToR3(pVM, RCPtr); return NULL; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM) { LogFlow(("vmmR3Save:\n")); /* * Save the started/stopped state of all CPUs except 0 as it will always * be running. This avoids breaking the saved state version. :-) */ for (VMCPUID i = 1; i < pVM->cCpus; i++) SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i]))); return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */ } /** * Execute state load operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. * @param uVersion Data layout version. * @param uPass The data pass. */ static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { LogFlow(("vmmR3Load:\n")); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); /* * Validate version. */ if ( uVersion != VMM_SAVED_STATE_VERSION && uVersion != VMM_SAVED_STATE_VERSION_3_0) { AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (uVersion <= VMM_SAVED_STATE_VERSION_3_0) { /* Ignore the stack bottom, stack pointer and stack bits. */ RTRCPTR RCPtrIgnored; SSMR3GetRCPtr(pSSM, &RCPtrIgnored); SSMR3GetRCPtr(pSSM, &RCPtrIgnored); #ifdef RT_OS_DARWIN if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0) && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0) && SSMR3HandleRevision(pSSM) >= 48858 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86") || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") ) ) SSMR3Skip(pSSM, 16384); else SSMR3Skip(pSSM, 8192); #else SSMR3Skip(pSSM, 8192); #endif } /* * Restore the VMCPU states. VCPU 0 is always started. */ VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED); for (VMCPUID i = 1; i < pVM->cCpus; i++) { bool fStarted; int rc = SSMR3GetBool(pSSM, &fStarted); if (RT_FAILURE(rc)) return rc; VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED); } /* terminator */ uint32_t u32; int rc = SSMR3GetU32(pSSM, &u32); if (RT_FAILURE(rc)) return rc; if (u32 != UINT32_MAX) { AssertMsgFailed(("u32=%#x\n", u32)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } return VINF_SUCCESS; } /** * Resolve a builtin RC symbol. * * Called by PDM when loading or relocating RC modules. * * @returns VBox status * @param pVM VM Handle. * @param pszSymbol Symbol to resolv * @param pRCPtrValue Where to store the symbol value. * * @remark This has to work before VMMR3Relocate() is called. */ VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue) { if (!strcmp(pszSymbol, "g_Logger")) { if (pVM->vmm.s.pRCLoggerR3) pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3); *pRCPtrValue = pVM->vmm.s.pRCLoggerRC; } else if (!strcmp(pszSymbol, "g_RelLogger")) { #ifdef VBOX_WITH_RC_RELEASE_LOGGING if (pVM->vmm.s.pRCRelLoggerR3) pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3); *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC; #else *pRCPtrValue = NIL_RTRCPTR; #endif } else return VERR_SYMBOL_NOT_FOUND; return VINF_SUCCESS; } /** * Suspends the CPU yielder. * * @param pVM The VM handle. */ VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM) { VMCPU_ASSERT_EMT(&pVM->aCpus[0]); if (!pVM->vmm.s.cYieldResumeMillies) { uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer); uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer); if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0) pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; else pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now); TMTimerStop(pVM->vmm.s.pYieldTimer); } pVM->vmm.s.u64LastYield = RTTimeNanoTS(); } /** * Stops the CPU yielder. * * @param pVM The VM handle. */ VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM) { if (!pVM->vmm.s.cYieldResumeMillies) TMTimerStop(pVM->vmm.s.pYieldTimer); pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies; pVM->vmm.s.u64LastYield = RTTimeNanoTS(); } /** * Resumes the CPU yielder when it has been a suspended or stopped. * * @param pVM The VM handle. */ VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM) { if (pVM->vmm.s.cYieldResumeMillies) { TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies); pVM->vmm.s.cYieldResumeMillies = 0; } } /** * Internal timer callback function. * * @param pVM The VM. * @param pTimer The timer handle. * @param pvUser User argument specified upon timer creation. */ static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser) { NOREF(pvUser); /* * This really needs some careful tuning. While we shouldn't be too greedy since * that'll cause the rest of the system to stop up, we shouldn't be too nice either * because that'll cause us to stop up. * * The current logic is to use the default interval when there is no lag worth * mentioning, but when we start accumulating lag we don't bother yielding at all. * * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL * so the lag is up to date.) */ const uint64_t u64Lag = TMVirtualSyncGetLag(pVM); if ( u64Lag < 50000000 /* 50ms */ || ( u64Lag < 1000000000 /* 1s */ && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */) ) { uint64_t u64Elapsed = RTTimeNanoTS(); pVM->vmm.s.u64LastYield = u64Elapsed; RTThreadYield(); #ifdef LOG_ENABLED u64Elapsed = RTTimeNanoTS() - u64Elapsed; Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed)); #endif } TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies); } /** * Executes guest code in the raw-mode context. * * @param pVM VM handle. * @param pVCpu The VMCPU to operate on. */ VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu) { Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP); /* * Set the EIP and ESP. */ CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM ? pVM->vmm.s.pfnCPUMRCResumeGuestV86 : pVM->vmm.s.pfnCPUMRCResumeGuest); CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* * We hide log flushes (outer) and hypervisor interrupts (inner). */ for (;;) { #ifdef VBOX_STRICT if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu))) EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH); PGMMapCheck(pVM); #endif int rc; do { #ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; #else rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; #endif } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); /* * Flush the logs. */ #ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); #endif #ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger); #endif if (rc != VINF_VMM_CALL_HOST) { Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); return rc; } rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; /* Resume GC */ } } /** * Executes guest code (Intel VT-x and AMD-V). * * @param pVM VM handle. * @param pVCpu The VMCPU to operate on. */ VMMR3_INT_DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu) { Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); for (;;) { int rc; do { #ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; #else rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; #endif } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); #if 0 /* todo triggers too often */ Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3)); #endif #ifdef LOG_ENABLED /* * Flush the log */ PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3; if ( pR0LoggerR3 && pR0LoggerR3->Logger.offScratch > 0) RTLogFlushR0(NULL, &pR0LoggerR3->Logger); #endif /* !LOG_ENABLED */ if (rc != VINF_VMM_CALL_HOST) { Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); return rc; } rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; /* Resume R0 */ } } /** * VCPU worker for VMMSendSipi. * * @param pVM The VM to operate on. * @param idCpu Virtual CPU to perform SIPI on * @param uVector SIPI vector */ DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); /** @todo what are we supposed to do if the processor is already running? */ if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI) return VERR_ACCESS_DENIED; PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu); pCtx->cs = uVector << 8; pCtx->csHid.u64Base = uVector << 12; pCtx->csHid.u32Limit = 0x0000ffff; pCtx->rip = 0; Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector)); # if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */ EMSetState(pVCpu, EMSTATE_HALTED); return VINF_EM_RESCHEDULE; # else /* And if we go the VMCPU::enmState way it can stay here. */ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED); return VINF_SUCCESS; # endif } DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); VMCPU_ASSERT_EMT(pVCpu); Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu)); CPUMR3ResetCpu(pVCpu); return VINF_EM_WAIT_SIPI; } /** * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state * and unhalting processor * * @param pVM The VM to operate on. * @param idCpu Virtual CPU to perform SIPI on * @param uVector SIPI vector */ VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector) { AssertReturnVoid(idCpu < pVM->cCpus); int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector); AssertRC(rc); } /** * Sends init IPI to the virtual CPU. * * @param pVM The VM to operate on. * @param idCpu Virtual CPU to perform int IPI on */ VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu) { AssertReturnVoid(idCpu < pVM->cCpus); int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu); AssertRC(rc); } /** * Registers the guest memory range that can be used for patching * * @returns VBox status code. * @param pVM The VM to operate on. * @param pPatchMem Patch memory range * @param cbPatchMem Size of the memory range */ VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { VM_ASSERT_EMT(pVM); if (HWACCMIsEnabled(pVM)) return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem); return VERR_NOT_SUPPORTED; } /** * Deregisters the guest memory range that can be used for patching * * @returns VBox status code. * @param pVM The VM to operate on. * @param pPatchMem Patch memory range * @param cbPatchMem Size of the memory range */ VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem) { if (HWACCMIsEnabled(pVM)) return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem); return VINF_SUCCESS; } /** * Count returns and have the last non-caller EMT wake up the caller. * * @returns VBox strict informational status code for EM scheduling. No failures * will be returned here, those are for the caller only. * * @param pVM The VM handle. */ DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM) { int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus); uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned); if (cReturned == pVM->cCpus - 1U) { int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelRC(rc); } AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST), ("%Rrc\n", rcRet), VERR_IPE_UNEXPECTED_INFO_STATUS); return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS; } /** * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF. * * @returns VBox strict informational status code for EM scheduling. No failures * will be returned here, those are for the caller only. When * fIsCaller is set, VINF_SUCCESS is always returned. * * @param pVM The VM handle. * @param pVCpu The VMCPU structure for the calling EMT. * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or * not. * @param fFlags The flags. * @param pfnRendezvous The callback. * @param pvUser The user argument for the callback. */ static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) { int rc; /* * Enter, the last EMT triggers the next callback phase. */ uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered); if (cEntered != pVM->cCpus) { if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) { /* Wait for our turn. */ rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) { /* Wait for the last EMT to arrive and wake everyone up. */ rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { /* Wait for our turn. */ rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } else { Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE); /* * The execute once is handled specially to optimize the code flow. * * The last EMT to arrive will perform the callback and the other * EMTs will wait on the Done/DoneCaller semaphores (instead of * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback * returns, that EMT will initiate the normal return sequence. */ if (!fIsCaller) { rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); return vmmR3EmtRendezvousNonCallerReturn(pVM); } return VINF_SUCCESS; } } else { /* * All EMTs are waiting, clear the FF and take action according to the * execution method. */ VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS); if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE) { /* Wake up everyone. */ rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); } else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { /* Figure out who to wake up and wake it up. If it's ourself, then it's easy otherwise wait for our turn. */ VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING ? 0 : pVM->cCpus - 1U; if (pVCpu->idCpu != iFirst) { rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]); AssertLogRelRC(rc); rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } } /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */ } /* * Do the callback and update the status if necessary. */ if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) ) { VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); if (rcStrict != VINF_SUCCESS) { AssertLogRelMsg( rcStrict <= VINF_SUCCESS || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); int32_t i32RendezvousStatus; do { i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus); if ( rcStrict == i32RendezvousStatus || RT_FAILURE(i32RendezvousStatus) || ( i32RendezvousStatus != VINF_SUCCESS && rcStrict > i32RendezvousStatus)) break; } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus)); } } /* * Increment the done counter and take action depending on whether we're * the last to finish callback execution. */ uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone); if ( cDone != pVM->cCpus && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE) { /* Signal the next EMT? */ if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE) { rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelRC(rc); } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING) { Assert(cDone == pVCpu->idCpu + 1U); rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]); AssertLogRelRC(rc); } else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING) { Assert(pVM->cCpus - cDone == pVCpu->idCpu); rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]); AssertLogRelRC(rc); } /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */ if (!fIsCaller) { rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); } } else { /* Callback execution is all done, tell the rest to return. */ rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); } if (!fIsCaller) return vmmR3EmtRendezvousNonCallerReturn(pVM); return VINF_SUCCESS; } /** * Called in response to VM_FF_EMT_RENDEZVOUS. * * @returns VBox strict status code - EM scheduling. No errors will be returned * here, nor will any non-EM scheduling status codes be returned. * * @param pVM The VM handle * @param pVCpu The handle of the calling EMT. * * @thread EMT */ VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu) { Assert(!pVCpu->vmm.s.fInRendezvous); pVCpu->vmm.s.fInRendezvous = true; int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags, pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser); pVCpu->vmm.s.fInRendezvous = false; return rc; } /** * EMT rendezvous. * * Gathers all the EMTs and execute some code on each of them, either in a one * by one fashion or all at once. * * @returns VBox strict status code. This will be the the first error, * VINF_SUCCESS, or an EM scheduling status code. * * @param pVM The VM handle. * @param fFlags Flags indicating execution methods. See * grp_VMMR3EmtRendezvous_fFlags. * @param pfnRendezvous The callback. * @param pvUser User argument for the callback. * * @thread Any. */ VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser) { /* * Validate input. */ AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags)); AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR) || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE), ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK)); VBOXSTRICTRC rcStrict; PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) /* * Forward the request to an EMT thread. */ rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser); else if (pVM->cCpus == 1) { /* * Shortcut for the single EMT case. */ AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK); pVCpu->vmm.s.fInRendezvous = true; rcStrict = pfnRendezvous(pVM, pVCpu, pvUser); pVCpu->vmm.s.fInRendezvous = false; } else { /* * Spin lock. If busy, wait for the other EMT to finish while keeping a * lookout of the RENDEZVOUS FF. */ int rc; rcStrict = VINF_SUCCESS; if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))) { AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK); while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)) { if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS)) { rc = VMMR3EmtRendezvousFF(pVM, pVCpu); if ( rc != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rc)) rcStrict = rc; /** @todo Perhaps deal with termination here? */ } ASMNopPause(); } } Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS)); Assert(!pVCpu->vmm.s.fInRendezvous); pVCpu->vmm.s.fInRendezvous = true; /* * Clear the slate. This is a semaphore ping-pong orgy. :-) */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); } rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc); rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc); rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc)); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0); ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0); ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS); ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous); ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser); ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags); /* * Set the FF and poke the other EMTs. */ VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS); VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE); /* * Do the same ourselves. */ vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser); /* * The caller waits for the other EMTs to be done and return before doing * the cleanup. This makes away with wakeup / reset races we would otherwise * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller). */ rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT); AssertLogRelRC(rc); /* * Get the return code and clean up a little bit. */ int rcMy = pVM->vmm.s.i32RendezvousStatus; ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous); ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0); pVCpu->vmm.s.fInRendezvous = false; /* * Merge rcStrict and rcMy. */ AssertRC(VBOXSTRICTRC_VAL(rcStrict)); if ( rcMy != VINF_SUCCESS && ( rcStrict == VINF_SUCCESS || rcStrict > rcMy)) rcStrict = rcMy; } AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST), ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)), VERR_IPE_UNEXPECTED_INFO_STATUS); return VBOXSTRICTRC_VAL(rcStrict); } /** * Disables/enables EMT rendezvous. * * This is used to make sure EMT rendezvous does not take place while * processing a priority request. * * @returns Old rendezvous-disabled state. * @param pVCpu The handle of the calling EMT. * @param fDisabled True if disabled, false if enabled. */ VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled) { VMCPU_ASSERT_EMT(pVCpu); bool fOld = pVCpu->vmm.s.fInRendezvous; pVCpu->vmm.s.fInRendezvous = fDisabled; return fOld; } /** * Read from the ring 0 jump buffer stack * * @returns VBox status code. * * @param pVM Pointer to the shared VM structure. * @param idCpu The ID of the source CPU context (for the address). * @param R0Addr Where to start reading. * @param pvBuf Where to store the data we've read. * @param cbRead The number of bytes to read. */ VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead) { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); AssertReturn(pVCpu, VERR_INVALID_PARAMETER); #ifdef VMM_R0_SWITCH_STACK RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3); #else RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr); #endif if ( off > VMM_STACK_SIZE || off + cbRead >= VMM_STACK_SIZE) return VERR_INVALID_POINTER; memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead); return VINF_SUCCESS; } /** * Calls a RC function. * * @param pVM The VM handle. * @param RCPtrEntry The address of the RC function. * @param cArgs The number of arguments in the .... * @param ... Arguments to the function. */ VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...) { va_list args; va_start(args, cArgs); int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args); va_end(args); return rc; } /** * Calls a RC function. * * @param pVM The VM handle. * @param RCPtrEntry The address of the RC function. * @param cArgs The number of arguments in the .... * @param args Arguments to the function. */ VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args) { /* Raw mode implies 1 VCPU. */ AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP); PVMCPU pVCpu = &pVM->aCpus[0]; Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs)); /* * Setup the call frame using the trampoline. */ CPUMHyperSetCtxCore(pVCpu, NULL); memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */ CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32)); PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs; int i = cArgs; while (i-- > 0) *pFrame++ = va_arg(args, RTGCUINTPTR32); CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */ CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */ CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC); /* * We hide log flushes (outer) and hypervisor interrupts (inner). */ for (;;) { int rc; Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); do { #ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; #else rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; #endif } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); /* * Flush the logs. */ #ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); #endif #ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger); #endif if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC) VMMR3FatalDump(pVM, pVCpu, rc); if (rc != VINF_VMM_CALL_HOST) { Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); return rc; } rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; } } /** * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns. * * @returns VBox status code. * @param pVM The VM to operate on. * @param uOperation Operation to execute. * @param u64Arg Constant argument. * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for * details. */ VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr) { PVMCPU pVCpu = VMMGetCpu(pVM); AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT); /* * Call Ring-0 entry with init code. */ int rc; for (;;) { #ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; #else rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr); #endif /* * Flush the logs. */ #ifdef LOG_ENABLED if ( pVCpu->vmm.s.pR0LoggerR3 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0) RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger); #endif if (rc != VINF_VMM_CALL_HOST) break; rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)) break; /* Resume R0 */ } AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc), ("uOperation=%u rc=%Rrc\n", uOperation, rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } /** * Resumes executing hypervisor code when interrupted by a queue flush or a * debug event. * * @returns VBox status code. * @param pVM VM handle. * @param pVCpu VMCPU handle. */ VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu) { Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu))); AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP); /* * We hide log flushes (outer) and hypervisor interrupts (inner). */ for (;;) { int rc; Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu)); do { #ifdef NO_SUPCALLR0VMM rc = VERR_GENERAL_FAILURE; #else rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0); if (RT_LIKELY(rc == VINF_SUCCESS)) rc = pVCpu->vmm.s.iLastGZRc; #endif } while (rc == VINF_EM_RAW_INTERRUPT_HYPER); /* * Flush the loggers, */ #ifdef LOG_ENABLED PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3; if ( pLogger && pLogger->offScratch > 0) RTLogFlushRC(NULL, pLogger); #endif #ifdef VBOX_WITH_RC_RELEASE_LOGGING PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3; if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0)) RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger); #endif if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC) VMMR3FatalDump(pVM, pVCpu, rc); if (rc != VINF_VMM_CALL_HOST) { Log(("VMMR3ResumeHyper: returns %Rrc\n", rc)); return rc; } rc = vmmR3ServiceCallRing3Request(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; } } /** * Service a call to the ring-3 host code. * * @returns VBox status code. * @param pVM VM handle. * @param pVCpu VMCPU handle * @remark Careful with critsects. */ static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu) { /* * We must also check for pending critsect exits or else we can deadlock * when entering other critsects here. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT)) PDMCritSectFF(pVCpu); switch (pVCpu->vmm.s.enmCallRing3Operation) { /* * Acquire a critical section. */ case VMMCALLRING3_PDM_CRIT_SECT_ENTER: { pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg, true /*fCallRing3*/); break; } /* * Acquire the PDM lock. */ case VMMCALLRING3_PDM_LOCK: { pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM); break; } /* * Grow the PGM pool. */ case VMMCALLRING3_PGM_POOL_GROW: { pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM); break; } /* * Maps an page allocation chunk into ring-3 so ring-0 can use it. */ case VMMCALLRING3_PGM_MAP_CHUNK: { pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg); break; } /* * Allocates more handy pages. */ case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES: { pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM); break; } /* * Allocates a large page. */ case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE: { pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg); break; } /* * Acquire the PGM lock. */ case VMMCALLRING3_PGM_LOCK: { pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM); break; } /* * Acquire the MM hypervisor heap lock. */ case VMMCALLRING3_MMHYPER_LOCK: { pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM); break; } #ifdef VBOX_WITH_REM /* * Flush REM handler notifications. */ case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS: { REMR3ReplayHandlerNotifications(pVM); pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS; break; } #endif /* * This is a noop. We just take this route to avoid unnecessary * tests in the loops. */ case VMMCALLRING3_VMM_LOGGER_FLUSH: pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS; LogAlways(("*FLUSH*\n")); break; /* * Set the VM error message. */ case VMMCALLRING3_VM_SET_ERROR: VMR3SetErrorWorker(pVM); pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS; break; /* * Set the VM runtime error message. */ case VMMCALLRING3_VM_SET_RUNTIME_ERROR: pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM); break; /* * Signal a ring 0 hypervisor assertion. * Cancel the longjmp operation that's in progress. */ case VMMCALLRING3_VM_R0_ASSERTION: pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID; pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false; #ifdef RT_ARCH_X86 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0; #else pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0; #endif #ifdef VMM_R0_SWITCH_STACK *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */ #endif LogRel((pVM->vmm.s.szRing0AssertMsg1)); LogRel((pVM->vmm.s.szRing0AssertMsg2)); return VERR_VMM_RING0_ASSERTION; /* * A forced switch to ring 0 for preemption purposes. */ case VMMCALLRING3_VM_R0_PREEMPT: pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS; break; case VMMCALLRING3_FTM_SET_CHECKPOINT: pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg); break; default: AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation)); return VERR_VMM_UNKNOWN_RING3_CALL; } pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID; return VINF_SUCCESS; } /** * Displays the Force action Flags. * * @param pVM The VM handle. * @param pHlp The output helpers. * @param pszArgs The additional arguments (ignored). */ static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { int c; uint32_t f; NOREF(pszArgs); #define PRINT_FLAG(prf,flag) do { \ if (f & (prf##flag)) \ { \ static const char *s_psz = #flag; \ if (!(c % 6)) \ pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \ else \ pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ c++; \ f &= ~(prf##flag); \ } \ } while (0) #define PRINT_GROUP(prf,grp,sfx) do { \ if (f & (prf##grp##sfx)) \ { \ static const char *s_psz = #grp; \ if (!(c % 5)) \ pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \ else \ pHlp->pfnPrintf(pHlp, ", %s", s_psz); \ c++; \ } \ } while (0) /* * The global flags. */ const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions; pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions); /* show the flag mnemonics */ c = 0; f = fGlobalForcedActions; PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC); PRINT_FLAG(VM_FF_,PDM_QUEUES); PRINT_FLAG(VM_FF_,PDM_DMA); PRINT_FLAG(VM_FF_,DBGF); PRINT_FLAG(VM_FF_,REQUEST); PRINT_FLAG(VM_FF_,CHECK_VM_STATE); PRINT_FLAG(VM_FF_,RESET); PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS); PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES); PRINT_FLAG(VM_FF_,PGM_NO_MEMORY); PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING); PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY); PRINT_FLAG(VM_FF_,DEBUG_SUSPEND); if (f) pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f); else pHlp->pfnPrintf(pHlp, "\n"); /* the groups */ c = 0; f = fGlobalForcedActions; PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK); PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK); PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK); PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK); PRINT_GROUP(VM_FF_,ALL_REM,_MASK); if (c) pHlp->pfnPrintf(pHlp, "\n"); /* * Per CPU flags. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions; pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions); /* show the flag mnemonics */ c = 0; f = fLocalForcedActions; PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC); PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC); PRINT_FLAG(VMCPU_FF_,TIMER); PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT); PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3); PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL); PRINT_FLAG(VMCPU_FF_,TLB_FLUSH); PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT); PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS); PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT); PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT); PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS); PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE); PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION); PRINT_FLAG(VMCPU_FF_,TO_R3); if (f) pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f); else pHlp->pfnPrintf(pHlp, "\n"); if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS) pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i])); /* the groups */ c = 0; f = fLocalForcedActions; PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK); PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK); PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK); PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK); PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK); PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK); PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK); PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK); if (c) pHlp->pfnPrintf(pHlp, "\n"); } #undef PRINT_FLAG #undef PRINT_GROUP }