/* $Id: NemRawBench-1.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */ /** @file * NEM Benchmark. */ /* * Copyright (C) 2018-2019 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #ifdef RT_OS_WINDOWS # include # include # if !defined(_INTPTR) && defined(_M_AMD64) /* void pedantic stdint.h warnings */ # define _INTPTR 2 # endif #elif defined(RT_OS_LINUX) # include # include # include # include # include # include # include #elif defined(RT_OS_DARWIN) # include # if 1 /* header mix hack */ # undef __OSX_AVAILABLE_STARTING # define __OSX_AVAILABLE_STARTING(_osx, _ios) # endif # include # include # include # include # include # include # include # include # include # include #else # error "port me" #endif #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The base mapping address of the g_pbMem. */ #define MY_MEM_BASE 0x1000 /** No-op MMIO access address. */ #define MY_NOP_MMIO 0x0808 /** The RIP which the testcode starts. */ #define MY_TEST_RIP 0x2000 /** The test termination port number. */ #define MY_TERM_PORT 0x01 /** The no-op test port number. */ #define MY_NOP_PORT 0x7f #define MY_TEST_F_NOP_IO (1U<<0) #define MY_TEST_F_CPUID (1U<<1) #define MY_TEST_F_NOP_MMIO (1U<<2) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** Chunk of memory mapped at address 0x1000 (MY_MEM_BASE). */ static unsigned char *g_pbMem; /** Amount of RAM at address 0x1000 (MY_MEM_BASE). */ static size_t g_cbMem; #ifdef RT_OS_WINDOWS static WHV_PARTITION_HANDLE g_hPartition = NULL; /** @name APIs imported from WinHvPlatform.dll * @{ */ static decltype(WHvCreatePartition) *g_pfnWHvCreatePartition; static decltype(WHvSetupPartition) *g_pfnWHvSetupPartition; static decltype(WHvGetPartitionProperty) *g_pfnWHvGetPartitionProperty; static decltype(WHvSetPartitionProperty) *g_pfnWHvSetPartitionProperty; static decltype(WHvMapGpaRange) *g_pfnWHvMapGpaRange; static decltype(WHvCreateVirtualProcessor) *g_pfnWHvCreateVirtualProcessor; static decltype(WHvRunVirtualProcessor) *g_pfnWHvRunVirtualProcessor; static decltype(WHvGetVirtualProcessorRegisters) *g_pfnWHvGetVirtualProcessorRegisters; static decltype(WHvSetVirtualProcessorRegisters) *g_pfnWHvSetVirtualProcessorRegisters; /** @} */ static uint64_t (WINAPI *g_pfnRtlGetSystemTimePrecise)(void); #elif defined(RT_OS_LINUX) /** The VM handle. */ static int g_fdVm; /** The VCPU handle. */ static int g_fdVCpu; /** The kvm_run structure for the VCpu. */ static struct kvm_run *g_pVCpuRun; /** The size of the g_pVCpuRun mapping. */ static ssize_t g_cbVCpuRun; #elif defined(RT_OS_DARWIN) /** The VCpu ID. */ static hv_vcpuid_t g_idVCpu; #endif static int error(const char *pszFormat, ...) { fprintf(stderr, "error: "); va_list va; va_start(va, pszFormat); vfprintf(stderr, pszFormat, va); va_end(va); return 1; } static uint64_t getNanoTS(void) { #ifdef RT_OS_WINDOWS return g_pfnRtlGetSystemTimePrecise() * 100; #elif defined(RT_OS_LINUX) struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return (uint64_t)ts.tv_sec * UINT64_C(1000000000) + ts.tv_nsec; #elif defined(RT_OS_DARWIN) static struct mach_timebase_info s_Info = { 0, 0 }; static double s_rdFactor = 0.0; /* Lazy init. */ if (s_Info.denom != 0) { /* likely */ } else if (mach_timebase_info(&s_Info) == KERN_SUCCESS) s_rdFactor = (double)s_Info.numer / (double)s_Info.denom; else { error("mach_timebase_info(&Info) failed\n"); exit(1); } if (s_Info.denom == 1 && s_Info.numer == 1) /* special case: absolute time is in nanoseconds */ return mach_absolute_time(); return mach_absolute_time() * s_rdFactor; #else struct timeval tv; gettimeofday(&tv, NULL); return (uint64_t)tv.tv_sec * UINT64_C(1000000000) + (tv.tv_usec * UINT32_C(1000)); #endif } char *formatNum(uint64_t uNum, unsigned cchWidth, char *pszDst, size_t cbDst) { char szTmp[64 + 22]; #ifdef _MSC_VER size_t cchTmp = _snprintf(szTmp, sizeof(szTmp) - 22, "%I64u", uNum); #else size_t cchTmp = snprintf(szTmp, sizeof(szTmp) - 22, "%llu", (unsigned long long)uNum); #endif size_t cSeps = (cchTmp - 1) / 3; size_t const cchTotal = cchTmp + cSeps; if (cSeps) { szTmp[cchTotal] = '\0'; for (size_t iSrc = cchTmp, iDst = cchTotal; cSeps > 0; cSeps--) { szTmp[--iDst] = szTmp[--iSrc]; szTmp[--iDst] = szTmp[--iSrc]; szTmp[--iDst] = szTmp[--iSrc]; szTmp[--iDst] = ' '; } } size_t offDst = 0; while (cchWidth-- > cchTotal && offDst < cbDst) pszDst[offDst++] = ' '; size_t offSrc = 0; while (offSrc < cchTotal && offDst < cbDst) pszDst[offDst++] = szTmp[offSrc++]; pszDst[offDst] = '\0'; return pszDst; } int reportResult(const char *pszInstruction, uint32_t cInstructions, uint64_t nsElapsed, uint32_t cExits) { uint64_t const cInstrPerSec = nsElapsed ? (uint64_t)cInstructions * 1000000000 / nsElapsed : 0; char szTmp1[64], szTmp2[64], szTmp3[64]; printf("%s %7s instructions per second (%s exits in %s ns)\n", formatNum(cInstrPerSec, 10, szTmp1, sizeof(szTmp1)), pszInstruction, formatNum(cExits, 0, szTmp2, sizeof(szTmp2)), formatNum(nsElapsed, 0, szTmp3, sizeof(szTmp3))); return 0; } #ifdef RT_OS_WINDOWS /* * Windows - Hyper-V Platform API. */ static int createVM(void) { /* * Resolve APIs. */ HMODULE hmod = LoadLibraryW(L"WinHvPlatform.dll"); if (hmod == NULL) return error("Error loading WinHvPlatform.dll: %u\n", GetLastError()); static struct { const char *pszFunction; FARPROC *ppfn; } const s_aImports[] = { # define IMPORT_ENTRY(a_Name) { #a_Name, (FARPROC *)&g_pfn##a_Name } IMPORT_ENTRY(WHvCreatePartition), IMPORT_ENTRY(WHvSetupPartition), IMPORT_ENTRY(WHvGetPartitionProperty), IMPORT_ENTRY(WHvSetPartitionProperty), IMPORT_ENTRY(WHvMapGpaRange), IMPORT_ENTRY(WHvCreateVirtualProcessor), IMPORT_ENTRY(WHvRunVirtualProcessor), IMPORT_ENTRY(WHvGetVirtualProcessorRegisters), IMPORT_ENTRY(WHvSetVirtualProcessorRegisters), # undef IMPORT_ENTRY }; FARPROC pfn; for (size_t i = 0; i < sizeof(s_aImports) / sizeof(s_aImports[0]); i++) { *s_aImports[i].ppfn = pfn = GetProcAddress(hmod, s_aImports[i].pszFunction); if (!pfn) return error("Error resolving WinHvPlatform.dll!%s: %u\n", s_aImports[i].pszFunction, GetLastError()); } # ifndef IN_SLICKEDIT # define WHvCreatePartition g_pfnWHvCreatePartition # define WHvSetupPartition g_pfnWHvSetupPartition # define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty # define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty # define WHvMapGpaRange g_pfnWHvMapGpaRange # define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor # define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor # define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters # define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters # endif /* Need a precise time function. */ *(FARPROC *)&g_pfnRtlGetSystemTimePrecise = pfn = GetProcAddress(GetModuleHandleW(L"ntdll.dll"), "RtlGetSystemTimePrecise"); if (pfn == NULL) return error("Error resolving ntdll.dll!RtlGetSystemTimePrecise: %u\n", GetLastError()); /* * Create the partition with 1 CPU and the specfied amount of memory. */ WHV_PARTITION_HANDLE hPartition; HRESULT hrc = WHvCreatePartition(&hPartition); if (!SUCCEEDED(hrc)) return error("WHvCreatePartition failed: %#x\n", hrc); g_hPartition = hPartition; WHV_PARTITION_PROPERTY Property; memset(&Property, 0, sizeof(Property)); Property.ProcessorCount = 1; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property)); if (!SUCCEEDED(hrc)) return error("WHvSetPartitionProperty/WHvPartitionPropertyCodeProcessorCount failed: %#x\n", hrc); memset(&Property, 0, sizeof(Property)); Property.ExtendedVmExits.X64CpuidExit = 1; Property.ExtendedVmExits.X64MsrExit = 1; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property)); if (!SUCCEEDED(hrc)) return error("WHvSetPartitionProperty/WHvPartitionPropertyCodeExtendedVmExits failed: %#x\n", hrc); hrc = WHvSetupPartition(hPartition); if (!SUCCEEDED(hrc)) return error("WHvSetupPartition failed: %#x\n", hrc); hrc = WHvCreateVirtualProcessor(hPartition, 0 /*idVCpu*/, 0 /*fFlags*/); if (!SUCCEEDED(hrc)) return error("WHvCreateVirtualProcessor failed: %#x\n", hrc); g_pbMem = (unsigned char *)VirtualAlloc(NULL, g_cbMem, MEM_COMMIT, PAGE_READWRITE); if (!g_pbMem) return error("VirtualAlloc failed: %u\n", GetLastError()); memset(g_pbMem, 0xcc, g_cbMem); hrc = WHvMapGpaRange(hPartition, g_pbMem, MY_MEM_BASE /*GCPhys*/, g_cbMem, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute); if (!SUCCEEDED(hrc)) return error("WHvMapGpaRange failed: %#x\n", hrc); WHV_RUN_VP_EXIT_CONTEXT ExitInfo; memset(&ExitInfo, 0, sizeof(ExitInfo)); WHvRunVirtualProcessor(g_hPartition, 0 /*idCpu*/, &ExitInfo, sizeof(ExitInfo)); return 0; } static int runtimeError(const char *pszFormat, ...) { fprintf(stderr, "runtime error: "); va_list va; va_start(va, pszFormat); vfprintf(stderr, pszFormat, va); va_end(va); static struct { const char *pszName; WHV_REGISTER_NAME enmName; unsigned uType; } const s_aRegs[] = { { "rip", WHvX64RegisterRip, 64 }, { "cs", WHvX64RegisterCs, 1 }, { "rflags", WHvX64RegisterRflags, 32 }, { "rax", WHvX64RegisterRax, 64 }, { "rcx", WHvX64RegisterRcx, 64 }, { "rdx", WHvX64RegisterRdx, 64 }, { "rbx", WHvX64RegisterRbx, 64 }, { "rsp", WHvX64RegisterRsp, 64 }, { "ss", WHvX64RegisterSs, 1 }, { "rbp", WHvX64RegisterRbp, 64 }, { "rsi", WHvX64RegisterRsi, 64 }, { "rdi", WHvX64RegisterRdi, 64 }, { "ds", WHvX64RegisterDs, 1 }, { "es", WHvX64RegisterEs, 1 }, { "fs", WHvX64RegisterFs, 1 }, { "gs", WHvX64RegisterGs, 1 }, { "cr0", WHvX64RegisterCr0, 64 }, { "cr2", WHvX64RegisterCr2, 64 }, { "cr3", WHvX64RegisterCr3, 64 }, { "cr4", WHvX64RegisterCr4, 64 }, }; for (unsigned i = 0; i < sizeof(s_aRegs) / sizeof(s_aRegs[0]); i++) { WHV_REGISTER_VALUE Value; WHV_REGISTER_NAME enmName = s_aRegs[i].enmName; HRESULT hrc = WHvGetVirtualProcessorRegisters(g_hPartition, 0 /*idCpu*/, &enmName, 1, &Value); if (SUCCEEDED(hrc)) { if (s_aRegs[i].uType == 32) fprintf(stderr, "%8s=%08x\n", s_aRegs[i].pszName, Value.Reg32); else if (s_aRegs[i].uType == 64) fprintf(stderr, "%8s=%08x'%08x\n", s_aRegs[i].pszName, (unsigned)(Value.Reg64 >> 32), Value.Reg32); else if (s_aRegs[i].uType == 1) fprintf(stderr, "%8s=%04x base=%08x'%08x limit=%08x attr=%04x\n", s_aRegs[i].pszName, Value.Segment.Selector, (unsigned)(Value.Segment.Base >> 32), (unsigned)Value.Segment.Base, Value.Segment.Limit, Value.Segment.Attributes); } else fprintf(stderr, "%8s=\n", s_aRegs[i].pszName, hrc); } return 1; } static int runRealModeTest(unsigned cInstructions, const char *pszInstruction, unsigned fTest, unsigned uEax, unsigned uEcx, unsigned uEdx, unsigned uEbx, unsigned uEsp, unsigned uEbp, unsigned uEsi, unsigned uEdi) { (void)fTest; /* * Initialize the real mode context. */ # define ADD_REG64(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.High64 = 0; \ aValues[iReg].Reg64 = (a_uValue); \ iReg++; \ } while (0) # define ADD_SEG(a_enmName, a_Base, a_Limit, a_Sel, a_fCode) \ do { \ aenmNames[iReg] = a_enmName; \ aValues[iReg].Segment.Base = (a_Base); \ aValues[iReg].Segment.Limit = (a_Limit); \ aValues[iReg].Segment.Selector = (a_Sel); \ aValues[iReg].Segment.Attributes = a_fCode ? 0x9b : 0x93; \ iReg++; \ } while (0) WHV_REGISTER_NAME aenmNames[80]; WHV_REGISTER_VALUE aValues[80]; unsigned iReg = 0; ADD_REG64(WHvX64RegisterRax, uEax); ADD_REG64(WHvX64RegisterRcx, uEcx); ADD_REG64(WHvX64RegisterRdx, uEdx); ADD_REG64(WHvX64RegisterRbx, uEbx); ADD_REG64(WHvX64RegisterRsp, uEsp); ADD_REG64(WHvX64RegisterRbp, uEbp); ADD_REG64(WHvX64RegisterRsi, uEsi); ADD_REG64(WHvX64RegisterRdi, uEdi); ADD_REG64(WHvX64RegisterRip, MY_TEST_RIP); ADD_REG64(WHvX64RegisterRflags, 2); ADD_SEG(WHvX64RegisterEs, 0x00000, 0xffff, 0x0000, 0); ADD_SEG(WHvX64RegisterCs, 0x00000, 0xffff, 0x0000, 1); ADD_SEG(WHvX64RegisterSs, 0x00000, 0xffff, 0x0000, 0); ADD_SEG(WHvX64RegisterDs, 0x00000, 0xffff, 0x0000, 0); ADD_SEG(WHvX64RegisterFs, 0x00000, 0xffff, 0x0000, 0); ADD_SEG(WHvX64RegisterGs, 0x00000, 0xffff, 0x0000, 0); ADD_REG64(WHvX64RegisterCr0, 0x10010 /*WP+ET*/); ADD_REG64(WHvX64RegisterCr2, 0); ADD_REG64(WHvX64RegisterCr3, 0); ADD_REG64(WHvX64RegisterCr4, 0); HRESULT hrc = WHvSetVirtualProcessorRegisters(g_hPartition, 0 /*idCpu*/, aenmNames, iReg, aValues); if (!SUCCEEDED(hrc)) return error("WHvSetVirtualProcessorRegisters failed (for %s): %#x\n", pszInstruction, hrc); # undef ADD_REG64 # undef ADD_SEG /* * Run the test. */ uint32_t cExits = 0; uint64_t const nsStart = getNanoTS(); for (;;) { WHV_RUN_VP_EXIT_CONTEXT ExitInfo; memset(&ExitInfo, 0, sizeof(ExitInfo)); hrc = WHvRunVirtualProcessor(g_hPartition, 0 /*idCpu*/, &ExitInfo, sizeof(ExitInfo)); if (SUCCEEDED(hrc)) { cExits++; if (ExitInfo.ExitReason == WHvRunVpExitReasonX64IoPortAccess) { if (ExitInfo.IoPortAccess.PortNumber == MY_NOP_PORT) { /* likely: nop instruction */ } else if (ExitInfo.IoPortAccess.PortNumber == MY_TERM_PORT) break; else return runtimeError("Unexpected I/O port access (for %s): %#x\n", pszInstruction, ExitInfo.IoPortAccess.PortNumber); /* Advance. */ if (ExitInfo.VpContext.InstructionLength) { aenmNames[0] = WHvX64RegisterRip; aValues[0].Reg64 = ExitInfo.VpContext.Rip + ExitInfo.VpContext.InstructionLength; hrc = WHvSetVirtualProcessorRegisters(g_hPartition, 0 /*idCpu*/, aenmNames, 1, aValues); if (SUCCEEDED(hrc)) { /* likely */ } else return runtimeError("Error advancing RIP (for %s): %#x\n", pszInstruction, hrc); } else return runtimeError("VpContext.InstructionLength is zero (for %s)\n", pszInstruction); } else if (ExitInfo.ExitReason == WHvRunVpExitReasonX64Cpuid) { /* Advance RIP and set default results. */ if (ExitInfo.VpContext.InstructionLength) { aenmNames[0] = WHvX64RegisterRip; aValues[0].Reg64 = ExitInfo.VpContext.Rip + ExitInfo.VpContext.InstructionLength; aenmNames[1] = WHvX64RegisterRax; aValues[1].Reg64 = ExitInfo.CpuidAccess.DefaultResultRax; aenmNames[2] = WHvX64RegisterRcx; aValues[2].Reg64 = ExitInfo.CpuidAccess.DefaultResultRcx; aenmNames[3] = WHvX64RegisterRdx; aValues[3].Reg64 = ExitInfo.CpuidAccess.DefaultResultRdx; aenmNames[4] = WHvX64RegisterRbx; aValues[4].Reg64 = ExitInfo.CpuidAccess.DefaultResultRbx; hrc = WHvSetVirtualProcessorRegisters(g_hPartition, 0 /*idCpu*/, aenmNames, 5, aValues); if (SUCCEEDED(hrc)) { /* likely */ } else return runtimeError("Error advancing RIP (for %s): %#x\n", pszInstruction, hrc); } else return runtimeError("VpContext.InstructionLength is zero (for %s)\n", pszInstruction); } else if (ExitInfo.ExitReason == WHvRunVpExitReasonMemoryAccess) { if (ExitInfo.MemoryAccess.Gpa == MY_NOP_MMIO) { /* likely: nop address */ } else return runtimeError("Unexpected memory access (for %s): %#x\n", pszInstruction, ExitInfo.MemoryAccess.Gpa); /* Advance and set return register (assuming RAX and two byte instruction). */ aenmNames[0] = WHvX64RegisterRip; if (ExitInfo.VpContext.InstructionLength) aValues[0].Reg64 = ExitInfo.VpContext.Rip + ExitInfo.VpContext.InstructionLength; else aValues[0].Reg64 = ExitInfo.VpContext.Rip + 2; aenmNames[1] = WHvX64RegisterRax; aValues[1].Reg64 = 42; hrc = WHvSetVirtualProcessorRegisters(g_hPartition, 0 /*idCpu*/, aenmNames, 2, aValues); if (SUCCEEDED(hrc)) { /* likely */ } else return runtimeError("Error advancing RIP (for %s): %#x\n", pszInstruction, hrc); } else return runtimeError("Unexpected exit (for %s): %#x\n", pszInstruction, ExitInfo.ExitReason); } else return runtimeError("WHvRunVirtualProcessor failed (for %s): %#x\n", pszInstruction, hrc); } uint64_t const nsElapsed = getNanoTS() - nsStart; return reportResult(pszInstruction, cInstructions, nsElapsed, cExits); } #elif defined(RT_OS_LINUX) /* * GNU/linux - KVM */ static int createVM(void) { int fd = open("/dev/kvm", O_RDWR); if (fd < 0) return error("Error opening /dev/kvm: %d\n", errno); g_fdVm = ioctl(fd, KVM_CREATE_VM, (uintptr_t)0); if (g_fdVm < 0) return error("KVM_CREATE_VM failed: %d\n", errno); /* Create the VCpu. */ g_cbVCpuRun = ioctl(fd, KVM_GET_VCPU_MMAP_SIZE, (uintptr_t)0); if (g_cbVCpuRun <= 0x1000 || (g_cbVCpuRun & 0xfff)) return error("Failed to get KVM_GET_VCPU_MMAP_SIZE: %#xz errno=%d\n", g_cbVCpuRun, errno); g_fdVCpu = ioctl(g_fdVm, KVM_CREATE_VCPU, (uintptr_t)0); if (g_fdVCpu < 0) return error("KVM_CREATE_VCPU failed: %d\n", errno); g_pVCpuRun = (struct kvm_run *)mmap(NULL, g_cbVCpuRun, PROT_READ | PROT_WRITE, MAP_PRIVATE, g_fdVCpu, 0); if ((void *)g_pVCpuRun == MAP_FAILED) return error("mmap kvm_run failed: %d\n", errno); /* Memory. */ g_pbMem = (unsigned char *)mmap(NULL, g_cbMem, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if ((void *)g_pbMem == MAP_FAILED) return error("mmap RAM failed: %d\n", errno); struct kvm_userspace_memory_region MemReg; MemReg.slot = 0; MemReg.flags = 0; MemReg.guest_phys_addr = MY_MEM_BASE; MemReg.memory_size = g_cbMem; MemReg.userspace_addr = (uintptr_t)g_pbMem; int rc = ioctl(g_fdVm, KVM_SET_USER_MEMORY_REGION, &MemReg); if (rc != 0) return error("KVM_SET_USER_MEMORY_REGION failed: %d (%d)\n", errno, rc); close(fd); return 0; } static void printSReg(const char *pszName, struct kvm_segment const *pSReg) { fprintf(stderr, " %5s=%04x base=%016llx limit=%08x type=%#x p=%d dpl=%d db=%d s=%d l=%d g=%d avl=%d un=%d\n", pszName, pSReg->selector, pSReg->base, pSReg->limit, pSReg->type, pSReg->present, pSReg->dpl, pSReg->db, pSReg->s, pSReg->l, pSReg->g, pSReg->avl, pSReg->unusable); } static int runtimeError(const char *pszFormat, ...) { fprintf(stderr, "runtime error: "); va_list va; va_start(va, pszFormat); vfprintf(stderr, pszFormat, va); va_end(va); fprintf(stderr, " exit_reason=%#010x\n", g_pVCpuRun->exit_reason); fprintf(stderr, "ready_for_interrupt_injection=%#x\n", g_pVCpuRun->ready_for_interrupt_injection); fprintf(stderr, " if_flag=%#x\n", g_pVCpuRun->if_flag); fprintf(stderr, " flags=%#x\n", g_pVCpuRun->flags); fprintf(stderr, " kvm_valid_regs=%#018llx\n", g_pVCpuRun->kvm_valid_regs); fprintf(stderr, " kvm_dirty_regs=%#018llx\n", g_pVCpuRun->kvm_dirty_regs); struct kvm_regs Regs; memset(&Regs, 0, sizeof(Regs)); struct kvm_sregs SRegs; memset(&SRegs, 0, sizeof(SRegs)); if ( ioctl(g_fdVCpu, KVM_GET_REGS, &Regs) != -1 && ioctl(g_fdVCpu, KVM_GET_SREGS, &SRegs) != -1) { fprintf(stderr, " rip=%016llx\n", Regs.rip); printSReg("cs", &SRegs.cs); fprintf(stderr, " rflags=%08llx\n", Regs.rflags); fprintf(stderr, " rax=%016llx\n", Regs.rax); fprintf(stderr, " rbx=%016llx\n", Regs.rcx); fprintf(stderr, " rdx=%016llx\n", Regs.rdx); fprintf(stderr, " rcx=%016llx\n", Regs.rbx); fprintf(stderr, " rsp=%016llx\n", Regs.rsp); fprintf(stderr, " rbp=%016llx\n", Regs.rbp); fprintf(stderr, " rsi=%016llx\n", Regs.rsi); fprintf(stderr, " rdi=%016llx\n", Regs.rdi); printSReg("ss", &SRegs.ss); printSReg("ds", &SRegs.ds); printSReg("es", &SRegs.es); printSReg("fs", &SRegs.fs); printSReg("gs", &SRegs.gs); printSReg("tr", &SRegs.tr); printSReg("ldtr", &SRegs.ldt); uint64_t const offMem = Regs.rip + SRegs.cs.base - MY_MEM_BASE; if (offMem < g_cbMem - 10) fprintf(stderr, " bytes at PC (%#zx): %02x %02x %02x %02x %02x %02x %02x %02x\n", (size_t)(offMem + MY_MEM_BASE), g_pbMem[offMem ], g_pbMem[offMem + 1], g_pbMem[offMem + 2], g_pbMem[offMem + 3], g_pbMem[offMem + 4], g_pbMem[offMem + 5], g_pbMem[offMem + 6], g_pbMem[offMem + 7]); } return 1; } static int runRealModeTest(unsigned cInstructions, const char *pszInstruction, unsigned fTest, unsigned uEax, unsigned uEcx, unsigned uEdx, unsigned uEbx, unsigned uEsp, unsigned uEbp, unsigned uEsi, unsigned uEdi) { (void)fTest; /* * Setup real mode context. */ #define SET_SEG(a_SReg, a_Base, a_Limit, a_Sel, a_fCode) \ do { \ a_SReg.base = (a_Base); \ a_SReg.limit = (a_Limit); \ a_SReg.selector = (a_Sel); \ a_SReg.type = (a_fCode) ? 10 : 3; \ a_SReg.present = 1; \ a_SReg.dpl = 0; \ a_SReg.db = 0; \ a_SReg.s = 1; \ a_SReg.l = 0; \ a_SReg.g = 0; \ a_SReg.avl = 0; \ a_SReg.unusable = 0; \ a_SReg.padding = 0; \ } while (0) struct kvm_regs Regs; memset(&Regs, 0, sizeof(Regs)); Regs.rax = uEax; Regs.rcx = uEcx; Regs.rdx = uEdx; Regs.rbx = uEbx; Regs.rsp = uEsp; Regs.rbp = uEbp; Regs.rsi = uEsi; Regs.rdi = uEdi; Regs.rip = MY_TEST_RIP; Regs.rflags = 2; int rc = ioctl(g_fdVCpu, KVM_SET_REGS, &Regs); if (rc != 0) return error("KVM_SET_REGS failed: %d (rc=%d)\n", errno, rc); struct kvm_sregs SRegs; memset(&SRegs, 0, sizeof(SRegs)); rc = ioctl(g_fdVCpu, KVM_GET_SREGS, &SRegs); if (rc != 0) return error("KVM_GET_SREGS failed: %d (rc=%d)\n", errno, rc); SET_SEG(SRegs.es, 0x00000, 0xffff, 0x0000, 0); SET_SEG(SRegs.cs, 0x00000, 0xffff, 0x0000, 1); SET_SEG(SRegs.ss, 0x00000, 0xffff, 0x0000, 0); SET_SEG(SRegs.ds, 0x00000, 0xffff, 0x0000, 0); SET_SEG(SRegs.fs, 0x00000, 0xffff, 0x0000, 0); SET_SEG(SRegs.gs, 0x00000, 0xffff, 0x0000, 0); //SRegs.cr0 = 0x10010 /*WP+ET*/; SRegs.cr2 = 0; //SRegs.cr3 = 0; //SRegs.cr4 = 0; rc = ioctl(g_fdVCpu, KVM_SET_SREGS, &SRegs); if (rc != 0) return error("KVM_SET_SREGS failed: %d (rc=%d)\n", errno, rc); /* * Run the test. */ uint32_t cExits = 0; uint64_t const nsStart = getNanoTS(); for (;;) { rc = ioctl(g_fdVCpu, KVM_RUN, (uintptr_t)0); if (rc == 0) { cExits++; if (g_pVCpuRun->exit_reason == KVM_EXIT_IO) { if (g_pVCpuRun->io.port == MY_NOP_PORT) { /* likely: nop instruction */ } else if (g_pVCpuRun->io.port == MY_TERM_PORT) break; else return runtimeError("Unexpected I/O port access (for %s): %#x\n", pszInstruction, g_pVCpuRun->io.port); } else if (g_pVCpuRun->exit_reason == KVM_EXIT_MMIO) { if (g_pVCpuRun->mmio.phys_addr == MY_NOP_MMIO) { /* likely: nop address */ } else return runtimeError("Unexpected memory access (for %s): %#llx\n", pszInstruction, g_pVCpuRun->mmio.phys_addr); } else return runtimeError("Unexpected exit (for %s): %d\n", pszInstruction, g_pVCpuRun->exit_reason); } else return runtimeError("KVM_RUN failed (for %s): %#x (ret %d)\n", pszInstruction, errno, rc); } uint64_t const nsElapsed = getNanoTS() - nsStart; return reportResult(pszInstruction, cInstructions, nsElapsed, cExits); } #elif defined(RT_OS_DARWIN) /* * Mac OS X - Hypervisor API. */ static int createVM(void) { /* VM and VCpu */ hv_return_t rcHv = hv_vm_create(HV_VM_DEFAULT); if (rcHv != HV_SUCCESS) return error("hv_vm_create failed: %#x\n", rcHv); g_idVCpu = -1; rcHv = hv_vcpu_create(&g_idVCpu, HV_VCPU_DEFAULT); if (rcHv != HV_SUCCESS) return error("hv_vcpu_create failed: %#x\n", rcHv); /* Memory. */ g_pbMem = (unsigned char *)mmap(NULL, g_cbMem, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, -1, 0); if ((void *)g_pbMem == MAP_FAILED) return error("mmap RAM failed: %d\n", errno); memset(g_pbMem, 0xf4, g_cbMem); rcHv = hv_vm_map(g_pbMem, MY_MEM_BASE, g_cbMem, HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC); if (rcHv != HV_SUCCESS) return error("hv_vm_map failed: %#x\n", rcHv); rcHv = hv_vm_protect(0x2000, 0x1000, HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC); if (rcHv != HV_SUCCESS) return error("hv_vm_protect failed: %#x\n", rcHv); return 0; } static int runtimeError(const char *pszFormat, ...) { fprintf(stderr, "runtime error: "); va_list va; va_start(va, pszFormat); vfprintf(stderr, pszFormat, va); va_end(va); static struct { const char *pszName; uint32_t uField; uint32_t uFmt : 31; uint32_t fIsReg : 1; } const s_aFields[] = { { "VMCS_RO_EXIT_REASON", VMCS_RO_EXIT_REASON, 64, 0 }, { "VMCS_RO_EXIT_QUALIFIC", VMCS_RO_EXIT_QUALIFIC, 64, 0 }, { "VMCS_RO_INSTR_ERROR", VMCS_RO_INSTR_ERROR, 64, 0 }, { "VMCS_RO_VMEXIT_IRQ_INFO", VMCS_RO_VMEXIT_IRQ_INFO, 64, 0 }, { "VMCS_RO_VMEXIT_IRQ_ERROR", VMCS_RO_VMEXIT_IRQ_ERROR, 64, 0 }, { "VMCS_RO_VMEXIT_INSTR_LEN", VMCS_RO_VMEXIT_INSTR_LEN, 64, 0 }, { "VMCS_RO_VMX_INSTR_INFO", VMCS_RO_VMX_INSTR_INFO, 64, 0 }, { "VMCS_RO_GUEST_LIN_ADDR", VMCS_RO_GUEST_LIN_ADDR, 64, 0 }, { "VMCS_GUEST_PHYSICAL_ADDRESS",VMCS_GUEST_PHYSICAL_ADDRESS,64, 0 }, { "VMCS_RO_IO_RCX", VMCS_RO_IO_RCX, 64, 0 }, { "VMCS_RO_IO_RSI", VMCS_RO_IO_RSI, 64, 0 }, { "VMCS_RO_IO_RDI", VMCS_RO_IO_RDI, 64, 0 }, { "VMCS_RO_IO_RIP", VMCS_RO_IO_RIP, 64, 0 }, { "rip", HV_X86_RIP, 64, 1 }, { "rip (vmcs)", VMCS_GUEST_RIP, 64, 0 }, { "cs", HV_X86_CS, 16, 1 }, { "cs (vmcs)", VMCS_GUEST_CS, 16, 0 }, { "cs.base", VMCS_GUEST_CS_BASE, 64, 0 }, { "cs.limit", VMCS_GUEST_CS_LIMIT, 32, 0 }, { "cs.attr", VMCS_GUEST_CS_AR, 32, 0 }, { "rflags", HV_X86_RFLAGS, 32, 1 }, { "rax", HV_X86_RAX, 64, 1 }, { "rcx", HV_X86_RCX, 64, 1 }, { "rdx", HV_X86_RDX, 64, 1 }, { "rbx", HV_X86_RBX, 64, 1 }, { "rsp", HV_X86_RSP, 64, 1 }, { "rsp (vmcs)", VMCS_GUEST_RSP, 64, 0 }, { "ss", HV_X86_SS, 16, 1 }, { "ss (vmcs)", VMCS_GUEST_SS, 16, 0 }, { "ss.base", VMCS_GUEST_SS_BASE, 64, 0 }, { "ss.limit", VMCS_GUEST_SS_LIMIT, 32, 0 }, { "ss.attr", VMCS_GUEST_SS_AR, 32, 0 }, { "rbp", HV_X86_RBP, 64, 1 }, { "rsi", HV_X86_RSI, 64, 1 }, { "rdi", HV_X86_RDI, 64, 1 }, { "ds", HV_X86_DS, 16, 1 }, { "ds (vmcs)", VMCS_GUEST_DS, 16, 0 }, { "ds.base", VMCS_GUEST_DS_BASE, 64, 0 }, { "ds.limit", VMCS_GUEST_DS_LIMIT, 32, 0 }, { "ds.attr", VMCS_GUEST_DS_AR, 32, 0 }, { "es", HV_X86_ES, 16, 1 }, { "es (vmcs)", VMCS_GUEST_ES, 16, 0 }, { "es.base", VMCS_GUEST_ES_BASE, 64, 0 }, { "es.limit", VMCS_GUEST_ES_LIMIT, 32, 0 }, { "es.attr", VMCS_GUEST_ES_AR, 32, 0 }, { "fs", HV_X86_FS, 16, 1 }, { "fs (vmcs)", VMCS_GUEST_FS, 16, 0 }, { "fs.base", VMCS_GUEST_FS_BASE, 64, 0 }, { "fs.limit", VMCS_GUEST_FS_LIMIT, 32, 0 }, { "fs.attr", VMCS_GUEST_FS_AR, 32, 0 }, { "gs", HV_X86_GS, 16, 1 }, { "gs (vmcs)", VMCS_GUEST_GS, 16, 0 }, { "gs.base", VMCS_GUEST_GS_BASE, 64, 0 }, { "gs.limit", VMCS_GUEST_GS_LIMIT, 32, 0 }, { "gs.attr", VMCS_GUEST_GS_AR, 32, 0 }, { "cr0", HV_X86_CR0, 64, 1 }, { "cr0 (vmcs)", VMCS_GUEST_CR0, 64, 0 }, { "cr2", HV_X86_CR2, 64, 1 }, { "cr3", HV_X86_CR3, 64, 1 }, { "cr3 (vmcs)", VMCS_GUEST_CR3, 64, 0 }, { "cr4", HV_X86_CR4, 64, 1 }, { "cr4 (vmcs)", VMCS_GUEST_CR4, 64, 0 }, { "idtr.base", VMCS_GUEST_IDTR_BASE, 64, 0 }, { "idtr.limit", VMCS_GUEST_IDTR_LIMIT, 32, 0 }, { "gdtr.base", VMCS_GUEST_GDTR_BASE, 64, 0 }, { "gdtr.limit", VMCS_GUEST_GDTR_LIMIT, 32, 0 }, { "VMCS_CTRL_PIN_BASED", VMCS_CTRL_PIN_BASED, 64, 0 }, { "VMCS_CTRL_CPU_BASED", VMCS_CTRL_CPU_BASED, 64, 0 }, { "VMCS_CTRL_CPU_BASED2", VMCS_CTRL_CPU_BASED2, 64, 0 }, { "VMCS_CTRL_VMENTRY_CONTROLS", VMCS_CTRL_VMENTRY_CONTROLS, 64, 0 }, { "VMCS_CTRL_VMEXIT_CONTROLS", VMCS_CTRL_VMEXIT_CONTROLS, 64, 0 }, { "VMCS_CTRL_EXC_BITMAP", VMCS_CTRL_EXC_BITMAP, 64, 0 }, { "VMCS_CTRL_CR0_MASK", VMCS_CTRL_CR0_MASK, 64, 0 }, { "VMCS_CTRL_CR0_SHADOW", VMCS_CTRL_CR0_SHADOW, 64, 0 }, { "VMCS_CTRL_CR4_MASK", VMCS_CTRL_CR4_MASK, 64, 0 }, { "VMCS_CTRL_CR4_SHADOW", VMCS_CTRL_CR4_SHADOW, 64, 0 }, }; for (unsigned i = 0; i < sizeof(s_aFields) / sizeof(s_aFields[0]); i++) { uint64_t uValue = UINT64_MAX; hv_return_t rcHv; if (s_aFields[i].fIsReg) rcHv = hv_vcpu_read_register(g_idVCpu, (hv_x86_reg_t)s_aFields[i].uField, &uValue); else rcHv = hv_vmx_vcpu_read_vmcs(g_idVCpu, s_aFields[i].uField, &uValue); if (rcHv == HV_SUCCESS) { if (s_aFields[i].uFmt == 16) fprintf(stderr, "%28s=%04llx\n", s_aFields[i].pszName, uValue); else if (s_aFields[i].uFmt == 32) fprintf(stderr, "%28s=%08llx\n", s_aFields[i].pszName, uValue); else fprintf(stderr, "%28s=%08x'%08x\n", s_aFields[i].pszName, (uint32_t)(uValue >> 32), (uint32_t)uValue); } else fprintf(stderr, "%28s=<%s failed %#x>\n", s_aFields[i].pszName, s_aFields[i].fIsReg ? "hv_vcpu_read_register" : "hv_vmx_vcpu_read_vmcs", rcHv); } return 1; } static int runRealModeTest(unsigned cInstructions, const char *pszInstruction, unsigned fTest, unsigned uEax, unsigned uEcx, unsigned uEdx, unsigned uEbx, unsigned uEsp, unsigned uEbp, unsigned uEsi, unsigned uEdi) { /* * Setup real mode context. */ #define WRITE_REG_RET(a_enmReg, a_uValue) \ do { \ hv_return_t rcHvX = hv_vcpu_write_register(g_idVCpu, a_enmReg, a_uValue); \ if (rcHvX == HV_SUCCESS) { /* likely */ } \ else return error("hv_vcpu_write_register(%#x, %s, %#llx) -> %#x\n", g_idVCpu, #a_enmReg, (uint64_t)(a_uValue), rcHvX); \ } while (0) #define READ_REG_RET(a_enmReg, a_puValue) \ do { \ hv_return_t rcHvX = hv_vcpu_read_register(g_idVCpu, a_enmReg, a_puValue); \ if (rcHvX == HV_SUCCESS) { /* likely */ } \ else return error("hv_vcpu_read_register(%#x, %s,) -> %#x\n", g_idVCpu, #a_enmReg, rcHvX); \ } while (0) #define WRITE_VMCS_RET(a_enmField, a_uValue) \ do { \ hv_return_t rcHvX = hv_vmx_vcpu_write_vmcs(g_idVCpu, a_enmField, a_uValue); \ if (rcHvX == HV_SUCCESS) { /* likely */ } \ else return error("hv_vmx_vcpu_write_vmcs(%#x, %s, %#llx) -> %#x\n", g_idVCpu, #a_enmField, (uint64_t)(a_uValue), rcHvX); \ } while (0) #define READ_VMCS_RET(a_enmField, a_puValue) \ do { \ hv_return_t rcHvX = hv_vmx_vcpu_read_vmcs(g_idVCpu, a_enmField, a_puValue); \ if (rcHvX == HV_SUCCESS) { /* likely */ } \ else return error("hv_vmx_vcpu_read_vmcs(%#x, %s,) -> %#x\n", g_idVCpu, #a_enmField, rcHvX); \ } while (0) #define READ_CAP_RET(a_enmCap, a_puValue) \ do { \ hv_return_t rcHvX = hv_vmx_read_capability(a_enmCap, a_puValue); \ if (rcHvX == HV_SUCCESS) { /* likely */ } \ else return error("hv_vmx_read_capability(%s) -> %#x\n", #a_enmCap); \ } while (0) #define CAP_2_CTRL(a_uCap, a_fWanted) ( ((a_fWanted) | (uint32_t)(a_uCap)) & (uint32_t)((a_uCap) >> 32) ) #if 1 uint64_t uCap; READ_CAP_RET(HV_VMX_CAP_PINBASED, &uCap); WRITE_VMCS_RET(VMCS_CTRL_PIN_BASED, CAP_2_CTRL(uCap, PIN_BASED_INTR | PIN_BASED_NMI | PIN_BASED_VIRTUAL_NMI)); READ_CAP_RET(HV_VMX_CAP_PROCBASED, &uCap); WRITE_VMCS_RET(VMCS_CTRL_CPU_BASED, CAP_2_CTRL(uCap, CPU_BASED_HLT | CPU_BASED_INVLPG | CPU_BASED_MWAIT | CPU_BASED_RDPMC | CPU_BASED_RDTSC | CPU_BASED_CR3_LOAD | CPU_BASED_CR3_STORE | CPU_BASED_CR8_LOAD | CPU_BASED_CR8_STORE | CPU_BASED_MOV_DR | CPU_BASED_UNCOND_IO | CPU_BASED_MONITOR | CPU_BASED_PAUSE )); READ_CAP_RET(HV_VMX_CAP_PROCBASED2, &uCap); WRITE_VMCS_RET(VMCS_CTRL_CPU_BASED2, CAP_2_CTRL(uCap, 0)); READ_CAP_RET(HV_VMX_CAP_ENTRY, &uCap); WRITE_VMCS_RET(VMCS_CTRL_VMENTRY_CONTROLS, CAP_2_CTRL(uCap, 0)); #endif WRITE_VMCS_RET(VMCS_CTRL_EXC_BITMAP, UINT32_MAX); WRITE_VMCS_RET(VMCS_CTRL_CR0_MASK, 0x60000000); WRITE_VMCS_RET(VMCS_CTRL_CR0_SHADOW, 0x00000000); WRITE_VMCS_RET(VMCS_CTRL_CR4_MASK, 0x00000000); WRITE_VMCS_RET(VMCS_CTRL_CR4_SHADOW, 0x00000000); WRITE_REG_RET(HV_X86_RAX, uEax); WRITE_REG_RET(HV_X86_RCX, uEcx); WRITE_REG_RET(HV_X86_RDX, uEdx); WRITE_REG_RET(HV_X86_RBX, uEbx); WRITE_REG_RET(HV_X86_RSP, uEsp); WRITE_REG_RET(HV_X86_RBP, uEbp); WRITE_REG_RET(HV_X86_RSI, uEsi); WRITE_REG_RET(HV_X86_RDI, uEdi); WRITE_REG_RET(HV_X86_RIP, MY_TEST_RIP); WRITE_REG_RET(HV_X86_RFLAGS, 2); WRITE_REG_RET(HV_X86_ES, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_ES_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_ES_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_ES_AR, 0x93); WRITE_REG_RET(HV_X86_CS, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_CS_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_CS_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_CS_AR, 0x9b); WRITE_REG_RET(HV_X86_SS, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_SS_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_SS_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_SS_AR, 0x93); WRITE_REG_RET(HV_X86_DS, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_DS_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_DS_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_DS_AR, 0x93); WRITE_REG_RET(HV_X86_FS, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_FS_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_FS_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_FS_AR, 0x93); WRITE_REG_RET(HV_X86_GS, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_GS_BASE, 0x0000000); WRITE_VMCS_RET(VMCS_GUEST_GS_LIMIT, 0xffff); WRITE_VMCS_RET(VMCS_GUEST_GS_AR, 0x93); //WRITE_REG_RET(HV_X86_CR0, 0x10030 /*WP+NE+ET*/); WRITE_VMCS_RET(VMCS_GUEST_CR0, 0x10030 /*WP+NE+ET*/); //WRITE_REG_RET(HV_X86_CR2, 0); //WRITE_REG_RET(HV_X86_CR3, 0); WRITE_VMCS_RET(VMCS_GUEST_CR3, 0); //WRITE_REG_RET(HV_X86_CR4, 0x2000); WRITE_VMCS_RET(VMCS_GUEST_CR4, 0x2000); WRITE_VMCS_RET(VMCS_GUEST_LDTR, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_LDTR_BASE, 0x00000000); WRITE_VMCS_RET(VMCS_GUEST_LDTR_LIMIT, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_LDTR_AR, 0x10000); WRITE_VMCS_RET(VMCS_GUEST_TR, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_TR_BASE, 0x00000000); WRITE_VMCS_RET(VMCS_GUEST_TR_LIMIT, 0x0000); WRITE_VMCS_RET(VMCS_GUEST_TR_AR, 0x00083); hv_vcpu_flush(g_idVCpu); hv_vcpu_invalidate_tlb(g_idVCpu); /* * Run the test. */ uint32_t cExits = 0; uint64_t const nsStart = getNanoTS(); for (;;) { hv_return_t rcHv = hv_vcpu_run(g_idVCpu); if (rcHv == HV_SUCCESS) { cExits++; uint64_t uExitReason = UINT64_MAX; READ_VMCS_RET(VMCS_RO_EXIT_REASON, &uExitReason); if (!(uExitReason & UINT64_C(0x80000000))) { if (uExitReason == VMX_REASON_IO) { uint64_t uIoQual = UINT64_MAX; READ_VMCS_RET(VMCS_RO_EXIT_QUALIFIC, &uIoQual); if ((uint16_t)(uIoQual >> 16) == MY_NOP_PORT && (fTest & MY_TEST_F_NOP_IO)) { /* likely: nop instruction */ } else if ((uint16_t)(uIoQual >> 16) == MY_TERM_PORT) break; else return runtimeError("Unexpected I/O port access (for %s): %#x\n", pszInstruction, (uint16_t)(uIoQual >> 16)); /* Advance RIP. */ uint64_t cbInstr = UINT64_MAX; READ_VMCS_RET(VMCS_RO_VMEXIT_INSTR_LEN, &cbInstr); if (cbInstr < 1 || cbInstr > 15) return runtimeError("Bad instr len: %#llx\n", cbInstr); uint64_t uRip = UINT64_MAX; READ_REG_RET(HV_X86_RIP, &uRip); WRITE_REG_RET(HV_X86_RIP, uRip + cbInstr); } else if (uExitReason == VMX_REASON_CPUID && (fTest & MY_TEST_F_CPUID)) { /* Set registers and advance RIP. */ WRITE_REG_RET(HV_X86_RAX, 0x42424242); WRITE_REG_RET(HV_X86_RCX, 0x04242424); WRITE_REG_RET(HV_X86_RDX, 0x00424242); WRITE_REG_RET(HV_X86_RBX, 0x00024242); uint64_t cbInstr = UINT64_MAX; READ_VMCS_RET(VMCS_RO_VMEXIT_INSTR_LEN, &cbInstr); if (cbInstr < 1 || cbInstr > 15) return runtimeError("Bad instr len: %#llx\n", cbInstr); uint64_t uRip = UINT64_MAX; READ_REG_RET(HV_X86_RIP, &uRip); WRITE_REG_RET(HV_X86_RIP, uRip + cbInstr); } else if (uExitReason == VMX_REASON_EPT_VIOLATION) { uint64_t uEptQual = UINT64_MAX; READ_VMCS_RET(VMCS_RO_EXIT_QUALIFIC, &uEptQual); uint64_t GCPhys = UINT64_MAX; READ_VMCS_RET(VMCS_GUEST_PHYSICAL_ADDRESS, &GCPhys); if (GCPhys == MY_NOP_MMIO && (fTest & MY_TEST_F_NOP_MMIO)) { /* likely */ } else if (GCPhys == MY_TEST_RIP) continue; /* dunno why we get this, but restarting it works */ else return runtimeError("Unexpected EPT viotaion at %#llx\n", GCPhys); /* Set RAX and advance RIP. */ WRITE_REG_RET(HV_X86_RAX, 42); uint64_t cbInstr = UINT64_MAX; READ_VMCS_RET(VMCS_RO_VMEXIT_INSTR_LEN, &cbInstr); if (cbInstr < 1 || cbInstr > 15) return runtimeError("Bad instr len: %#llx\n", cbInstr); uint64_t uRip = UINT64_MAX; READ_REG_RET(HV_X86_RIP, &uRip); WRITE_REG_RET(HV_X86_RIP, uRip + cbInstr); } else if (uExitReason == VMX_REASON_IRQ) { /* ignore */ } else return runtimeError("Unexpected exit reason: %#x\n", uExitReason); } else return runtimeError("VM entry failure: %#x\n", uExitReason); } else return runtimeError("hv_vcpu_run failed (for %s): %#x\n", pszInstruction, rcHv); } uint64_t const nsElapsed = getNanoTS() - nsStart; return reportResult(pszInstruction, cInstructions, nsElapsed, cExits); } #else # error "port me" #endif void dumpCode(uint8_t const *pb, uint8_t *pbEnd) { printf("testing:"); for (; pb != pbEnd; pb++) printf(" %02x", *pb); printf("\n"); } int ioportTest(unsigned cFactor) { /* * Produce realmode code */ unsigned char *pb = &g_pbMem[MY_TEST_RIP - MY_MEM_BASE]; unsigned char * const pbStart = pb; /* OUT DX, AL - 10 times */ for (unsigned i = 0; i < 10; i++) *pb++ = 0xee; /* DEC ECX */ *pb++ = 0x66; *pb++ = 0x48 + 1; /* JNZ MY_TEST_RIP */ *pb++ = 0x75; *pb = (signed char)(pbStart - pb - 1); pb++; /* OUT 1, AL - Temination port call. */ *pb++ = 0xe6; *pb++ = MY_TERM_PORT; /* JMP to previous instruction */ *pb++ = 0xeb; *pb++ = 0xfc; dumpCode(pbStart, pb); return runRealModeTest(100000 * cFactor, "OUT", MY_TEST_F_NOP_IO, 42 /*eax*/, 10000 * cFactor /*ecx*/, MY_NOP_PORT /*edx*/, 0 /*ebx*/, 0 /*esp*/, 0 /*ebp*/, 0 /*esi*/, 0 /*uEdi*/); } int cpuidTest(unsigned cFactor) { /* * Produce realmode code */ unsigned char *pb = &g_pbMem[MY_TEST_RIP - MY_MEM_BASE]; unsigned char * const pbStart = pb; for (unsigned i = 0; i < 10; i++) { /* XOR EAX,EAX */ *pb++ = 0x66; *pb++ = 0x33; *pb++ = 0xc0; /* CPUID */ *pb++ = 0x0f; *pb++ = 0xa2; } /* DEC ESI */ *pb++ = 0x66; *pb++ = 0x48 + 6; /* JNZ MY_TEST_RIP */ *pb++ = 0x75; *pb = (signed char)(pbStart - pb - 1); pb++; /* OUT 1, AL - Temination port call. */ *pb++ = 0xe6; *pb++ = MY_TERM_PORT; /* JMP to previous instruction */ *pb++ = 0xeb; *pb++ = 0xfc; dumpCode(pbStart, pb); return runRealModeTest(100000 * cFactor, "CPUID", MY_TEST_F_CPUID, 0 /*eax*/, 0 /*ecx*/, 0 /*edx*/, 0 /*ebx*/, 0 /*esp*/, 0 /*ebp*/, 10000 * cFactor /*esi*/, 0 /*uEdi*/); } int mmioTest(unsigned cFactor) { /* * Produce realmode code accessing MY_MMIO_NOP address assuming it's low. */ unsigned char *pb = &g_pbMem[MY_TEST_RIP - MY_MEM_BASE]; unsigned char * const pbStart = pb; for (unsigned i = 0; i < 10; i++) { /* MOV AL,DS:[BX] */ *pb++ = 0x8a; *pb++ = 0x07; } /* DEC ESI */ *pb++ = 0x66; *pb++ = 0x48 + 6; /* JNZ MY_TEST_RIP */ *pb++ = 0x75; *pb = (signed char)(pbStart - pb - 1); pb++; /* OUT 1, AL - Temination port call. */ *pb++ = 0xe6; *pb++ = MY_TERM_PORT; /* JMP to previous instruction */ *pb++ = 0xeb; *pb++ = 0xfc; dumpCode(pbStart, pb); return runRealModeTest(100000 * cFactor, "MMIO/r1", MY_TEST_F_NOP_MMIO, 0 /*eax*/, 0 /*ecx*/, 0 /*edx*/, MY_NOP_MMIO /*ebx*/, 0 /*esp*/, 0 /*ebp*/, 10000 * cFactor /*esi*/, 0 /*uEdi*/); } int main(int argc, char **argv) { /* * Do some parameter parsing. */ #ifdef RT_OS_WINDOWS unsigned const cFactorDefault = 4; #elif RT_OS_DARWIN unsigned const cFactorDefault = 32; #else unsigned const cFactorDefault = 24; #endif unsigned cFactor = cFactorDefault; for (int i = 1; i < argc; i++) { const char *pszArg = argv[i]; if ( strcmp(pszArg, "--help") == 0 || strcmp(pszArg, "/help") == 0 || strcmp(pszArg, "-h") == 0 || strcmp(pszArg, "-?") == 0 || strcmp(pszArg, "/?") == 0) { printf("Does some benchmarking of the native NEM engine.\n" "\n" "Usage: NemRawBench-1 --factor \n" "\n" "Options\n" " --factor \n" " Iteration count factor. Default is %u.\n" " Lower it if execution is slow, increase if quick.\n", cFactorDefault); return 0; } if (strcmp(pszArg, "--factor") == 0) { i++; if (i < argc) cFactor = atoi(argv[i]); else { fprintf(stderr, "syntax error: Option %s is takes a value!\n", pszArg); return 2; } } else { fprintf(stderr, "syntax error: Unknown option: %s\n", pszArg); return 2; } } /* * Create the VM */ g_cbMem = 128*1024 - MY_MEM_BASE; int rcExit = createVM(); if (rcExit == 0) { printf("tstNemBench-1: Successfully created test VM...\n"); /* * Do the benchmarking. */ ioportTest(cFactor); cpuidTest(cFactor); mmioTest(cFactor); printf("tstNemBench-1: done\n"); } return rcExit; } /* * Results: * * - Darwin/xnu 10.12.6/16.7.0; 3.1GHz Intel Core i7-7920HQ (Kaby Lake): * 925 845 OUT instructions per second (3 200 307 exits in 3 456 301 621 ns) * 949 278 CPUID instructions per second (3 200 222 exits in 3 370 980 173 ns) * 871 499 MMIO/r1 instructions per second (3 200 223 exits in 3 671 834 221 ns) * * - Linux 4.15.0 / ubuntu 18.04.1 Desktop LiveCD; 3.1GHz Intel Core i7-7920HQ (Kaby Lake): * 829 775 OUT instructions per second (3 200 001 exits in 3 856 466 567 ns) * 2 212 038 CPUID instructions per second (1 exits in 1 446 629 591 ns) [1] * 477 962 MMIO/r1 instructions per second (3 200 001 exits in 6 695 090 600 ns) * * - Linux 4.15.0 / ubuntu 18.04.1 Desktop LiveCD; 3.4GHz Core i5-3570 (Ivy Bridge): * 717 216 OUT instructions per second (2 400 001 exits in 3 346 271 640 ns) * 1 675 983 CPUID instructions per second (1 exits in 1 431 995 135 ns) [1] * 402 621 MMIO/r1 instructions per second (2 400 001 exits in 5 960 930 854 ns) * * - Linux 4.18.0-1-amd64 (debian); 3.4GHz AMD Threadripper 1950X: * 455 727 OUT instructions per second (2 400 001 exits in 5 266 300 471 ns) * 1 745 014 CPUID instructions per second (1 exits in 1 375 346 658 ns) [1] * 351 767 MMIO/r1 instructions per second (2 400 001 exits in 6 822 684 544 ns) * * - Windows 1803 updated as per 2018-10-01; 3.4GHz Core i5-3570 (Ivy Bridge): * 67 778 OUT instructions per second (400 001 exits in 5 901 560 700 ns) * 66 113 CPUID instructions per second (400 001 exits in 6 050 208 000 ns) * 62 939 MMIO/r1 instructions per second (400 001 exits in 6 355 302 900 ns) * * - Windows 1803 updated as per 2018-09-28; 3.4GHz AMD Threadripper 1950X: * 34 485 OUT instructions per second (400 001 exits in 11 598 918 200 ns) * 34 043 CPUID instructions per second (400 001 exits in 11 749 753 200 ns) * 33 124 MMIO/r1 instructions per second (400 001 exits in 12 075 617 000 ns) * * - Windows build 17763; 3.4GHz AMD Threadripper 1950X: * 65 633 OUT instructions per second (400 001 exits in 6 094 409 100 ns) * 65 245 CPUID instructions per second (400 001 exits in 6 130 720 600 ns) * 61 642 MMIO/r1 instructions per second (400 001 exits in 6 489 013 700 ns) * * * [1] CPUID causes no return to ring-3 with KVM. * * * For reference we can compare with similar tests in bs2-test1 running VirtualBox: * * - Linux 4.18.0-1-amd64 (debian); 3.4GHz AMD Threadripper 1950X; trunk/r125404: * real mode, 32-bit OUT : 1 338 471 ins/sec * real mode, 32-bit OUT-to-ring-3 : 500 337 ins/sec * real mode, CPUID : 1 566 343 ins/sec * real mode, 32-bit write : 870 671 ins/sec * real mode, 32-bit write-to-ring-3: 391 014 ins/sec * * - Darwin/xnu 10.12.6/16.7.0; 3.1GHz Intel Core i7-7920HQ (Kaby Lake); trunk/r125404: * real mode, 32-bit OUT : 790 117 ins/sec * real mode, 32-bit OUT-to-ring-3 : 157 205 ins/sec * real mode, CPUID : 1 001 087 ins/sec * real mode, 32-bit write : 651 257 ins/sec * real mode, 32-bit write-to-ring-3: 157 773 ins/sec * * - Linux 4.15.0 / ubuntu 18.04.1 Desktop LiveCD; 3.1GHz Intel Core i7-7920HQ (Kaby Lake); trunk/r125450: * real mode, 32-bit OUT : 1 229 245 ins/sec * real mode, 32-bit OUT-to-ring-3 : 284 848 ins/sec * real mode, CPUID : 1 429 760 ins/sec * real mode, 32-bit write : 820 679 ins/sec * real mode, 32-bit write-to-ring-3: 245 159 ins/sec * * - Windows 1803 updated as per 2018-10-01; 3.4GHz Core i5-3570 (Ivy Bridge); trunk/r15442: * real mode, 32-bit OUT : 961 939 ins/sec * real mode, 32-bit OUT-to-ring-3 : 189 458 ins/sec * real mode, CPUID : 1 060 582 ins/sec * real mode, 32-bit write : 637 967 ins/sec * real mode, 32-bit write-to-ring-3: 148 573 ins/sec * */