/* $Id: tstIEMAImpl.cpp 94695 2022-04-22 23:13:12Z vboxsync $ */ /** @file * IEM Assembly Instruction Helper Testcase. */ /* * Copyright (C) 2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #include "../include/IEMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "tstIEMAImpl.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ #define ENTRY(a_Name) ENTRY_EX(a_Name, 0) #define ENTRY_EX(a_Name, a_uExtra) \ { RT_XSTR(a_Name), iemAImpl_ ## a_Name, NULL, \ g_aTests_ ## a_Name, &g_cTests_ ## a_Name, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_NATIVE /* means same for all here */ } #define ENTRY_INTEL(a_Name, a_fEflUndef) ENTRY_INTEL_EX(a_Name, a_fEflUndef, 0) #define ENTRY_INTEL_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_intel", iemAImpl_ ## a_Name ## _intel, iemAImpl_ ## a_Name, \ g_aTests_ ## a_Name ## _intel, &g_cTests_ ## a_Name ## _intel, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_INTEL } #define ENTRY_AMD(a_Name, a_fEflUndef) ENTRY_AMD_EX(a_Name, a_fEflUndef, 0) #define ENTRY_AMD_EX(a_Name, a_fEflUndef, a_uExtra) \ { RT_XSTR(a_Name) "_amd", iemAImpl_ ## a_Name ## _amd, iemAImpl_ ## a_Name, \ g_aTests_ ## a_Name ## _amd, &g_cTests_ ## a_Name ## _amd, \ a_uExtra, IEMTARGETCPU_EFL_BEHAVIOR_AMD } #define TYPEDEF_SUBTEST_TYPE(a_TypeName, a_TestType, a_FunctionPtrType) \ typedef struct a_TypeName \ { \ const char *pszName; \ a_FunctionPtrType pfn; \ a_FunctionPtrType pfnNative; \ a_TestType const *paTests; \ uint32_t const *pcTests; \ uint32_t uExtra; \ uint8_t idxCpuEflFlavour; \ } a_TypeName #define COUNT_VARIATIONS(a_SubTest) \ (1 + ((a_SubTest).idxCpuEflFlavour == g_idxCpuEflFlavour && (a_SubTest).pfnNative) ) /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ static RTTEST g_hTest; static uint8_t g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint32_t g_cZeroDstTests = 2; static uint32_t g_cZeroSrcTests = 4; #endif static uint8_t *g_pu8, *g_pu8Two; static uint16_t *g_pu16, *g_pu16Two; static uint32_t *g_pu32, *g_pu32Two, *g_pfEfl; static uint64_t *g_pu64, *g_pu64Two; static RTUINT128U *g_pu128, *g_pu128Two; static char g_aszBuf[16][256]; static unsigned g_idxBuf = 0; static uint32_t g_cIncludeTestPatterns; static uint32_t g_cExcludeTestPatterns; static const char *g_apszIncludeTestPatterns[64]; static const char *g_apszExcludeTestPatterns[64]; static unsigned g_cVerbosity = 0; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static const char *FormatR80(PCRTFLOAT80U pr80); static const char *FormatR64(PCRTFLOAT64U pr64); static const char *FormatR32(PCRTFLOAT32U pr32); /* * Random helpers. */ static uint32_t RandEFlags(void) { uint32_t fEfl = RTRandU32(); return (fEfl & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; } #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint8_t RandU8(void) { return RTRandU32Ex(0, 0xff); } static uint16_t RandU16(void) { return RTRandU32Ex(0, 0xffff); } static uint32_t RandU32(void) { return RTRandU32(); } #endif static uint64_t RandU64(void) { return RTRandU64(); } static RTUINT128U RandU128(void) { RTUINT128U Ret; Ret.s.Hi = RTRandU64(); Ret.s.Lo = RTRandU64(); return Ret; } #ifdef TSTIEMAIMPL_WITH_GENERATOR static uint8_t RandU8Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU8(); } static uint8_t RandU8Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU8(); } static uint16_t RandU16Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU16(); } static uint16_t RandU16Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU16(); } static uint32_t RandU32Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU32(); } static uint32_t RandU32Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU32(); } static uint64_t RandU64Dst(uint32_t iTest) { if (iTest < g_cZeroDstTests) return 0; return RandU64(); } static uint64_t RandU64Src(uint32_t iTest) { if (iTest < g_cZeroSrcTests) return 0; return RandU64(); } /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */ static int16_t RandI16Src2(uint32_t iTest) { if (iTest < 18 * 4) switch (iTest % 4) { case 0: return 0; case 1: return INT16_MAX; case 2: return INT16_MIN; case 3: break; } return (int16_t)RandU16(); } /** 2nd operand for and FPU instruction, pairing with RandR80Src1. */ static int32_t RandI32Src2(uint32_t iTest) { if (iTest < 18 * 4) switch (iTest % 4) { case 0: return 0; case 1: return INT32_MAX; case 2: return INT32_MIN; case 3: break; } return (int32_t)RandU32(); } #if 0 static int64_t RandI64Src(uint32_t iTest) { RT_NOREF(iTest); return (int64_t)RandU64(); } #endif static uint16_t RandFcw(void) { return RandU16() & ~X86_FCW_ZERO_MASK; } static uint16_t RandFsw(void) { AssertCompile((X86_FSW_C_MASK | X86_FSW_XCPT_ES_MASK | X86_FSW_TOP_MASK | X86_FSW_B) == 0xffff); return RandU16(); } static void SafeR80FractionShift(PRTFLOAT80U pr80, uint8_t cShift) { if (pr80->sj64.uFraction >= RT_BIT_64(cShift)) pr80->sj64.uFraction >>= cShift; else pr80->sj64.uFraction = (cShift % 19) + 1; } static RTFLOAT80U RandR80Ex(uint8_t bType, unsigned cTarget = 80, bool fIntTarget = false) { Assert(cTarget == (!fIntTarget ? 80U : 16U) || cTarget == 64U || cTarget == 32U || (cTarget == 59U && fIntTarget)); RTFLOAT80U r80; r80.au64[0] = RandU64(); r80.au16[4] = RandU16(); /* * Adjust the random stuff according to bType. */ bType &= 0x1f; if (bType == 0 || bType == 1 || bType == 2 || bType == 3) { /* Zero (0), Pseudo-Infinity (1), Infinity (2), Indefinite (3). We only keep fSign here. */ r80.sj64.uExponent = bType == 0 ? 0 : 0x7fff; r80.sj64.uFraction = bType <= 2 ? 0 : RT_BIT_64(62); r80.sj64.fInteger = bType >= 2 ? 1 : 0; AssertMsg(bType != 0 || RTFLOAT80U_IS_ZERO(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType != 1 || RTFLOAT80U_IS_PSEUDO_INF(&r80), ("%s\n", FormatR80(&r80))); Assert( bType != 1 || RTFLOAT80U_IS_387_INVALID(&r80)); AssertMsg(bType != 2 || RTFLOAT80U_IS_INF(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType != 3 || RTFLOAT80U_IS_INDEFINITE(&r80), ("%s\n", FormatR80(&r80))); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* Denormals (4,5) and Pseudo denormals (6,7) */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0 && bType < 6) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0; r80.sj64.fInteger = bType >= 6; AssertMsg(bType >= 6 || RTFLOAT80U_IS_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); AssertMsg(bType < 6 || RTFLOAT80U_IS_PSEUDO_DENORMAL(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); } else if (bType == 8 || bType == 9) { /* Pseudo NaN. */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0 && !r80.sj64.fInteger) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0x7fff; if (r80.sj64.fInteger) r80.sj64.uFraction |= RT_BIT_64(62); else r80.sj64.uFraction &= ~RT_BIT_64(62); r80.sj64.fInteger = 0; AssertMsg(RTFLOAT80U_IS_PSEUDO_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s bType=%#x\n", FormatR80(&r80), bType)); Assert(RTFLOAT80U_IS_387_INVALID(&r80)); } else if (bType == 10 || bType == 11 || bType == 12 || bType == 13) { /* Quiet and signalling NaNs. */ if (bType & 1) SafeR80FractionShift(&r80, r80.sj64.uExponent % 62); else if (r80.sj64.uFraction == 0) r80.sj64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT80U_FRACTION_BITS) - 1); r80.sj64.uExponent = 0x7fff; if (bType < 12) r80.sj64.uFraction |= RT_BIT_64(62); /* quiet */ else r80.sj64.uFraction &= ~RT_BIT_64(62); /* signaling */ r80.sj64.fInteger = 1; AssertMsg(bType >= 12 || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(bType < 12 || RTFLOAT80U_IS_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_SIGNALLING_NAN(&r80) || RTFLOAT80U_IS_QUIET_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_QUIET_OR_SIGNALLING_NAN(&r80), ("%s\n", FormatR80(&r80))); AssertMsg(RTFLOAT80U_IS_NAN(&r80), ("%s\n", FormatR80(&r80))); } else if (bType == 14 || bType == 15) { /* Unnormals */ if (bType & 1) SafeR80FractionShift(&r80, RandU8() % 62); r80.sj64.fInteger = 0; if (r80.sj64.uExponent == RTFLOAT80U_EXP_MAX || r80.sj64.uExponent == 0) r80.sj64.uExponent = (uint16_t)RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 1); AssertMsg(RTFLOAT80U_IS_UNNORMAL(&r80), ("%s\n", FormatR80(&r80))); Assert(RTFLOAT80U_IS_387_INVALID(&r80)); } else if (bType < 26) { /* Make sure we have lots of normalized values. */ if (!fIntTarget) { const unsigned uMinExp = cTarget == 64 ? RTFLOAT80U_EXP_BIAS - RTFLOAT64U_EXP_BIAS : cTarget == 32 ? RTFLOAT80U_EXP_BIAS - RTFLOAT32U_EXP_BIAS : 0; const unsigned uMaxExp = cTarget == 64 ? uMinExp + RTFLOAT64U_EXP_MAX : cTarget == 32 ? uMinExp + RTFLOAT32U_EXP_MAX : RTFLOAT80U_EXP_MAX; r80.sj64.fInteger = 1; if (r80.sj64.uExponent <= uMinExp) r80.sj64.uExponent = uMinExp + 1; else if (r80.sj64.uExponent >= uMaxExp) r80.sj64.uExponent = uMaxExp - 1; if (bType == 16) { /* All 1s is useful to testing rounding. Also try trigger special behaviour by sometimes rounding out of range, while we're at it. */ r80.sj64.uFraction = RT_BIT_64(63) - 1; uint8_t bExp = RandU8(); if ((bExp & 3) == 0) r80.sj64.uExponent = uMaxExp - 1; else if ((bExp & 3) == 1) r80.sj64.uExponent = uMinExp + 1; else if ((bExp & 3) == 2) r80.sj64.uExponent = uMinExp - (bExp & 15); /* (small numbers are mapped to subnormal values) */ } } else { /* integer target: */ const unsigned uMinExp = RTFLOAT80U_EXP_BIAS; const unsigned uMaxExp = RTFLOAT80U_EXP_BIAS + cTarget - 2; r80.sj64.fInteger = 1; if (r80.sj64.uExponent < uMinExp) r80.sj64.uExponent = uMinExp; else if (r80.sj64.uExponent > uMaxExp) r80.sj64.uExponent = uMaxExp; if (bType == 16) { /* All 1s is useful to testing rounding. Also try trigger special behaviour by sometimes rounding out of range, while we're at it. */ r80.sj64.uFraction = RT_BIT_64(63) - 1; uint8_t bExp = RandU8(); if ((bExp & 3) == 0) r80.sj64.uExponent = uMaxExp; else if ((bExp & 3) == 1) r80.sj64.uFraction &= ~(RT_BIT_64(cTarget - 1 - r80.sj64.uExponent) - 1); /* no rounding */ } } AssertMsg(RTFLOAT80U_IS_NORMAL(&r80), ("%s\n", FormatR80(&r80))); } return r80; } static RTFLOAT80U RandR80(unsigned cTarget = 80, bool fIntTarget = false) { /* * Make it more likely that we get a good selection of special values. */ return RandR80Ex(RandU8(), cTarget, fIntTarget); } static RTFLOAT80U RandR80Src(uint32_t iTest, unsigned cTarget = 80, bool fIntTarget = false) { /* Make sure we cover all the basic types first before going for random selection: */ if (iTest <= 18) return RandR80Ex(18 - iTest, cTarget, fIntTarget); /* Starting with 3 normals. */ return RandR80(cTarget, fIntTarget); } /** * Helper for RandR80Src1 and RandR80Src2 that converts bType from a 0..11 range * to a 0..17, covering all basic value types. */ static uint8_t RandR80Src12RemapType(uint8_t bType) { switch (bType) { case 0: return 18; /* normal */ case 1: return 16; /* normal extreme rounding */ case 2: return 14; /* unnormal */ case 3: return 12; /* Signalling NaN */ case 4: return 10; /* Quiet NaN */ case 5: return 8; /* PseudoNaN */ case 6: return 6; /* Pseudo Denormal */ case 7: return 4; /* Denormal */ case 8: return 3; /* Indefinite */ case 9: return 2; /* Infinity */ case 10: return 1; /* Pseudo-Infinity */ case 11: return 0; /* Zero */ default: AssertFailedReturn(18); } } /** * This works in tandem with RandR80Src2 to make sure we cover all operand * type mixes first before we venture into regular random testing. * * There are 11 basic variations, when we leave out the five odd ones using * SafeR80FractionShift. Because of the special normalized value targetting at * rounding, we make it an even 12. So 144 combinations for two operands. */ static RTFLOAT80U RandR80Src1(uint32_t iTest, unsigned cPartnerBits = 80, bool fPartnerInt = false) { if (cPartnerBits == 80) { Assert(!fPartnerInt); if (iTest < 12 * 12) return RandR80Ex(RandR80Src12RemapType(iTest / 12)); } else if ((cPartnerBits == 64 || cPartnerBits == 32) && !fPartnerInt) { if (iTest < 12 * 10) return RandR80Ex(RandR80Src12RemapType(iTest / 10)); } else if (iTest < 18 * 4 && fPartnerInt) return RandR80Ex(iTest / 4); return RandR80(); } /** Partner to RandR80Src1. */ static RTFLOAT80U RandR80Src2(uint32_t iTest) { if (iTest < 12 * 12) return RandR80Ex(RandR80Src12RemapType(iTest % 12)); return RandR80(); } static void SafeR64FractionShift(PRTFLOAT64U pr64, uint8_t cShift) { if (pr64->s64.uFraction >= RT_BIT_64(cShift)) pr64->s64.uFraction >>= cShift; else pr64->s64.uFraction = (cShift % 19) + 1; } static RTFLOAT64U RandR64Ex(uint8_t bType) { RTFLOAT64U r64; r64.u = RandU64(); /* * Make it more likely that we get a good selection of special values. * On average 6 out of 16 calls should return a special value. */ bType &= 0xf; if (bType == 0 || bType == 1) { /* 0 or Infinity. We only keep fSign here. */ r64.s.uExponent = bType == 0 ? 0 : 0x7ff; r64.s.uFractionHigh = 0; r64.s.uFractionLow = 0; AssertMsg(bType != 0 || RTFLOAT64U_IS_ZERO(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(bType != 1 || RTFLOAT64U_IS_INF(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType == 2 || bType == 3) { /* Subnormals */ if (bType == 3) SafeR64FractionShift(&r64, r64.s64.uExponent % 51); else if (r64.s64.uFraction == 0) r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1); r64.s64.uExponent = 0; AssertMsg(RTFLOAT64U_IS_SUBNORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* NaNs */ if (bType & 1) SafeR64FractionShift(&r64, r64.s64.uExponent % 51); else if (r64.s64.uFraction == 0) r64.s64.uFraction = RTRandU64Ex(1, RT_BIT_64(RTFLOAT64U_FRACTION_BITS) - 1); r64.s64.uExponent = 0x7ff; if (bType < 6) r64.s64.uFraction |= RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* quiet */ else r64.s64.uFraction &= ~RT_BIT_64(RTFLOAT64U_FRACTION_BITS - 1); /* signalling */ AssertMsg(bType >= 6 || RTFLOAT64U_IS_QUIET_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(bType < 6 || RTFLOAT64U_IS_SIGNALLING_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); AssertMsg(RTFLOAT64U_IS_NAN(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } else if (bType < 12) { /* Make sure we have lots of normalized values. */ if (r64.s.uExponent == 0) r64.s.uExponent = 1; else if (r64.s.uExponent == 0x7ff) r64.s.uExponent = 0x7fe; AssertMsg(RTFLOAT64U_IS_NORMAL(&r64), ("%s bType=%#x\n", FormatR64(&r64), bType)); } return r64; } static RTFLOAT64U RandR64Src(uint32_t iTest) { if (iTest < 16) return RandR64Ex(iTest); return RandR64Ex(RandU8()); } /** Pairing with a 80-bit floating point arg. */ static RTFLOAT64U RandR64Src2(uint32_t iTest) { if (iTest < 12 * 10) return RandR64Ex(9 - iTest % 10); /* start with normal values */ return RandR64Ex(RandU8()); } static void SafeR32FractionShift(PRTFLOAT32U pr32, uint8_t cShift) { if (pr32->s.uFraction >= RT_BIT_32(cShift)) pr32->s.uFraction >>= cShift; else pr32->s.uFraction = (cShift % 19) + 1; } static RTFLOAT32U RandR32Ex(uint8_t bType) { RTFLOAT32U r32; r32.u = RandU32(); /* * Make it more likely that we get a good selection of special values. * On average 6 out of 16 calls should return a special value. */ bType &= 0xf; if (bType == 0 || bType == 1) { /* 0 or Infinity. We only keep fSign here. */ r32.s.uExponent = bType == 0 ? 0 : 0xff; r32.s.uFraction = 0; AssertMsg(bType != 0 || RTFLOAT32U_IS_ZERO(&r32), ("%s\n", FormatR32(&r32))); AssertMsg(bType != 1 || RTFLOAT32U_IS_INF(&r32), ("%s\n", FormatR32(&r32))); } else if (bType == 2 || bType == 3) { /* Subnormals */ if (bType == 3) SafeR32FractionShift(&r32, r32.s.uExponent % 22); else if (r32.s.uFraction == 0) r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1); r32.s.uExponent = 0; AssertMsg(RTFLOAT32U_IS_SUBNORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } else if (bType == 4 || bType == 5 || bType == 6 || bType == 7) { /* NaNs */ if (bType & 1) SafeR32FractionShift(&r32, r32.s.uExponent % 22); else if (r32.s.uFraction == 0) r32.s.uFraction = RTRandU32Ex(1, RT_BIT_32(RTFLOAT32U_FRACTION_BITS) - 1); r32.s.uExponent = 0xff; if (bType < 6) r32.s.uFraction |= RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* quiet */ else r32.s.uFraction &= ~RT_BIT_32(RTFLOAT32U_FRACTION_BITS - 1); /* signalling */ AssertMsg(bType >= 6 || RTFLOAT32U_IS_QUIET_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); AssertMsg(bType < 6 || RTFLOAT32U_IS_SIGNALLING_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); AssertMsg(RTFLOAT32U_IS_NAN(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } else if (bType < 12) { /* Make sure we have lots of normalized values. */ if (r32.s.uExponent == 0) r32.s.uExponent = 1; else if (r32.s.uExponent == 0xff) r32.s.uExponent = 0xfe; AssertMsg(RTFLOAT32U_IS_NORMAL(&r32), ("%s bType=%#x\n", FormatR32(&r32), bType)); } return r32; } static RTFLOAT32U RandR32Src(uint32_t iTest) { if (iTest < 16) return RandR32Ex(iTest); return RandR32Ex(RandU8()); } /** Pairing with a 80-bit floating point arg. */ static RTFLOAT32U RandR32Src2(uint32_t iTest) { if (iTest < 12 * 10) return RandR32Ex(9 - iTest % 10); /* start with normal values */ return RandR32Ex(RandU8()); } static RTPBCD80U RandD80Src(uint32_t iTest) { if (iTest < 3) { RTPBCD80U d80Zero = RTPBCD80U_INIT_ZERO(!(iTest & 1)); return d80Zero; } if (iTest < 5) { RTPBCD80U d80Ind = RTPBCD80U_INIT_INDEFINITE(); return d80Ind; } RTPBCD80U d80; uint8_t b = RandU8(); d80.s.fSign = b & 1; if ((iTest & 7) >= 6) { /* Illegal */ d80.s.uPad = (iTest & 7) == 7 ? b >> 1 : 0; for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++) d80.s.abPairs[iPair] = RandU8(); } else { /* Normal */ d80.s.uPad = 0; for (size_t iPair = 0; iPair < RT_ELEMENTS(d80.s.abPairs); iPair++) { uint8_t const uLo = (uint8_t)RTRandU32Ex(0, 9); uint8_t const uHi = (uint8_t)RTRandU32Ex(0, 9); d80.s.abPairs[iPair] = RTPBCD80U_MAKE_PAIR(uHi, uLo); } } return d80; } const char *GenFormatR80(PCRTFLOAT80U plrd) { if (RTFLOAT80U_IS_ZERO(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_ZERO(1)" : "RTFLOAT80U_INIT_ZERO(0)"; if (RTFLOAT80U_IS_INF(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_INF(1)" : "RTFLOAT80U_INIT_INF(0)"; if (RTFLOAT80U_IS_INDEFINITE(plrd)) return plrd->s.fSign ? "RTFLOAT80U_INIT_IND(1)" : "RTFLOAT80U_INIT_IND(0)"; if (RTFLOAT80U_IS_QUIET_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1) return plrd->s.fSign ? "RTFLOAT80U_INIT_QNAN(1)" : "RTFLOAT80U_INIT_QNAN(0)"; if (RTFLOAT80U_IS_SIGNALLING_NAN(plrd) && (plrd->s.uMantissa & (RT_BIT_64(62) - 1)) == 1) return plrd->s.fSign ? "RTFLOAT80U_INIT_SNAN(1)" : "RTFLOAT80U_INIT_SNAN(0)"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT80U_INIT_C(%d,%#RX64,%u)", plrd->s.fSign, plrd->s.uMantissa, plrd->s.uExponent); return pszBuf; } const char *GenFormatR64(PCRTFLOAT64U prd) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT64U_INIT_C(%d,%#RX64,%u)", prd->s.fSign, RT_MAKE_U64(prd->s.uFractionLow, prd->s.uFractionHigh), prd->s.uExponent); return pszBuf; } const char *GenFormatR32(PCRTFLOAT32U pr) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTFLOAT32U_INIT_C(%d,%#RX32,%u)", pr->s.fSign, pr->s.uFraction, pr->s.uExponent); return pszBuf; } const char *GenFormatD80(PCRTPBCD80U pd80) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t off; if (pd80->s.uPad == 0) off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_C(%d", pd80->s.fSign); else off = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "RTPBCD80U_INIT_EX_C(%#x,%d", pd80->s.uPad, pd80->s.fSign); size_t iPair = RT_ELEMENTS(pd80->s.abPairs); while (iPair-- > 0) off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, ",%d,%d", RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair]), RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])); pszBuf[off++] = ')'; pszBuf[off++] = '\0'; return pszBuf; } const char *GenFormatI64(int64_t i64) { if (i64 == INT64_MIN) /* This one is problematic */ return "INT64_MIN"; if (i64 == INT64_MAX) return "INT64_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT64_C(%RI64)", i64); return pszBuf; } const char *GenFormatI64(int64_t const *pi64) { return GenFormatI64(*pi64); } const char *GenFormatI32(int32_t i32) { if (i32 == INT32_MIN) /* This one is problematic */ return "INT32_MIN"; if (i32 == INT32_MAX) return "INT32_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT32_C(%RI32)", i32); return pszBuf; } const char *GenFormatI32(int32_t const *pi32) { return GenFormatI32(*pi32); } const char *GenFormatI16(int16_t i16) { if (i16 == INT16_MIN) /* This one is problematic */ return "INT16_MIN"; if (i16 == INT16_MAX) return "INT16_MAX"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), "INT16_C(%RI16)", i16); return pszBuf; } const char *GenFormatI16(int16_t const *pi16) { return GenFormatI16(*pi16); } static void GenerateHeader(PRTSTREAM pOut, const char *pszCpuDesc, const char *pszCpuType) { /* We want to tag the generated source code with the revision that produced it. */ static char s_szRev[] = "$Revision: 94695 $"; const char *pszRev = RTStrStripL(strchr(s_szRev, ':') + 1); size_t cchRev = 0; while (RT_C_IS_DIGIT(pszRev[cchRev])) cchRev++; RTStrmPrintf(pOut, "/* $Id: tstIEMAImpl.cpp 94695 2022-04-22 23:13:12Z vboxsync $ */\n" "/** @file\n" " * IEM Assembly Instruction Helper Testcase Data%s%s - r%.*s on %s.\n" " */\n" "\n" "/*\n" " * Copyright (C) 2022 Oracle Corporation\n" " *\n" " * This file is part of VirtualBox Open Source Edition (OSE), as\n" " * available from http://www.virtualbox.org. This file is free software;\n" " * you can redistribute it and/or modify it under the terms of the GNU\n" " * General Public License (GPL) as published by the Free Software\n" " * Foundation, in version 2 as it comes in the \"COPYING\" file of the\n" " * VirtualBox OSE distribution. VirtualBox OSE is distributed in the\n" " * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.\n" " */\n" "\n" "#include \"tstIEMAImpl.h\"\n" "\n" , pszCpuType ? " " : "", pszCpuType ? pszCpuType : "", cchRev, pszRev, pszCpuDesc); } static PRTSTREAM GenerateOpenWithHdr(const char *pszFilename, const char *pszCpuDesc, const char *pszCpuType) { PRTSTREAM pOut = NULL; int rc = RTStrmOpen(pszFilename, "w", &pOut); if (RT_SUCCESS(rc)) { GenerateHeader(pOut, pszCpuDesc, pszCpuType); return pOut; } RTMsgError("Failed to open %s for writing: %Rrc", pszFilename, rc); return NULL; } static RTEXITCODE GenerateFooterAndClose(PRTSTREAM pOut, const char *pszFilename, RTEXITCODE rcExit) { RTStrmPrintf(pOut, "\n" "/* end of file */\n"); int rc = RTStrmClose(pOut); if (RT_SUCCESS(rc)) return rcExit; return RTMsgErrorExitFailure("RTStrmClose failed on %s: %Rrc", pszFilename, rc); } static void GenerateArrayStart(PRTSTREAM pOut, const char *pszName, const char *pszType) { RTStrmPrintf(pOut, "%s const g_aTests_%s[] =\n{\n", pszType, pszName); } static void GenerateArrayEnd(PRTSTREAM pOut, const char *pszName) { RTStrmPrintf(pOut, "};\n" "uint32_t const g_cTests_%s = RT_ELEMENTS(g_aTests_%s);\n" "\n", pszName, pszName); } #endif /* TSTIEMAIMPL_WITH_GENERATOR */ /* * Test helpers. */ static bool IsTestEnabled(const char *pszName) { /* Process excludes first: */ uint32_t i = g_cExcludeTestPatterns; while (i-- > 0) if (RTStrSimplePatternMultiMatch(g_apszExcludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL)) return false; /* If no include patterns, everything is included: */ i = g_cIncludeTestPatterns; if (!i) return true; /* Otherwise only tests in the include patters gets tested: */ while (i-- > 0) if (RTStrSimplePatternMultiMatch(g_apszIncludeTestPatterns[i], RTSTR_MAX, pszName, RTSTR_MAX, NULL)) return true; return false; } static bool SubTestAndCheckIfEnabled(const char *pszName) { RTTestSub(g_hTest, pszName); if (IsTestEnabled(pszName)) return true; RTTestSkipped(g_hTest, g_cVerbosity > 0 ? "excluded" : NULL); return false; } static const char *EFlagsDiff(uint32_t fActual, uint32_t fExpected) { if (fActual == fExpected) return ""; uint32_t const fXor = fActual ^ fExpected; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define EFL_ENTRY(a_Flags) { #a_Flags, X86_EFL_ ## a_Flags } EFL_ENTRY(CF), EFL_ENTRY(PF), EFL_ENTRY(AF), EFL_ENTRY(ZF), EFL_ENTRY(SF), EFL_ENTRY(TF), EFL_ENTRY(IF), EFL_ENTRY(DF), EFL_ENTRY(OF), EFL_ENTRY(IOPL), EFL_ENTRY(NT), EFL_ENTRY(RF), EFL_ENTRY(VM), EFL_ENTRY(AC), EFL_ENTRY(VIF), EFL_ENTRY(VIP), EFL_ENTRY(ID), }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (s_aFlags[i].fFlag & fXor) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FswDiff(uint16_t fActual, uint16_t fExpected) { if (fActual == fExpected) return ""; uint16_t const fXor = fActual ^ fExpected; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t cch = RTStrPrintf(pszBuf, sizeof(g_aszBuf[0]), " - %#x", fXor); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define FSW_ENTRY(a_Flags) { #a_Flags, X86_FSW_ ## a_Flags } FSW_ENTRY(IE), FSW_ENTRY(DE), FSW_ENTRY(ZE), FSW_ENTRY(OE), FSW_ENTRY(UE), FSW_ENTRY(PE), FSW_ENTRY(SF), FSW_ENTRY(ES), FSW_ENTRY(C0), FSW_ENTRY(C1), FSW_ENTRY(C2), FSW_ENTRY(C3), FSW_ENTRY(B), }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (s_aFlags[i].fFlag & fXor) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, s_aFlags[i].fFlag & fActual ? "/%s" : "/!%s", s_aFlags[i].pszName); if (fXor & X86_FSW_TOP_MASK) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, "/TOP%u!%u", X86_FSW_TOP_GET(fActual), X86_FSW_TOP_GET(fExpected)); #if 0 /* For debugging fprem & fprem1 */ cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " - Q=%d (vs %d)", X86_FSW_CX_TO_QUOTIENT(fActual), X86_FSW_CX_TO_QUOTIENT(fExpected)); #endif RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FormatFcw(uint16_t fFcw) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; const char *pszPC = NULL; /* (msc+gcc are too stupid) */ switch (fFcw & X86_FCW_PC_MASK) { case X86_FCW_PC_24: pszPC = "PC24"; break; case X86_FCW_PC_RSVD: pszPC = "PCRSVD!"; break; case X86_FCW_PC_53: pszPC = "PC53"; break; case X86_FCW_PC_64: pszPC = "PC64"; break; } const char *pszRC = NULL; /* (msc+gcc are too stupid) */ switch (fFcw & X86_FCW_RC_MASK) { case X86_FCW_RC_NEAREST: pszRC = "NEAR"; break; case X86_FCW_RC_DOWN: pszRC = "DOWN"; break; case X86_FCW_RC_UP: pszRC = "UP"; break; case X86_FCW_RC_ZERO: pszRC = "ZERO"; break; } size_t cch = RTStrPrintf(&pszBuf[0], sizeof(g_aszBuf[0]), "%s %s", pszPC, pszRC); static struct { const char *pszName; uint32_t fFlag; } const s_aFlags[] = { #define FCW_ENTRY(a_Flags) { #a_Flags, X86_FCW_ ## a_Flags } FCW_ENTRY(IM), FCW_ENTRY(DM), FCW_ENTRY(ZM), FCW_ENTRY(OM), FCW_ENTRY(UM), FCW_ENTRY(PM), { "6M", 64 }, }; for (size_t i = 0; i < RT_ELEMENTS(s_aFlags); i++) if (fFcw & s_aFlags[i].fFlag) cch += RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, " %s", s_aFlags[i].pszName); RTStrPrintf(&pszBuf[cch], sizeof(g_aszBuf[0]) - cch, ""); return pszBuf; } static const char *FormatR80(PCRTFLOAT80U pr80) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR80(pszBuf, sizeof(g_aszBuf[0]), pr80, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatR64(PCRTFLOAT64U pr64) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR64(pszBuf, sizeof(g_aszBuf[0]), pr64, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatR32(PCRTFLOAT32U pr32) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatR32(pszBuf, sizeof(g_aszBuf[0]), pr32, 0, 0, RTSTR_F_SPECIAL); return pszBuf; } static const char *FormatD80(PCRTPBCD80U pd80) { /* There is only one indefinite endcoding (same as for 80-bit floating point), so get it out of the way first: */ if (RTPBCD80U_IS_INDEFINITE(pd80)) return "Ind"; char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; size_t off = 0; pszBuf[off++] = pd80->s.fSign ? '-' : '+'; unsigned cBadDigits = 0; size_t iPair = RT_ELEMENTS(pd80->s.abPairs); while (iPair-- > 0) { static const char s_szDigits[] = "0123456789abcdef"; static const uint8_t s_bBadDigits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 }; pszBuf[off++] = s_szDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])]; pszBuf[off++] = s_szDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])]; cBadDigits += s_bBadDigits[RTPBCD80U_HI_DIGIT(pd80->s.abPairs[iPair])] + s_bBadDigits[RTPBCD80U_LO_DIGIT(pd80->s.abPairs[iPair])]; } if (cBadDigits || pd80->s.uPad != 0) off += RTStrPrintf(&pszBuf[off], sizeof(g_aszBuf[0]) - off, "[%u,%#x]", cBadDigits, pd80->s.uPad); pszBuf[off] = '\0'; return pszBuf; } #if 0 static const char *FormatI64(int64_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU64(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } #endif static const char *FormatI32(int32_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU32(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } static const char *FormatI16(int16_t const *piVal) { char *pszBuf = g_aszBuf[g_idxBuf++ % RT_ELEMENTS(g_aszBuf)]; RTStrFormatU16(pszBuf, sizeof(g_aszBuf[0]), *piVal, 16, 0, 0, RTSTR_F_SPECIAL | RTSTR_F_VALSIGNED); return pszBuf; } /* * Binary operations. */ TYPEDEF_SUBTEST_TYPE(BINU8_T, BINU8_TEST_T, PFNIEMAIMPLBINU8); TYPEDEF_SUBTEST_TYPE(BINU16_T, BINU16_TEST_T, PFNIEMAIMPLBINU16); TYPEDEF_SUBTEST_TYPE(BINU32_T, BINU32_TEST_T, PFNIEMAIMPLBINU32); TYPEDEF_SUBTEST_TYPE(BINU64_T, BINU64_TEST_T, PFNIEMAIMPLBINU64); #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \ static void BinU ## a_cBits ## Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aBinU ## a_cBits); iFn++) \ { \ PFNIEMAIMPLBINU ## a_cBits const pfn = g_aBinU ## a_cBits[iFn].pfnNative \ ? g_aBinU ## a_cBits[iFn].pfnNative : g_aBinU ## a_cBits[iFn].pfn; \ PRTSTREAM pOutFn = pOut; \ if (g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) \ { \ if (g_aBinU ## a_cBits[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ pOutFn = pOutCpu; \ } \ \ GenerateArrayStart(pOutFn, g_aBinU ## a_cBits[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ if (g_aBinU ## a_cBits[iFn].uExtra) \ Test.uSrcIn &= a_cBits - 1; /* Restrict bit index according to operand width */ \ Test.uMisc = 0; \ pfn(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut); \ RTStrmPrintf(pOutFn, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", %#x }, /* #%u */\n", \ Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.uMisc, iTest); \ } \ GenerateArrayEnd(pOutFn, g_aBinU ## a_cBits[iFn].pszName); \ } \ } #else # define GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) #endif #define TEST_BINARY_OPS(a_cBits, a_uType, a_Fmt, a_TestType, a_aSubTests) \ GEN_BINARY_TESTS(a_cBits, a_Fmt, a_TestType) \ \ static void BinU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ PFNIEMAIMPLBINU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_uType uDst = paTests[iTest].uDstIn; \ pfn(&uDst, paTests[iTest].uSrcIn, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s - %s\n", \ iTest, !iVar ? "" : "/n", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut), \ uDst == paTests[iTest].uDstOut ? "eflags" : fEfl == paTests[iTest].fEflOut ? "dst" : "both"); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } /* * 8-bit binary operations. */ static const BINU8_T g_aBinU8[] = { ENTRY(add_u8), ENTRY(add_u8_locked), ENTRY(adc_u8), ENTRY(adc_u8_locked), ENTRY(sub_u8), ENTRY(sub_u8_locked), ENTRY(sbb_u8), ENTRY(sbb_u8_locked), ENTRY(or_u8), ENTRY(or_u8_locked), ENTRY(xor_u8), ENTRY(xor_u8_locked), ENTRY(and_u8), ENTRY(and_u8_locked), ENTRY(cmp_u8), ENTRY(test_u8), }; TEST_BINARY_OPS(8, uint8_t, "%#04x", BINU8_TEST_T, g_aBinU8) /* * 16-bit binary operations. */ static const BINU16_T g_aBinU16[] = { ENTRY(add_u16), ENTRY(add_u16_locked), ENTRY(adc_u16), ENTRY(adc_u16_locked), ENTRY(sub_u16), ENTRY(sub_u16_locked), ENTRY(sbb_u16), ENTRY(sbb_u16_locked), ENTRY(or_u16), ENTRY(or_u16_locked), ENTRY(xor_u16), ENTRY(xor_u16_locked), ENTRY(and_u16), ENTRY(and_u16_locked), ENTRY(cmp_u16), ENTRY(test_u16), ENTRY_EX(bt_u16, 1), ENTRY_EX(btc_u16, 1), ENTRY_EX(btc_u16_locked, 1), ENTRY_EX(btr_u16, 1), ENTRY_EX(btr_u16_locked, 1), ENTRY_EX(bts_u16, 1), ENTRY_EX(bts_u16_locked, 1), ENTRY_AMD( bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsf_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsr_u16, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_INTEL(imul_two_u16, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY(arpl), }; TEST_BINARY_OPS(16, uint16_t, "%#06x", BINU16_TEST_T, g_aBinU16) /* * 32-bit binary operations. */ static const BINU32_T g_aBinU32[] = { ENTRY(add_u32), ENTRY(add_u32_locked), ENTRY(adc_u32), ENTRY(adc_u32_locked), ENTRY(sub_u32), ENTRY(sub_u32_locked), ENTRY(sbb_u32), ENTRY(sbb_u32_locked), ENTRY(or_u32), ENTRY(or_u32_locked), ENTRY(xor_u32), ENTRY(xor_u32_locked), ENTRY(and_u32), ENTRY(and_u32_locked), ENTRY(cmp_u32), ENTRY(test_u32), ENTRY_EX(bt_u32, 1), ENTRY_EX(btc_u32, 1), ENTRY_EX(btc_u32_locked, 1), ENTRY_EX(btr_u32, 1), ENTRY_EX(btr_u32_locked, 1), ENTRY_EX(bts_u32, 1), ENTRY_EX(bts_u32_locked, 1), ENTRY_AMD( bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsf_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsr_u32, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_INTEL(imul_two_u32, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), }; TEST_BINARY_OPS(32, uint32_t, "%#010RX32", BINU32_TEST_T, g_aBinU32) /* * 64-bit binary operations. */ static const BINU64_T g_aBinU64[] = { ENTRY(add_u64), ENTRY(add_u64_locked), ENTRY(adc_u64), ENTRY(adc_u64_locked), ENTRY(sub_u64), ENTRY(sub_u64_locked), ENTRY(sbb_u64), ENTRY(sbb_u64_locked), ENTRY(or_u64), ENTRY(or_u64_locked), ENTRY(xor_u64), ENTRY(xor_u64_locked), ENTRY(and_u64), ENTRY(and_u64_locked), ENTRY(cmp_u64), ENTRY(test_u64), ENTRY_EX(bt_u64, 1), ENTRY_EX(btc_u64, 1), ENTRY_EX(btc_u64_locked, 1), ENTRY_EX(btr_u64, 1), ENTRY_EX(btr_u64_locked, 1), ENTRY_EX(bts_u64, 1), ENTRY_EX(bts_u64_locked, 1), ENTRY_AMD( bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsf_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_INTEL(bsr_u64, X86_EFL_CF | X86_EFL_PF | X86_EFL_AF | X86_EFL_SF | X86_EFL_OF), ENTRY_AMD( imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), ENTRY_INTEL(imul_two_u64, X86_EFL_PF | X86_EFL_AF | X86_EFL_ZF | X86_EFL_SF), }; TEST_BINARY_OPS(64, uint64_t, "%#018RX64", BINU64_TEST_T, g_aBinU64) /* * XCHG */ static void XchgTest(void) { if (!SubTestAndCheckIfEnabled("xchg")) return; typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU8, (uint8_t *pu8Mem, uint8_t *pu8Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU16,(uint16_t *pu16Mem, uint16_t *pu16Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU32,(uint32_t *pu32Mem, uint32_t *pu32Reg)); typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXCHGU64,(uint64_t *pu64Mem, uint64_t *pu64Reg)); static struct { uint8_t cb; uint64_t fMask; union { uintptr_t pfn; FNIEMAIMPLXCHGU8 *pfnU8; FNIEMAIMPLXCHGU16 *pfnU16; FNIEMAIMPLXCHGU32 *pfnU32; FNIEMAIMPLXCHGU64 *pfnU64; } u; } s_aXchgWorkers[] = { { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_locked } }, { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_locked } }, { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_locked } }, { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_locked } }, { 1, UINT8_MAX, { (uintptr_t)iemAImpl_xchg_u8_unlocked } }, { 2, UINT16_MAX, { (uintptr_t)iemAImpl_xchg_u16_unlocked } }, { 4, UINT32_MAX, { (uintptr_t)iemAImpl_xchg_u32_unlocked } }, { 8, UINT64_MAX, { (uintptr_t)iemAImpl_xchg_u64_unlocked } }, }; for (size_t i = 0; i < RT_ELEMENTS(s_aXchgWorkers); i++) { RTUINT64U uIn1, uIn2, uMem, uDst; uMem.u = uIn1.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask); uDst.u = uIn2.u = RTRandU64Ex(0, s_aXchgWorkers[i].fMask); if (uIn1.u == uIn2.u) uDst.u = uIn2.u = ~uIn2.u; switch (s_aXchgWorkers[i].cb) { case 1: s_aXchgWorkers[i].u.pfnU8(g_pu8, g_pu8Two); s_aXchgWorkers[i].u.pfnU8(&uMem.au8[0], &uDst.au8[0]); break; case 2: s_aXchgWorkers[i].u.pfnU16(g_pu16, g_pu16Two); s_aXchgWorkers[i].u.pfnU16(&uMem.Words.w0, &uDst.Words.w0); break; case 4: s_aXchgWorkers[i].u.pfnU32(g_pu32, g_pu32Two); s_aXchgWorkers[i].u.pfnU32(&uMem.DWords.dw0, &uDst.DWords.dw0); break; case 8: s_aXchgWorkers[i].u.pfnU64(g_pu64, g_pu64Two); s_aXchgWorkers[i].u.pfnU64(&uMem.u, &uDst.u); break; default: RTTestFailed(g_hTest, "%d\n", s_aXchgWorkers[i].cb); break; } if (uMem.u != uIn2.u || uDst.u != uIn1.u) RTTestFailed(g_hTest, "i=%u: %#RX64, %#RX64 -> %#RX64, %#RX64\n", i, uIn1.u, uIn2.u, uMem.u, uDst.u); } } /* * XADD */ static void XaddTest(void) { #define TEST_XADD(a_cBits, a_Type, a_Fmt) do { \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLXADDU ## a_cBits, (a_Type *, a_Type *, uint32_t *)); \ static struct \ { \ const char *pszName; \ FNIEMAIMPLXADDU ## a_cBits *pfn; \ BINU ## a_cBits ## _TEST_T const *paTests; \ uint32_t const *pcTests; \ } const s_aFuncs[] = \ { \ { "xadd_u" # a_cBits, iemAImpl_xadd_u ## a_cBits, \ g_aTests_add_u ## a_cBits, &g_cTests_add_u ## a_cBits }, \ { "xadd_u" # a_cBits "8_locked", iemAImpl_xadd_u ## a_cBits ## _locked, \ g_aTests_add_u ## a_cBits, &g_cTests_add_u ## a_cBits }, \ }; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; \ uint32_t const cTests = *s_aFuncs[iFn].pcTests; \ BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uSrc = paTests[iTest].uSrcIn; \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uSrc, &fEfl); \ if ( fEfl != paTests[iTest].fEflOut \ || *g_pu ## a_cBits != paTests[iTest].uDstOut \ || uSrc != paTests[iTest].uDstIn) \ RTTestFailed(g_hTest, "%s/#%u: efl=%#08x dst=" a_Fmt " src=" a_Fmt " -> efl=%#08x dst=" a_Fmt " src=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, \ fEfl, *g_pu ## a_cBits, uSrc, paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].uDstIn, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ } \ } \ } while(0) TEST_XADD(8, uint8_t, "%#04x"); TEST_XADD(16, uint16_t, "%#06x"); TEST_XADD(32, uint32_t, "%#010RX32"); TEST_XADD(64, uint64_t, "%#010RX64"); } /* * CMPXCHG */ static void CmpXchgTest(void) { #define TEST_CMPXCHG(a_cBits, a_Type, a_Fmt) do {\ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHGU ## a_cBits, (a_Type *, a_Type *, a_Type, uint32_t *)); \ static struct \ { \ const char *pszName; \ FNIEMAIMPLCMPXCHGU ## a_cBits *pfn; \ PFNIEMAIMPLBINU ## a_cBits pfnSub; \ BINU ## a_cBits ## _TEST_T const *paTests; \ uint32_t const *pcTests; \ } const s_aFuncs[] = \ { \ { "cmpxchg_u" # a_cBits, iemAImpl_cmpxchg_u ## a_cBits, iemAImpl_sub_u ## a_cBits, \ g_aTests_cmp_u ## a_cBits, &g_cTests_cmp_u ## a_cBits }, \ { "cmpxchg_u" # a_cBits "_locked", iemAImpl_cmpxchg_u ## a_cBits ## _locked, iemAImpl_sub_u ## a_cBits, \ g_aTests_cmp_u ## a_cBits, &g_cTests_cmp_u ## a_cBits }, \ }; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; \ BINU ## a_cBits ## _TEST_T const * const paTests = s_aFuncs[iFn].paTests; \ uint32_t const cTests = *s_aFuncs[iFn].pcTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ /* as is (99% likely to be negative). */ \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type const uNew = paTests[iTest].uSrcIn + 0x42; \ a_Type uA = paTests[iTest].uDstIn; \ *g_pu ## a_cBits = paTests[iTest].uSrcIn; \ a_Type const uExpect = uA != paTests[iTest].uSrcIn ? paTests[iTest].uSrcIn : uNew; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \ if ( fEfl != paTests[iTest].fEflOut \ || *g_pu ## a_cBits != uExpect \ || uA != paTests[iTest].uSrcIn) \ RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uSrcIn, paTests[iTest].uDstIn, \ uNew, fEfl, *g_pu ## a_cBits, uA, paTests[iTest].fEflOut, uExpect, paTests[iTest].uSrcIn, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ /* positive */ \ uint32_t fEflExpect = paTests[iTest].fEflIn; \ uA = paTests[iTest].uDstIn; \ s_aFuncs[iFn].pfnSub(&uA, uA, &fEflExpect); \ fEfl = paTests[iTest].fEflIn; \ uA = paTests[iTest].uDstIn; \ *g_pu ## a_cBits = uA; \ s_aFuncs[iFn].pfn(g_pu ## a_cBits, &uA, uNew, &fEfl); \ if ( fEfl != fEflExpect \ || *g_pu ## a_cBits != uNew \ || uA != paTests[iTest].uDstIn) \ RTTestFailed(g_hTest, "%s/#%ua: efl=%#08x dst=" a_Fmt " cmp=" a_Fmt " new=" a_Fmt " -> efl=%#08x dst=" a_Fmt " old=" a_Fmt ", expected %#08x, " a_Fmt ", " a_Fmt "%s\n", \ s_aFuncs[iFn].pszName, iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uDstIn, \ uNew, fEfl, *g_pu ## a_cBits, uA, fEflExpect, uNew, paTests[iTest].uDstIn, \ EFlagsDiff(fEfl, fEflExpect)); \ } \ } \ } while(0) TEST_CMPXCHG(8, uint8_t, "%#04RX8"); TEST_CMPXCHG(16, uint16_t, "%#06x"); TEST_CMPXCHG(32, uint32_t, "%#010RX32"); #if ARCH_BITS != 32 /* calling convension issue, skipping as it's an unsupported host */ TEST_CMPXCHG(64, uint64_t, "%#010RX64"); #endif } static void CmpXchg8bTest(void) { typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG8B,(uint64_t *, PRTUINT64U, PRTUINT64U, uint32_t *)); static struct { const char *pszName; FNIEMAIMPLCMPXCHG8B *pfn; } const s_aFuncs[] = { { "cmpxchg8b", iemAImpl_cmpxchg8b }, { "cmpxchg8b_locked", iemAImpl_cmpxchg8b_locked }, }; for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) { if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; for (uint32_t iTest = 0; iTest < 4; iTest += 2) { uint64_t const uOldValue = RandU64(); uint64_t const uNewValue = RandU64(); /* positive test. */ RTUINT64U uA, uB; uB.u = uNewValue; uA.u = uOldValue; *g_pu64 = uOldValue; uint32_t fEflIn = RandEFlags(); uint32_t fEfl = fEflIn; s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl); if ( fEfl != (fEflIn | X86_EFL_ZF) || *g_pu64 != uNewValue || uA.u != uOldValue) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n", iTest, fEflIn, uOldValue, uOldValue, uNewValue, fEfl, *g_pu64, uA.u, (fEflIn | X86_EFL_ZF), uNewValue, uOldValue, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.u == uNewValue); /* negative */ uint64_t const uExpect = ~uOldValue; *g_pu64 = uExpect; uA.u = uOldValue; uB.u = uNewValue; fEfl = fEflIn = RandEFlags(); s_aFuncs[iFn].pfn(g_pu64, &uA, &uB, &fEfl); if ( fEfl != (fEflIn & ~X86_EFL_ZF) || *g_pu64 != uExpect || uA.u != uExpect) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64 cmp=%#018RX64 new=%#018RX64\n -> efl=%#08x dst=%#018RX64 old=%#018RX64,\n wanted %#08x, %#018RX64, %#018RX64%s\n", iTest + 1, fEflIn, uExpect, uOldValue, uNewValue, fEfl, *g_pu64, uA.u, (fEflIn & ~X86_EFL_ZF), uExpect, uExpect, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.u == uNewValue); } } } static void CmpXchg16bTest(void) { typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCMPXCHG16B,(PRTUINT128U, PRTUINT128U, PRTUINT128U, uint32_t *)); static struct { const char *pszName; FNIEMAIMPLCMPXCHG16B *pfn; } const s_aFuncs[] = { { "cmpxchg16b", iemAImpl_cmpxchg16b }, { "cmpxchg16b_locked", iemAImpl_cmpxchg16b_locked }, #if !defined(RT_ARCH_ARM64) { "cmpxchg16b_fallback", iemAImpl_cmpxchg16b_fallback }, #endif }; for (size_t iFn = 0; iFn < RT_ELEMENTS(s_aFuncs); iFn++) { if (!SubTestAndCheckIfEnabled(s_aFuncs[iFn].pszName)) continue; #if !defined(IEM_WITHOUT_ASSEMBLY) && defined(RT_ARCH_AMD64) if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_CX16)) { RTTestSkipped(g_hTest, "no hardware cmpxchg16b"); continue; } #endif for (uint32_t iTest = 0; iTest < 4; iTest += 2) { RTUINT128U const uOldValue = RandU128(); RTUINT128U const uNewValue = RandU128(); /* positive test. */ RTUINT128U uA, uB; uB = uNewValue; uA = uOldValue; *g_pu128 = uOldValue; uint32_t fEflIn = RandEFlags(); uint32_t fEfl = fEflIn; s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl); if ( fEfl != (fEflIn | X86_EFL_ZF) || g_pu128->s.Lo != uNewValue.s.Lo || g_pu128->s.Hi != uNewValue.s.Hi || uA.s.Lo != uOldValue.s.Lo || uA.s.Hi != uOldValue.s.Hi) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n" " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n" " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n", iTest, fEflIn, uOldValue.s.Hi, uOldValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo, fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo, (fEflIn | X86_EFL_ZF), uNewValue.s.Hi, uNewValue.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, EFlagsDiff(fEfl, fEflIn | X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi); /* negative */ RTUINT128U const uExpect = RTUINT128_INIT(~uOldValue.s.Hi, ~uOldValue.s.Lo); *g_pu128 = uExpect; uA = uOldValue; uB = uNewValue; fEfl = fEflIn = RandEFlags(); s_aFuncs[iFn].pfn(g_pu128, &uA, &uB, &fEfl); if ( fEfl != (fEflIn & ~X86_EFL_ZF) || g_pu128->s.Lo != uExpect.s.Lo || g_pu128->s.Hi != uExpect.s.Hi || uA.s.Lo != uExpect.s.Lo || uA.s.Hi != uExpect.s.Hi) RTTestFailed(g_hTest, "#%u: efl=%#08x dst=%#018RX64'%016RX64 cmp=%#018RX64'%016RX64 new=%#018RX64'%016RX64\n" " -> efl=%#08x dst=%#018RX64'%016RX64 old=%#018RX64'%016RX64,\n" " wanted %#08x, %#018RX64'%016RX64, %#018RX64'%016RX64%s\n", iTest + 1, fEflIn, uExpect.s.Hi, uExpect.s.Lo, uOldValue.s.Hi, uOldValue.s.Lo, uNewValue.s.Hi, uNewValue.s.Lo, fEfl, g_pu128->s.Hi, g_pu128->s.Lo, uA.s.Hi, uA.s.Lo, (fEflIn & ~X86_EFL_ZF), uExpect.s.Hi, uExpect.s.Lo, uExpect.s.Hi, uExpect.s.Lo, EFlagsDiff(fEfl, fEflIn & ~X86_EFL_ZF)); RTTEST_CHECK(g_hTest, uB.s.Lo == uNewValue.s.Lo && uB.s.Hi == uNewValue.s.Hi); } } } /* * Double shifts. * * Note! We use BINUxx_TEST_T with the shift value in the uMisc field. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ void ShiftDblU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \ a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, Test.uMisc, &Test.fEflOut); \ RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", %2u }, /* #%u */\n", \ Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.uMisc, iTest); \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_SHIFT_DBL(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTDBLU ## a_cBits); \ \ static a_SubTestType const a_aSubTests[] = \ { \ ENTRY_AMD(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_INTEL(shld_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_AMD(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ ENTRY_INTEL(shrd_u ## a_cBits, X86_EFL_OF | X86_EFL_CF), \ }; \ \ GEN_SHIFT_DBL(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static void ShiftDblU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLSHIFTDBLU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uDst = paTests[iTest].uDstIn; \ pfn(&uDst, paTests[iTest].uSrcIn, paTests[iTest].uMisc, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%03u%s: efl=%#08x dst=" a_Fmt " src=" a_Fmt " shift=%-2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s%s\n", \ iTest, iVar == 0 ? "" : "/n", paTests[iTest].fEflIn, \ paTests[iTest].uDstIn, paTests[iTest].uSrcIn, (unsigned)paTests[iTest].uMisc, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut), uDst == paTests[iTest].uDstOut ? "" : " dst!"); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ pfn(g_pu ## a_cBits, paTests[iTest].uSrcIn, paTests[iTest].uMisc, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_SHIFT_DBL(16, uint16_t, "%#06RX16", BINU16_TEST_T, SHIFT_DBL_U16_T, g_aShiftDblU16) TEST_SHIFT_DBL(32, uint32_t, "%#010RX32", BINU32_TEST_T, SHIFT_DBL_U32_T, g_aShiftDblU32) TEST_SHIFT_DBL(64, uint64_t, "%#018RX64", BINU64_TEST_T, SHIFT_DBL_U64_T, g_aShiftDblU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void ShiftDblGenerate(PRTSTREAM pOut, uint32_t cTests) { ShiftDblU16Generate(pOut, cTests); ShiftDblU32Generate(pOut, cTests); ShiftDblU64Generate(pOut, cTests); } #endif static void ShiftDblTest(void) { ShiftDblU16Test(); ShiftDblU32Test(); ShiftDblU64Test(); } /* * Unary operators. * * Note! We use BINUxx_TEST_T ignoreing uSrcIn and uMisc. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \ void UnaryU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \ { \ GenerateArrayStart(pOut, g_aUnaryU ## a_cBits[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits(); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = 0; \ Test.uMisc = 0; \ g_aUnaryU ## a_cBits[iFn].pfn(&Test.uDstOut, &Test.fEflOut); \ RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, 0 }, /* #%u */\n", \ Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, iTest); \ } \ GenerateArrayEnd(pOut, g_aUnaryU ## a_cBits[iFn].pszName); \ } \ } #else # define GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) #endif #define TEST_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLUNARYU ## a_cBits); \ static a_SubTestType const g_aUnaryU ## a_cBits [] = \ { \ ENTRY(inc_u ## a_cBits), \ ENTRY(inc_u ## a_cBits ## _locked), \ ENTRY(dec_u ## a_cBits), \ ENTRY(dec_u ## a_cBits ## _locked), \ ENTRY(not_u ## a_cBits), \ ENTRY(not_u ## a_cBits ## _locked), \ ENTRY(neg_u ## a_cBits), \ ENTRY(neg_u ## a_cBits ## _locked), \ }; \ \ GEN_UNARY(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType) \ \ static void UnaryU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aUnaryU ## a_cBits); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(g_aUnaryU ## a_cBits[iFn].pszName)) continue; \ a_TestType const * const paTests = g_aUnaryU ## a_cBits[iFn].paTests; \ uint32_t const cTests = *g_aUnaryU ## a_cBits[iFn].pcTests; \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uDst = paTests[iTest].uDstIn; \ g_aUnaryU ## a_cBits[iFn].pfn(&uDst, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut) \ RTTestFailed(g_hTest, "#%u: efl=%#08x dst=" a_Fmt " -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \ iTest, paTests[iTest].fEflIn, paTests[iTest].uDstIn, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ g_aUnaryU ## a_cBits[iFn].pfn(g_pu ## a_cBits, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ } \ } TEST_UNARY(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_UNARY_U8_T) TEST_UNARY(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_UNARY_U16_T) TEST_UNARY(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_UNARY_U32_T) TEST_UNARY(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_UNARY_U64_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void UnaryGenerate(PRTSTREAM pOut, uint32_t cTests) { UnaryU8Generate(pOut, cTests); UnaryU16Generate(pOut, cTests); UnaryU32Generate(pOut, cTests); UnaryU64Generate(pOut, cTests); } #endif static void UnaryTest(void) { UnaryU8Test(); UnaryU16Test(); UnaryU32Test(); UnaryU64Test(); } /* * Shifts. * * Note! We use BINUxx_TEST_T with the shift count in uMisc and uSrcIn unused. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ void ShiftU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDstIn = RandU ## a_cBits ## Dst(iTest); \ Test.uDstOut = Test.uDstIn; \ Test.uSrcIn = 0; \ Test.uMisc = RandU8() & (a_cBits * 4 - 1); /* need to go way beyond the a_cBits limit */ \ a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \ RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, %-2u }, /* #%u */\n", \ Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uMisc, iTest); \ \ Test.fEflIn = (~Test.fEflIn & X86_EFL_LIVE_MASK) | X86_EFL_RA1_MASK; \ Test.fEflOut = Test.fEflIn; \ Test.uDstOut = Test.uDstIn; \ a_aSubTests[iFn].pfnNative(&Test.uDstOut, Test.uMisc, &Test.fEflOut); \ RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", 0, %-2u }, /* #%u b */\n", \ Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uMisc, iTest); \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_SHIFT(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLSHIFTU ## a_cBits); \ static a_SubTestType const a_aSubTests[] = \ { \ ENTRY_AMD( rol_u ## a_cBits, X86_EFL_OF), \ ENTRY_INTEL(rol_u ## a_cBits, X86_EFL_OF), \ ENTRY_AMD( ror_u ## a_cBits, X86_EFL_OF), \ ENTRY_INTEL(ror_u ## a_cBits, X86_EFL_OF), \ ENTRY_AMD( rcl_u ## a_cBits, X86_EFL_OF), \ ENTRY_INTEL(rcl_u ## a_cBits, X86_EFL_OF), \ ENTRY_AMD( rcr_u ## a_cBits, X86_EFL_OF), \ ENTRY_INTEL(rcr_u ## a_cBits, X86_EFL_OF), \ ENTRY_AMD( shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_INTEL(shl_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_AMD( shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_INTEL(shr_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_AMD( sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ ENTRY_INTEL(sar_u ## a_cBits, X86_EFL_OF | X86_EFL_AF), \ }; \ \ GEN_SHIFT(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static void ShiftU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ PFNIEMAIMPLSHIFTU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uDst = paTests[iTest].uDstIn; \ pfn(&uDst, paTests[iTest].uMisc, &fEfl); \ if ( uDst != paTests[iTest].uDstOut \ || fEfl != paTests[iTest].fEflOut ) \ RTTestFailed(g_hTest, "#%u%s: efl=%#08x dst=" a_Fmt " shift=%2u -> efl=%#08x dst=" a_Fmt ", expected %#08x & " a_Fmt "%s\n", \ iTest, iVar == 0 ? "" : "/n", \ paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uMisc, \ fEfl, uDst, paTests[iTest].fEflOut, paTests[iTest].uDstOut, \ EFlagsDiff(fEfl, paTests[iTest].fEflOut)); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDstIn; \ *g_pfEfl = paTests[iTest].fEflIn; \ pfn(g_pu ## a_cBits, paTests[iTest].uMisc, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDstOut); \ RTTEST_CHECK(g_hTest, *g_pfEfl == paTests[iTest].fEflOut); \ } \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_SHIFT(8, uint8_t, "%#04RX8", BINU8_TEST_T, INT_BINARY_U8_T, g_aShiftU8) TEST_SHIFT(16, uint16_t, "%#06RX16", BINU16_TEST_T, INT_BINARY_U16_T, g_aShiftU16) TEST_SHIFT(32, uint32_t, "%#010RX32", BINU32_TEST_T, INT_BINARY_U32_T, g_aShiftU32) TEST_SHIFT(64, uint64_t, "%#018RX64", BINU64_TEST_T, INT_BINARY_U64_T, g_aShiftU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void ShiftGenerate(PRTSTREAM pOut, uint32_t cTests) { ShiftU8Generate(pOut, cTests); ShiftU16Generate(pOut, cTests); ShiftU32Generate(pOut, cTests); ShiftU64Generate(pOut, cTests); } #endif static void ShiftTest(void) { ShiftU8Test(); ShiftU16Test(); ShiftU32Test(); ShiftU64Test(); } /* * Multiplication and division. * * Note! The 8-bit functions has a different format, so we need to duplicate things. * Note! Currently ignoring undefined bits. */ /* U8 */ TYPEDEF_SUBTEST_TYPE(INT_MULDIV_U8_T, MULDIVU8_TEST_T, PFNIEMAIMPLMULDIVU8); static INT_MULDIV_U8_T const g_aMulDivU8[] = { ENTRY_AMD_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF), ENTRY_INTEL_EX(mul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), ENTRY_AMD_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF), ENTRY_INTEL_EX(imul_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), ENTRY_AMD_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_INTEL_EX(div_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_AMD_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), ENTRY_INTEL_EX(idiv_u8, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void MulDivU8Generate(PRTSTREAM pOut, uint32_t cTests) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++) { if ( g_aMulDivU8[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE && g_aMulDivU8[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; GenerateArrayStart(pOut, g_aMulDivU8[iFn].pszName, "MULDIVU8_TEST_T"); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) { MULDIVU8_TEST_T Test; Test.fEflIn = RandEFlags(); Test.fEflOut = Test.fEflIn; Test.uDstIn = RandU16Dst(iTest); Test.uDstOut = Test.uDstIn; Test.uSrcIn = RandU8Src(iTest); Test.rc = g_aMulDivU8[iFn].pfnNative(&Test.uDstOut, Test.uSrcIn, &Test.fEflOut); RTStrmPrintf(pOut, " { %#08x, %#08x, %#06RX16, %#06RX16, %#04RX8, %d }, /* #%u */\n", Test.fEflIn, Test.fEflOut, Test.uDstIn, Test.uDstOut, Test.uSrcIn, Test.rc, iTest); } GenerateArrayEnd(pOut, g_aMulDivU8[iFn].pszName); } } #endif static void MulDivU8Test(void) { for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aMulDivU8); iFn++) { if (!SubTestAndCheckIfEnabled(g_aMulDivU8[iFn].pszName)) continue; \ MULDIVU8_TEST_T const * const paTests = g_aMulDivU8[iFn].paTests; uint32_t const cTests = *g_aMulDivU8[iFn].pcTests; uint32_t const fEflIgn = g_aMulDivU8[iFn].uExtra; PFNIEMAIMPLMULDIVU8 pfn = g_aMulDivU8[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aMulDivU8[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++ ) { uint32_t fEfl = paTests[iTest].fEflIn; uint16_t uDst = paTests[iTest].uDstIn; int rc = g_aMulDivU8[iFn].pfn(&uDst, paTests[iTest].uSrcIn, &fEfl); if ( uDst != paTests[iTest].uDstOut || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) || rc != paTests[iTest].rc) RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst=%#06RX16 src=%#04RX8\n" " %s-> efl=%#08x dst=%#06RX16 rc=%d\n" "%sexpected %#08x %#06RX16 %d%s\n", iTest, iVar ? "/n" : "", paTests[iTest].fEflIn, paTests[iTest].uDstIn, paTests[iTest].uSrcIn, iVar ? " " : "", fEfl, uDst, rc, iVar ? " " : "", paTests[iTest].fEflOut, paTests[iTest].uDstOut, paTests[iTest].rc, EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn)); else { *g_pu16 = paTests[iTest].uDstIn; *g_pfEfl = paTests[iTest].fEflIn; rc = g_aMulDivU8[iFn].pfn(g_pu16, paTests[iTest].uSrcIn, g_pfEfl); RTTEST_CHECK(g_hTest, *g_pu16 == paTests[iTest].uDstOut); RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); } } pfn = g_aMulDivU8[iFn].pfnNative; } } } #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ void MulDivU ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if ( a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE \ && a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ a_TestType Test; \ Test.fEflIn = RandEFlags(); \ Test.fEflOut = Test.fEflIn; \ Test.uDst1In = RandU ## a_cBits ## Dst(iTest); \ Test.uDst1Out = Test.uDst1In; \ Test.uDst2In = RandU ## a_cBits ## Dst(iTest); \ Test.uDst2Out = Test.uDst2In; \ Test.uSrcIn = RandU ## a_cBits ## Src(iTest); \ Test.rc = a_aSubTests[iFn].pfnNative(&Test.uDst1Out, &Test.uDst2Out, Test.uSrcIn, &Test.fEflOut); \ RTStrmPrintf(pOut, " { %#08x, %#08x, " a_Fmt ", " a_Fmt ", " a_Fmt ", " a_Fmt ", " a_Fmt ", %d }, /* #%u */\n", \ Test.fEflIn, Test.fEflOut, Test.uDst1In, Test.uDst1Out, Test.uDst2In, Test.uDst2Out, Test.uSrcIn, \ Test.rc, iTest); \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) #endif #define TEST_MULDIV(a_cBits, a_Type, a_Fmt, a_TestType, a_SubTestType, a_aSubTests) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLMULDIVU ## a_cBits); \ static a_SubTestType const a_aSubTests [] = \ { \ ENTRY_AMD_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_INTEL_EX(mul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_AMD_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_INTEL_EX(imul_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF, 0), \ ENTRY_AMD_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_INTEL_EX(div_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_AMD_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ ENTRY_INTEL_EX(idiv_u ## a_cBits, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF | X86_EFL_OF, 0), \ }; \ \ GEN_MULDIV(a_cBits, a_Fmt, a_TestType, a_aSubTests) \ \ static void MulDivU ## a_cBits ## Test(void) \ { \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ uint32_t const fEflIgn = a_aSubTests[iFn].uExtra; \ PFNIEMAIMPLMULDIVU ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++ ) \ { \ uint32_t fEfl = paTests[iTest].fEflIn; \ a_Type uDst1 = paTests[iTest].uDst1In; \ a_Type uDst2 = paTests[iTest].uDst2In; \ int rc = pfn(&uDst1, &uDst2, paTests[iTest].uSrcIn, &fEfl); \ if ( uDst1 != paTests[iTest].uDst1Out \ || uDst2 != paTests[iTest].uDst2Out \ || (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn)\ || rc != paTests[iTest].rc) \ RTTestFailed(g_hTest, "#%02u%s: efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " src=" a_Fmt "\n" \ " -> efl=%#08x dst1=" a_Fmt " dst2=" a_Fmt " rc=%d\n" \ "expected %#08x " a_Fmt " " a_Fmt " %d%s -%s%s%s\n", \ iTest, iVar == 0 ? "" : "/n", \ paTests[iTest].fEflIn, paTests[iTest].uDst1In, paTests[iTest].uDst2In, paTests[iTest].uSrcIn, \ fEfl, uDst1, uDst2, rc, \ paTests[iTest].fEflOut, paTests[iTest].uDst1Out, paTests[iTest].uDst2Out, paTests[iTest].rc, \ EFlagsDiff(fEfl | fEflIgn, paTests[iTest].fEflOut | fEflIgn), \ uDst1 != paTests[iTest].uDst1Out ? " dst1" : "", uDst2 != paTests[iTest].uDst2Out ? " dst2" : "", \ (fEfl | fEflIgn) != (paTests[iTest].fEflOut | fEflIgn) ? " eflags" : ""); \ else \ { \ *g_pu ## a_cBits = paTests[iTest].uDst1In; \ *g_pu ## a_cBits ## Two = paTests[iTest].uDst2In; \ *g_pfEfl = paTests[iTest].fEflIn; \ rc = pfn(g_pu ## a_cBits, g_pu ## a_cBits ## Two, paTests[iTest].uSrcIn, g_pfEfl); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits == paTests[iTest].uDst1Out); \ RTTEST_CHECK(g_hTest, *g_pu ## a_cBits ## Two == paTests[iTest].uDst2Out); \ RTTEST_CHECK(g_hTest, (*g_pfEfl | fEflIgn) == (paTests[iTest].fEflOut | fEflIgn)); \ RTTEST_CHECK(g_hTest, rc == paTests[iTest].rc); \ } \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_MULDIV(16, uint16_t, "%#06RX16", MULDIVU16_TEST_T, INT_MULDIV_U16_T, g_aMulDivU16) TEST_MULDIV(32, uint32_t, "%#010RX32", MULDIVU32_TEST_T, INT_MULDIV_U32_T, g_aMulDivU32) TEST_MULDIV(64, uint64_t, "%#018RX64", MULDIVU64_TEST_T, INT_MULDIV_U64_T, g_aMulDivU64) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void MulDivGenerate(PRTSTREAM pOut, uint32_t cTests) { MulDivU8Generate(pOut, cTests); MulDivU16Generate(pOut, cTests); MulDivU32Generate(pOut, cTests); MulDivU64Generate(pOut, cTests); } #endif static void MulDivTest(void) { MulDivU8Test(); MulDivU16Test(); MulDivU32Test(); MulDivU64Test(); } /* * BSWAP */ static void BswapTest(void) { if (SubTestAndCheckIfEnabled("bswap_u16")) { *g_pu32 = UINT32_C(0x12345678); iemAImpl_bswap_u16(g_pu32); #if 0 RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12347856), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #else RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0x12340000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #endif *g_pu32 = UINT32_C(0xffff1122); iemAImpl_bswap_u16(g_pu32); #if 0 RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff2211), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #else RTTEST_CHECK_MSG(g_hTest, *g_pu32 == UINT32_C(0xffff0000), (g_hTest, "*g_pu32=%#RX32\n", *g_pu32)); #endif } if (SubTestAndCheckIfEnabled("bswap_u32")) { *g_pu32 = UINT32_C(0x12345678); iemAImpl_bswap_u32(g_pu32); RTTEST_CHECK(g_hTest, *g_pu32 == UINT32_C(0x78563412)); } if (SubTestAndCheckIfEnabled("bswap_u64")) { *g_pu64 = UINT64_C(0x0123456789abcdef); iemAImpl_bswap_u64(g_pu64); RTTEST_CHECK(g_hTest, *g_pu64 == UINT64_C(0xefcdab8967452301)); } } /********************************************************************************************************************************* * Floating point (x87 style) * *********************************************************************************************************************************/ /* * FPU constant loading. */ TYPEDEF_SUBTEST_TYPE(FPU_LD_CONST_T, FPU_LD_CONST_TEST_T, PFNIEMAIMPLFPUR80LDCONST); static const FPU_LD_CONST_T g_aFpuLdConst[] = { ENTRY(fld1), ENTRY(fldl2t), ENTRY(fldl2e), ENTRY(fldpi), ENTRY(fldlg2), ENTRY(fldln2), ENTRY(fldz), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuLdConstGenerate(PRTSTREAM pOut, uint32_t cTests) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++) { GenerateArrayStart(pOut, g_aFpuLdConst[iFn].pszName, "FPU_LD_CONST_TEST_T"); for (uint32_t iTest = 0; iTest < cTests; iTest += 4) { State.FCW = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); g_aFpuLdConst[iFn].pfn(&State, &Res); RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s }, /* #%u */\n", State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), iTest + iRounding); } } GenerateArrayEnd(pOut, g_aFpuLdConst[iFn].pszName); } } #endif static void FpuLoadConstTest(void) { /* * Inputs: * - FSW: C0, C1, C2, C3 * - FCW: Exception masks, Precision control, Rounding control. * * C1 set to 1 on stack overflow, zero otherwise. C0, C2, and C3 are "undefined". */ X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdConst); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuLdConst[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuLdConst[iFn].pcTests; FPU_LD_CONST_TEST_T const *paTests = g_aFpuLdConst[iFn].paTests; PFNIEMAIMPLFPUR80LDCONST pfn = g_aFpuLdConst[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdConst[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) RTTestFailed(g_hTest, "#%u%s: fcw=%#06x fsw=%#06x -> fsw=%#06x %s, expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, Res.FSW, FormatR80(&Res.r80Result), paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuLdConst[iFn].pfnNative; } } } /* * Load floating point values from memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \ static void FpuLdR ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ State.FCW = RandFcw(); \ State.FSW = RandFsw(); \ a_rdTypeIn InVal = RandR ## a_cBits ## Src(iTest); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \ a_aSubTests[iFn].pfn(&State, &Res, &InVal); \ RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u */\n", \ State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), \ GenFormatR ## a_cBits(&InVal), iTest, iRounding); \ } \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) #endif #define TEST_FPU_LOAD(a_cBits, a_rdTypeIn, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROM ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, PC ## a_rdTypeIn)); \ typedef FNIEMAIMPLFPULDR80FROM ## a_cBits *PFNIEMAIMPLFPULDR80FROM ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROM ## a_cBits); \ \ static const a_SubTestType a_aSubTests[] = \ { \ ENTRY(RT_CONCAT(fld_r80_from_r,a_cBits)) \ }; \ GEN_FPU_LOAD(a_cBits, a_rdTypeIn, a_aSubTests, a_TestType) \ \ static void FpuLdR ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPULDR80FROM ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ a_rdTypeIn const InVal = paTests[iTest].InVal; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ pfn(&State, &Res, &InVal); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \ RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR ## a_cBits(&paTests[iTest].InVal), \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_FPU_LOAD(80, RTFLOAT80U, FPU_LD_R80_T, g_aFpuLdR80, FPU_R80_IN_TEST_T) TEST_FPU_LOAD(64, RTFLOAT64U, FPU_LD_R64_T, g_aFpuLdR64, FPU_R64_IN_TEST_T) TEST_FPU_LOAD(32, RTFLOAT32U, FPU_LD_R32_T, g_aFpuLdR32, FPU_R32_IN_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuLdMemGenerate(PRTSTREAM pOut, uint32_t cTests) { FpuLdR80Generate(pOut, cTests); FpuLdR64Generate(pOut, cTests); FpuLdR32Generate(pOut, cTests); } #endif static void FpuLdMemTest(void) { FpuLdR80Test(); FpuLdR64Test(); FpuLdR32Test(); } /* * Load integer values from memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \ static void FpuLdI ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ State.FCW = RandFcw(); \ State.FSW = RandFsw(); \ a_iTypeIn InVal = (a_iTypeIn)RandU ## a_cBits ## Src(iTest); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); \ a_aSubTests[iFn].pfn(&State, &Res, &InVal); \ RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, " a_szFmtIn " }, /* #%u/%u */\n", \ State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), InVal, iTest, iRounding); \ } \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) #endif #define TEST_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMI ## a_cBits,(PCX86FXSTATE, PIEMFPURESULT, a_iTypeIn const *)); \ typedef FNIEMAIMPLFPULDR80FROMI ## a_cBits *PFNIEMAIMPLFPULDR80FROMI ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPULDR80FROMI ## a_cBits); \ \ static const a_SubTestType a_aSubTests[] = \ { \ ENTRY(RT_CONCAT(fild_r80_from_i,a_cBits)) \ }; \ GEN_FPU_LOAD_INT(a_cBits, a_iTypeIn, a_szFmtIn, a_aSubTests, a_TestType) \ \ static void FpuLdI ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPULDR80FROMI ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ a_iTypeIn const iInVal = paTests[iTest].iInVal; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ pfn(&State, &Res, &iInVal); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) \ RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=" a_szFmtIn "\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, paTests[iTest].iInVal, \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_FPU_LOAD_INT(64, int64_t, "%RI64", FPU_LD_I64_T, g_aFpuLdU64, FPU_I64_IN_TEST_T) TEST_FPU_LOAD_INT(32, int32_t, "%RI32", FPU_LD_I32_T, g_aFpuLdU32, FPU_I32_IN_TEST_T) TEST_FPU_LOAD_INT(16, int16_t, "%RI16", FPU_LD_I16_T, g_aFpuLdU16, FPU_I16_IN_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuLdIntGenerate(PRTSTREAM pOut, uint32_t cTests) { FpuLdI64Generate(pOut, cTests); FpuLdI32Generate(pOut, cTests); FpuLdI16Generate(pOut, cTests); } #endif static void FpuLdIntTest(void) { FpuLdI64Test(); FpuLdI32Test(); FpuLdI16Test(); } /* * Load binary coded decimal values from memory. */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPULDR80FROMD80,(PCX86FXSTATE, PIEMFPURESULT, PCRTPBCD80U)); typedef FNIEMAIMPLFPULDR80FROMD80 *PFNIEMAIMPLFPULDR80FROMD80; TYPEDEF_SUBTEST_TYPE(FPU_LD_D80_T, FPU_D80_IN_TEST_T, PFNIEMAIMPLFPULDR80FROMD80); static const FPU_LD_D80_T g_aFpuLdD80[] = { ENTRY(fld_r80_from_d80) }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuLdD80Generate(PRTSTREAM pOut, uint32_t cTests) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++) { GenerateArrayStart(pOut, g_aFpuLdD80[iFn].pszName, "FPU_D80_IN_TEST_T"); for (uint32_t iTest = 0; iTest < cTests; iTest++) { State.FCW = RandFcw(); State.FSW = RandFsw(); RTPBCD80U InVal = RandD80Src(iTest); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = (State.FCW & ~X86_FCW_RC_MASK) | (iRounding << X86_FCW_RC_SHIFT); g_aFpuLdD80[iFn].pfn(&State, &Res, &InVal); RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u */\n", State.FCW, State.FSW, Res.FSW, GenFormatR80(&Res.r80Result), GenFormatD80(&InVal), iTest, iRounding); } } GenerateArrayEnd(pOut, g_aFpuLdD80[iFn].pszName); } } #endif static void FpuLdD80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuLdD80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuLdD80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuLdD80[iFn].pcTests; FPU_D80_IN_TEST_T const * const paTests = g_aFpuLdD80[iFn].paTests; PFNIEMAIMPLFPULDR80FROMD80 pfn = g_aFpuLdD80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuLdD80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTPBCD80U const InVal = paTests[iTest].InVal; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res, &InVal); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult)) RTTestFailed(g_hTest, "#%03u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatD80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].rdResult), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].rdResult) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuLdD80[iFn].pfnNative; } } } /* * Store values floating point values to memory. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static const RTFLOAT80U g_aFpuStR32Specials[] = { RTFLOAT80U_INIT_C(0, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(1, 0xffffff8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(0, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(1, 0xfffffe8000000000, RTFLOAT80U_EXP_BIAS), /* near rounding */ }; static const RTFLOAT80U g_aFpuStR64Specials[] = { RTFLOAT80U_INIT_C(0, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(1, 0xfffffffffffffc00, RTFLOAT80U_EXP_BIAS), /* near rounding with carry */ RTFLOAT80U_INIT_C(0, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(1, 0xfffffffffffff400, RTFLOAT80U_EXP_BIAS), /* near rounding */ RTFLOAT80U_INIT_C(0, 0xd0b9e6fdda887400, 687 + RTFLOAT80U_EXP_BIAS), /* random example for this */ }; static const RTFLOAT80U g_aFpuStR80Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* placeholder */ }; # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \ static void FpuStR ## a_cBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStR ## a_cBits ## Specials); \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \ { \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits) \ : g_aFpuStR ## a_cBits ## Specials[iTest - cTests]; \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ /* PC doesn't influence these, so leave as is. */ \ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \ for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \ { \ uint16_t uFswOut = 0; \ a_rdType OutVal; \ RT_ZERO(OutVal); \ memset(&OutVal, 0xfe, sizeof(OutVal)); \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \ | (iRounding << X86_FCW_RC_SHIFT); \ /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \ a_aSubTests[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); \ RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n", \ State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal), \ GenFormatR ## a_cBits(&OutVal), iTest, iRounding, iMask); \ } \ } \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) #endif #define TEST_FPU_STORE(a_cBits, a_rdType, a_SubTestType, a_aSubTests, a_TestType) \ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOR ## a_cBits,(PCX86FXSTATE, uint16_t *, \ PRTFLOAT ## a_cBits ## U, PCRTFLOAT80U)); \ typedef FNIEMAIMPLFPUSTR80TOR ## a_cBits *PFNIEMAIMPLFPUSTR80TOR ## a_cBits; \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPUSTR80TOR ## a_cBits); \ \ static const a_SubTestType a_aSubTests[] = \ { \ ENTRY(RT_CONCAT(fst_r80_to_r,a_cBits)) \ }; \ GEN_FPU_STORE(a_cBits, a_rdType, a_aSubTests, a_TestType) \ \ static void FpuStR ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPUSTR80TOR ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal = paTests[iTest].InVal; \ uint16_t uFswOut = 0; \ a_rdType OutVal; \ RT_ZERO(OutVal); \ memset(&OutVal, 0xfe, sizeof(OutVal)); \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &uFswOut, &OutVal, &InVal); \ if ( uFswOut != paTests[iTest].fFswOut \ || !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal), \ iVar ? " " : "", uFswOut, FormatR ## a_cBits(&OutVal), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR ## a_cBits(&paTests[iTest].OutVal), \ FswDiff(uFswOut, paTests[iTest].fFswOut), \ !RTFLOAT ## a_cBits ## U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_FPU_STORE(80, RTFLOAT80U, FPU_ST_R80_T, g_aFpuStR80, FPU_ST_R80_TEST_T) TEST_FPU_STORE(64, RTFLOAT64U, FPU_ST_R64_T, g_aFpuStR64, FPU_ST_R64_TEST_T) TEST_FPU_STORE(32, RTFLOAT32U, FPU_ST_R32_T, g_aFpuStR32, FPU_ST_R32_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuStMemGenerate(PRTSTREAM pOut, uint32_t cTests) { FpuStR80Generate(pOut, cTests); FpuStR64Generate(pOut, cTests); FpuStR32Generate(pOut, cTests); } #endif static void FpuStMemTest(void) { FpuStR80Test(); FpuStR64Test(); FpuStR32Test(); } /* * Store integer values to memory or register. */ TYPEDEF_SUBTEST_TYPE(FPU_ST_I16_T, FPU_ST_I16_TEST_T, PFNIEMAIMPLFPUSTR80TOI16); TYPEDEF_SUBTEST_TYPE(FPU_ST_I32_T, FPU_ST_I32_TEST_T, PFNIEMAIMPLFPUSTR80TOI32); TYPEDEF_SUBTEST_TYPE(FPU_ST_I64_T, FPU_ST_I64_TEST_T, PFNIEMAIMPLFPUSTR80TOI64); static const FPU_ST_I16_T g_aFpuStI16[] = { ENTRY(fist_r80_to_i16), ENTRY_AMD( fistt_r80_to_i16, 0), ENTRY_INTEL(fistt_r80_to_i16, 0), }; static const FPU_ST_I32_T g_aFpuStI32[] = { ENTRY(fist_r80_to_i32), ENTRY(fistt_r80_to_i32), }; static const FPU_ST_I64_T g_aFpuStI64[] = { ENTRY(fist_r80_to_i64), ENTRY(fistt_r80_to_i64), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static const RTFLOAT80U g_aFpuStI16Specials[] = /* 16-bit variant borrows properties from the 32-bit one, thus all this stuff. */ { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 13 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 13 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000080000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000100000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000200000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000400000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8001000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(0, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xffff800000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xffff000000000000, 14 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(1, 0xfffe000000000000, 14 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 15 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 17 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 28 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000ffffffffffff, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8001000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 32 + RTFLOAT80U_EXP_BIAS), }; static const RTFLOAT80U g_aFpuStI32Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffff80000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffff00000000, 30 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffe00000000, 30 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 31 + RTFLOAT80U_EXP_BIAS), }; static const RTFLOAT80U g_aFpuStI64Specials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 61 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 61 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffff0, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* overflow to min/nan */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 62 + RTFLOAT80U_EXP_BIAS), /* min */ RTFLOAT80U_INIT_C(0, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0xfffffffffffffffe, 62 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000000, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000001, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(1, 0x8000000000000002, 63 + RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xfffffffffffffff0, 63 + RTFLOAT80U_EXP_BIAS), }; # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \ static void FpuStI ## a_cBits ## Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ PFNIEMAIMPLFPUSTR80TOI ## a_cBits const pfn = a_aSubTests[iFn].pfnNative \ ? a_aSubTests[iFn].pfnNative : a_aSubTests[iFn].pfn; \ PRTSTREAM pOutFn = pOut; \ if (a_aSubTests[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) \ { \ if (a_aSubTests[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) \ continue; \ pOutFn = pOutCpu; \ } \ \ GenerateArrayStart(pOutFn, a_aSubTests[iFn].pszName, #a_TestType); \ uint32_t const cTotalTests = cTests + RT_ELEMENTS(g_aFpuStI ## a_cBits ## Specials); \ for (uint32_t iTest = 0; iTest < cTotalTests; iTest++) \ { \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, a_cBits, true) \ : g_aFpuStI ## a_cBits ## Specials[iTest - cTests]; \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ /* PC doesn't influence these, so leave as is. */ \ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); \ for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) \ { \ uint16_t uFswOut = 0; \ a_iType iOutVal = ~(a_iType)2; \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) \ | (iRounding << X86_FCW_RC_SHIFT); \ /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ \ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; \ pfn(&State, &uFswOut, &iOutVal, &InVal); \ RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n", \ State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal), \ GenFormatI ## a_cBits(iOutVal), iTest, iRounding, iMask); \ } \ } \ } \ GenerateArrayEnd(pOutFn, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) #endif #define TEST_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_SubTestType, a_aSubTests, a_TestType) \ GEN_FPU_STORE_INT(a_cBits, a_iType, a_szFmt, a_aSubTests, a_TestType) \ \ static void FpuStI ## a_cBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPUSTR80TOI ## a_cBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal = paTests[iTest].InVal; \ uint16_t uFswOut = 0; \ a_iType iOutVal = ~(a_iType)2; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &uFswOut, &iOutVal, &InVal); \ if ( uFswOut != paTests[iTest].fFswOut \ || iOutVal != paTests[iTest].iOutVal) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" \ "%s -> fsw=%#06x " a_szFmt "\n" \ "%s expected %#06x " a_szFmt "%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal), \ iVar ? " " : "", uFswOut, iOutVal, \ iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].iOutVal, \ FswDiff(uFswOut, paTests[iTest].fFswOut), \ iOutVal != paTests[iTest].iOutVal ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } //fistt_r80_to_i16 diffs for AMD, of course :-) TEST_FPU_STORE_INT(64, int64_t, "%RI64", FPU_ST_I64_T, g_aFpuStI64, FPU_ST_I64_TEST_T) TEST_FPU_STORE_INT(32, int32_t, "%RI32", FPU_ST_I32_T, g_aFpuStI32, FPU_ST_I32_TEST_T) TEST_FPU_STORE_INT(16, int16_t, "%RI16", FPU_ST_I16_T, g_aFpuStI16, FPU_ST_I16_TEST_T) #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuStIntGenerate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) { FpuStI64Generate(pOut, pOutCpu, cTests); FpuStI32Generate(pOut, pOutCpu, cTests); FpuStI16Generate(pOut, pOutCpu, cTests); } #endif static void FpuStIntTest(void) { FpuStI64Test(); FpuStI32Test(); FpuStI16Test(); } /* * Store as packed BCD value (memory). */ typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOD80,(PCX86FXSTATE, uint16_t *, PRTPBCD80U, PCRTFLOAT80U)); typedef FNIEMAIMPLFPUSTR80TOD80 *PFNIEMAIMPLFPUSTR80TOD80; TYPEDEF_SUBTEST_TYPE(FPU_ST_D80_T, FPU_ST_D80_TEST_T, PFNIEMAIMPLFPUSTR80TOD80); static const FPU_ST_D80_T g_aFpuStD80[] = { ENTRY(fst_r80_to_d80), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuStD80Generate(PRTSTREAM pOut, uint32_t cTests) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 below max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffe0, RTFLOAT80U_EXP_BIAS + 59), /* 1 above min */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff0, RTFLOAT80U_EXP_BIAS + 59), /* exact min */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* max & all rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763fffff, RTFLOAT80U_EXP_BIAS + 59), /* min & all rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* max & some rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff8, RTFLOAT80U_EXP_BIAS + 59), /* min & some rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* max & some other rounded off bits set */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a763ffff1, RTFLOAT80U_EXP_BIAS + 59), /* min & some other rounded off bits set */ RTFLOAT80U_INIT_C(0, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 above max */ RTFLOAT80U_INIT_C(1, 0xde0b6b3a76400000, RTFLOAT80U_EXP_BIAS + 59), /* 1 below min */ }; X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++) { GenerateArrayStart(pOut, g_aFpuStD80[iFn].pszName, "FPU_ST_D80_TEST_T"); for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest, 59, true) : s_aSpecials[iTest - cTests]; for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { /* PC doesn't influence these, so leave as is. */ AssertCompile(X86_FCW_OM_BIT + 1 == X86_FCW_UM_BIT && X86_FCW_UM_BIT + 1 == X86_FCW_PM_BIT); for (uint16_t iMask = 0; iMask < 16; iMask += 2 /*1*/) { uint16_t uFswOut = 0; RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0); State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_OM | X86_FCW_UM | X86_FCW_PM)) | (iRounding << X86_FCW_RC_SHIFT); /*if (iMask & 1) State.FCW ^= X86_FCW_MASK_ALL;*/ State.FCW |= (iMask >> 1) << X86_FCW_OM_BIT; g_aFpuStD80[iFn].pfn(&State, &uFswOut, &OutVal, &InVal); RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u */\n", State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal), GenFormatD80(&OutVal), iTest, iRounding, iMask); } } } GenerateArrayEnd(pOut, g_aFpuStD80[iFn].pszName); } } #endif static void FpuStD80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuStD80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuStD80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuStD80[iFn].pcTests; FPU_ST_D80_TEST_T const * const paTests = g_aFpuStD80[iFn].paTests; PFNIEMAIMPLFPUSTR80TOD80 pfn = g_aFpuStD80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuStD80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; uint16_t uFswOut = 0; RTPBCD80U OutVal = RTPBCD80U_INIT_ZERO(0); State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &uFswOut, &OutVal, &InVal); if ( uFswOut != paTests[iTest].fFswOut || !RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", uFswOut, FormatD80(&OutVal), iVar ? " " : "", paTests[iTest].fFswOut, FormatD80(&paTests[iTest].OutVal), FswDiff(uFswOut, paTests[iTest].fFswOut), RTPBCD80U_ARE_IDENTICAL(&OutVal, &paTests[iTest].OutVal) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuStD80[iFn].pfnNative; } } } /********************************************************************************************************************************* * x87 FPU Binary Operations * *********************************************************************************************************************************/ /* * Binary FPU operations on two 80-bit floating point values. */ TYPEDEF_SUBTEST_TYPE(FPU_BINARY_R80_T, FPU_BINARY_R80_TEST_T, PFNIEMAIMPLFPUR80); enum { kFpuBinaryHint_fprem = 1, }; static const FPU_BINARY_R80_T g_aFpuBinaryR80[] = { ENTRY(fadd_r80_by_r80), ENTRY(fsub_r80_by_r80), ENTRY(fsubr_r80_by_r80), ENTRY(fmul_r80_by_r80), ENTRY(fdiv_r80_by_r80), ENTRY(fdivr_r80_by_r80), ENTRY_EX(fprem_r80_by_r80, kFpuBinaryHint_fprem), ENTRY_EX(fprem1_r80_by_r80, kFpuBinaryHint_fprem), ENTRY(fscale_r80_by_r80), ENTRY_AMD( fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_INTEL(fpatan_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_AMD( fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_INTEL(fyl2x_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_AMD( fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD ENTRY_INTEL(fyl2xp1_r80_by_r80, 0), // C1 and rounding differs on AMD }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuBinaryR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) { cTests = RT_MAX(192, cTests); /* there are 144 standard input variations */ static struct { RTFLOAT80U Val1, Val2; } const s_aSpecials[] = { { RTFLOAT80U_INIT_C(1, 0xdd762f07f2e80eef, 30142), /* causes weird overflows with DOWN and NEAR rounding. */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_ZERO(0), /* causes weird overflows with UP and NEAR rounding when precision is lower than 64. */ RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_ZERO(0), /* minus variant */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1) }, { RTFLOAT80U_INIT_C(0, 0xcef238bb9a0afd86, 577 + RTFLOAT80U_EXP_BIAS), /* for fprem and fprem1, max sequence length */ RTFLOAT80U_INIT_C(0, 0xf11684ec0beaad94, 1 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, -13396 + RTFLOAT80U_EXP_BIAS), /* for fdiv. We missed PE. */ RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, 16383 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */ RTFLOAT80U_INIT_C(0, 0xe000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS), /* for fprem/fprem1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, /* fscale: This may seriously increase the exponent, and it turns out overflow and underflow behaviour changes once RTFLOAT80U_EXP_BIAS_ADJUST is exceeded. */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^64 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 6 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1024 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 10 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^4096 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 12 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16384 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 49150 */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */ RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^32768 - result is within range on 10980XE */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 15 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 65534 */ { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^65536 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 16 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^1048576 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 20 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^16777216 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 24 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24575 - within 10980XE range */ { RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1), /* for fscale: max * 2^-24577 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -24576 - outside 10980XE range, behaviour changes! */ /* fscale: Negative variants for the essentials of the above. */ { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(1, 0xffffffffffffffff, RTFLOAT80U_EXP_MAX - 1), /* for fscale: max * 2^24577 */ RTFLOAT80U_INIT_C(0, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: 57343 - outside 10980XE range, behaviour changes! */ { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: min * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57342 - within 10980XE range */ { RTFLOAT80U_INIT_C(1, 0x8000000000000000, 1), /* for fscale: max * 2^-24576 (RTFLOAT80U_EXP_BIAS_ADJUST) */ RTFLOAT80U_INIT_C(1, 0xc002000000000000, 14 + RTFLOAT80U_EXP_BIAS) }, /* resulting exponent: -57343 - outside 10980XE range, behaviour changes! */ /* fscale: Some fun with denormals and pseudo-denormals. */ { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^-4 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), /* for fscale: max * 2^+1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x0800000000000000, 0), RTFLOAT80U_INIT_ZERO(0) }, /* for fscale: max * 2^+0 */ { RTFLOAT80U_INIT_C(0, 0x0000000000000008, 0), /* for fscale: max * 2^-4 => underflow */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */ { RTFLOAT80U_INIT_C(1, 0x8005000300020001, 0), RTFLOAT80U_INIT_ZERO(0) }, /* pseudo-normal number * 2^+0. */ { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^-4 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 2 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+0 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0 + RTFLOAT80U_EXP_BIAS) }, { RTFLOAT80U_INIT_C(0, 0x8005000300020001, 0), /* pseudo-normal number * 2^+1 */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 1 + RTFLOAT80U_EXP_BIAS) }, }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormalPairs = (cTests - 144) / 4; uint32_t cMinTargetRangeInputs = cMinNormalPairs / 2; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++) { PFNIEMAIMPLFPUR80 const pfn = g_aFpuBinaryR80[iFn].pfnNative ? g_aFpuBinaryR80[iFn].pfnNative : g_aFpuBinaryR80[iFn].pfn; PRTSTREAM pOutFn = pOut; if (g_aFpuBinaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) { if (g_aFpuBinaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; pOutFn = pOutCpu; } GenerateArrayStart(pOutFn, g_aFpuBinaryR80[iFn].pszName, "FPU_BINARY_R80_TEST_T"); uint32_t iTestOutput = 0; uint32_t cNormalInputPairs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aSpecials[iTest - cTests].Val1; RTFLOAT80U InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aSpecials[iTest - cTests].Val2; bool fTargetRange = false; if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2)) { cNormalInputPairs++; if ( g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem && (uint32_t)InVal1.s.uExponent - (uint32_t)InVal2.s.uExponent - (uint32_t)64 <= (uint32_t)512) cTargetRangeInputs += fTargetRange = true; else if (cTargetRangeInputs < cMinTargetRangeInputs && iTest < cTests) if (g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem) { /* The aim is two values with an exponent difference between 64 and 640 so we can do the whole sequence. */ InVal2.s.uExponent = RTRandU32Ex(1, RTFLOAT80U_EXP_MAX - 66); InVal1.s.uExponent = RTRandU32Ex(InVal2.s.uExponent + 64, RT_MIN(InVal2.s.uExponent + 512, RTFLOAT80U_EXP_MAX - 1)); cTargetRangeInputs += fTargetRange = true; } } else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = 0; uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResM, &InVal1, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/m = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2), GenFormatR80(&ResM.r80Result), iTest, iRounding, iPrecision, iTestOutput++); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResU, &InVal1, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2), GenFormatR80(&ResU.r80Result), iTest, iRounding, iPrecision, iTestOutput++); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res1, &InVal1, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2), GenFormatR80(&Res1.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res2, &InVal1, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2), GenFormatR80(&Res2.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res3, &InVal1, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal1), GenFormatR80(&InVal2), GenFormatR80(&Res3.r80Result), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++); } } /* If the values are in range and caused no exceptions, do the whole series of partial reminders till we get the non-partial one or run into an exception. */ if (fTargetRange && fXcpt == 0 && g_aFpuBinaryR80[iFn].uExtra == kFpuBinaryHint_fprem) { IEMFPURESULT ResPrev = ResM; for (unsigned i = 0; i < 32 && (ResPrev.FSW & (X86_FSW_C2 | X86_FSW_XCPT_MASK)) == X86_FSW_C2; i++) { State.FCW = State.FCW | X86_FCW_MASK_ALL; State.FSW = ResPrev.FSW; IEMFPURESULT ResSeq = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResSeq, &ResPrev.r80Result, &InVal2); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/seq%u = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResSeq.FSW, GenFormatR80(&ResPrev.r80Result), GenFormatR80(&InVal2), GenFormatR80(&ResSeq.r80Result), iTest, iRounding, iPrecision, i + 1, iTestOutput++); ResPrev = ResSeq; } } } } GenerateArrayEnd(pOutFn, g_aFpuBinaryR80[iFn].pszName); } } #endif static void FpuBinaryR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryR80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuBinaryR80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuBinaryR80[iFn].pcTests; FPU_BINARY_R80_TEST_T const * const paTests = g_aFpuBinaryR80[iFn].paTests; PFNIEMAIMPLFPUR80 pfn = g_aFpuBinaryR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal1 = paTests[iTest].InVal1; RTFLOAT80U const InVal2 = paTests[iTest].InVal2; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal1, &InVal2); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuBinaryR80[iFn].pfnNative; } } } /* * Binary FPU operations on one 80-bit floating point value and one 64-bit or 32-bit one. */ #define int64_t_IS_NORMAL(a) 1 #define int32_t_IS_NORMAL(a) 1 #define int16_t_IS_NORMAL(a) 1 #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryR64Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryR32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryI32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */ }; static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryI16Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */ }; # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ static void FpuBinary ## a_UpBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \ \ X86FXSTATE State; \ RT_ZERO(State); \ uint32_t cMinNormalPairs = (cTests - 144) / 4; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ uint32_t cNormalInputPairs = 0; \ for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinary ## a_UpBits ## Specials); iTest += 1) \ { \ RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \ : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val1; \ a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \ : s_aFpuBinary ## a_UpBits ## Specials[iTest - cTests].Val2; \ if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \ cNormalInputPairs++; \ else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \ { \ iTest -= 1; \ continue; \ } \ \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ \ for (uint16_t iRounding = 0; iRounding < 4; iRounding++) \ { \ for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) \ { \ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \ { \ State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) \ | (iRounding << X86_FCW_RC_SHIFT) \ | (iPrecision << X86_FCW_PC_SHIFT) \ | iMask; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ a_aSubTests[iFn].pfn(&State, &Res, &InVal1, &InVal2); \ RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%c */\n", \ State.FCW, State.FSW, Res.FSW, GenFormatR80(&InVal1), GenFormat ## a_UpBits(&InVal2), \ GenFormatR80(&Res.r80Result), iTest, iRounding, iPrecision, iMask ? 'c' : 'u'); \ } \ } \ } \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) #endif #define TEST_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_I, a_Type2, a_SubTestType, a_aSubTests, a_TestType) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits); \ \ static const a_SubTestType a_aSubTests[] = \ { \ ENTRY(RT_CONCAT4(f, a_I, add_r80_by_, a_LoBits)), \ ENTRY(RT_CONCAT4(f, a_I, mul_r80_by_, a_LoBits)), \ ENTRY(RT_CONCAT4(f, a_I, sub_r80_by_, a_LoBits)), \ ENTRY(RT_CONCAT4(f, a_I, subr_r80_by_, a_LoBits)), \ ENTRY(RT_CONCAT4(f, a_I, div_r80_by_, a_LoBits)), \ ENTRY(RT_CONCAT4(f, a_I, divr_r80_by_, a_LoBits)), \ }; \ \ GEN_FPU_BINARY_SMALL(a_fIntType, a_cBits, a_LoBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ \ static void FpuBinary ## a_UpBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPU ## a_UpBits pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \ a_Type2 const InVal2 = paTests[iTest].InVal2; \ IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &Res, &InVal1, &InVal2); \ if ( Res.FSW != paTests[iTest].fFswOut \ || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal)) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \ "%s -> fsw=%#06x %s\n" \ "%s expected %#06x %s%s%s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \ iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), \ iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), \ FswDiff(Res.FSW, paTests[iTest].fFswOut), \ !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", \ FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_FPU_BINARY_SMALL(0, 64, r64, R64, RT_NOTHING, RTFLOAT64U, FPU_BINARY_R64_T, g_aFpuBinaryR64, FPU_BINARY_R64_TEST_T) TEST_FPU_BINARY_SMALL(0, 32, r32, R32, RT_NOTHING, RTFLOAT32U, FPU_BINARY_R32_T, g_aFpuBinaryR32, FPU_BINARY_R32_TEST_T) TEST_FPU_BINARY_SMALL(1, 32, i32, I32, i, int32_t, FPU_BINARY_I32_T, g_aFpuBinaryI32, FPU_BINARY_I32_TEST_T) TEST_FPU_BINARY_SMALL(1, 16, i16, I16, i, int16_t, FPU_BINARY_I16_T, g_aFpuBinaryI16, FPU_BINARY_I16_TEST_T) /* * Binary operations on 80-, 64- and 32-bit floating point only affecting FSW. */ #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryFswR80Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT64U Val2; } const s_aFpuBinaryFswR64Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT64U_INIT_C(0, 0xfeeeeddddcccc, RTFLOAT64U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; RTFLOAT32U Val2; } const s_aFpuBinaryFswR32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT32U_INIT_C(0, 0x7fffee, RTFLOAT32U_EXP_BIAS) }, /* whatever */ }; static struct { RTFLOAT80U Val1; int32_t Val2; } const s_aFpuBinaryFswI32Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT32_MAX }, /* whatever */ }; static struct { RTFLOAT80U Val1; int16_t Val2; } const s_aFpuBinaryFswI16Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), INT16_MAX }, /* whatever */ }; # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ static void FpuBinaryFsw ## a_UpBits ## Generate(PRTSTREAM pOut, uint32_t cTests) \ { \ cTests = RT_MAX(160, cTests); /* there are 144 standard input variations for r80 by r80 */ \ \ X86FXSTATE State; \ RT_ZERO(State); \ uint32_t cMinNormalPairs = (cTests - 144) / 4; \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ GenerateArrayStart(pOut, a_aSubTests[iFn].pszName, #a_TestType); \ uint32_t cNormalInputPairs = 0; \ for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryFsw ## a_UpBits ## Specials); iTest += 1) \ { \ RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest, a_cBits, a_fIntType) \ : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val1; \ a_Type2 const InVal2 = iTest < cTests ? Rand ## a_UpBits ## Src2(iTest) \ : s_aFpuBinaryFsw ## a_UpBits ## Specials[iTest - cTests].Val2; \ if (RTFLOAT80U_IS_NORMAL(&InVal1) && a_Type2 ## _IS_NORMAL(&InVal2)) \ cNormalInputPairs++; \ else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) \ { \ iTest -= 1; \ continue; \ } \ \ uint16_t const fFcw = RandFcw(); \ State.FSW = RandFsw(); \ \ /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ \ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) \ { \ State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; \ uint16_t fFswOut = 0; \ a_aSubTests[iFn].pfn(&State, &fFswOut, &InVal1, &InVal2); \ RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%c */\n", \ State.FCW, State.FSW, fFswOut, GenFormatR80(&InVal1), GenFormat ## a_UpBits(&InVal2), \ iTest, iMask ? 'c' : 'u'); \ } \ } \ GenerateArrayEnd(pOut, a_aSubTests[iFn].pszName); \ } \ } #else # define GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) #endif #define TEST_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_SubTestType, a_aSubTests, a_TestType, ...) \ TYPEDEF_SUBTEST_TYPE(a_SubTestType, a_TestType, PFNIEMAIMPLFPU ## a_UpBits ## FSW); \ \ static const a_SubTestType a_aSubTests[] = \ { \ __VA_ARGS__ \ }; \ \ GEN_FPU_BINARY_FSW(a_fIntType, a_cBits, a_UpBits, a_Type2, a_aSubTests, a_TestType) \ \ static void FpuBinaryFsw ## a_UpBits ## Test(void) \ { \ X86FXSTATE State; \ RT_ZERO(State); \ for (size_t iFn = 0; iFn < RT_ELEMENTS(a_aSubTests); iFn++) \ { \ if (!SubTestAndCheckIfEnabled(a_aSubTests[iFn].pszName)) continue; \ \ uint32_t const cTests = *a_aSubTests[iFn].pcTests; \ a_TestType const * const paTests = a_aSubTests[iFn].paTests; \ PFNIEMAIMPLFPU ## a_UpBits ## FSW pfn = a_aSubTests[iFn].pfn; \ uint32_t const cVars = COUNT_VARIATIONS(a_aSubTests[iFn]); \ if (!cTests) RTTestSkipped(g_hTest, "no tests"); \ for (uint32_t iVar = 0; iVar < cVars; iVar++) \ { \ for (uint32_t iTest = 0; iTest < cTests; iTest++) \ { \ uint16_t fFswOut = 0; \ RTFLOAT80U const InVal1 = paTests[iTest].InVal1; \ a_Type2 const InVal2 = paTests[iTest].InVal2; \ State.FCW = paTests[iTest].fFcw; \ State.FSW = paTests[iTest].fFswIn; \ pfn(&State, &fFswOut, &InVal1, &InVal2); \ if (fFswOut != paTests[iTest].fFswOut) \ RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" \ "%s -> fsw=%#06x\n" \ "%s expected %#06x %s (%s)\n", \ iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, \ FormatR80(&paTests[iTest].InVal1), Format ## a_UpBits(&paTests[iTest].InVal2), \ iVar ? " " : "", fFswOut, \ iVar ? " " : "", paTests[iTest].fFswOut, \ FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); \ } \ pfn = a_aSubTests[iFn].pfnNative; \ } \ } \ } TEST_FPU_BINARY_FSW(0, 80, R80, RTFLOAT80U, FPU_BINARY_FSW_R80_T, g_aFpuBinaryFswR80, FPU_BINARY_R80_TEST_T, ENTRY(fcom_r80_by_r80), ENTRY(fucom_r80_by_r80)) TEST_FPU_BINARY_FSW(0, 64, R64, RTFLOAT64U, FPU_BINARY_FSW_R64_T, g_aFpuBinaryFswR64, FPU_BINARY_R64_TEST_T, ENTRY(fcom_r80_by_r64)) TEST_FPU_BINARY_FSW(0, 32, R32, RTFLOAT32U, FPU_BINARY_FSW_R32_T, g_aFpuBinaryFswR32, FPU_BINARY_R32_TEST_T, ENTRY(fcom_r80_by_r32)) TEST_FPU_BINARY_FSW(1, 32, I32, int32_t, FPU_BINARY_FSW_I32_T, g_aFpuBinaryFswI32, FPU_BINARY_I32_TEST_T, ENTRY(ficom_r80_by_i32)) TEST_FPU_BINARY_FSW(1, 16, I16, int16_t, FPU_BINARY_FSW_I16_T, g_aFpuBinaryFswI16, FPU_BINARY_I16_TEST_T, ENTRY(ficom_r80_by_i16)) /* * Binary operations on 80-bit floating point that effects only EFLAGS and possibly FSW. */ TYPEDEF_SUBTEST_TYPE(FPU_BINARY_EFL_R80_T, FPU_BINARY_EFL_R80_TEST_T, PFNIEMAIMPLFPUR80EFL); static const FPU_BINARY_EFL_R80_T g_aFpuBinaryEflR80[] = { ENTRY(fcomi_r80_by_r80), ENTRY(fucomi_r80_by_r80), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static struct { RTFLOAT80U Val1, Val2; } const s_aFpuBinaryEflR80Specials[] = { { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS) }, /* whatever */ }; static void FpuBinaryEflR80Generate(PRTSTREAM pOut, uint32_t cTests) { cTests = RT_MAX(160, cTests); /* there are 144 standard input variations */ X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormalPairs = (cTests - 144) / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++) { GenerateArrayStart(pOut, g_aFpuBinaryEflR80[iFn].pszName, "FPU_BINARY_EFL_R80_TEST_T"); uint32_t cNormalInputPairs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aFpuBinaryEflR80Specials); iTest += 1) { RTFLOAT80U const InVal1 = iTest < cTests ? RandR80Src1(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val1; RTFLOAT80U const InVal2 = iTest < cTests ? RandR80Src2(iTest) : s_aFpuBinaryEflR80Specials[iTest - cTests].Val2; if (RTFLOAT80U_IS_NORMAL(&InVal1) && RTFLOAT80U_IS_NORMAL(&InVal2)) cNormalInputPairs++; else if (cNormalInputPairs < cMinNormalPairs && iTest + cMinNormalPairs >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); /* Guess these aren't affected by precision or rounding, so just flip the exception mask. */ for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) { State.FCW = (fFcw & ~(X86_FCW_MASK_ALL)) | iMask; uint16_t uFswOut = 0; uint32_t fEflOut = g_aFpuBinaryEflR80[iFn].pfn(&State, &uFswOut, &InVal1, &InVal2); RTStrmPrintf(pOut, " { %#06x, %#06x, %#06x, %s, %s, %#08x }, /* #%u/%c */\n", State.FCW, State.FSW, uFswOut, GenFormatR80(&InVal1), GenFormatR80(&InVal2), fEflOut, iTest, iMask ? 'c' : 'u'); } } GenerateArrayEnd(pOut, g_aFpuBinaryEflR80[iFn].pszName); } } #endif /*TSTIEMAIMPL_WITH_GENERATOR*/ static void FpuBinaryEflR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuBinaryEflR80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuBinaryEflR80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuBinaryEflR80[iFn].pcTests; FPU_BINARY_EFL_R80_TEST_T const * const paTests = g_aFpuBinaryEflR80[iFn].paTests; PFNIEMAIMPLFPUR80EFL pfn = g_aFpuBinaryEflR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuBinaryEflR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal1 = paTests[iTest].InVal1; RTFLOAT80U const InVal2 = paTests[iTest].InVal2; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; uint16_t uFswOut = 0; uint32_t fEflOut = pfn(&State, &uFswOut, &InVal1, &InVal2); if ( uFswOut != paTests[iTest].fFswOut || fEflOut != paTests[iTest].fEflOut) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in1=%s in2=%s\n" "%s -> fsw=%#06x efl=%#08x\n" "%s expected %#06x %#08x %s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal1), FormatR80(&paTests[iTest].InVal2), iVar ? " " : "", uFswOut, fEflOut, iVar ? " " : "", paTests[iTest].fFswOut, paTests[iTest].fEflOut, FswDiff(uFswOut, paTests[iTest].fFswOut), EFlagsDiff(fEflOut, paTests[iTest].fEflOut), FormatFcw(paTests[iTest].fFcw)); } pfn = g_aFpuBinaryEflR80[iFn].pfnNative; } } } /********************************************************************************************************************************* * x87 FPU Unary Operations * *********************************************************************************************************************************/ /* * Unary FPU operations on one 80-bit floating point value. * * Note! The FCW reserved bit 7 is used to indicate whether a test may produce * a rounding error or not. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARY); enum { kUnary_Accurate = 0, kUnary_Accurate_Trigonometry /*probably not accurate, but need impl to know*/, kUnary_Rounding_F2xm1 }; static const FPU_UNARY_R80_T g_aFpuUnaryR80[] = { ENTRY_EX( fabs_r80, kUnary_Accurate), ENTRY_EX( fchs_r80, kUnary_Accurate), ENTRY_AMD_EX( f2xm1_r80, 0, kUnary_Accurate), // C1 differs for -1m0x3fb263cc2c331e15^-2654 (different ln2 constant?) ENTRY_INTEL_EX(f2xm1_r80, 0, kUnary_Rounding_F2xm1), ENTRY_EX( fsqrt_r80, kUnary_Accurate), ENTRY_EX( frndint_r80, kUnary_Accurate), ENTRY_AMD_EX( fsin_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences for pseudo denormals and others (e.g. -1m0x2b1e5683cbca5725^-3485) ENTRY_INTEL_EX(fsin_r80, 0, kUnary_Accurate_Trigonometry), ENTRY_AMD_EX( fcos_r80, 0, kUnary_Accurate_Trigonometry), // value & C1 differences ENTRY_INTEL_EX(fcos_r80, 0, kUnary_Accurate_Trigonometry), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static bool FpuUnaryR80MayHaveRoundingError(PCRTFLOAT80U pr80Val, int enmKind) { if ( enmKind == kUnary_Rounding_F2xm1 && RTFLOAT80U_IS_NORMAL(pr80Val) && pr80Val->s.uExponent < RTFLOAT80U_EXP_BIAS && pr80Val->s.uExponent >= RTFLOAT80U_EXP_BIAS - 69) return true; return false; } static void FpuUnaryR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* 0.5 (for f2xm1) */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS - 1), /* -0.5 (for f2xm1) */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* 1.0 (for f2xm1) */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, RTFLOAT80U_EXP_BIAS), /* -1.0 (for f2xm1) */ RTFLOAT80U_INIT_C(0, 0x8000000000000000, 0), /* +1.0^-16382 */ RTFLOAT80U_INIT_C(1, 0x8000000000000000, 0), /* -1.0^-16382 */ RTFLOAT80U_INIT_C(0, 0xc000000000000000, 0), /* +1.1^-16382 */ RTFLOAT80U_INIT_C(1, 0xc000000000000000, 0), /* -1.1^-16382 */ RTFLOAT80U_INIT_C(0, 0xc000100000000000, 0), /* +1.1xxx1^-16382 */ RTFLOAT80U_INIT_C(1, 0xc000100000000000, 0), /* -1.1xxx1^-16382 */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++) { PFNIEMAIMPLFPUR80UNARY const pfn = g_aFpuUnaryR80[iFn].pfnNative ? g_aFpuUnaryR80[iFn].pfnNative : g_aFpuUnaryR80[iFn].pfn; PRTSTREAM pOutFn = pOut; if (g_aFpuUnaryR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) { if (g_aFpuUnaryR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; pOutFn = pOutCpu; } GenerateArrayStart(pOutFn, g_aFpuUnaryR80[iFn].pszName, "FPU_UNARY_R80_TEST_T"); uint32_t iTestOutput = 0; uint32_t cNormalInputs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) { if (g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1) { unsigned uTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? RTFLOAT80U_EXP_BIAS /* 2^0..2^-69 */ : RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */; unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2; if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp) cTargetRangeInputs++; else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests) { InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp); cTargetRangeInputs++; } } cNormalInputs++; } else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = FpuUnaryR80MayHaveRoundingError(&InVal, g_aFpuUnaryR80[iFn].uExtra) ? 0x80 : 0; uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULT ResM = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResM, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/m = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal), GenFormatR80(&ResM.r80Result), iTest, iRounding, iPrecision, iTestOutput++); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULT ResU = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &ResU, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/u = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal), GenFormatR80(&ResU.r80Result), iTest, iRounding, iPrecision, iTestOutput++); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res1, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal), GenFormatR80(&Res1.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULT Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res2, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal), GenFormatR80(&Res2.r80Result), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULT Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0 }; pfn(&State, &Res3, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal), GenFormatR80(&Res3.r80Result), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++); } } } } GenerateArrayEnd(pOutFn, g_aFpuUnaryR80[iFn].pszName); } } #endif static bool FpuIsEqualFcwMaybeIgnoreRoundErr(uint16_t fFcw1, uint16_t fFcw2, bool fRndErrOk, bool *pfRndErr) { if (fFcw1 == fFcw2) return true; if (fRndErrOk && (fFcw1 & ~X86_FSW_C1) == (fFcw2 & ~X86_FSW_C1)) { *pfRndErr = true; return true; } return false; } static bool FpuIsEqualR80MaybeIgnoreRoundErr(PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2, bool fRndErrOk, bool *pfRndErr) { if (RTFLOAT80U_ARE_IDENTICAL(pr80Val1, pr80Val2)) return true; if ( fRndErrOk && pr80Val1->s.fSign == pr80Val2->s.fSign) { if ( ( pr80Val1->s.uExponent == pr80Val2->s.uExponent && ( pr80Val1->s.uMantissa > pr80Val2->s.uMantissa ? pr80Val1->s.uMantissa - pr80Val2->s.uMantissa == 1 : pr80Val2->s.uMantissa - pr80Val1->s.uMantissa == 1)) || ( pr80Val1->s.uExponent + 1 == pr80Val2->s.uExponent && pr80Val1->s.uMantissa == UINT64_MAX && pr80Val2->s.uMantissa == RT_BIT_64(63)) || ( pr80Val1->s.uExponent == pr80Val2->s.uExponent + 1 && pr80Val2->s.uMantissa == UINT64_MAX && pr80Val1->s.uMantissa == RT_BIT_64(63)) ) { *pfRndErr = true; return true; } } return false; } static void FpuUnaryR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryR80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuUnaryR80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuUnaryR80[iFn].pcTests; FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryR80[iFn].paTests; PFNIEMAIMPLFPUR80UNARY pfn = g_aFpuUnaryR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryR80[iFn]); uint32_t cRndErrs = 0; uint32_t cPossibleRndErrs = 0; if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; IEMFPURESULT Res = { RTFLOAT80U_INIT(0, 0, 0), 0 }; bool const fRndErrOk = RT_BOOL(paTests[iTest].fFcw & 0x80); State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal); bool fRndErr = false; if ( !FpuIsEqualFcwMaybeIgnoreRoundErr(Res.FSW, paTests[iTest].fFswOut, fRndErrOk, &fRndErr) || !FpuIsEqualR80MaybeIgnoreRoundErr(&Res.r80Result, &paTests[iTest].OutVal, fRndErrOk, &fRndErr)) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s\n" "%s expected %#06x %s%s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal), FswDiff(Res.FSW, paTests[iTest].fFswOut), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result, &paTests[iTest].OutVal) ? " - val" : "", fRndErrOk ? " - rounding errors ok" : "", FormatFcw(paTests[iTest].fFcw)); cRndErrs += fRndErr; cPossibleRndErrs += fRndErrOk; } pfn = g_aFpuUnaryR80[iFn].pfnNative; } if (cPossibleRndErrs > 0) RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "rounding errors: %u out of %u\n", cRndErrs, cPossibleRndErrs); } } /* * Unary FPU operations on one 80-bit floating point value, but only affects the FSW. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_FSW_R80_T, FPU_UNARY_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYFSW); static const FPU_UNARY_FSW_R80_T g_aFpuUnaryFswR80[] = { ENTRY(ftst_r80), ENTRY_EX(fxam_r80, 1), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuUnaryFswR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++) { bool const fIsFxam = g_aFpuUnaryFswR80[iFn].uExtra == 1; PFNIEMAIMPLFPUR80UNARYFSW const pfn = g_aFpuUnaryFswR80[iFn].pfnNative ? g_aFpuUnaryFswR80[iFn].pfnNative : g_aFpuUnaryFswR80[iFn].pfn; PRTSTREAM pOutFn = pOut; if (g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) { if (g_aFpuUnaryFswR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; pOutFn = pOutCpu; } State.FTW = 0; GenerateArrayStart(pOutFn, g_aFpuUnaryFswR80[iFn].pszName, "FPU_UNARY_R80_TEST_T"); uint32_t cNormalInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U const InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) cNormalInputs++; else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); if (!fIsFxam) { for (uint16_t iRounding = 0; iRounding < 4; iRounding++) { for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { for (uint16_t iMask = 0; iMask <= X86_FCW_MASK_ALL; iMask += X86_FCW_MASK_ALL) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | iMask; uint16_t fFswOut = 0; pfn(&State, &fFswOut, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s }, /* #%u/%u/%u/%c */\n", State.FCW, State.FSW, fFswOut, GenFormatR80(&InVal), iTest, iRounding, iPrecision, iMask ? 'c' : 'u'); } } } } else { uint16_t fFswOut = 0; uint16_t const fEmpty = RTRandU32Ex(0, 3) == 3 ? 0x80 : 0; /* Using MBZ bit 7 in FCW to indicate empty tag value. */ State.FTW = !fEmpty ? 1 << X86_FSW_TOP_GET(State.FSW) : 0; State.FCW = fFcw; pfn(&State, &fFswOut, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s }, /* #%u%s */\n", fFcw | fEmpty, State.FSW, fFswOut, GenFormatR80(&InVal), iTest, fEmpty ? "/empty" : ""); } } GenerateArrayEnd(pOutFn, g_aFpuUnaryFswR80[iFn].pszName); } } #endif static void FpuUnaryFswR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryFswR80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuUnaryFswR80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuUnaryFswR80[iFn].pcTests; FPU_UNARY_R80_TEST_T const * const paTests = g_aFpuUnaryFswR80[iFn].paTests; PFNIEMAIMPLFPUR80UNARYFSW pfn = g_aFpuUnaryFswR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryFswR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { RTFLOAT80U const InVal = paTests[iTest].InVal; uint16_t fFswOut = 0; State.FSW = paTests[iTest].fFswIn; State.FCW = paTests[iTest].fFcw & ~(uint16_t)0x80; /* see generator code */ State.FTW = paTests[iTest].fFcw & 0x80 ? 0 : 1 << X86_FSW_TOP_GET(paTests[iTest].fFswIn); pfn(&State, &fFswOut, &InVal); if (fFswOut != paTests[iTest].fFswOut) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x\n" "%s expected %#06x %s (%s%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", fFswOut, iVar ? " " : "", paTests[iTest].fFswOut, FswDiff(fFswOut, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw), paTests[iTest].fFcw & 0x80 ? " empty" : ""); } pfn = g_aFpuUnaryFswR80[iFn].pfnNative; } } } /* * Unary FPU operations on one 80-bit floating point value, but with two outputs. */ TYPEDEF_SUBTEST_TYPE(FPU_UNARY_TWO_R80_T, FPU_UNARY_TWO_R80_TEST_T, PFNIEMAIMPLFPUR80UNARYTWO); static const FPU_UNARY_TWO_R80_T g_aFpuUnaryTwoR80[] = { ENTRY(fxtract_r80_r80), ENTRY_AMD( fptan_r80_r80, 0), // rounding differences ENTRY_INTEL(fptan_r80_r80, 0), ENTRY_AMD( fsincos_r80_r80, 0), // C1 differences & value differences (e.g. -1m0x235cf2f580244a27^-1696) ENTRY_INTEL(fsincos_r80_r80, 0), }; #ifdef TSTIEMAIMPL_WITH_GENERATOR static void FpuUnaryTwoR80Generate(PRTSTREAM pOut, PRTSTREAM pOutCpu, uint32_t cTests) { static RTFLOAT80U const s_aSpecials[] = { RTFLOAT80U_INIT_C(0, 0xffffeeeeddddcccc, RTFLOAT80U_EXP_BIAS), /* whatever */ }; X86FXSTATE State; RT_ZERO(State); uint32_t cMinNormals = cTests / 4; for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++) { PFNIEMAIMPLFPUR80UNARYTWO const pfn = g_aFpuUnaryTwoR80[iFn].pfnNative ? g_aFpuUnaryTwoR80[iFn].pfnNative : g_aFpuUnaryTwoR80[iFn].pfn; PRTSTREAM pOutFn = pOut; if (g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != IEMTARGETCPU_EFL_BEHAVIOR_NATIVE) { if (g_aFpuUnaryTwoR80[iFn].idxCpuEflFlavour != g_idxCpuEflFlavour) continue; pOutFn = pOutCpu; } GenerateArrayStart(pOutFn, g_aFpuUnaryTwoR80[iFn].pszName, "FPU_UNARY_TWO_R80_TEST_T"); uint32_t iTestOutput = 0; uint32_t cNormalInputs = 0; uint32_t cTargetRangeInputs = 0; for (uint32_t iTest = 0; iTest < cTests + RT_ELEMENTS(s_aSpecials); iTest += 1) { RTFLOAT80U InVal = iTest < cTests ? RandR80Src(iTest) : s_aSpecials[iTest - cTests]; if (RTFLOAT80U_IS_NORMAL(&InVal)) { if (iFn != 0) { unsigned uTargetExp = RTFLOAT80U_EXP_BIAS + 63 + 1 /* 2^64..2^-64 */; unsigned cTargetExp = g_aFpuUnaryR80[iFn].uExtra == kUnary_Rounding_F2xm1 ? 69 : 63*2 + 2; if (InVal.s.uExponent <= uTargetExp && InVal.s.uExponent >= uTargetExp - cTargetExp) cTargetRangeInputs++; else if (cTargetRangeInputs < cMinNormals / 2 && iTest + cMinNormals / 2 >= cTests && iTest < cTests) { InVal.s.uExponent = RTRandU32Ex(uTargetExp - cTargetExp, uTargetExp); cTargetRangeInputs++; } } cNormalInputs++; } else if (cNormalInputs < cMinNormals && iTest + cMinNormals >= cTests && iTest < cTests) { iTest -= 1; continue; } uint16_t const fFcwExtra = 0; /* for rounding error indication */ uint16_t const fFcw = RandFcw(); State.FSW = RandFsw(); for (uint16_t iRounding = 0; iRounding < 4; iRounding++) for (uint16_t iPrecision = 0; iPrecision < 4; iPrecision++) { State.FCW = (fFcw & ~(X86_FCW_RC_MASK | X86_FCW_PC_MASK | X86_FCW_MASK_ALL)) | (iRounding << X86_FCW_RC_SHIFT) | (iPrecision << X86_FCW_PC_SHIFT) | X86_FCW_MASK_ALL; IEMFPURESULTTWO ResM = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &ResM, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/m = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResM.FSW, GenFormatR80(&InVal), GenFormatR80(&ResM.r80Result1), GenFormatR80(&ResM.r80Result2), iTest, iRounding, iPrecision, iTestOutput++); State.FCW = State.FCW & ~X86_FCW_MASK_ALL; IEMFPURESULTTWO ResU = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &ResU, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u = #%u */\n", State.FCW | fFcwExtra, State.FSW, ResU.FSW, GenFormatR80(&InVal), GenFormatR80(&ResU.r80Result1), GenFormatR80(&ResU.r80Result2), iTest, iRounding, iPrecision, iTestOutput++); uint16_t fXcpt = (ResM.FSW | ResU.FSW) & X86_FSW_XCPT_MASK & ~X86_FSW_SF; if (fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULTTWO Res1 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res1, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res1.FSW, GenFormatR80(&InVal), GenFormatR80(&Res1.r80Result1), GenFormatR80(&Res1.r80Result2), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); if (((Res1.FSW & X86_FSW_XCPT_MASK) & fXcpt) != (Res1.FSW & X86_FSW_XCPT_MASK)) { fXcpt |= Res1.FSW & X86_FSW_XCPT_MASK; State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | fXcpt; IEMFPURESULTTWO Res2 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res2, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/%#x[!] = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res2.FSW, GenFormatR80(&InVal), GenFormatR80(&Res2.r80Result1), GenFormatR80(&Res2.r80Result2), iTest, iRounding, iPrecision, fXcpt, iTestOutput++); } if (!RT_IS_POWER_OF_TWO(fXcpt)) for (uint16_t fUnmasked = 1; fUnmasked <= X86_FCW_PM; fUnmasked <<= 1) if (fUnmasked & fXcpt) { State.FCW = (State.FCW & ~X86_FCW_MASK_ALL) | (fXcpt & ~fUnmasked); IEMFPURESULTTWO Res3 = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; pfn(&State, &Res3, &InVal); RTStrmPrintf(pOutFn, " { %#06x, %#06x, %#06x, %s, %s, %s }, /* #%u/%u/%u/u%#x = #%u */\n", State.FCW | fFcwExtra, State.FSW, Res3.FSW, GenFormatR80(&InVal), GenFormatR80(&Res3.r80Result1), GenFormatR80(&Res3.r80Result2), iTest, iRounding, iPrecision, fUnmasked, iTestOutput++); } } } } GenerateArrayEnd(pOutFn, g_aFpuUnaryTwoR80[iFn].pszName); } } #endif static void FpuUnaryTwoR80Test(void) { X86FXSTATE State; RT_ZERO(State); for (size_t iFn = 0; iFn < RT_ELEMENTS(g_aFpuUnaryTwoR80); iFn++) { if (!SubTestAndCheckIfEnabled(g_aFpuUnaryTwoR80[iFn].pszName)) continue; uint32_t const cTests = *g_aFpuUnaryTwoR80[iFn].pcTests; FPU_UNARY_TWO_R80_TEST_T const * const paTests = g_aFpuUnaryTwoR80[iFn].paTests; PFNIEMAIMPLFPUR80UNARYTWO pfn = g_aFpuUnaryTwoR80[iFn].pfn; uint32_t const cVars = COUNT_VARIATIONS(g_aFpuUnaryTwoR80[iFn]); if (!cTests) RTTestSkipped(g_hTest, "no tests"); for (uint32_t iVar = 0; iVar < cVars; iVar++) { for (uint32_t iTest = 0; iTest < cTests; iTest++) { IEMFPURESULTTWO Res = { RTFLOAT80U_INIT(0, 0, 0), 0, RTFLOAT80U_INIT(0, 0, 0) }; RTFLOAT80U const InVal = paTests[iTest].InVal; State.FCW = paTests[iTest].fFcw; State.FSW = paTests[iTest].fFswIn; pfn(&State, &Res, &InVal); if ( Res.FSW != paTests[iTest].fFswOut || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) || !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ) RTTestFailed(g_hTest, "#%04u%s: fcw=%#06x fsw=%#06x in=%s\n" "%s -> fsw=%#06x %s %s\n" "%s expected %#06x %s %s %s%s%s (%s)\n", iTest, iVar ? "/n" : "", paTests[iTest].fFcw, paTests[iTest].fFswIn, FormatR80(&paTests[iTest].InVal), iVar ? " " : "", Res.FSW, FormatR80(&Res.r80Result1), FormatR80(&Res.r80Result2), iVar ? " " : "", paTests[iTest].fFswOut, FormatR80(&paTests[iTest].OutVal1), FormatR80(&paTests[iTest].OutVal2), !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result1, &paTests[iTest].OutVal1) ? " - val1" : "", !RTFLOAT80U_ARE_IDENTICAL(&Res.r80Result2, &paTests[iTest].OutVal2) ? " - val2" : "", FswDiff(Res.FSW, paTests[iTest].fFswOut), FormatFcw(paTests[iTest].fFcw) ); } pfn = g_aFpuUnaryTwoR80[iFn].pfnNative; } } } int main(int argc, char **argv) { int rc = RTR3InitExe(argc, &argv, 0); if (RT_FAILURE(rc)) return RTMsgInitFailure(rc); /* * Determin the host CPU. * If not using the IEMAllAImpl.asm code, this will be set to Intel. */ #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY) g_idxCpuEflFlavour = ASMIsAmdCpu() || ASMIsHygonCpu() ? IEMTARGETCPU_EFL_BEHAVIOR_AMD : IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #else g_idxCpuEflFlavour = IEMTARGETCPU_EFL_BEHAVIOR_INTEL; #endif /* * Parse arguments. */ enum { kModeNotSet, kModeTest, kModeGenerate } enmMode = kModeNotSet; bool fInt = true; bool fFpuLdSt = true; bool fFpuBinary1 = true; bool fFpuBinary2 = true; bool fFpuOther = true; bool fCpuData = true; bool fCommonData = true; uint32_t const cDefaultTests = 96; uint32_t cTests = cDefaultTests; RTGETOPTDEF const s_aOptions[] = { // mode: { "--generate", 'g', RTGETOPT_REQ_NOTHING }, { "--test", 't', RTGETOPT_REQ_NOTHING }, // test selection (both) { "--all", 'a', RTGETOPT_REQ_NOTHING }, { "--none", 'z', RTGETOPT_REQ_NOTHING }, { "--zap", 'z', RTGETOPT_REQ_NOTHING }, { "--fpu-ld-st", 'F', RTGETOPT_REQ_NOTHING }, /* FPU stuff is upper case */ { "--fpu-load-store", 'F', RTGETOPT_REQ_NOTHING }, { "--fpu-binary-1", 'B', RTGETOPT_REQ_NOTHING }, { "--fpu-binary-2", 'P', RTGETOPT_REQ_NOTHING }, { "--fpu-other", 'O', RTGETOPT_REQ_NOTHING }, { "--int", 'i', RTGETOPT_REQ_NOTHING }, { "--include", 'I', RTGETOPT_REQ_STRING }, { "--exclude", 'X', RTGETOPT_REQ_STRING }, // generation parameters { "--common", 'm', RTGETOPT_REQ_NOTHING }, { "--cpu", 'c', RTGETOPT_REQ_NOTHING }, { "--number-of-tests", 'n', RTGETOPT_REQ_UINT32 }, { "--verbose", 'v', RTGETOPT_REQ_NOTHING }, { "--quiet", 'q', RTGETOPT_REQ_NOTHING }, }; RTGETOPTSTATE State; rc = RTGetOptInit(&State, argc, argv, s_aOptions, RT_ELEMENTS(s_aOptions), 1, 0); AssertRCReturn(rc, RTEXITCODE_FAILURE); RTGETOPTUNION ValueUnion; while ((rc = RTGetOpt(&State, &ValueUnion))) { switch (rc) { case 'g': enmMode = kModeGenerate; break; case 't': enmMode = kModeTest; break; case 'a': fCpuData = true; fCommonData = true; fInt = true; fFpuLdSt = true; fFpuBinary1 = true; fFpuBinary2 = true; fFpuOther = true; break; case 'z': fCpuData = false; fCommonData = false; fInt = false; fFpuLdSt = false; fFpuBinary1 = false; fFpuBinary2 = false; fFpuOther = false; break; case 'F': fFpuLdSt = true; break; case 'O': fFpuOther = true; break; case 'B': fFpuBinary1 = true; break; case 'P': fFpuBinary2 = true; break; case 'i': fInt = true; break; case 'I': if (g_cIncludeTestPatterns >= RT_ELEMENTS(g_apszIncludeTestPatterns)) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many include patterns (max %zu)", RT_ELEMENTS(g_apszIncludeTestPatterns)); g_apszIncludeTestPatterns[g_cIncludeTestPatterns++] = ValueUnion.psz; break; case 'X': if (g_cExcludeTestPatterns >= RT_ELEMENTS(g_apszExcludeTestPatterns)) return RTMsgErrorExit(RTEXITCODE_SYNTAX, "Too many exclude patterns (max %zu)", RT_ELEMENTS(g_apszExcludeTestPatterns)); g_apszExcludeTestPatterns[g_cExcludeTestPatterns++] = ValueUnion.psz; break; case 'm': fCommonData = true; break; case 'c': fCpuData = true; break; case 'n': cTests = ValueUnion.u32; break; case 'q': g_cVerbosity = 0; break; case 'v': g_cVerbosity++; break; case 'h': RTPrintf("usage: %s <-g|-t> [options]\n" "\n" "Mode:\n" " -g, --generate\n" " Generate test data.\n" " -t, --test\n" " Execute tests.\n" "\n" "Test selection (both modes):\n" " -a, --all\n" " Enable all tests and generated test data. (default)\n" " -z, --zap, --none\n" " Disable all tests and test data types.\n" " -i, --int\n" " Enable non-FPU tests.\n" " -F, --fpu-ld-st\n" " Enable FPU load and store tests.\n" " -B, --fpu-binary-1\n" " Enable FPU binary 80-bit FP tests.\n" " -P, --fpu-binary-2\n" " Enable FPU binary 64- and 32-bit FP tests.\n" " -O, --fpu-other\n" " Enable other FPU tests.\n" " -I,--include=\n" " Enable tests matching the given pattern.\n" " -X,--exclude=\n" " Skip tests matching the given pattern (overrides --include).\n" "\n" "Generation:\n" " -m, --common\n" " Enable generating common test data.\n" " -c, --only-cpu\n" " Enable generating CPU specific test data.\n" " -n, --number-of-test \n" " Number of tests to generate. Default: %u\n" "\n" "Other:\n" " -v, --verbose\n" " -q, --quiet\n" " Noise level. Default: --quiet\n" , argv[0], cDefaultTests); return RTEXITCODE_SUCCESS; default: return RTGetOptPrintError(rc, &ValueUnion); } } /* * Generate data? */ if (enmMode == kModeGenerate) { #ifdef TSTIEMAIMPL_WITH_GENERATOR char szCpuDesc[256] = {0}; RTMpGetDescription(NIL_RTCPUID, szCpuDesc, sizeof(szCpuDesc)); const char * const pszCpuType = g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "Amd" : "Intel"; # if defined(RT_OS_WINDOWS) || defined(RT_OS_OS2) const char * const pszBitBucket = "NUL"; # else const char * const pszBitBucket = "/dev/null"; # endif if (cTests == 0) cTests = cDefaultTests; g_cZeroDstTests = RT_MIN(cTests / 16, 32); g_cZeroSrcTests = g_cZeroDstTests * 2; if (fInt) { const char *pszDataFile = fCommonData ? "tstIEMAImplDataInt.cpp" : pszBitBucket; PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL); const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "tstIEMAImplDataInt-Amd.cpp" : "tstIEMAImplDataInt-Intel.cpp"; PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType); if (!pStrmData || !pStrmDataCpu) return RTEXITCODE_FAILURE; BinU8Generate( pStrmData, pStrmDataCpu, cTests); BinU16Generate(pStrmData, pStrmDataCpu, cTests); BinU32Generate(pStrmData, pStrmDataCpu, cTests); BinU64Generate(pStrmData, pStrmDataCpu, cTests); ShiftDblGenerate(pStrmDataCpu, RT_MAX(cTests, 128)); UnaryGenerate(pStrmData, cTests); ShiftGenerate(pStrmDataCpu, cTests); MulDivGenerate(pStrmDataCpu, cTests); RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile, GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS)); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } if (fFpuLdSt) { const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuLdSt.cpp" : pszBitBucket; PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL); const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "tstIEMAImplDataFpuLdSt-Amd.cpp" : "tstIEMAImplDataFpuLdSt-Intel.cpp"; PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType); if (!pStrmData || !pStrmDataCpu) return RTEXITCODE_FAILURE; FpuLdConstGenerate(pStrmData, cTests); FpuLdIntGenerate(pStrmData, cTests); FpuLdD80Generate(pStrmData, cTests); FpuStIntGenerate(pStrmData, pStrmDataCpu, cTests); FpuStD80Generate(pStrmData, cTests); uint32_t const cTests2 = RT_MAX(cTests, 384); /* need better coverage for the next ones. */ FpuLdMemGenerate(pStrmData, cTests2); FpuStMemGenerate(pStrmData, cTests2); RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile, GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS)); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } if (fFpuBinary1) { const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuBinary1.cpp" : pszBitBucket; PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL); const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "tstIEMAImplDataFpuBinary1-Amd.cpp" : "tstIEMAImplDataFpuBinary1-Intel.cpp"; PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType); if (!pStrmData || !pStrmDataCpu) return RTEXITCODE_FAILURE; FpuBinaryR80Generate(pStrmData, pStrmDataCpu, cTests); FpuBinaryFswR80Generate(pStrmData, cTests); FpuBinaryEflR80Generate(pStrmData, cTests); RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile, GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS)); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } if (fFpuBinary2) { const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuBinary2.cpp" : pszBitBucket; PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL); const char *pszDataCpuFile = pszBitBucket; /*!fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "tstIEMAImplDataFpuBinary2-Amd.cpp" : "tstIEMAImplDataFpuBinary2-Intel.cpp"; */ PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType); if (!pStrmData || !pStrmDataCpu) return RTEXITCODE_FAILURE; FpuBinaryR64Generate(pStrmData, cTests); FpuBinaryR32Generate(pStrmData, cTests); FpuBinaryI32Generate(pStrmData, cTests); FpuBinaryI16Generate(pStrmData, cTests); FpuBinaryFswR64Generate(pStrmData, cTests); FpuBinaryFswR32Generate(pStrmData, cTests); FpuBinaryFswI32Generate(pStrmData, cTests); FpuBinaryFswI16Generate(pStrmData, cTests); RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile, GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS)); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } if (fFpuOther) { const char *pszDataFile = fCommonData ? "tstIEMAImplDataFpuOther.cpp" : pszBitBucket; PRTSTREAM pStrmData = GenerateOpenWithHdr(pszDataFile, szCpuDesc, NULL); const char *pszDataCpuFile = !fCpuData ? pszBitBucket : g_idxCpuEflFlavour == IEMTARGETCPU_EFL_BEHAVIOR_AMD ? "tstIEMAImplDataFpuOther-Amd.cpp" : "tstIEMAImplDataFpuOther-Intel.cpp"; PRTSTREAM pStrmDataCpu = GenerateOpenWithHdr(pszDataCpuFile, szCpuDesc, pszCpuType); if (!pStrmData || !pStrmDataCpu) return RTEXITCODE_FAILURE; FpuUnaryR80Generate(pStrmData, pStrmDataCpu, cTests); FpuUnaryFswR80Generate(pStrmData, pStrmDataCpu, cTests); FpuUnaryTwoR80Generate(pStrmData, pStrmDataCpu, cTests); RTEXITCODE rcExit = GenerateFooterAndClose(pStrmDataCpu, pszDataCpuFile, GenerateFooterAndClose(pStrmData, pszDataFile, RTEXITCODE_SUCCESS)); if (rcExit != RTEXITCODE_SUCCESS) return rcExit; } return RTEXITCODE_SUCCESS; #else return RTMsgErrorExitFailure("Test data generator not compiled in!"); #endif } /* * Do testing. Currrently disabled by default as data needs to be checked * on both intel and AMD systems first. */ rc = RTTestCreate("tstIEMAimpl", &g_hTest); AssertRCReturn(rc, RTEXITCODE_FAILURE); if (enmMode == kModeTest) { RTTestBanner(g_hTest); /* Allocate guarded memory for use in the tests. */ #define ALLOC_GUARDED_VAR(a_puVar) do { \ rc = RTTestGuardedAlloc(g_hTest, sizeof(*a_puVar), sizeof(*a_puVar), false /*fHead*/, (void **)&a_puVar); \ if (RT_FAILURE(rc)) RTTestFailed(g_hTest, "Failed to allocate guarded mem: " #a_puVar); \ } while (0) ALLOC_GUARDED_VAR(g_pu8); ALLOC_GUARDED_VAR(g_pu16); ALLOC_GUARDED_VAR(g_pu32); ALLOC_GUARDED_VAR(g_pu64); ALLOC_GUARDED_VAR(g_pu128); ALLOC_GUARDED_VAR(g_pu8Two); ALLOC_GUARDED_VAR(g_pu16Two); ALLOC_GUARDED_VAR(g_pu32Two); ALLOC_GUARDED_VAR(g_pu64Two); ALLOC_GUARDED_VAR(g_pu128Two); ALLOC_GUARDED_VAR(g_pfEfl); if (RTTestErrorCount(g_hTest) == 0) { if (fInt) { BinU8Test(); BinU16Test(); BinU32Test(); BinU64Test(); XchgTest(); XaddTest(); CmpXchgTest(); CmpXchg8bTest(); CmpXchg16bTest(); ShiftDblTest(); UnaryTest(); ShiftTest(); MulDivTest(); BswapTest(); } if (fFpuLdSt) { FpuLoadConstTest(); FpuLdMemTest(); FpuLdIntTest(); FpuLdD80Test(); FpuStMemTest(); FpuStIntTest(); FpuStD80Test(); } if (fFpuBinary1) { FpuBinaryR80Test(); FpuBinaryFswR80Test(); FpuBinaryEflR80Test(); } if (fFpuBinary2) { FpuBinaryR64Test(); FpuBinaryR32Test(); FpuBinaryI32Test(); FpuBinaryI16Test(); FpuBinaryFswR64Test(); FpuBinaryFswR32Test(); FpuBinaryFswI32Test(); FpuBinaryFswI16Test(); } if (fFpuOther) { FpuUnaryR80Test(); FpuUnaryFswR80Test(); FpuUnaryTwoR80Test(); } } return RTTestSummaryAndDestroy(g_hTest); } return RTTestSkipAndDestroy(g_hTest, "unfinished testcase"); }