1 | /*
|
---|
2 | * jfdctint.c
|
---|
3 | *
|
---|
4 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
5 | * This file is part of the Independent JPEG Group's software.
|
---|
6 | * For conditions of distribution and use, see the accompanying README file.
|
---|
7 | *
|
---|
8 | * This file contains a slow-but-accurate integer implementation of the
|
---|
9 | * forward DCT (Discrete Cosine Transform).
|
---|
10 | *
|
---|
11 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
---|
12 | * on each column. Direct algorithms are also available, but they are
|
---|
13 | * much more complex and seem not to be any faster when reduced to code.
|
---|
14 | *
|
---|
15 | * This implementation is based on an algorithm described in
|
---|
16 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
---|
17 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
---|
18 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
---|
19 | * The primary algorithm described there uses 11 multiplies and 29 adds.
|
---|
20 | * We use their alternate method with 12 multiplies and 32 adds.
|
---|
21 | * The advantage of this method is that no data path contains more than one
|
---|
22 | * multiplication; this allows a very simple and accurate implementation in
|
---|
23 | * scaled fixed-point arithmetic, with a minimal number of shifts.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /**
|
---|
27 | * @file jfdctint.c
|
---|
28 | * Independent JPEG Group's slow & accurate dct.
|
---|
29 | */
|
---|
30 |
|
---|
31 | #include <stdlib.h>
|
---|
32 | #include <stdio.h>
|
---|
33 | #include "common.h"
|
---|
34 | #include "dsputil.h"
|
---|
35 |
|
---|
36 | #define SHIFT_TEMPS
|
---|
37 | #define DCTSIZE 8
|
---|
38 | #define BITS_IN_JSAMPLE 8
|
---|
39 | #define GLOBAL(x) x
|
---|
40 | #define RIGHT_SHIFT(x, n) ((x) >> (n))
|
---|
41 | #define MULTIPLY16C16(var,const) ((var)*(const))
|
---|
42 |
|
---|
43 | #if 1 //def USE_ACCURATE_ROUNDING
|
---|
44 | #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
|
---|
45 | #else
|
---|
46 | #define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
---|
47 | #endif
|
---|
48 |
|
---|
49 |
|
---|
50 | /*
|
---|
51 | * This module is specialized to the case DCTSIZE = 8.
|
---|
52 | */
|
---|
53 |
|
---|
54 | #if DCTSIZE != 8
|
---|
55 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
56 | #endif
|
---|
57 |
|
---|
58 |
|
---|
59 | /*
|
---|
60 | * The poop on this scaling stuff is as follows:
|
---|
61 | *
|
---|
62 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
|
---|
63 | * larger than the true DCT outputs. The final outputs are therefore
|
---|
64 | * a factor of N larger than desired; since N=8 this can be cured by
|
---|
65 | * a simple right shift at the end of the algorithm. The advantage of
|
---|
66 | * this arrangement is that we save two multiplications per 1-D DCT,
|
---|
67 | * because the y0 and y4 outputs need not be divided by sqrt(N).
|
---|
68 | * In the IJG code, this factor of 8 is removed by the quantization step
|
---|
69 | * (in jcdctmgr.c), NOT in this module.
|
---|
70 | *
|
---|
71 | * We have to do addition and subtraction of the integer inputs, which
|
---|
72 | * is no problem, and multiplication by fractional constants, which is
|
---|
73 | * a problem to do in integer arithmetic. We multiply all the constants
|
---|
74 | * by CONST_SCALE and convert them to integer constants (thus retaining
|
---|
75 | * CONST_BITS bits of precision in the constants). After doing a
|
---|
76 | * multiplication we have to divide the product by CONST_SCALE, with proper
|
---|
77 | * rounding, to produce the correct output. This division can be done
|
---|
78 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
---|
79 | * as long as possible so that partial sums can be added together with
|
---|
80 | * full fractional precision.
|
---|
81 | *
|
---|
82 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
---|
83 | * they are represented to better-than-integral precision. These outputs
|
---|
84 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
---|
85 | * with the recommended scaling. (For 12-bit sample data, the intermediate
|
---|
86 | * array is int32_t anyway.)
|
---|
87 | *
|
---|
88 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
---|
89 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
---|
90 | * shows that the values given below are the most effective.
|
---|
91 | */
|
---|
92 |
|
---|
93 | #if BITS_IN_JSAMPLE == 8
|
---|
94 | #define CONST_BITS 13
|
---|
95 | #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */
|
---|
96 | #else
|
---|
97 | #define CONST_BITS 13
|
---|
98 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
---|
99 | #endif
|
---|
100 |
|
---|
101 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
102 | * causing a lot of useless floating-point operations at run time.
|
---|
103 | * To get around this we use the following pre-calculated constants.
|
---|
104 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
105 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
106 | */
|
---|
107 |
|
---|
108 | #if CONST_BITS == 13
|
---|
109 | #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */
|
---|
110 | #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */
|
---|
111 | #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */
|
---|
112 | #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */
|
---|
113 | #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */
|
---|
114 | #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */
|
---|
115 | #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */
|
---|
116 | #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */
|
---|
117 | #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */
|
---|
118 | #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */
|
---|
119 | #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */
|
---|
120 | #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */
|
---|
121 | #else
|
---|
122 | #define FIX_0_298631336 FIX(0.298631336)
|
---|
123 | #define FIX_0_390180644 FIX(0.390180644)
|
---|
124 | #define FIX_0_541196100 FIX(0.541196100)
|
---|
125 | #define FIX_0_765366865 FIX(0.765366865)
|
---|
126 | #define FIX_0_899976223 FIX(0.899976223)
|
---|
127 | #define FIX_1_175875602 FIX(1.175875602)
|
---|
128 | #define FIX_1_501321110 FIX(1.501321110)
|
---|
129 | #define FIX_1_847759065 FIX(1.847759065)
|
---|
130 | #define FIX_1_961570560 FIX(1.961570560)
|
---|
131 | #define FIX_2_053119869 FIX(2.053119869)
|
---|
132 | #define FIX_2_562915447 FIX(2.562915447)
|
---|
133 | #define FIX_3_072711026 FIX(3.072711026)
|
---|
134 | #endif
|
---|
135 |
|
---|
136 |
|
---|
137 | /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
|
---|
138 | * For 8-bit samples with the recommended scaling, all the variable
|
---|
139 | * and constant values involved are no more than 16 bits wide, so a
|
---|
140 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
---|
141 | * For 12-bit samples, a full 32-bit multiplication will be needed.
|
---|
142 | */
|
---|
143 |
|
---|
144 | #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
|
---|
145 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
---|
146 | #else
|
---|
147 | #define MULTIPLY(var,const) ((var) * (const))
|
---|
148 | #endif
|
---|
149 |
|
---|
150 |
|
---|
151 | static always_inline void row_fdct(DCTELEM * data){
|
---|
152 | int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
153 | int_fast32_t tmp10, tmp11, tmp12, tmp13;
|
---|
154 | int_fast32_t z1, z2, z3, z4, z5;
|
---|
155 | DCTELEM *dataptr;
|
---|
156 | int ctr;
|
---|
157 | SHIFT_TEMPS
|
---|
158 |
|
---|
159 | /* Pass 1: process rows. */
|
---|
160 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */
|
---|
161 | /* furthermore, we scale the results by 2**PASS1_BITS. */
|
---|
162 |
|
---|
163 | dataptr = data;
|
---|
164 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
165 | tmp0 = dataptr[0] + dataptr[7];
|
---|
166 | tmp7 = dataptr[0] - dataptr[7];
|
---|
167 | tmp1 = dataptr[1] + dataptr[6];
|
---|
168 | tmp6 = dataptr[1] - dataptr[6];
|
---|
169 | tmp2 = dataptr[2] + dataptr[5];
|
---|
170 | tmp5 = dataptr[2] - dataptr[5];
|
---|
171 | tmp3 = dataptr[3] + dataptr[4];
|
---|
172 | tmp4 = dataptr[3] - dataptr[4];
|
---|
173 |
|
---|
174 | /* Even part per LL&M figure 1 --- note that published figure is faulty;
|
---|
175 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
---|
176 | */
|
---|
177 |
|
---|
178 | tmp10 = tmp0 + tmp3;
|
---|
179 | tmp13 = tmp0 - tmp3;
|
---|
180 | tmp11 = tmp1 + tmp2;
|
---|
181 | tmp12 = tmp1 - tmp2;
|
---|
182 |
|
---|
183 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
---|
184 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
---|
185 |
|
---|
186 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
---|
187 | dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
---|
188 | CONST_BITS-PASS1_BITS);
|
---|
189 | dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
---|
190 | CONST_BITS-PASS1_BITS);
|
---|
191 |
|
---|
192 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
---|
193 | * cK represents cos(K*pi/16).
|
---|
194 | * i0..i3 in the paper are tmp4..tmp7 here.
|
---|
195 | */
|
---|
196 |
|
---|
197 | z1 = tmp4 + tmp7;
|
---|
198 | z2 = tmp5 + tmp6;
|
---|
199 | z3 = tmp4 + tmp6;
|
---|
200 | z4 = tmp5 + tmp7;
|
---|
201 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
---|
202 |
|
---|
203 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
---|
204 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
---|
205 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
---|
206 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
---|
207 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
---|
208 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
---|
209 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
---|
210 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
---|
211 |
|
---|
212 | z3 += z5;
|
---|
213 | z4 += z5;
|
---|
214 |
|
---|
215 | dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
---|
216 | dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
---|
217 | dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
---|
218 | dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
---|
219 |
|
---|
220 | dataptr += DCTSIZE; /* advance pointer to next row */
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * Perform the forward DCT on one block of samples.
|
---|
226 | */
|
---|
227 |
|
---|
228 | GLOBAL(void)
|
---|
229 | ff_jpeg_fdct_islow (DCTELEM * data)
|
---|
230 | {
|
---|
231 | int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
232 | int_fast32_t tmp10, tmp11, tmp12, tmp13;
|
---|
233 | int_fast32_t z1, z2, z3, z4, z5;
|
---|
234 | DCTELEM *dataptr;
|
---|
235 | int ctr;
|
---|
236 | SHIFT_TEMPS
|
---|
237 |
|
---|
238 | row_fdct(data);
|
---|
239 |
|
---|
240 | /* Pass 2: process columns.
|
---|
241 | * We remove the PASS1_BITS scaling, but leave the results scaled up
|
---|
242 | * by an overall factor of 8.
|
---|
243 | */
|
---|
244 |
|
---|
245 | dataptr = data;
|
---|
246 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
247 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
---|
248 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
---|
249 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
---|
250 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
---|
251 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
---|
252 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
---|
253 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
---|
254 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
---|
255 |
|
---|
256 | /* Even part per LL&M figure 1 --- note that published figure is faulty;
|
---|
257 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
|
---|
258 | */
|
---|
259 |
|
---|
260 | tmp10 = tmp0 + tmp3;
|
---|
261 | tmp13 = tmp0 - tmp3;
|
---|
262 | tmp11 = tmp1 + tmp2;
|
---|
263 | tmp12 = tmp1 - tmp2;
|
---|
264 |
|
---|
265 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
---|
266 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
---|
267 |
|
---|
268 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
---|
269 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
---|
270 | CONST_BITS+PASS1_BITS);
|
---|
271 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
---|
272 | CONST_BITS+PASS1_BITS);
|
---|
273 |
|
---|
274 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
|
---|
275 | * cK represents cos(K*pi/16).
|
---|
276 | * i0..i3 in the paper are tmp4..tmp7 here.
|
---|
277 | */
|
---|
278 |
|
---|
279 | z1 = tmp4 + tmp7;
|
---|
280 | z2 = tmp5 + tmp6;
|
---|
281 | z3 = tmp4 + tmp6;
|
---|
282 | z4 = tmp5 + tmp7;
|
---|
283 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
---|
284 |
|
---|
285 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
---|
286 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
---|
287 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
---|
288 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
---|
289 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
---|
290 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
---|
291 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
---|
292 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
---|
293 |
|
---|
294 | z3 += z5;
|
---|
295 | z4 += z5;
|
---|
296 |
|
---|
297 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
|
---|
298 | CONST_BITS+PASS1_BITS);
|
---|
299 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
|
---|
300 | CONST_BITS+PASS1_BITS);
|
---|
301 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
|
---|
302 | CONST_BITS+PASS1_BITS);
|
---|
303 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
|
---|
304 | CONST_BITS+PASS1_BITS);
|
---|
305 |
|
---|
306 | dataptr++; /* advance pointer to next column */
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | /*
|
---|
311 | * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
|
---|
312 | * on the rows and then, instead of doing even and odd, part on the colums
|
---|
313 | * you do even part two times.
|
---|
314 | */
|
---|
315 | GLOBAL(void)
|
---|
316 | ff_fdct248_islow (DCTELEM * data)
|
---|
317 | {
|
---|
318 | int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
319 | int_fast32_t tmp10, tmp11, tmp12, tmp13;
|
---|
320 | int_fast32_t z1;
|
---|
321 | DCTELEM *dataptr;
|
---|
322 | int ctr;
|
---|
323 | SHIFT_TEMPS
|
---|
324 |
|
---|
325 | row_fdct(data);
|
---|
326 |
|
---|
327 | /* Pass 2: process columns.
|
---|
328 | * We remove the PASS1_BITS scaling, but leave the results scaled up
|
---|
329 | * by an overall factor of 8.
|
---|
330 | */
|
---|
331 |
|
---|
332 | dataptr = data;
|
---|
333 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
334 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
|
---|
335 | tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
|
---|
336 | tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
|
---|
337 | tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
|
---|
338 | tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
|
---|
339 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
|
---|
340 | tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
|
---|
341 | tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
|
---|
342 |
|
---|
343 | tmp10 = tmp0 + tmp3;
|
---|
344 | tmp11 = tmp1 + tmp2;
|
---|
345 | tmp12 = tmp1 - tmp2;
|
---|
346 | tmp13 = tmp0 - tmp3;
|
---|
347 |
|
---|
348 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
---|
349 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
---|
350 |
|
---|
351 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
---|
352 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
---|
353 | CONST_BITS+PASS1_BITS);
|
---|
354 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
---|
355 | CONST_BITS+PASS1_BITS);
|
---|
356 |
|
---|
357 | tmp10 = tmp4 + tmp7;
|
---|
358 | tmp11 = tmp5 + tmp6;
|
---|
359 | tmp12 = tmp5 - tmp6;
|
---|
360 | tmp13 = tmp4 - tmp7;
|
---|
361 |
|
---|
362 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
|
---|
363 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
|
---|
364 |
|
---|
365 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
---|
366 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
---|
367 | CONST_BITS+PASS1_BITS);
|
---|
368 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
---|
369 | CONST_BITS+PASS1_BITS);
|
---|
370 |
|
---|
371 | dataptr++; /* advance pointer to next column */
|
---|
372 | }
|
---|
373 | }
|
---|