VirtualBox

source: vbox/trunk/src/libs/ffmpeg-20060710/libavcodec/jrevdct.c@ 10184

最後變更 在這個檔案從10184是 5776,由 vboxsync 提交於 17 年 前

ffmpeg: exported to OSE

檔案大小: 41.1 KB
 
1/*
2 * jrevdct.c
3 *
4 * Copyright (C) 1991, 1992, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the basic inverse-DCT transformation subroutine.
9 *
10 * This implementation is based on an algorithm described in
11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
14 * The primary algorithm described there uses 11 multiplies and 29 adds.
15 * We use their alternate method with 12 multiplies and 32 adds.
16 * The advantage of this method is that no data path contains more than one
17 * multiplication; this allows a very simple and accurate implementation in
18 * scaled fixed-point arithmetic, with a minimal number of shifts.
19 *
20 * I've made lots of modifications to attempt to take advantage of the
21 * sparse nature of the DCT matrices we're getting. Although the logic
22 * is cumbersome, it's straightforward and the resulting code is much
23 * faster.
24 *
25 * A better way to do this would be to pass in the DCT block as a sparse
26 * matrix, perhaps with the difference cases encoded.
27 */
28
29/**
30 * @file jrevdct.c
31 * Independent JPEG Group's LLM idct.
32 */
33
34#include "common.h"
35#include "dsputil.h"
36
37#define EIGHT_BIT_SAMPLES
38
39#define DCTSIZE 8
40#define DCTSIZE2 64
41
42#define GLOBAL
43
44#define RIGHT_SHIFT(x, n) ((x) >> (n))
45
46typedef DCTELEM DCTBLOCK[DCTSIZE2];
47
48#define CONST_BITS 13
49
50/*
51 * This routine is specialized to the case DCTSIZE = 8.
52 */
53
54#if DCTSIZE != 8
55 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
56#endif
57
58
59/*
60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
61 * on each column. Direct algorithms are also available, but they are
62 * much more complex and seem not to be any faster when reduced to code.
63 *
64 * The poop on this scaling stuff is as follows:
65 *
66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
67 * larger than the true IDCT outputs. The final outputs are therefore
68 * a factor of N larger than desired; since N=8 this can be cured by
69 * a simple right shift at the end of the algorithm. The advantage of
70 * this arrangement is that we save two multiplications per 1-D IDCT,
71 * because the y0 and y4 inputs need not be divided by sqrt(N).
72 *
73 * We have to do addition and subtraction of the integer inputs, which
74 * is no problem, and multiplication by fractional constants, which is
75 * a problem to do in integer arithmetic. We multiply all the constants
76 * by CONST_SCALE and convert them to integer constants (thus retaining
77 * CONST_BITS bits of precision in the constants). After doing a
78 * multiplication we have to divide the product by CONST_SCALE, with proper
79 * rounding, to produce the correct output. This division can be done
80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
81 * as long as possible so that partial sums can be added together with
82 * full fractional precision.
83 *
84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
85 * they are represented to better-than-integral precision. These outputs
86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
87 * with the recommended scaling. (To scale up 12-bit sample data further, an
88 * intermediate int32 array would be needed.)
89 *
90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
92 * shows that the values given below are the most effective.
93 */
94
95#ifdef EIGHT_BIT_SAMPLES
96#define PASS1_BITS 2
97#else
98#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
99#endif
100
101#define ONE ((int32_t) 1)
102
103#define CONST_SCALE (ONE << CONST_BITS)
104
105/* Convert a positive real constant to an integer scaled by CONST_SCALE.
106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
107 * you will pay a significant penalty in run time. In that case, figure
108 * the correct integer constant values and insert them by hand.
109 */
110
111/* Actually FIX is no longer used, we precomputed them all */
112#define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
113
114/* Descale and correctly round an int32_t value that's scaled by N bits.
115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
116 * the fudge factor is correct for either sign of X.
117 */
118
119#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
120
121/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
122 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
125 * this provides a useful speedup on many machines.
126 * There is no way to specify a 16x16->32 multiply in portable C, but
127 * some C compilers will do the right thing if you provide the correct
128 * combination of casts.
129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
130 */
131
132#ifdef EIGHT_BIT_SAMPLES
133#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
134#define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
135#endif
136#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
137#define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
138#endif
139#endif
140
141#ifndef MULTIPLY /* default definition */
142#define MULTIPLY(var,const) ((var) * (const))
143#endif
144
145
146/*
147 Unlike our decoder where we approximate the FIXes, we need to use exact
148ones here or successive P-frames will drift too much with Reference frame coding
149*/
150#define FIX_0_211164243 1730
151#define FIX_0_275899380 2260
152#define FIX_0_298631336 2446
153#define FIX_0_390180644 3196
154#define FIX_0_509795579 4176
155#define FIX_0_541196100 4433
156#define FIX_0_601344887 4926
157#define FIX_0_765366865 6270
158#define FIX_0_785694958 6436
159#define FIX_0_899976223 7373
160#define FIX_1_061594337 8697
161#define FIX_1_111140466 9102
162#define FIX_1_175875602 9633
163#define FIX_1_306562965 10703
164#define FIX_1_387039845 11363
165#define FIX_1_451774981 11893
166#define FIX_1_501321110 12299
167#define FIX_1_662939225 13623
168#define FIX_1_847759065 15137
169#define FIX_1_961570560 16069
170#define FIX_2_053119869 16819
171#define FIX_2_172734803 17799
172#define FIX_2_562915447 20995
173#define FIX_3_072711026 25172
174
175/*
176 * Perform the inverse DCT on one block of coefficients.
177 */
178
179void j_rev_dct(DCTBLOCK data)
180{
181 int32_t tmp0, tmp1, tmp2, tmp3;
182 int32_t tmp10, tmp11, tmp12, tmp13;
183 int32_t z1, z2, z3, z4, z5;
184 int32_t d0, d1, d2, d3, d4, d5, d6, d7;
185 register DCTELEM *dataptr;
186 int rowctr;
187
188 /* Pass 1: process rows. */
189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
190 /* furthermore, we scale the results by 2**PASS1_BITS. */
191
192 dataptr = data;
193
194 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
195 /* Due to quantization, we will usually find that many of the input
196 * coefficients are zero, especially the AC terms. We can exploit this
197 * by short-circuiting the IDCT calculation for any row in which all
198 * the AC terms are zero. In that case each output is equal to the
199 * DC coefficient (with scale factor as needed).
200 * With typical images and quantization tables, half or more of the
201 * row DCT calculations can be simplified this way.
202 */
203
204 register int *idataptr = (int*)dataptr;
205
206 /* WARNING: we do the same permutation as MMX idct to simplify the
207 video core */
208 d0 = dataptr[0];
209 d2 = dataptr[1];
210 d4 = dataptr[2];
211 d6 = dataptr[3];
212 d1 = dataptr[4];
213 d3 = dataptr[5];
214 d5 = dataptr[6];
215 d7 = dataptr[7];
216
217 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
218 /* AC terms all zero */
219 if (d0) {
220 /* Compute a 32 bit value to assign. */
221 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
222 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
223
224 idataptr[0] = v;
225 idataptr[1] = v;
226 idataptr[2] = v;
227 idataptr[3] = v;
228 }
229
230 dataptr += DCTSIZE; /* advance pointer to next row */
231 continue;
232 }
233
234 /* Even part: reverse the even part of the forward DCT. */
235 /* The rotator is sqrt(2)*c(-6). */
236{
237 if (d6) {
238 if (d2) {
239 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
240 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
241 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
242 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
243
244 tmp0 = (d0 + d4) << CONST_BITS;
245 tmp1 = (d0 - d4) << CONST_BITS;
246
247 tmp10 = tmp0 + tmp3;
248 tmp13 = tmp0 - tmp3;
249 tmp11 = tmp1 + tmp2;
250 tmp12 = tmp1 - tmp2;
251 } else {
252 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
253 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
254 tmp3 = MULTIPLY(d6, FIX_0_541196100);
255
256 tmp0 = (d0 + d4) << CONST_BITS;
257 tmp1 = (d0 - d4) << CONST_BITS;
258
259 tmp10 = tmp0 + tmp3;
260 tmp13 = tmp0 - tmp3;
261 tmp11 = tmp1 + tmp2;
262 tmp12 = tmp1 - tmp2;
263 }
264 } else {
265 if (d2) {
266 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
267 tmp2 = MULTIPLY(d2, FIX_0_541196100);
268 tmp3 = MULTIPLY(d2, FIX_1_306562965);
269
270 tmp0 = (d0 + d4) << CONST_BITS;
271 tmp1 = (d0 - d4) << CONST_BITS;
272
273 tmp10 = tmp0 + tmp3;
274 tmp13 = tmp0 - tmp3;
275 tmp11 = tmp1 + tmp2;
276 tmp12 = tmp1 - tmp2;
277 } else {
278 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
279 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
280 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
281 }
282 }
283
284 /* Odd part per figure 8; the matrix is unitary and hence its
285 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
286 */
287
288 if (d7) {
289 if (d5) {
290 if (d3) {
291 if (d1) {
292 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
293 z1 = d7 + d1;
294 z2 = d5 + d3;
295 z3 = d7 + d3;
296 z4 = d5 + d1;
297 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
298
299 tmp0 = MULTIPLY(d7, FIX_0_298631336);
300 tmp1 = MULTIPLY(d5, FIX_2_053119869);
301 tmp2 = MULTIPLY(d3, FIX_3_072711026);
302 tmp3 = MULTIPLY(d1, FIX_1_501321110);
303 z1 = MULTIPLY(-z1, FIX_0_899976223);
304 z2 = MULTIPLY(-z2, FIX_2_562915447);
305 z3 = MULTIPLY(-z3, FIX_1_961570560);
306 z4 = MULTIPLY(-z4, FIX_0_390180644);
307
308 z3 += z5;
309 z4 += z5;
310
311 tmp0 += z1 + z3;
312 tmp1 += z2 + z4;
313 tmp2 += z2 + z3;
314 tmp3 += z1 + z4;
315 } else {
316 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
317 z2 = d5 + d3;
318 z3 = d7 + d3;
319 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
320
321 tmp0 = MULTIPLY(d7, FIX_0_298631336);
322 tmp1 = MULTIPLY(d5, FIX_2_053119869);
323 tmp2 = MULTIPLY(d3, FIX_3_072711026);
324 z1 = MULTIPLY(-d7, FIX_0_899976223);
325 z2 = MULTIPLY(-z2, FIX_2_562915447);
326 z3 = MULTIPLY(-z3, FIX_1_961570560);
327 z4 = MULTIPLY(-d5, FIX_0_390180644);
328
329 z3 += z5;
330 z4 += z5;
331
332 tmp0 += z1 + z3;
333 tmp1 += z2 + z4;
334 tmp2 += z2 + z3;
335 tmp3 = z1 + z4;
336 }
337 } else {
338 if (d1) {
339 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
340 z1 = d7 + d1;
341 z4 = d5 + d1;
342 z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
343
344 tmp0 = MULTIPLY(d7, FIX_0_298631336);
345 tmp1 = MULTIPLY(d5, FIX_2_053119869);
346 tmp3 = MULTIPLY(d1, FIX_1_501321110);
347 z1 = MULTIPLY(-z1, FIX_0_899976223);
348 z2 = MULTIPLY(-d5, FIX_2_562915447);
349 z3 = MULTIPLY(-d7, FIX_1_961570560);
350 z4 = MULTIPLY(-z4, FIX_0_390180644);
351
352 z3 += z5;
353 z4 += z5;
354
355 tmp0 += z1 + z3;
356 tmp1 += z2 + z4;
357 tmp2 = z2 + z3;
358 tmp3 += z1 + z4;
359 } else {
360 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
361 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
362 z1 = MULTIPLY(-d7, FIX_0_899976223);
363 z3 = MULTIPLY(-d7, FIX_1_961570560);
364 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
365 z2 = MULTIPLY(-d5, FIX_2_562915447);
366 z4 = MULTIPLY(-d5, FIX_0_390180644);
367 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
368
369 z3 += z5;
370 z4 += z5;
371
372 tmp0 += z3;
373 tmp1 += z4;
374 tmp2 = z2 + z3;
375 tmp3 = z1 + z4;
376 }
377 }
378 } else {
379 if (d3) {
380 if (d1) {
381 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
382 z1 = d7 + d1;
383 z3 = d7 + d3;
384 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
385
386 tmp0 = MULTIPLY(d7, FIX_0_298631336);
387 tmp2 = MULTIPLY(d3, FIX_3_072711026);
388 tmp3 = MULTIPLY(d1, FIX_1_501321110);
389 z1 = MULTIPLY(-z1, FIX_0_899976223);
390 z2 = MULTIPLY(-d3, FIX_2_562915447);
391 z3 = MULTIPLY(-z3, FIX_1_961570560);
392 z4 = MULTIPLY(-d1, FIX_0_390180644);
393
394 z3 += z5;
395 z4 += z5;
396
397 tmp0 += z1 + z3;
398 tmp1 = z2 + z4;
399 tmp2 += z2 + z3;
400 tmp3 += z1 + z4;
401 } else {
402 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
403 z3 = d7 + d3;
404
405 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
406 z1 = MULTIPLY(-d7, FIX_0_899976223);
407 tmp2 = MULTIPLY(d3, FIX_0_509795579);
408 z2 = MULTIPLY(-d3, FIX_2_562915447);
409 z5 = MULTIPLY(z3, FIX_1_175875602);
410 z3 = MULTIPLY(-z3, FIX_0_785694958);
411
412 tmp0 += z3;
413 tmp1 = z2 + z5;
414 tmp2 += z3;
415 tmp3 = z1 + z5;
416 }
417 } else {
418 if (d1) {
419 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
420 z1 = d7 + d1;
421 z5 = MULTIPLY(z1, FIX_1_175875602);
422
423 z1 = MULTIPLY(z1, FIX_0_275899380);
424 z3 = MULTIPLY(-d7, FIX_1_961570560);
425 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
426 z4 = MULTIPLY(-d1, FIX_0_390180644);
427 tmp3 = MULTIPLY(d1, FIX_1_111140466);
428
429 tmp0 += z1;
430 tmp1 = z4 + z5;
431 tmp2 = z3 + z5;
432 tmp3 += z1;
433 } else {
434 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
435 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
436 tmp1 = MULTIPLY(d7, FIX_1_175875602);
437 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
438 tmp3 = MULTIPLY(d7, FIX_0_275899380);
439 }
440 }
441 }
442 } else {
443 if (d5) {
444 if (d3) {
445 if (d1) {
446 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
447 z2 = d5 + d3;
448 z4 = d5 + d1;
449 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
450
451 tmp1 = MULTIPLY(d5, FIX_2_053119869);
452 tmp2 = MULTIPLY(d3, FIX_3_072711026);
453 tmp3 = MULTIPLY(d1, FIX_1_501321110);
454 z1 = MULTIPLY(-d1, FIX_0_899976223);
455 z2 = MULTIPLY(-z2, FIX_2_562915447);
456 z3 = MULTIPLY(-d3, FIX_1_961570560);
457 z4 = MULTIPLY(-z4, FIX_0_390180644);
458
459 z3 += z5;
460 z4 += z5;
461
462 tmp0 = z1 + z3;
463 tmp1 += z2 + z4;
464 tmp2 += z2 + z3;
465 tmp3 += z1 + z4;
466 } else {
467 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
468 z2 = d5 + d3;
469
470 z5 = MULTIPLY(z2, FIX_1_175875602);
471 tmp1 = MULTIPLY(d5, FIX_1_662939225);
472 z4 = MULTIPLY(-d5, FIX_0_390180644);
473 z2 = MULTIPLY(-z2, FIX_1_387039845);
474 tmp2 = MULTIPLY(d3, FIX_1_111140466);
475 z3 = MULTIPLY(-d3, FIX_1_961570560);
476
477 tmp0 = z3 + z5;
478 tmp1 += z2;
479 tmp2 += z2;
480 tmp3 = z4 + z5;
481 }
482 } else {
483 if (d1) {
484 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
485 z4 = d5 + d1;
486
487 z5 = MULTIPLY(z4, FIX_1_175875602);
488 z1 = MULTIPLY(-d1, FIX_0_899976223);
489 tmp3 = MULTIPLY(d1, FIX_0_601344887);
490 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
491 z2 = MULTIPLY(-d5, FIX_2_562915447);
492 z4 = MULTIPLY(z4, FIX_0_785694958);
493
494 tmp0 = z1 + z5;
495 tmp1 += z4;
496 tmp2 = z2 + z5;
497 tmp3 += z4;
498 } else {
499 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
500 tmp0 = MULTIPLY(d5, FIX_1_175875602);
501 tmp1 = MULTIPLY(d5, FIX_0_275899380);
502 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
503 tmp3 = MULTIPLY(d5, FIX_0_785694958);
504 }
505 }
506 } else {
507 if (d3) {
508 if (d1) {
509 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
510 z5 = d1 + d3;
511 tmp3 = MULTIPLY(d1, FIX_0_211164243);
512 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
513 z1 = MULTIPLY(d1, FIX_1_061594337);
514 z2 = MULTIPLY(-d3, FIX_2_172734803);
515 z4 = MULTIPLY(z5, FIX_0_785694958);
516 z5 = MULTIPLY(z5, FIX_1_175875602);
517
518 tmp0 = z1 - z4;
519 tmp1 = z2 + z4;
520 tmp2 += z5;
521 tmp3 += z5;
522 } else {
523 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
524 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
525 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
526 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
527 tmp3 = MULTIPLY(d3, FIX_1_175875602);
528 }
529 } else {
530 if (d1) {
531 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
532 tmp0 = MULTIPLY(d1, FIX_0_275899380);
533 tmp1 = MULTIPLY(d1, FIX_0_785694958);
534 tmp2 = MULTIPLY(d1, FIX_1_175875602);
535 tmp3 = MULTIPLY(d1, FIX_1_387039845);
536 } else {
537 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
538 tmp0 = tmp1 = tmp2 = tmp3 = 0;
539 }
540 }
541 }
542 }
543}
544 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
545
546 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
547 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
548 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
549 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
550 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
551 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
552 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
553 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
554
555 dataptr += DCTSIZE; /* advance pointer to next row */
556 }
557
558 /* Pass 2: process columns. */
559 /* Note that we must descale the results by a factor of 8 == 2**3, */
560 /* and also undo the PASS1_BITS scaling. */
561
562 dataptr = data;
563 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
564 /* Columns of zeroes can be exploited in the same way as we did with rows.
565 * However, the row calculation has created many nonzero AC terms, so the
566 * simplification applies less often (typically 5% to 10% of the time).
567 * On machines with very fast multiplication, it's possible that the
568 * test takes more time than it's worth. In that case this section
569 * may be commented out.
570 */
571
572 d0 = dataptr[DCTSIZE*0];
573 d1 = dataptr[DCTSIZE*1];
574 d2 = dataptr[DCTSIZE*2];
575 d3 = dataptr[DCTSIZE*3];
576 d4 = dataptr[DCTSIZE*4];
577 d5 = dataptr[DCTSIZE*5];
578 d6 = dataptr[DCTSIZE*6];
579 d7 = dataptr[DCTSIZE*7];
580
581 /* Even part: reverse the even part of the forward DCT. */
582 /* The rotator is sqrt(2)*c(-6). */
583 if (d6) {
584 if (d2) {
585 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
586 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
587 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
588 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
589
590 tmp0 = (d0 + d4) << CONST_BITS;
591 tmp1 = (d0 - d4) << CONST_BITS;
592
593 tmp10 = tmp0 + tmp3;
594 tmp13 = tmp0 - tmp3;
595 tmp11 = tmp1 + tmp2;
596 tmp12 = tmp1 - tmp2;
597 } else {
598 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
599 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
600 tmp3 = MULTIPLY(d6, FIX_0_541196100);
601
602 tmp0 = (d0 + d4) << CONST_BITS;
603 tmp1 = (d0 - d4) << CONST_BITS;
604
605 tmp10 = tmp0 + tmp3;
606 tmp13 = tmp0 - tmp3;
607 tmp11 = tmp1 + tmp2;
608 tmp12 = tmp1 - tmp2;
609 }
610 } else {
611 if (d2) {
612 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
613 tmp2 = MULTIPLY(d2, FIX_0_541196100);
614 tmp3 = MULTIPLY(d2, FIX_1_306562965);
615
616 tmp0 = (d0 + d4) << CONST_BITS;
617 tmp1 = (d0 - d4) << CONST_BITS;
618
619 tmp10 = tmp0 + tmp3;
620 tmp13 = tmp0 - tmp3;
621 tmp11 = tmp1 + tmp2;
622 tmp12 = tmp1 - tmp2;
623 } else {
624 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
625 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
626 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
627 }
628 }
629
630 /* Odd part per figure 8; the matrix is unitary and hence its
631 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
632 */
633 if (d7) {
634 if (d5) {
635 if (d3) {
636 if (d1) {
637 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
638 z1 = d7 + d1;
639 z2 = d5 + d3;
640 z3 = d7 + d3;
641 z4 = d5 + d1;
642 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
643
644 tmp0 = MULTIPLY(d7, FIX_0_298631336);
645 tmp1 = MULTIPLY(d5, FIX_2_053119869);
646 tmp2 = MULTIPLY(d3, FIX_3_072711026);
647 tmp3 = MULTIPLY(d1, FIX_1_501321110);
648 z1 = MULTIPLY(-z1, FIX_0_899976223);
649 z2 = MULTIPLY(-z2, FIX_2_562915447);
650 z3 = MULTIPLY(-z3, FIX_1_961570560);
651 z4 = MULTIPLY(-z4, FIX_0_390180644);
652
653 z3 += z5;
654 z4 += z5;
655
656 tmp0 += z1 + z3;
657 tmp1 += z2 + z4;
658 tmp2 += z2 + z3;
659 tmp3 += z1 + z4;
660 } else {
661 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
662 z1 = d7;
663 z2 = d5 + d3;
664 z3 = d7 + d3;
665 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
666
667 tmp0 = MULTIPLY(d7, FIX_0_298631336);
668 tmp1 = MULTIPLY(d5, FIX_2_053119869);
669 tmp2 = MULTIPLY(d3, FIX_3_072711026);
670 z1 = MULTIPLY(-d7, FIX_0_899976223);
671 z2 = MULTIPLY(-z2, FIX_2_562915447);
672 z3 = MULTIPLY(-z3, FIX_1_961570560);
673 z4 = MULTIPLY(-d5, FIX_0_390180644);
674
675 z3 += z5;
676 z4 += z5;
677
678 tmp0 += z1 + z3;
679 tmp1 += z2 + z4;
680 tmp2 += z2 + z3;
681 tmp3 = z1 + z4;
682 }
683 } else {
684 if (d1) {
685 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
686 z1 = d7 + d1;
687 z2 = d5;
688 z3 = d7;
689 z4 = d5 + d1;
690 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
691
692 tmp0 = MULTIPLY(d7, FIX_0_298631336);
693 tmp1 = MULTIPLY(d5, FIX_2_053119869);
694 tmp3 = MULTIPLY(d1, FIX_1_501321110);
695 z1 = MULTIPLY(-z1, FIX_0_899976223);
696 z2 = MULTIPLY(-d5, FIX_2_562915447);
697 z3 = MULTIPLY(-d7, FIX_1_961570560);
698 z4 = MULTIPLY(-z4, FIX_0_390180644);
699
700 z3 += z5;
701 z4 += z5;
702
703 tmp0 += z1 + z3;
704 tmp1 += z2 + z4;
705 tmp2 = z2 + z3;
706 tmp3 += z1 + z4;
707 } else {
708 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
709 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
710 z1 = MULTIPLY(-d7, FIX_0_899976223);
711 z3 = MULTIPLY(-d7, FIX_1_961570560);
712 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
713 z2 = MULTIPLY(-d5, FIX_2_562915447);
714 z4 = MULTIPLY(-d5, FIX_0_390180644);
715 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
716
717 z3 += z5;
718 z4 += z5;
719
720 tmp0 += z3;
721 tmp1 += z4;
722 tmp2 = z2 + z3;
723 tmp3 = z1 + z4;
724 }
725 }
726 } else {
727 if (d3) {
728 if (d1) {
729 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
730 z1 = d7 + d1;
731 z3 = d7 + d3;
732 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
733
734 tmp0 = MULTIPLY(d7, FIX_0_298631336);
735 tmp2 = MULTIPLY(d3, FIX_3_072711026);
736 tmp3 = MULTIPLY(d1, FIX_1_501321110);
737 z1 = MULTIPLY(-z1, FIX_0_899976223);
738 z2 = MULTIPLY(-d3, FIX_2_562915447);
739 z3 = MULTIPLY(-z3, FIX_1_961570560);
740 z4 = MULTIPLY(-d1, FIX_0_390180644);
741
742 z3 += z5;
743 z4 += z5;
744
745 tmp0 += z1 + z3;
746 tmp1 = z2 + z4;
747 tmp2 += z2 + z3;
748 tmp3 += z1 + z4;
749 } else {
750 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
751 z3 = d7 + d3;
752
753 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
754 z1 = MULTIPLY(-d7, FIX_0_899976223);
755 tmp2 = MULTIPLY(d3, FIX_0_509795579);
756 z2 = MULTIPLY(-d3, FIX_2_562915447);
757 z5 = MULTIPLY(z3, FIX_1_175875602);
758 z3 = MULTIPLY(-z3, FIX_0_785694958);
759
760 tmp0 += z3;
761 tmp1 = z2 + z5;
762 tmp2 += z3;
763 tmp3 = z1 + z5;
764 }
765 } else {
766 if (d1) {
767 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
768 z1 = d7 + d1;
769 z5 = MULTIPLY(z1, FIX_1_175875602);
770
771 z1 = MULTIPLY(z1, FIX_0_275899380);
772 z3 = MULTIPLY(-d7, FIX_1_961570560);
773 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
774 z4 = MULTIPLY(-d1, FIX_0_390180644);
775 tmp3 = MULTIPLY(d1, FIX_1_111140466);
776
777 tmp0 += z1;
778 tmp1 = z4 + z5;
779 tmp2 = z3 + z5;
780 tmp3 += z1;
781 } else {
782 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
783 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
784 tmp1 = MULTIPLY(d7, FIX_1_175875602);
785 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
786 tmp3 = MULTIPLY(d7, FIX_0_275899380);
787 }
788 }
789 }
790 } else {
791 if (d5) {
792 if (d3) {
793 if (d1) {
794 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
795 z2 = d5 + d3;
796 z4 = d5 + d1;
797 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
798
799 tmp1 = MULTIPLY(d5, FIX_2_053119869);
800 tmp2 = MULTIPLY(d3, FIX_3_072711026);
801 tmp3 = MULTIPLY(d1, FIX_1_501321110);
802 z1 = MULTIPLY(-d1, FIX_0_899976223);
803 z2 = MULTIPLY(-z2, FIX_2_562915447);
804 z3 = MULTIPLY(-d3, FIX_1_961570560);
805 z4 = MULTIPLY(-z4, FIX_0_390180644);
806
807 z3 += z5;
808 z4 += z5;
809
810 tmp0 = z1 + z3;
811 tmp1 += z2 + z4;
812 tmp2 += z2 + z3;
813 tmp3 += z1 + z4;
814 } else {
815 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
816 z2 = d5 + d3;
817
818 z5 = MULTIPLY(z2, FIX_1_175875602);
819 tmp1 = MULTIPLY(d5, FIX_1_662939225);
820 z4 = MULTIPLY(-d5, FIX_0_390180644);
821 z2 = MULTIPLY(-z2, FIX_1_387039845);
822 tmp2 = MULTIPLY(d3, FIX_1_111140466);
823 z3 = MULTIPLY(-d3, FIX_1_961570560);
824
825 tmp0 = z3 + z5;
826 tmp1 += z2;
827 tmp2 += z2;
828 tmp3 = z4 + z5;
829 }
830 } else {
831 if (d1) {
832 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
833 z4 = d5 + d1;
834
835 z5 = MULTIPLY(z4, FIX_1_175875602);
836 z1 = MULTIPLY(-d1, FIX_0_899976223);
837 tmp3 = MULTIPLY(d1, FIX_0_601344887);
838 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
839 z2 = MULTIPLY(-d5, FIX_2_562915447);
840 z4 = MULTIPLY(z4, FIX_0_785694958);
841
842 tmp0 = z1 + z5;
843 tmp1 += z4;
844 tmp2 = z2 + z5;
845 tmp3 += z4;
846 } else {
847 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
848 tmp0 = MULTIPLY(d5, FIX_1_175875602);
849 tmp1 = MULTIPLY(d5, FIX_0_275899380);
850 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
851 tmp3 = MULTIPLY(d5, FIX_0_785694958);
852 }
853 }
854 } else {
855 if (d3) {
856 if (d1) {
857 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
858 z5 = d1 + d3;
859 tmp3 = MULTIPLY(d1, FIX_0_211164243);
860 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
861 z1 = MULTIPLY(d1, FIX_1_061594337);
862 z2 = MULTIPLY(-d3, FIX_2_172734803);
863 z4 = MULTIPLY(z5, FIX_0_785694958);
864 z5 = MULTIPLY(z5, FIX_1_175875602);
865
866 tmp0 = z1 - z4;
867 tmp1 = z2 + z4;
868 tmp2 += z5;
869 tmp3 += z5;
870 } else {
871 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
872 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
873 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
874 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
875 tmp3 = MULTIPLY(d3, FIX_1_175875602);
876 }
877 } else {
878 if (d1) {
879 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
880 tmp0 = MULTIPLY(d1, FIX_0_275899380);
881 tmp1 = MULTIPLY(d1, FIX_0_785694958);
882 tmp2 = MULTIPLY(d1, FIX_1_175875602);
883 tmp3 = MULTIPLY(d1, FIX_1_387039845);
884 } else {
885 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
886 tmp0 = tmp1 = tmp2 = tmp3 = 0;
887 }
888 }
889 }
890 }
891
892 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
893
894 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
895 CONST_BITS+PASS1_BITS+3);
896 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
897 CONST_BITS+PASS1_BITS+3);
898 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
899 CONST_BITS+PASS1_BITS+3);
900 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
901 CONST_BITS+PASS1_BITS+3);
902 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
903 CONST_BITS+PASS1_BITS+3);
904 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
905 CONST_BITS+PASS1_BITS+3);
906 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
907 CONST_BITS+PASS1_BITS+3);
908 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
909 CONST_BITS+PASS1_BITS+3);
910
911 dataptr++; /* advance pointer to next column */
912 }
913}
914
915#undef DCTSIZE
916#define DCTSIZE 4
917#define DCTSTRIDE 8
918
919void j_rev_dct4(DCTBLOCK data)
920{
921 int32_t tmp0, tmp1, tmp2, tmp3;
922 int32_t tmp10, tmp11, tmp12, tmp13;
923 int32_t z1;
924 int32_t d0, d2, d4, d6;
925 register DCTELEM *dataptr;
926 int rowctr;
927
928 /* Pass 1: process rows. */
929 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
930 /* furthermore, we scale the results by 2**PASS1_BITS. */
931
932 data[0] += 4;
933
934 dataptr = data;
935
936 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
937 /* Due to quantization, we will usually find that many of the input
938 * coefficients are zero, especially the AC terms. We can exploit this
939 * by short-circuiting the IDCT calculation for any row in which all
940 * the AC terms are zero. In that case each output is equal to the
941 * DC coefficient (with scale factor as needed).
942 * With typical images and quantization tables, half or more of the
943 * row DCT calculations can be simplified this way.
944 */
945
946 register int *idataptr = (int*)dataptr;
947
948 d0 = dataptr[0];
949 d2 = dataptr[1];
950 d4 = dataptr[2];
951 d6 = dataptr[3];
952
953 if ((d2 | d4 | d6) == 0) {
954 /* AC terms all zero */
955 if (d0) {
956 /* Compute a 32 bit value to assign. */
957 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
958 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
959
960 idataptr[0] = v;
961 idataptr[1] = v;
962 }
963
964 dataptr += DCTSTRIDE; /* advance pointer to next row */
965 continue;
966 }
967
968 /* Even part: reverse the even part of the forward DCT. */
969 /* The rotator is sqrt(2)*c(-6). */
970 if (d6) {
971 if (d2) {
972 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
973 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
974 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
975 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
976
977 tmp0 = (d0 + d4) << CONST_BITS;
978 tmp1 = (d0 - d4) << CONST_BITS;
979
980 tmp10 = tmp0 + tmp3;
981 tmp13 = tmp0 - tmp3;
982 tmp11 = tmp1 + tmp2;
983 tmp12 = tmp1 - tmp2;
984 } else {
985 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
986 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
987 tmp3 = MULTIPLY(d6, FIX_0_541196100);
988
989 tmp0 = (d0 + d4) << CONST_BITS;
990 tmp1 = (d0 - d4) << CONST_BITS;
991
992 tmp10 = tmp0 + tmp3;
993 tmp13 = tmp0 - tmp3;
994 tmp11 = tmp1 + tmp2;
995 tmp12 = tmp1 - tmp2;
996 }
997 } else {
998 if (d2) {
999 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1000 tmp2 = MULTIPLY(d2, FIX_0_541196100);
1001 tmp3 = MULTIPLY(d2, FIX_1_306562965);
1002
1003 tmp0 = (d0 + d4) << CONST_BITS;
1004 tmp1 = (d0 - d4) << CONST_BITS;
1005
1006 tmp10 = tmp0 + tmp3;
1007 tmp13 = tmp0 - tmp3;
1008 tmp11 = tmp1 + tmp2;
1009 tmp12 = tmp1 - tmp2;
1010 } else {
1011 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1012 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1013 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1014 }
1015 }
1016
1017 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1018
1019 dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
1020 dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
1021 dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
1022 dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
1023
1024 dataptr += DCTSTRIDE; /* advance pointer to next row */
1025 }
1026
1027 /* Pass 2: process columns. */
1028 /* Note that we must descale the results by a factor of 8 == 2**3, */
1029 /* and also undo the PASS1_BITS scaling. */
1030
1031 dataptr = data;
1032 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
1033 /* Columns of zeroes can be exploited in the same way as we did with rows.
1034 * However, the row calculation has created many nonzero AC terms, so the
1035 * simplification applies less often (typically 5% to 10% of the time).
1036 * On machines with very fast multiplication, it's possible that the
1037 * test takes more time than it's worth. In that case this section
1038 * may be commented out.
1039 */
1040
1041 d0 = dataptr[DCTSTRIDE*0];
1042 d2 = dataptr[DCTSTRIDE*1];
1043 d4 = dataptr[DCTSTRIDE*2];
1044 d6 = dataptr[DCTSTRIDE*3];
1045
1046 /* Even part: reverse the even part of the forward DCT. */
1047 /* The rotator is sqrt(2)*c(-6). */
1048 if (d6) {
1049 if (d2) {
1050 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1051 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1052 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1053 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1054
1055 tmp0 = (d0 + d4) << CONST_BITS;
1056 tmp1 = (d0 - d4) << CONST_BITS;
1057
1058 tmp10 = tmp0 + tmp3;
1059 tmp13 = tmp0 - tmp3;
1060 tmp11 = tmp1 + tmp2;
1061 tmp12 = tmp1 - tmp2;
1062 } else {
1063 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1064 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1065 tmp3 = MULTIPLY(d6, FIX_0_541196100);
1066
1067 tmp0 = (d0 + d4) << CONST_BITS;
1068 tmp1 = (d0 - d4) << CONST_BITS;
1069
1070 tmp10 = tmp0 + tmp3;
1071 tmp13 = tmp0 - tmp3;
1072 tmp11 = tmp1 + tmp2;
1073 tmp12 = tmp1 - tmp2;
1074 }
1075 } else {
1076 if (d2) {
1077 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1078 tmp2 = MULTIPLY(d2, FIX_0_541196100);
1079 tmp3 = MULTIPLY(d2, FIX_1_306562965);
1080
1081 tmp0 = (d0 + d4) << CONST_BITS;
1082 tmp1 = (d0 - d4) << CONST_BITS;
1083
1084 tmp10 = tmp0 + tmp3;
1085 tmp13 = tmp0 - tmp3;
1086 tmp11 = tmp1 + tmp2;
1087 tmp12 = tmp1 - tmp2;
1088 } else {
1089 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1090 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1091 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1092 }
1093 }
1094
1095 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1096
1097 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
1098 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
1099 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
1100 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
1101
1102 dataptr++; /* advance pointer to next column */
1103 }
1104}
1105
1106void j_rev_dct2(DCTBLOCK data){
1107 int d00, d01, d10, d11;
1108
1109 data[0] += 4;
1110 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
1111 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
1112 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
1113 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
1114
1115 data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
1116 data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
1117 data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
1118 data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
1119}
1120
1121void j_rev_dct1(DCTBLOCK data){
1122 data[0] = (data[0] + 4)>>3;
1123}
1124
1125#undef FIX
1126#undef CONST_BITS
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette