1 | /*
|
---|
2 | * The simplest mpeg audio layer 2 encoder
|
---|
3 | * Copyright (c) 2000, 2001 Fabrice Bellard.
|
---|
4 | *
|
---|
5 | * This library is free software; you can redistribute it and/or
|
---|
6 | * modify it under the terms of the GNU Lesser General Public
|
---|
7 | * License as published by the Free Software Foundation; either
|
---|
8 | * version 2 of the License, or (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This library is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
13 | * Lesser General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU Lesser General Public
|
---|
16 | * License along with this library; if not, write to the Free Software
|
---|
17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
---|
18 | */
|
---|
19 |
|
---|
20 | /**
|
---|
21 | * @file mpegaudio.c
|
---|
22 | * The simplest mpeg audio layer 2 encoder.
|
---|
23 | */
|
---|
24 |
|
---|
25 | #include "avcodec.h"
|
---|
26 | #include "bitstream.h"
|
---|
27 | #include "mpegaudio.h"
|
---|
28 |
|
---|
29 | /* currently, cannot change these constants (need to modify
|
---|
30 | quantization stage) */
|
---|
31 | #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
|
---|
32 | #define FIX(a) ((int)((a) * (1 << FRAC_BITS)))
|
---|
33 |
|
---|
34 | #define SAMPLES_BUF_SIZE 4096
|
---|
35 |
|
---|
36 | typedef struct MpegAudioContext {
|
---|
37 | PutBitContext pb;
|
---|
38 | int nb_channels;
|
---|
39 | int freq, bit_rate;
|
---|
40 | int lsf; /* 1 if mpeg2 low bitrate selected */
|
---|
41 | int bitrate_index; /* bit rate */
|
---|
42 | int freq_index;
|
---|
43 | int frame_size; /* frame size, in bits, without padding */
|
---|
44 | int64_t nb_samples; /* total number of samples encoded */
|
---|
45 | /* padding computation */
|
---|
46 | int frame_frac, frame_frac_incr, do_padding;
|
---|
47 | short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
|
---|
48 | int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
|
---|
49 | int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
|
---|
50 | unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
|
---|
51 | /* code to group 3 scale factors */
|
---|
52 | unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
|
---|
53 | int sblimit; /* number of used subbands */
|
---|
54 | const unsigned char *alloc_table;
|
---|
55 | } MpegAudioContext;
|
---|
56 |
|
---|
57 | /* define it to use floats in quantization (I don't like floats !) */
|
---|
58 | //#define USE_FLOATS
|
---|
59 |
|
---|
60 | #include "mpegaudiotab.h"
|
---|
61 |
|
---|
62 | static int MPA_encode_init(AVCodecContext *avctx)
|
---|
63 | {
|
---|
64 | MpegAudioContext *s = avctx->priv_data;
|
---|
65 | int freq = avctx->sample_rate;
|
---|
66 | int bitrate = avctx->bit_rate;
|
---|
67 | int channels = avctx->channels;
|
---|
68 | int i, v, table;
|
---|
69 | float a;
|
---|
70 |
|
---|
71 | if (channels > 2)
|
---|
72 | return -1;
|
---|
73 | bitrate = bitrate / 1000;
|
---|
74 | s->nb_channels = channels;
|
---|
75 | s->freq = freq;
|
---|
76 | s->bit_rate = bitrate * 1000;
|
---|
77 | avctx->frame_size = MPA_FRAME_SIZE;
|
---|
78 |
|
---|
79 | /* encoding freq */
|
---|
80 | s->lsf = 0;
|
---|
81 | for(i=0;i<3;i++) {
|
---|
82 | if (mpa_freq_tab[i] == freq)
|
---|
83 | break;
|
---|
84 | if ((mpa_freq_tab[i] / 2) == freq) {
|
---|
85 | s->lsf = 1;
|
---|
86 | break;
|
---|
87 | }
|
---|
88 | }
|
---|
89 | if (i == 3){
|
---|
90 | av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
|
---|
91 | return -1;
|
---|
92 | }
|
---|
93 | s->freq_index = i;
|
---|
94 |
|
---|
95 | /* encoding bitrate & frequency */
|
---|
96 | for(i=0;i<15;i++) {
|
---|
97 | if (mpa_bitrate_tab[s->lsf][1][i] == bitrate)
|
---|
98 | break;
|
---|
99 | }
|
---|
100 | if (i == 15){
|
---|
101 | av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
|
---|
102 | return -1;
|
---|
103 | }
|
---|
104 | s->bitrate_index = i;
|
---|
105 |
|
---|
106 | /* compute total header size & pad bit */
|
---|
107 |
|
---|
108 | a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
|
---|
109 | s->frame_size = ((int)a) * 8;
|
---|
110 |
|
---|
111 | /* frame fractional size to compute padding */
|
---|
112 | s->frame_frac = 0;
|
---|
113 | s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
|
---|
114 |
|
---|
115 | /* select the right allocation table */
|
---|
116 | table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
|
---|
117 |
|
---|
118 | /* number of used subbands */
|
---|
119 | s->sblimit = sblimit_table[table];
|
---|
120 | s->alloc_table = alloc_tables[table];
|
---|
121 |
|
---|
122 | #ifdef DEBUG
|
---|
123 | av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
|
---|
124 | bitrate, freq, s->frame_size, table, s->frame_frac_incr);
|
---|
125 | #endif
|
---|
126 |
|
---|
127 | for(i=0;i<s->nb_channels;i++)
|
---|
128 | s->samples_offset[i] = 0;
|
---|
129 |
|
---|
130 | for(i=0;i<257;i++) {
|
---|
131 | int v;
|
---|
132 | v = mpa_enwindow[i];
|
---|
133 | #if WFRAC_BITS != 16
|
---|
134 | v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
|
---|
135 | #endif
|
---|
136 | filter_bank[i] = v;
|
---|
137 | if ((i & 63) != 0)
|
---|
138 | v = -v;
|
---|
139 | if (i != 0)
|
---|
140 | filter_bank[512 - i] = v;
|
---|
141 | }
|
---|
142 |
|
---|
143 | for(i=0;i<64;i++) {
|
---|
144 | v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
|
---|
145 | if (v <= 0)
|
---|
146 | v = 1;
|
---|
147 | scale_factor_table[i] = v;
|
---|
148 | #ifdef USE_FLOATS
|
---|
149 | scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
|
---|
150 | #else
|
---|
151 | #define P 15
|
---|
152 | scale_factor_shift[i] = 21 - P - (i / 3);
|
---|
153 | scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
|
---|
154 | #endif
|
---|
155 | }
|
---|
156 | for(i=0;i<128;i++) {
|
---|
157 | v = i - 64;
|
---|
158 | if (v <= -3)
|
---|
159 | v = 0;
|
---|
160 | else if (v < 0)
|
---|
161 | v = 1;
|
---|
162 | else if (v == 0)
|
---|
163 | v = 2;
|
---|
164 | else if (v < 3)
|
---|
165 | v = 3;
|
---|
166 | else
|
---|
167 | v = 4;
|
---|
168 | scale_diff_table[i] = v;
|
---|
169 | }
|
---|
170 |
|
---|
171 | for(i=0;i<17;i++) {
|
---|
172 | v = quant_bits[i];
|
---|
173 | if (v < 0)
|
---|
174 | v = -v;
|
---|
175 | else
|
---|
176 | v = v * 3;
|
---|
177 | total_quant_bits[i] = 12 * v;
|
---|
178 | }
|
---|
179 |
|
---|
180 | avctx->coded_frame= avcodec_alloc_frame();
|
---|
181 | avctx->coded_frame->key_frame= 1;
|
---|
182 |
|
---|
183 | return 0;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
|
---|
187 | static void idct32(int *out, int *tab)
|
---|
188 | {
|
---|
189 | int i, j;
|
---|
190 | int *t, *t1, xr;
|
---|
191 | const int *xp = costab32;
|
---|
192 |
|
---|
193 | for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
|
---|
194 |
|
---|
195 | t = tab + 30;
|
---|
196 | t1 = tab + 2;
|
---|
197 | do {
|
---|
198 | t[0] += t[-4];
|
---|
199 | t[1] += t[1 - 4];
|
---|
200 | t -= 4;
|
---|
201 | } while (t != t1);
|
---|
202 |
|
---|
203 | t = tab + 28;
|
---|
204 | t1 = tab + 4;
|
---|
205 | do {
|
---|
206 | t[0] += t[-8];
|
---|
207 | t[1] += t[1-8];
|
---|
208 | t[2] += t[2-8];
|
---|
209 | t[3] += t[3-8];
|
---|
210 | t -= 8;
|
---|
211 | } while (t != t1);
|
---|
212 |
|
---|
213 | t = tab;
|
---|
214 | t1 = tab + 32;
|
---|
215 | do {
|
---|
216 | t[ 3] = -t[ 3];
|
---|
217 | t[ 6] = -t[ 6];
|
---|
218 |
|
---|
219 | t[11] = -t[11];
|
---|
220 | t[12] = -t[12];
|
---|
221 | t[13] = -t[13];
|
---|
222 | t[15] = -t[15];
|
---|
223 | t += 16;
|
---|
224 | } while (t != t1);
|
---|
225 |
|
---|
226 |
|
---|
227 | t = tab;
|
---|
228 | t1 = tab + 8;
|
---|
229 | do {
|
---|
230 | int x1, x2, x3, x4;
|
---|
231 |
|
---|
232 | x3 = MUL(t[16], FIX(SQRT2*0.5));
|
---|
233 | x4 = t[0] - x3;
|
---|
234 | x3 = t[0] + x3;
|
---|
235 |
|
---|
236 | x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
|
---|
237 | x1 = MUL((t[8] - x2), xp[0]);
|
---|
238 | x2 = MUL((t[8] + x2), xp[1]);
|
---|
239 |
|
---|
240 | t[ 0] = x3 + x1;
|
---|
241 | t[ 8] = x4 - x2;
|
---|
242 | t[16] = x4 + x2;
|
---|
243 | t[24] = x3 - x1;
|
---|
244 | t++;
|
---|
245 | } while (t != t1);
|
---|
246 |
|
---|
247 | xp += 2;
|
---|
248 | t = tab;
|
---|
249 | t1 = tab + 4;
|
---|
250 | do {
|
---|
251 | xr = MUL(t[28],xp[0]);
|
---|
252 | t[28] = (t[0] - xr);
|
---|
253 | t[0] = (t[0] + xr);
|
---|
254 |
|
---|
255 | xr = MUL(t[4],xp[1]);
|
---|
256 | t[ 4] = (t[24] - xr);
|
---|
257 | t[24] = (t[24] + xr);
|
---|
258 |
|
---|
259 | xr = MUL(t[20],xp[2]);
|
---|
260 | t[20] = (t[8] - xr);
|
---|
261 | t[ 8] = (t[8] + xr);
|
---|
262 |
|
---|
263 | xr = MUL(t[12],xp[3]);
|
---|
264 | t[12] = (t[16] - xr);
|
---|
265 | t[16] = (t[16] + xr);
|
---|
266 | t++;
|
---|
267 | } while (t != t1);
|
---|
268 | xp += 4;
|
---|
269 |
|
---|
270 | for (i = 0; i < 4; i++) {
|
---|
271 | xr = MUL(tab[30-i*4],xp[0]);
|
---|
272 | tab[30-i*4] = (tab[i*4] - xr);
|
---|
273 | tab[ i*4] = (tab[i*4] + xr);
|
---|
274 |
|
---|
275 | xr = MUL(tab[ 2+i*4],xp[1]);
|
---|
276 | tab[ 2+i*4] = (tab[28-i*4] - xr);
|
---|
277 | tab[28-i*4] = (tab[28-i*4] + xr);
|
---|
278 |
|
---|
279 | xr = MUL(tab[31-i*4],xp[0]);
|
---|
280 | tab[31-i*4] = (tab[1+i*4] - xr);
|
---|
281 | tab[ 1+i*4] = (tab[1+i*4] + xr);
|
---|
282 |
|
---|
283 | xr = MUL(tab[ 3+i*4],xp[1]);
|
---|
284 | tab[ 3+i*4] = (tab[29-i*4] - xr);
|
---|
285 | tab[29-i*4] = (tab[29-i*4] + xr);
|
---|
286 |
|
---|
287 | xp += 2;
|
---|
288 | }
|
---|
289 |
|
---|
290 | t = tab + 30;
|
---|
291 | t1 = tab + 1;
|
---|
292 | do {
|
---|
293 | xr = MUL(t1[0], *xp);
|
---|
294 | t1[0] = (t[0] - xr);
|
---|
295 | t[0] = (t[0] + xr);
|
---|
296 | t -= 2;
|
---|
297 | t1 += 2;
|
---|
298 | xp++;
|
---|
299 | } while (t >= tab);
|
---|
300 |
|
---|
301 | for(i=0;i<32;i++) {
|
---|
302 | out[i] = tab[bitinv32[i]];
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
|
---|
307 |
|
---|
308 | static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
|
---|
309 | {
|
---|
310 | short *p, *q;
|
---|
311 | int sum, offset, i, j;
|
---|
312 | int tmp[64];
|
---|
313 | int tmp1[32];
|
---|
314 | int *out;
|
---|
315 |
|
---|
316 | // print_pow1(samples, 1152);
|
---|
317 |
|
---|
318 | offset = s->samples_offset[ch];
|
---|
319 | out = &s->sb_samples[ch][0][0][0];
|
---|
320 | for(j=0;j<36;j++) {
|
---|
321 | /* 32 samples at once */
|
---|
322 | for(i=0;i<32;i++) {
|
---|
323 | s->samples_buf[ch][offset + (31 - i)] = samples[0];
|
---|
324 | samples += incr;
|
---|
325 | }
|
---|
326 |
|
---|
327 | /* filter */
|
---|
328 | p = s->samples_buf[ch] + offset;
|
---|
329 | q = filter_bank;
|
---|
330 | /* maxsum = 23169 */
|
---|
331 | for(i=0;i<64;i++) {
|
---|
332 | sum = p[0*64] * q[0*64];
|
---|
333 | sum += p[1*64] * q[1*64];
|
---|
334 | sum += p[2*64] * q[2*64];
|
---|
335 | sum += p[3*64] * q[3*64];
|
---|
336 | sum += p[4*64] * q[4*64];
|
---|
337 | sum += p[5*64] * q[5*64];
|
---|
338 | sum += p[6*64] * q[6*64];
|
---|
339 | sum += p[7*64] * q[7*64];
|
---|
340 | tmp[i] = sum;
|
---|
341 | p++;
|
---|
342 | q++;
|
---|
343 | }
|
---|
344 | tmp1[0] = tmp[16] >> WSHIFT;
|
---|
345 | for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
|
---|
346 | for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
|
---|
347 |
|
---|
348 | idct32(out, tmp1);
|
---|
349 |
|
---|
350 | /* advance of 32 samples */
|
---|
351 | offset -= 32;
|
---|
352 | out += 32;
|
---|
353 | /* handle the wrap around */
|
---|
354 | if (offset < 0) {
|
---|
355 | memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
|
---|
356 | s->samples_buf[ch], (512 - 32) * 2);
|
---|
357 | offset = SAMPLES_BUF_SIZE - 512;
|
---|
358 | }
|
---|
359 | }
|
---|
360 | s->samples_offset[ch] = offset;
|
---|
361 |
|
---|
362 | // print_pow(s->sb_samples, 1152);
|
---|
363 | }
|
---|
364 |
|
---|
365 | static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
|
---|
366 | unsigned char scale_factors[SBLIMIT][3],
|
---|
367 | int sb_samples[3][12][SBLIMIT],
|
---|
368 | int sblimit)
|
---|
369 | {
|
---|
370 | int *p, vmax, v, n, i, j, k, code;
|
---|
371 | int index, d1, d2;
|
---|
372 | unsigned char *sf = &scale_factors[0][0];
|
---|
373 |
|
---|
374 | for(j=0;j<sblimit;j++) {
|
---|
375 | for(i=0;i<3;i++) {
|
---|
376 | /* find the max absolute value */
|
---|
377 | p = &sb_samples[i][0][j];
|
---|
378 | vmax = abs(*p);
|
---|
379 | for(k=1;k<12;k++) {
|
---|
380 | p += SBLIMIT;
|
---|
381 | v = abs(*p);
|
---|
382 | if (v > vmax)
|
---|
383 | vmax = v;
|
---|
384 | }
|
---|
385 | /* compute the scale factor index using log 2 computations */
|
---|
386 | if (vmax > 0) {
|
---|
387 | n = av_log2(vmax);
|
---|
388 | /* n is the position of the MSB of vmax. now
|
---|
389 | use at most 2 compares to find the index */
|
---|
390 | index = (21 - n) * 3 - 3;
|
---|
391 | if (index >= 0) {
|
---|
392 | while (vmax <= scale_factor_table[index+1])
|
---|
393 | index++;
|
---|
394 | } else {
|
---|
395 | index = 0; /* very unlikely case of overflow */
|
---|
396 | }
|
---|
397 | } else {
|
---|
398 | index = 62; /* value 63 is not allowed */
|
---|
399 | }
|
---|
400 |
|
---|
401 | #if 0
|
---|
402 | printf("%2d:%d in=%x %x %d\n",
|
---|
403 | j, i, vmax, scale_factor_table[index], index);
|
---|
404 | #endif
|
---|
405 | /* store the scale factor */
|
---|
406 | assert(index >=0 && index <= 63);
|
---|
407 | sf[i] = index;
|
---|
408 | }
|
---|
409 |
|
---|
410 | /* compute the transmission factor : look if the scale factors
|
---|
411 | are close enough to each other */
|
---|
412 | d1 = scale_diff_table[sf[0] - sf[1] + 64];
|
---|
413 | d2 = scale_diff_table[sf[1] - sf[2] + 64];
|
---|
414 |
|
---|
415 | /* handle the 25 cases */
|
---|
416 | switch(d1 * 5 + d2) {
|
---|
417 | case 0*5+0:
|
---|
418 | case 0*5+4:
|
---|
419 | case 3*5+4:
|
---|
420 | case 4*5+0:
|
---|
421 | case 4*5+4:
|
---|
422 | code = 0;
|
---|
423 | break;
|
---|
424 | case 0*5+1:
|
---|
425 | case 0*5+2:
|
---|
426 | case 4*5+1:
|
---|
427 | case 4*5+2:
|
---|
428 | code = 3;
|
---|
429 | sf[2] = sf[1];
|
---|
430 | break;
|
---|
431 | case 0*5+3:
|
---|
432 | case 4*5+3:
|
---|
433 | code = 3;
|
---|
434 | sf[1] = sf[2];
|
---|
435 | break;
|
---|
436 | case 1*5+0:
|
---|
437 | case 1*5+4:
|
---|
438 | case 2*5+4:
|
---|
439 | code = 1;
|
---|
440 | sf[1] = sf[0];
|
---|
441 | break;
|
---|
442 | case 1*5+1:
|
---|
443 | case 1*5+2:
|
---|
444 | case 2*5+0:
|
---|
445 | case 2*5+1:
|
---|
446 | case 2*5+2:
|
---|
447 | code = 2;
|
---|
448 | sf[1] = sf[2] = sf[0];
|
---|
449 | break;
|
---|
450 | case 2*5+3:
|
---|
451 | case 3*5+3:
|
---|
452 | code = 2;
|
---|
453 | sf[0] = sf[1] = sf[2];
|
---|
454 | break;
|
---|
455 | case 3*5+0:
|
---|
456 | case 3*5+1:
|
---|
457 | case 3*5+2:
|
---|
458 | code = 2;
|
---|
459 | sf[0] = sf[2] = sf[1];
|
---|
460 | break;
|
---|
461 | case 1*5+3:
|
---|
462 | code = 2;
|
---|
463 | if (sf[0] > sf[2])
|
---|
464 | sf[0] = sf[2];
|
---|
465 | sf[1] = sf[2] = sf[0];
|
---|
466 | break;
|
---|
467 | default:
|
---|
468 | assert(0); //cant happen
|
---|
469 | code = 0; /* kill warning */
|
---|
470 | }
|
---|
471 |
|
---|
472 | #if 0
|
---|
473 | printf("%d: %2d %2d %2d %d %d -> %d\n", j,
|
---|
474 | sf[0], sf[1], sf[2], d1, d2, code);
|
---|
475 | #endif
|
---|
476 | scale_code[j] = code;
|
---|
477 | sf += 3;
|
---|
478 | }
|
---|
479 | }
|
---|
480 |
|
---|
481 | /* The most important function : psycho acoustic module. In this
|
---|
482 | encoder there is basically none, so this is the worst you can do,
|
---|
483 | but also this is the simpler. */
|
---|
484 | static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
|
---|
485 | {
|
---|
486 | int i;
|
---|
487 |
|
---|
488 | for(i=0;i<s->sblimit;i++) {
|
---|
489 | smr[i] = (int)(fixed_smr[i] * 10);
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 |
|
---|
494 | #define SB_NOTALLOCATED 0
|
---|
495 | #define SB_ALLOCATED 1
|
---|
496 | #define SB_NOMORE 2
|
---|
497 |
|
---|
498 | /* Try to maximize the smr while using a number of bits inferior to
|
---|
499 | the frame size. I tried to make the code simpler, faster and
|
---|
500 | smaller than other encoders :-) */
|
---|
501 | static void compute_bit_allocation(MpegAudioContext *s,
|
---|
502 | short smr1[MPA_MAX_CHANNELS][SBLIMIT],
|
---|
503 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
|
---|
504 | int *padding)
|
---|
505 | {
|
---|
506 | int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
|
---|
507 | int incr;
|
---|
508 | short smr[MPA_MAX_CHANNELS][SBLIMIT];
|
---|
509 | unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
|
---|
510 | const unsigned char *alloc;
|
---|
511 |
|
---|
512 | memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
|
---|
513 | memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
|
---|
514 | memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
|
---|
515 |
|
---|
516 | /* compute frame size and padding */
|
---|
517 | max_frame_size = s->frame_size;
|
---|
518 | s->frame_frac += s->frame_frac_incr;
|
---|
519 | if (s->frame_frac >= 65536) {
|
---|
520 | s->frame_frac -= 65536;
|
---|
521 | s->do_padding = 1;
|
---|
522 | max_frame_size += 8;
|
---|
523 | } else {
|
---|
524 | s->do_padding = 0;
|
---|
525 | }
|
---|
526 |
|
---|
527 | /* compute the header + bit alloc size */
|
---|
528 | current_frame_size = 32;
|
---|
529 | alloc = s->alloc_table;
|
---|
530 | for(i=0;i<s->sblimit;i++) {
|
---|
531 | incr = alloc[0];
|
---|
532 | current_frame_size += incr * s->nb_channels;
|
---|
533 | alloc += 1 << incr;
|
---|
534 | }
|
---|
535 | for(;;) {
|
---|
536 | /* look for the subband with the largest signal to mask ratio */
|
---|
537 | max_sb = -1;
|
---|
538 | max_ch = -1;
|
---|
539 | max_smr = 0x80000000;
|
---|
540 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
541 | for(i=0;i<s->sblimit;i++) {
|
---|
542 | if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
|
---|
543 | max_smr = smr[ch][i];
|
---|
544 | max_sb = i;
|
---|
545 | max_ch = ch;
|
---|
546 | }
|
---|
547 | }
|
---|
548 | }
|
---|
549 | #if 0
|
---|
550 | printf("current=%d max=%d max_sb=%d alloc=%d\n",
|
---|
551 | current_frame_size, max_frame_size, max_sb,
|
---|
552 | bit_alloc[max_sb]);
|
---|
553 | #endif
|
---|
554 | if (max_sb < 0)
|
---|
555 | break;
|
---|
556 |
|
---|
557 | /* find alloc table entry (XXX: not optimal, should use
|
---|
558 | pointer table) */
|
---|
559 | alloc = s->alloc_table;
|
---|
560 | for(i=0;i<max_sb;i++) {
|
---|
561 | alloc += 1 << alloc[0];
|
---|
562 | }
|
---|
563 |
|
---|
564 | if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
|
---|
565 | /* nothing was coded for this band: add the necessary bits */
|
---|
566 | incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
|
---|
567 | incr += total_quant_bits[alloc[1]];
|
---|
568 | } else {
|
---|
569 | /* increments bit allocation */
|
---|
570 | b = bit_alloc[max_ch][max_sb];
|
---|
571 | incr = total_quant_bits[alloc[b + 1]] -
|
---|
572 | total_quant_bits[alloc[b]];
|
---|
573 | }
|
---|
574 |
|
---|
575 | if (current_frame_size + incr <= max_frame_size) {
|
---|
576 | /* can increase size */
|
---|
577 | b = ++bit_alloc[max_ch][max_sb];
|
---|
578 | current_frame_size += incr;
|
---|
579 | /* decrease smr by the resolution we added */
|
---|
580 | smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
|
---|
581 | /* max allocation size reached ? */
|
---|
582 | if (b == ((1 << alloc[0]) - 1))
|
---|
583 | subband_status[max_ch][max_sb] = SB_NOMORE;
|
---|
584 | else
|
---|
585 | subband_status[max_ch][max_sb] = SB_ALLOCATED;
|
---|
586 | } else {
|
---|
587 | /* cannot increase the size of this subband */
|
---|
588 | subband_status[max_ch][max_sb] = SB_NOMORE;
|
---|
589 | }
|
---|
590 | }
|
---|
591 | *padding = max_frame_size - current_frame_size;
|
---|
592 | assert(*padding >= 0);
|
---|
593 |
|
---|
594 | #if 0
|
---|
595 | for(i=0;i<s->sblimit;i++) {
|
---|
596 | printf("%d ", bit_alloc[i]);
|
---|
597 | }
|
---|
598 | printf("\n");
|
---|
599 | #endif
|
---|
600 | }
|
---|
601 |
|
---|
602 | /*
|
---|
603 | * Output the mpeg audio layer 2 frame. Note how the code is small
|
---|
604 | * compared to other encoders :-)
|
---|
605 | */
|
---|
606 | static void encode_frame(MpegAudioContext *s,
|
---|
607 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
|
---|
608 | int padding)
|
---|
609 | {
|
---|
610 | int i, j, k, l, bit_alloc_bits, b, ch;
|
---|
611 | unsigned char *sf;
|
---|
612 | int q[3];
|
---|
613 | PutBitContext *p = &s->pb;
|
---|
614 |
|
---|
615 | /* header */
|
---|
616 |
|
---|
617 | put_bits(p, 12, 0xfff);
|
---|
618 | put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
|
---|
619 | put_bits(p, 2, 4-2); /* layer 2 */
|
---|
620 | put_bits(p, 1, 1); /* no error protection */
|
---|
621 | put_bits(p, 4, s->bitrate_index);
|
---|
622 | put_bits(p, 2, s->freq_index);
|
---|
623 | put_bits(p, 1, s->do_padding); /* use padding */
|
---|
624 | put_bits(p, 1, 0); /* private_bit */
|
---|
625 | put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
|
---|
626 | put_bits(p, 2, 0); /* mode_ext */
|
---|
627 | put_bits(p, 1, 0); /* no copyright */
|
---|
628 | put_bits(p, 1, 1); /* original */
|
---|
629 | put_bits(p, 2, 0); /* no emphasis */
|
---|
630 |
|
---|
631 | /* bit allocation */
|
---|
632 | j = 0;
|
---|
633 | for(i=0;i<s->sblimit;i++) {
|
---|
634 | bit_alloc_bits = s->alloc_table[j];
|
---|
635 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
636 | put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
|
---|
637 | }
|
---|
638 | j += 1 << bit_alloc_bits;
|
---|
639 | }
|
---|
640 |
|
---|
641 | /* scale codes */
|
---|
642 | for(i=0;i<s->sblimit;i++) {
|
---|
643 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
644 | if (bit_alloc[ch][i])
|
---|
645 | put_bits(p, 2, s->scale_code[ch][i]);
|
---|
646 | }
|
---|
647 | }
|
---|
648 |
|
---|
649 | /* scale factors */
|
---|
650 | for(i=0;i<s->sblimit;i++) {
|
---|
651 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
652 | if (bit_alloc[ch][i]) {
|
---|
653 | sf = &s->scale_factors[ch][i][0];
|
---|
654 | switch(s->scale_code[ch][i]) {
|
---|
655 | case 0:
|
---|
656 | put_bits(p, 6, sf[0]);
|
---|
657 | put_bits(p, 6, sf[1]);
|
---|
658 | put_bits(p, 6, sf[2]);
|
---|
659 | break;
|
---|
660 | case 3:
|
---|
661 | case 1:
|
---|
662 | put_bits(p, 6, sf[0]);
|
---|
663 | put_bits(p, 6, sf[2]);
|
---|
664 | break;
|
---|
665 | case 2:
|
---|
666 | put_bits(p, 6, sf[0]);
|
---|
667 | break;
|
---|
668 | }
|
---|
669 | }
|
---|
670 | }
|
---|
671 | }
|
---|
672 |
|
---|
673 | /* quantization & write sub band samples */
|
---|
674 |
|
---|
675 | for(k=0;k<3;k++) {
|
---|
676 | for(l=0;l<12;l+=3) {
|
---|
677 | j = 0;
|
---|
678 | for(i=0;i<s->sblimit;i++) {
|
---|
679 | bit_alloc_bits = s->alloc_table[j];
|
---|
680 | for(ch=0;ch<s->nb_channels;ch++) {
|
---|
681 | b = bit_alloc[ch][i];
|
---|
682 | if (b) {
|
---|
683 | int qindex, steps, m, sample, bits;
|
---|
684 | /* we encode 3 sub band samples of the same sub band at a time */
|
---|
685 | qindex = s->alloc_table[j+b];
|
---|
686 | steps = quant_steps[qindex];
|
---|
687 | for(m=0;m<3;m++) {
|
---|
688 | sample = s->sb_samples[ch][k][l + m][i];
|
---|
689 | /* divide by scale factor */
|
---|
690 | #ifdef USE_FLOATS
|
---|
691 | {
|
---|
692 | float a;
|
---|
693 | a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
|
---|
694 | q[m] = (int)((a + 1.0) * steps * 0.5);
|
---|
695 | }
|
---|
696 | #else
|
---|
697 | {
|
---|
698 | int q1, e, shift, mult;
|
---|
699 | e = s->scale_factors[ch][i][k];
|
---|
700 | shift = scale_factor_shift[e];
|
---|
701 | mult = scale_factor_mult[e];
|
---|
702 |
|
---|
703 | /* normalize to P bits */
|
---|
704 | if (shift < 0)
|
---|
705 | q1 = sample << (-shift);
|
---|
706 | else
|
---|
707 | q1 = sample >> shift;
|
---|
708 | q1 = (q1 * mult) >> P;
|
---|
709 | q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
|
---|
710 | }
|
---|
711 | #endif
|
---|
712 | if (q[m] >= steps)
|
---|
713 | q[m] = steps - 1;
|
---|
714 | assert(q[m] >= 0 && q[m] < steps);
|
---|
715 | }
|
---|
716 | bits = quant_bits[qindex];
|
---|
717 | if (bits < 0) {
|
---|
718 | /* group the 3 values to save bits */
|
---|
719 | put_bits(p, -bits,
|
---|
720 | q[0] + steps * (q[1] + steps * q[2]));
|
---|
721 | #if 0
|
---|
722 | printf("%d: gr1 %d\n",
|
---|
723 | i, q[0] + steps * (q[1] + steps * q[2]));
|
---|
724 | #endif
|
---|
725 | } else {
|
---|
726 | #if 0
|
---|
727 | printf("%d: gr3 %d %d %d\n",
|
---|
728 | i, q[0], q[1], q[2]);
|
---|
729 | #endif
|
---|
730 | put_bits(p, bits, q[0]);
|
---|
731 | put_bits(p, bits, q[1]);
|
---|
732 | put_bits(p, bits, q[2]);
|
---|
733 | }
|
---|
734 | }
|
---|
735 | }
|
---|
736 | /* next subband in alloc table */
|
---|
737 | j += 1 << bit_alloc_bits;
|
---|
738 | }
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | /* padding */
|
---|
743 | for(i=0;i<padding;i++)
|
---|
744 | put_bits(p, 1, 0);
|
---|
745 |
|
---|
746 | /* flush */
|
---|
747 | flush_put_bits(p);
|
---|
748 | }
|
---|
749 |
|
---|
750 | static int MPA_encode_frame(AVCodecContext *avctx,
|
---|
751 | unsigned char *frame, int buf_size, void *data)
|
---|
752 | {
|
---|
753 | MpegAudioContext *s = avctx->priv_data;
|
---|
754 | short *samples = data;
|
---|
755 | short smr[MPA_MAX_CHANNELS][SBLIMIT];
|
---|
756 | unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
|
---|
757 | int padding, i;
|
---|
758 |
|
---|
759 | for(i=0;i<s->nb_channels;i++) {
|
---|
760 | filter(s, i, samples + i, s->nb_channels);
|
---|
761 | }
|
---|
762 |
|
---|
763 | for(i=0;i<s->nb_channels;i++) {
|
---|
764 | compute_scale_factors(s->scale_code[i], s->scale_factors[i],
|
---|
765 | s->sb_samples[i], s->sblimit);
|
---|
766 | }
|
---|
767 | for(i=0;i<s->nb_channels;i++) {
|
---|
768 | psycho_acoustic_model(s, smr[i]);
|
---|
769 | }
|
---|
770 | compute_bit_allocation(s, smr, bit_alloc, &padding);
|
---|
771 |
|
---|
772 | init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
|
---|
773 |
|
---|
774 | encode_frame(s, bit_alloc, padding);
|
---|
775 |
|
---|
776 | s->nb_samples += MPA_FRAME_SIZE;
|
---|
777 | return pbBufPtr(&s->pb) - s->pb.buf;
|
---|
778 | }
|
---|
779 |
|
---|
780 | static int MPA_encode_close(AVCodecContext *avctx)
|
---|
781 | {
|
---|
782 | av_freep(&avctx->coded_frame);
|
---|
783 | return 0;
|
---|
784 | }
|
---|
785 |
|
---|
786 | #ifdef CONFIG_MP2_ENCODER
|
---|
787 | AVCodec mp2_encoder = {
|
---|
788 | "mp2",
|
---|
789 | CODEC_TYPE_AUDIO,
|
---|
790 | CODEC_ID_MP2,
|
---|
791 | sizeof(MpegAudioContext),
|
---|
792 | MPA_encode_init,
|
---|
793 | MPA_encode_frame,
|
---|
794 | MPA_encode_close,
|
---|
795 | NULL,
|
---|
796 | };
|
---|
797 | #endif // CONFIG_MP2_ENCODER
|
---|
798 |
|
---|
799 | #undef FIX
|
---|