1 | ///////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | /// \file outqueue.c
|
---|
4 | /// \brief Output queue handling in multithreaded coding
|
---|
5 | //
|
---|
6 | // Author: Lasse Collin
|
---|
7 | //
|
---|
8 | // This file has been put into the public domain.
|
---|
9 | // You can do whatever you want with this file.
|
---|
10 | //
|
---|
11 | ///////////////////////////////////////////////////////////////////////////////
|
---|
12 |
|
---|
13 | #include "outqueue.h"
|
---|
14 |
|
---|
15 |
|
---|
16 | /// Get the maximum number of buffers that may be allocated based
|
---|
17 | /// on the number of threads. For now this is twice the number of threads.
|
---|
18 | /// It's a compromise between RAM usage and keeping the worker threads busy
|
---|
19 | /// when buffers finish out of order.
|
---|
20 | #define GET_BUFS_LIMIT(threads) (2 * (threads))
|
---|
21 |
|
---|
22 |
|
---|
23 | extern uint64_t
|
---|
24 | lzma_outq_memusage(uint64_t buf_size_max, uint32_t threads)
|
---|
25 | {
|
---|
26 | // This is to ease integer overflow checking: We may allocate up to
|
---|
27 | // GET_BUFS_LIMIT(LZMA_THREADS_MAX) buffers and we need some extra
|
---|
28 | // memory for other data structures too (that's the /2).
|
---|
29 | //
|
---|
30 | // lzma_outq_prealloc_buf() will still accept bigger buffers than this.
|
---|
31 | const uint64_t limit
|
---|
32 | = UINT64_MAX / GET_BUFS_LIMIT(LZMA_THREADS_MAX) / 2;
|
---|
33 |
|
---|
34 | if (threads > LZMA_THREADS_MAX || buf_size_max > limit)
|
---|
35 | return UINT64_MAX;
|
---|
36 |
|
---|
37 | return GET_BUFS_LIMIT(threads)
|
---|
38 | * lzma_outq_outbuf_memusage(buf_size_max);
|
---|
39 | }
|
---|
40 |
|
---|
41 |
|
---|
42 | static void
|
---|
43 | move_head_to_cache(lzma_outq *outq, const lzma_allocator *allocator)
|
---|
44 | {
|
---|
45 | assert(outq->head != NULL);
|
---|
46 | assert(outq->tail != NULL);
|
---|
47 | assert(outq->bufs_in_use > 0);
|
---|
48 |
|
---|
49 | lzma_outbuf *buf = outq->head;
|
---|
50 | outq->head = buf->next;
|
---|
51 | if (outq->head == NULL)
|
---|
52 | outq->tail = NULL;
|
---|
53 |
|
---|
54 | if (outq->cache != NULL && outq->cache->allocated != buf->allocated)
|
---|
55 | lzma_outq_clear_cache(outq, allocator);
|
---|
56 |
|
---|
57 | buf->next = outq->cache;
|
---|
58 | outq->cache = buf;
|
---|
59 |
|
---|
60 | --outq->bufs_in_use;
|
---|
61 | outq->mem_in_use -= lzma_outq_outbuf_memusage(buf->allocated);
|
---|
62 |
|
---|
63 | return;
|
---|
64 | }
|
---|
65 |
|
---|
66 |
|
---|
67 | static void
|
---|
68 | free_one_cached_buffer(lzma_outq *outq, const lzma_allocator *allocator)
|
---|
69 | {
|
---|
70 | assert(outq->cache != NULL);
|
---|
71 |
|
---|
72 | lzma_outbuf *buf = outq->cache;
|
---|
73 | outq->cache = buf->next;
|
---|
74 |
|
---|
75 | --outq->bufs_allocated;
|
---|
76 | outq->mem_allocated -= lzma_outq_outbuf_memusage(buf->allocated);
|
---|
77 |
|
---|
78 | lzma_free(buf, allocator);
|
---|
79 | return;
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | extern void
|
---|
84 | lzma_outq_clear_cache(lzma_outq *outq, const lzma_allocator *allocator)
|
---|
85 | {
|
---|
86 | while (outq->cache != NULL)
|
---|
87 | free_one_cached_buffer(outq, allocator);
|
---|
88 |
|
---|
89 | return;
|
---|
90 | }
|
---|
91 |
|
---|
92 |
|
---|
93 | extern void
|
---|
94 | lzma_outq_clear_cache2(lzma_outq *outq, const lzma_allocator *allocator,
|
---|
95 | size_t keep_size)
|
---|
96 | {
|
---|
97 | if (outq->cache == NULL)
|
---|
98 | return;
|
---|
99 |
|
---|
100 | // Free all but one.
|
---|
101 | while (outq->cache->next != NULL)
|
---|
102 | free_one_cached_buffer(outq, allocator);
|
---|
103 |
|
---|
104 | // Free the last one only if its size doesn't equal to keep_size.
|
---|
105 | if (outq->cache->allocated != keep_size)
|
---|
106 | free_one_cached_buffer(outq, allocator);
|
---|
107 |
|
---|
108 | return;
|
---|
109 | }
|
---|
110 |
|
---|
111 |
|
---|
112 | extern lzma_ret
|
---|
113 | lzma_outq_init(lzma_outq *outq, const lzma_allocator *allocator,
|
---|
114 | uint32_t threads)
|
---|
115 | {
|
---|
116 | if (threads > LZMA_THREADS_MAX)
|
---|
117 | return LZMA_OPTIONS_ERROR;
|
---|
118 |
|
---|
119 | const uint32_t bufs_limit = GET_BUFS_LIMIT(threads);
|
---|
120 |
|
---|
121 | // Clear head/tail.
|
---|
122 | while (outq->head != NULL)
|
---|
123 | move_head_to_cache(outq, allocator);
|
---|
124 |
|
---|
125 | // If new buf_limit is lower than the old one, we may need to free
|
---|
126 | // a few cached buffers.
|
---|
127 | while (bufs_limit < outq->bufs_allocated)
|
---|
128 | free_one_cached_buffer(outq, allocator);
|
---|
129 |
|
---|
130 | outq->bufs_limit = bufs_limit;
|
---|
131 | outq->read_pos = 0;
|
---|
132 |
|
---|
133 | return LZMA_OK;
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | extern void
|
---|
138 | lzma_outq_end(lzma_outq *outq, const lzma_allocator *allocator)
|
---|
139 | {
|
---|
140 | while (outq->head != NULL)
|
---|
141 | move_head_to_cache(outq, allocator);
|
---|
142 |
|
---|
143 | lzma_outq_clear_cache(outq, allocator);
|
---|
144 | return;
|
---|
145 | }
|
---|
146 |
|
---|
147 |
|
---|
148 | extern lzma_ret
|
---|
149 | lzma_outq_prealloc_buf(lzma_outq *outq, const lzma_allocator *allocator,
|
---|
150 | size_t size)
|
---|
151 | {
|
---|
152 | // Caller must have checked it with lzma_outq_has_buf().
|
---|
153 | assert(outq->bufs_in_use < outq->bufs_limit);
|
---|
154 |
|
---|
155 | // If there already is appropriately-sized buffer in the cache,
|
---|
156 | // we need to do nothing.
|
---|
157 | if (outq->cache != NULL && outq->cache->allocated == size)
|
---|
158 | return LZMA_OK;
|
---|
159 |
|
---|
160 | if (size > SIZE_MAX - sizeof(lzma_outbuf))
|
---|
161 | return LZMA_MEM_ERROR;
|
---|
162 |
|
---|
163 | const size_t alloc_size = lzma_outq_outbuf_memusage(size);
|
---|
164 |
|
---|
165 | // The cache may have buffers but their size is wrong.
|
---|
166 | lzma_outq_clear_cache(outq, allocator);
|
---|
167 |
|
---|
168 | outq->cache = lzma_alloc(alloc_size, allocator);
|
---|
169 | if (outq->cache == NULL)
|
---|
170 | return LZMA_MEM_ERROR;
|
---|
171 |
|
---|
172 | outq->cache->next = NULL;
|
---|
173 | outq->cache->allocated = size;
|
---|
174 |
|
---|
175 | ++outq->bufs_allocated;
|
---|
176 | outq->mem_allocated += alloc_size;
|
---|
177 |
|
---|
178 | return LZMA_OK;
|
---|
179 | }
|
---|
180 |
|
---|
181 |
|
---|
182 | extern lzma_outbuf *
|
---|
183 | lzma_outq_get_buf(lzma_outq *outq, void *worker)
|
---|
184 | {
|
---|
185 | // Caller must have used lzma_outq_prealloc_buf() to ensure these.
|
---|
186 | assert(outq->bufs_in_use < outq->bufs_limit);
|
---|
187 | assert(outq->bufs_in_use < outq->bufs_allocated);
|
---|
188 | assert(outq->cache != NULL);
|
---|
189 |
|
---|
190 | lzma_outbuf *buf = outq->cache;
|
---|
191 | outq->cache = buf->next;
|
---|
192 | buf->next = NULL;
|
---|
193 |
|
---|
194 | if (outq->tail != NULL) {
|
---|
195 | assert(outq->head != NULL);
|
---|
196 | outq->tail->next = buf;
|
---|
197 | } else {
|
---|
198 | assert(outq->head == NULL);
|
---|
199 | outq->head = buf;
|
---|
200 | }
|
---|
201 |
|
---|
202 | outq->tail = buf;
|
---|
203 |
|
---|
204 | buf->worker = worker;
|
---|
205 | buf->finished = false;
|
---|
206 | buf->finish_ret = LZMA_STREAM_END;
|
---|
207 | buf->pos = 0;
|
---|
208 | buf->decoder_in_pos = 0;
|
---|
209 |
|
---|
210 | buf->unpadded_size = 0;
|
---|
211 | buf->uncompressed_size = 0;
|
---|
212 |
|
---|
213 | ++outq->bufs_in_use;
|
---|
214 | outq->mem_in_use += lzma_outq_outbuf_memusage(buf->allocated);
|
---|
215 |
|
---|
216 | return buf;
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 | extern bool
|
---|
221 | lzma_outq_is_readable(const lzma_outq *outq)
|
---|
222 | {
|
---|
223 | if (outq->head == NULL)
|
---|
224 | return false;
|
---|
225 |
|
---|
226 | return outq->read_pos < outq->head->pos || outq->head->finished;
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | extern lzma_ret
|
---|
231 | lzma_outq_read(lzma_outq *restrict outq,
|
---|
232 | const lzma_allocator *restrict allocator,
|
---|
233 | uint8_t *restrict out, size_t *restrict out_pos,
|
---|
234 | size_t out_size,
|
---|
235 | lzma_vli *restrict unpadded_size,
|
---|
236 | lzma_vli *restrict uncompressed_size)
|
---|
237 | {
|
---|
238 | // There must be at least one buffer from which to read.
|
---|
239 | if (outq->bufs_in_use == 0)
|
---|
240 | return LZMA_OK;
|
---|
241 |
|
---|
242 | // Get the buffer.
|
---|
243 | lzma_outbuf *buf = outq->head;
|
---|
244 |
|
---|
245 | // Copy from the buffer to output.
|
---|
246 | //
|
---|
247 | // FIXME? In threaded decoder it may be bad to do this copy while
|
---|
248 | // the mutex is being held.
|
---|
249 | lzma_bufcpy(buf->buf, &outq->read_pos, buf->pos,
|
---|
250 | out, out_pos, out_size);
|
---|
251 |
|
---|
252 | // Return if we didn't get all the data from the buffer.
|
---|
253 | if (!buf->finished || outq->read_pos < buf->pos)
|
---|
254 | return LZMA_OK;
|
---|
255 |
|
---|
256 | // The buffer was finished. Tell the caller its size information.
|
---|
257 | if (unpadded_size != NULL)
|
---|
258 | *unpadded_size = buf->unpadded_size;
|
---|
259 |
|
---|
260 | if (uncompressed_size != NULL)
|
---|
261 | *uncompressed_size = buf->uncompressed_size;
|
---|
262 |
|
---|
263 | // Remember the return value.
|
---|
264 | const lzma_ret finish_ret = buf->finish_ret;
|
---|
265 |
|
---|
266 | // Free this buffer for further use.
|
---|
267 | move_head_to_cache(outq, allocator);
|
---|
268 | outq->read_pos = 0;
|
---|
269 |
|
---|
270 | return finish_ret;
|
---|
271 | }
|
---|
272 |
|
---|
273 |
|
---|
274 | extern void
|
---|
275 | lzma_outq_enable_partial_output(lzma_outq *outq,
|
---|
276 | void (*enable_partial_output)(void *worker))
|
---|
277 | {
|
---|
278 | if (outq->head != NULL && !outq->head->finished
|
---|
279 | && outq->head->worker != NULL) {
|
---|
280 | enable_partial_output(outq->head->worker);
|
---|
281 |
|
---|
282 | // Set it to NULL since calling it twice is pointless.
|
---|
283 | outq->head->worker = NULL;
|
---|
284 | }
|
---|
285 |
|
---|
286 | return;
|
---|
287 | }
|
---|