VirtualBox

source: vbox/trunk/src/libs/libxml2-2.12.6/xmlregexp.c@ 104201

最後變更 在這個檔案從104201是 104106,由 vboxsync 提交於 10 月 前

libxml2-2.9.14: Applied and adjusted our libxml2 changes to 2.9.14. bugref:10640

  • 屬性 svn:eol-style 設為 native
檔案大小: 212.3 KB
 
1/*
2 * regexp.c: generic and extensible Regular Expression engine
3 *
4 * Basically designed with the purpose of compiling regexps for
5 * the variety of validation/schemas mechanisms now available in
6 * XML related specifications these include:
7 * - XML-1.0 DTD validation
8 * - XML Schemas structure part 1
9 * - XML Schemas Datatypes part 2 especially Appendix F
10 * - RELAX-NG/TREX i.e. the counter proposal
11 *
12 * See Copyright for the status of this software.
13 *
14 * Daniel Veillard <[email protected]>
15 */
16
17#define IN_LIBXML
18#include "libxml.h"
19
20#ifdef LIBXML_REGEXP_ENABLED
21
22#include <stdio.h>
23#include <string.h>
24#include <limits.h>
25
26#include <libxml/tree.h>
27#include <libxml/parserInternals.h>
28#include <libxml/xmlregexp.h>
29#include <libxml/xmlautomata.h>
30#include <libxml/xmlunicode.h>
31
32#include "private/error.h"
33#include "private/regexp.h"
34
35#ifndef SIZE_MAX
36#define SIZE_MAX ((size_t) -1)
37#endif
38
39#define MAX_PUSH 10000000
40
41/*
42 * -2 and -3 are used by xmlValidateElementType for other things.
43 */
44#define XML_REGEXP_OK 0
45#define XML_REGEXP_NOT_FOUND (-1)
46#define XML_REGEXP_INTERNAL_ERROR (-4)
47#define XML_REGEXP_OUT_OF_MEMORY (-5)
48#define XML_REGEXP_INTERNAL_LIMIT (-6)
49#define XML_REGEXP_INVALID_UTF8 (-7)
50
51#ifdef ERROR
52#undef ERROR
53#endif
54#define ERROR(str) \
55 ctxt->error = XML_REGEXP_COMPILE_ERROR; \
56 xmlRegexpErrCompile(ctxt, str);
57#define NEXT ctxt->cur++
58#define CUR (*(ctxt->cur))
59#define NXT(index) (ctxt->cur[index])
60
61#define NEXTL(l) ctxt->cur += l;
62#define XML_REG_STRING_SEPARATOR '|'
63/*
64 * Need PREV to check on a '-' within a Character Group. May only be used
65 * when it's guaranteed that cur is not at the beginning of ctxt->string!
66 */
67#define PREV (ctxt->cur[-1])
68
69/**
70 * TODO:
71 *
72 * macro to flag unimplemented blocks
73 */
74#define TODO \
75 xmlGenericError(xmlGenericErrorContext, \
76 "Unimplemented block at %s:%d\n", \
77 __FILE__, __LINE__);
78
79/************************************************************************
80 * *
81 * Datatypes and structures *
82 * *
83 ************************************************************************/
84
85/*
86 * Note: the order of the enums below is significant, do not shuffle
87 */
88typedef enum {
89 XML_REGEXP_EPSILON = 1,
90 XML_REGEXP_CHARVAL,
91 XML_REGEXP_RANGES,
92 XML_REGEXP_SUBREG, /* used for () sub regexps */
93 XML_REGEXP_STRING,
94 XML_REGEXP_ANYCHAR, /* . */
95 XML_REGEXP_ANYSPACE, /* \s */
96 XML_REGEXP_NOTSPACE, /* \S */
97 XML_REGEXP_INITNAME, /* \l */
98 XML_REGEXP_NOTINITNAME, /* \L */
99 XML_REGEXP_NAMECHAR, /* \c */
100 XML_REGEXP_NOTNAMECHAR, /* \C */
101 XML_REGEXP_DECIMAL, /* \d */
102 XML_REGEXP_NOTDECIMAL, /* \D */
103 XML_REGEXP_REALCHAR, /* \w */
104 XML_REGEXP_NOTREALCHAR, /* \W */
105 XML_REGEXP_LETTER = 100,
106 XML_REGEXP_LETTER_UPPERCASE,
107 XML_REGEXP_LETTER_LOWERCASE,
108 XML_REGEXP_LETTER_TITLECASE,
109 XML_REGEXP_LETTER_MODIFIER,
110 XML_REGEXP_LETTER_OTHERS,
111 XML_REGEXP_MARK,
112 XML_REGEXP_MARK_NONSPACING,
113 XML_REGEXP_MARK_SPACECOMBINING,
114 XML_REGEXP_MARK_ENCLOSING,
115 XML_REGEXP_NUMBER,
116 XML_REGEXP_NUMBER_DECIMAL,
117 XML_REGEXP_NUMBER_LETTER,
118 XML_REGEXP_NUMBER_OTHERS,
119 XML_REGEXP_PUNCT,
120 XML_REGEXP_PUNCT_CONNECTOR,
121 XML_REGEXP_PUNCT_DASH,
122 XML_REGEXP_PUNCT_OPEN,
123 XML_REGEXP_PUNCT_CLOSE,
124 XML_REGEXP_PUNCT_INITQUOTE,
125 XML_REGEXP_PUNCT_FINQUOTE,
126 XML_REGEXP_PUNCT_OTHERS,
127 XML_REGEXP_SEPAR,
128 XML_REGEXP_SEPAR_SPACE,
129 XML_REGEXP_SEPAR_LINE,
130 XML_REGEXP_SEPAR_PARA,
131 XML_REGEXP_SYMBOL,
132 XML_REGEXP_SYMBOL_MATH,
133 XML_REGEXP_SYMBOL_CURRENCY,
134 XML_REGEXP_SYMBOL_MODIFIER,
135 XML_REGEXP_SYMBOL_OTHERS,
136 XML_REGEXP_OTHER,
137 XML_REGEXP_OTHER_CONTROL,
138 XML_REGEXP_OTHER_FORMAT,
139 XML_REGEXP_OTHER_PRIVATE,
140 XML_REGEXP_OTHER_NA,
141 XML_REGEXP_BLOCK_NAME
142} xmlRegAtomType;
143
144typedef enum {
145 XML_REGEXP_QUANT_EPSILON = 1,
146 XML_REGEXP_QUANT_ONCE,
147 XML_REGEXP_QUANT_OPT,
148 XML_REGEXP_QUANT_MULT,
149 XML_REGEXP_QUANT_PLUS,
150 XML_REGEXP_QUANT_ONCEONLY,
151 XML_REGEXP_QUANT_ALL,
152 XML_REGEXP_QUANT_RANGE
153} xmlRegQuantType;
154
155typedef enum {
156 XML_REGEXP_START_STATE = 1,
157 XML_REGEXP_FINAL_STATE,
158 XML_REGEXP_TRANS_STATE,
159 XML_REGEXP_SINK_STATE,
160 XML_REGEXP_UNREACH_STATE
161} xmlRegStateType;
162
163typedef enum {
164 XML_REGEXP_MARK_NORMAL = 0,
165 XML_REGEXP_MARK_START,
166 XML_REGEXP_MARK_VISITED
167} xmlRegMarkedType;
168
169typedef struct _xmlRegRange xmlRegRange;
170typedef xmlRegRange *xmlRegRangePtr;
171
172struct _xmlRegRange {
173 int neg; /* 0 normal, 1 not, 2 exclude */
174 xmlRegAtomType type;
175 int start;
176 int end;
177 xmlChar *blockName;
178};
179
180typedef struct _xmlRegAtom xmlRegAtom;
181typedef xmlRegAtom *xmlRegAtomPtr;
182
183typedef struct _xmlAutomataState xmlRegState;
184typedef xmlRegState *xmlRegStatePtr;
185
186struct _xmlRegAtom {
187 int no;
188 xmlRegAtomType type;
189 xmlRegQuantType quant;
190 int min;
191 int max;
192
193 void *valuep;
194 void *valuep2;
195 int neg;
196 int codepoint;
197 xmlRegStatePtr start;
198 xmlRegStatePtr start0;
199 xmlRegStatePtr stop;
200 int maxRanges;
201 int nbRanges;
202 xmlRegRangePtr *ranges;
203 void *data;
204};
205
206typedef struct _xmlRegCounter xmlRegCounter;
207typedef xmlRegCounter *xmlRegCounterPtr;
208
209struct _xmlRegCounter {
210 int min;
211 int max;
212};
213
214typedef struct _xmlRegTrans xmlRegTrans;
215typedef xmlRegTrans *xmlRegTransPtr;
216
217struct _xmlRegTrans {
218 xmlRegAtomPtr atom;
219 int to;
220 int counter;
221 int count;
222 int nd;
223};
224
225struct _xmlAutomataState {
226 xmlRegStateType type;
227 xmlRegMarkedType mark;
228 xmlRegMarkedType markd;
229 xmlRegMarkedType reached;
230 int no;
231 int maxTrans;
232 int nbTrans;
233 xmlRegTrans *trans;
234 /* knowing states pointing to us can speed things up */
235 int maxTransTo;
236 int nbTransTo;
237 int *transTo;
238};
239
240typedef struct _xmlAutomata xmlRegParserCtxt;
241typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
242
243#define AM_AUTOMATA_RNG 1
244
245struct _xmlAutomata {
246 xmlChar *string;
247 xmlChar *cur;
248
249 int error;
250 int neg;
251
252 xmlRegStatePtr start;
253 xmlRegStatePtr end;
254 xmlRegStatePtr state;
255
256 xmlRegAtomPtr atom;
257
258 int maxAtoms;
259 int nbAtoms;
260 xmlRegAtomPtr *atoms;
261
262 int maxStates;
263 int nbStates;
264 xmlRegStatePtr *states;
265
266 int maxCounters;
267 int nbCounters;
268 xmlRegCounter *counters;
269
270 int determinist;
271 int negs;
272 int flags;
273
274 int depth;
275};
276
277struct _xmlRegexp {
278 xmlChar *string;
279 int nbStates;
280 xmlRegStatePtr *states;
281 int nbAtoms;
282 xmlRegAtomPtr *atoms;
283 int nbCounters;
284 xmlRegCounter *counters;
285 int determinist;
286 int flags;
287 /*
288 * That's the compact form for determinists automatas
289 */
290 int nbstates;
291 int *compact;
292 void **transdata;
293 int nbstrings;
294 xmlChar **stringMap;
295};
296
297typedef struct _xmlRegExecRollback xmlRegExecRollback;
298typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
299
300struct _xmlRegExecRollback {
301 xmlRegStatePtr state;/* the current state */
302 int index; /* the index in the input stack */
303 int nextbranch; /* the next transition to explore in that state */
304 int *counts; /* save the automata state if it has some */
305};
306
307typedef struct _xmlRegInputToken xmlRegInputToken;
308typedef xmlRegInputToken *xmlRegInputTokenPtr;
309
310struct _xmlRegInputToken {
311 xmlChar *value;
312 void *data;
313};
314
315struct _xmlRegExecCtxt {
316 int status; /* execution status != 0 indicate an error */
317 int determinist; /* did we find an indeterministic behaviour */
318 xmlRegexpPtr comp; /* the compiled regexp */
319 xmlRegExecCallbacks callback;
320 void *data;
321
322 xmlRegStatePtr state;/* the current state */
323 int transno; /* the current transition on that state */
324 int transcount; /* the number of chars in char counted transitions */
325
326 /*
327 * A stack of rollback states
328 */
329 int maxRollbacks;
330 int nbRollbacks;
331 xmlRegExecRollback *rollbacks;
332
333 /*
334 * The state of the automata if any
335 */
336 int *counts;
337
338 /*
339 * The input stack
340 */
341 int inputStackMax;
342 int inputStackNr;
343 int index;
344 int *charStack;
345 const xmlChar *inputString; /* when operating on characters */
346 xmlRegInputTokenPtr inputStack;/* when operating on strings */
347
348 /*
349 * error handling
350 */
351 int errStateNo; /* the error state number */
352 xmlRegStatePtr errState; /* the error state */
353 xmlChar *errString; /* the string raising the error */
354 int *errCounts; /* counters at the error state */
355 int nbPush;
356};
357
358#define REGEXP_ALL_COUNTER 0x123456
359#define REGEXP_ALL_LAX_COUNTER 0x123457
360
361static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
362static void xmlRegFreeState(xmlRegStatePtr state);
363static void xmlRegFreeAtom(xmlRegAtomPtr atom);
364static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
365static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
366static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
367 int neg, int start, int end, const xmlChar *blockName);
368
369/************************************************************************
370 * *
371 * Regexp memory error handler *
372 * *
373 ************************************************************************/
374/**
375 * xmlRegexpErrMemory:
376 * @extra: extra information
377 *
378 * Handle an out of memory condition
379 */
380static void
381xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
382{
383 const char *regexp = NULL;
384 if (ctxt != NULL) {
385 regexp = (const char *) ctxt->string;
386 ctxt->error = XML_ERR_NO_MEMORY;
387 }
388 __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
389 XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
390 regexp, NULL, 0, 0,
391 "Memory allocation failed : %s\n", extra);
392}
393
394/**
395 * xmlRegexpErrCompile:
396 * @extra: extra information
397 *
398 * Handle a compilation failure
399 */
400static void
401xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
402{
403 const char *regexp = NULL;
404 int idx = 0;
405
406 if (ctxt != NULL) {
407 regexp = (const char *) ctxt->string;
408 idx = ctxt->cur - ctxt->string;
409 ctxt->error = XML_REGEXP_COMPILE_ERROR;
410 }
411 __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
412 XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
413 regexp, NULL, idx, 0,
414 "failed to compile: %s\n", extra);
415}
416
417/************************************************************************
418 * *
419 * Allocation/Deallocation *
420 * *
421 ************************************************************************/
422
423static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
424
425/**
426 * xmlRegCalloc2:
427 * @dim1: size of first dimension
428 * @dim2: size of second dimension
429 * @elemSize: size of element
430 *
431 * Allocate a two-dimensional array and set all elements to zero.
432 *
433 * Returns the new array or NULL in case of error.
434 */
435static void*
436xmlRegCalloc2(size_t dim1, size_t dim2, size_t elemSize) {
437 size_t totalSize;
438 void *ret;
439
440 /* Check for overflow */
441 if ((dim2 == 0) || (elemSize == 0) ||
442 (dim1 > SIZE_MAX / dim2 / elemSize))
443 return (NULL);
444 totalSize = dim1 * dim2 * elemSize;
445 ret = xmlMalloc(totalSize);
446 if (ret != NULL)
447 memset(ret, 0, totalSize);
448 return (ret);
449}
450
451/**
452 * xmlRegEpxFromParse:
453 * @ctxt: the parser context used to build it
454 *
455 * Allocate a new regexp and fill it with the result from the parser
456 *
457 * Returns the new regexp or NULL in case of error
458 */
459static xmlRegexpPtr
460xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
461 xmlRegexpPtr ret;
462
463 ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
464 if (ret == NULL) {
465 xmlRegexpErrMemory(ctxt, "compiling regexp");
466 return(NULL);
467 }
468 memset(ret, 0, sizeof(xmlRegexp));
469 ret->string = ctxt->string;
470 ret->nbStates = ctxt->nbStates;
471 ret->states = ctxt->states;
472 ret->nbAtoms = ctxt->nbAtoms;
473 ret->atoms = ctxt->atoms;
474 ret->nbCounters = ctxt->nbCounters;
475 ret->counters = ctxt->counters;
476 ret->determinist = ctxt->determinist;
477 ret->flags = ctxt->flags;
478 if (ret->determinist == -1) {
479 if (xmlRegexpIsDeterminist(ret) < 0) {
480 xmlRegexpErrMemory(ctxt, "checking determinism");
481 xmlFree(ret);
482 return(NULL);
483 }
484 }
485
486 if ((ret->determinist != 0) &&
487 (ret->nbCounters == 0) &&
488 (ctxt->negs == 0) &&
489 (ret->atoms != NULL) &&
490 (ret->atoms[0] != NULL) &&
491 (ret->atoms[0]->type == XML_REGEXP_STRING)) {
492 int i, j, nbstates = 0, nbatoms = 0;
493 int *stateRemap;
494 int *stringRemap;
495 int *transitions;
496 void **transdata;
497 xmlChar **stringMap;
498 xmlChar *value;
499
500 /*
501 * Switch to a compact representation
502 * 1/ counting the effective number of states left
503 * 2/ counting the unique number of atoms, and check that
504 * they are all of the string type
505 * 3/ build a table state x atom for the transitions
506 */
507
508 stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
509 if (stateRemap == NULL) {
510 xmlRegexpErrMemory(ctxt, "compiling regexp");
511 xmlFree(ret);
512 return(NULL);
513 }
514 for (i = 0;i < ret->nbStates;i++) {
515 if (ret->states[i] != NULL) {
516 stateRemap[i] = nbstates;
517 nbstates++;
518 } else {
519 stateRemap[i] = -1;
520 }
521 }
522 stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
523 if (stringMap == NULL) {
524 xmlRegexpErrMemory(ctxt, "compiling regexp");
525 xmlFree(stateRemap);
526 xmlFree(ret);
527 return(NULL);
528 }
529 stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
530 if (stringRemap == NULL) {
531 xmlRegexpErrMemory(ctxt, "compiling regexp");
532 xmlFree(stringMap);
533 xmlFree(stateRemap);
534 xmlFree(ret);
535 return(NULL);
536 }
537 for (i = 0;i < ret->nbAtoms;i++) {
538 if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
539 (ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
540 value = ret->atoms[i]->valuep;
541 for (j = 0;j < nbatoms;j++) {
542 if (xmlStrEqual(stringMap[j], value)) {
543 stringRemap[i] = j;
544 break;
545 }
546 }
547 if (j >= nbatoms) {
548 stringRemap[i] = nbatoms;
549 stringMap[nbatoms] = xmlStrdup(value);
550 if (stringMap[nbatoms] == NULL) {
551 for (i = 0;i < nbatoms;i++)
552 xmlFree(stringMap[i]);
553 xmlFree(stringRemap);
554 xmlFree(stringMap);
555 xmlFree(stateRemap);
556 xmlFree(ret);
557 return(NULL);
558 }
559 nbatoms++;
560 }
561 } else {
562 xmlFree(stateRemap);
563 xmlFree(stringRemap);
564 for (i = 0;i < nbatoms;i++)
565 xmlFree(stringMap[i]);
566 xmlFree(stringMap);
567 xmlFree(ret);
568 return(NULL);
569 }
570 }
571 transitions = (int *) xmlRegCalloc2(nbstates + 1, nbatoms + 1,
572 sizeof(int));
573 if (transitions == NULL) {
574 xmlFree(stateRemap);
575 xmlFree(stringRemap);
576 for (i = 0;i < nbatoms;i++)
577 xmlFree(stringMap[i]);
578 xmlFree(stringMap);
579 xmlFree(ret);
580 return(NULL);
581 }
582
583 /*
584 * Allocate the transition table. The first entry for each
585 * state corresponds to the state type.
586 */
587 transdata = NULL;
588
589 for (i = 0;i < ret->nbStates;i++) {
590 int stateno, atomno, targetno, prev;
591 xmlRegStatePtr state;
592 xmlRegTransPtr trans;
593
594 stateno = stateRemap[i];
595 if (stateno == -1)
596 continue;
597 state = ret->states[i];
598
599 transitions[stateno * (nbatoms + 1)] = state->type;
600
601 for (j = 0;j < state->nbTrans;j++) {
602 trans = &(state->trans[j]);
603 if ((trans->to < 0) || (trans->atom == NULL))
604 continue;
605 atomno = stringRemap[trans->atom->no];
606 if ((trans->atom->data != NULL) && (transdata == NULL)) {
607 transdata = (void **) xmlRegCalloc2(nbstates, nbatoms,
608 sizeof(void *));
609 if (transdata == NULL) {
610 xmlRegexpErrMemory(ctxt, "compiling regexp");
611 break;
612 }
613 }
614 targetno = stateRemap[trans->to];
615 /*
616 * if the same atom can generate transitions to 2 different
617 * states then it means the automata is not deterministic and
618 * the compact form can't be used !
619 */
620 prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
621 if (prev != 0) {
622 if (prev != targetno + 1) {
623 ret->determinist = 0;
624 if (transdata != NULL)
625 xmlFree(transdata);
626 xmlFree(transitions);
627 xmlFree(stateRemap);
628 xmlFree(stringRemap);
629 for (i = 0;i < nbatoms;i++)
630 xmlFree(stringMap[i]);
631 xmlFree(stringMap);
632 goto not_determ;
633 }
634 } else {
635#if 0
636 printf("State %d trans %d: atom %d to %d : %d to %d\n",
637 i, j, trans->atom->no, trans->to, atomno, targetno);
638#endif
639 transitions[stateno * (nbatoms + 1) + atomno + 1] =
640 targetno + 1; /* to avoid 0 */
641 if (transdata != NULL)
642 transdata[stateno * nbatoms + atomno] =
643 trans->atom->data;
644 }
645 }
646 }
647 ret->determinist = 1;
648 /*
649 * Cleanup of the old data
650 */
651 if (ret->states != NULL) {
652 for (i = 0;i < ret->nbStates;i++)
653 xmlRegFreeState(ret->states[i]);
654 xmlFree(ret->states);
655 }
656 ret->states = NULL;
657 ret->nbStates = 0;
658 if (ret->atoms != NULL) {
659 for (i = 0;i < ret->nbAtoms;i++)
660 xmlRegFreeAtom(ret->atoms[i]);
661 xmlFree(ret->atoms);
662 }
663 ret->atoms = NULL;
664 ret->nbAtoms = 0;
665
666 ret->compact = transitions;
667 ret->transdata = transdata;
668 ret->stringMap = stringMap;
669 ret->nbstrings = nbatoms;
670 ret->nbstates = nbstates;
671 xmlFree(stateRemap);
672 xmlFree(stringRemap);
673 }
674not_determ:
675 ctxt->string = NULL;
676 ctxt->nbStates = 0;
677 ctxt->states = NULL;
678 ctxt->nbAtoms = 0;
679 ctxt->atoms = NULL;
680 ctxt->nbCounters = 0;
681 ctxt->counters = NULL;
682 return(ret);
683}
684
685/**
686 * xmlRegNewParserCtxt:
687 * @string: the string to parse
688 *
689 * Allocate a new regexp parser context
690 *
691 * Returns the new context or NULL in case of error
692 */
693static xmlRegParserCtxtPtr
694xmlRegNewParserCtxt(const xmlChar *string) {
695 xmlRegParserCtxtPtr ret;
696
697 ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
698 if (ret == NULL)
699 return(NULL);
700 memset(ret, 0, sizeof(xmlRegParserCtxt));
701 if (string != NULL)
702 ret->string = xmlStrdup(string);
703 ret->cur = ret->string;
704 ret->neg = 0;
705 ret->negs = 0;
706 ret->error = 0;
707 ret->determinist = -1;
708 return(ret);
709}
710
711/**
712 * xmlRegNewRange:
713 * @ctxt: the regexp parser context
714 * @neg: is that negative
715 * @type: the type of range
716 * @start: the start codepoint
717 * @end: the end codepoint
718 *
719 * Allocate a new regexp range
720 *
721 * Returns the new range or NULL in case of error
722 */
723static xmlRegRangePtr
724xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
725 int neg, xmlRegAtomType type, int start, int end) {
726 xmlRegRangePtr ret;
727
728 ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
729 if (ret == NULL) {
730 xmlRegexpErrMemory(ctxt, "allocating range");
731 return(NULL);
732 }
733 ret->neg = neg;
734 ret->type = type;
735 ret->start = start;
736 ret->end = end;
737 return(ret);
738}
739
740/**
741 * xmlRegFreeRange:
742 * @range: the regexp range
743 *
744 * Free a regexp range
745 */
746static void
747xmlRegFreeRange(xmlRegRangePtr range) {
748 if (range == NULL)
749 return;
750
751 if (range->blockName != NULL)
752 xmlFree(range->blockName);
753 xmlFree(range);
754}
755
756/**
757 * xmlRegCopyRange:
758 * @range: the regexp range
759 *
760 * Copy a regexp range
761 *
762 * Returns the new copy or NULL in case of error.
763 */
764static xmlRegRangePtr
765xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
766 xmlRegRangePtr ret;
767
768 if (range == NULL)
769 return(NULL);
770
771 ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
772 range->end);
773 if (ret == NULL)
774 return(NULL);
775 if (range->blockName != NULL) {
776 ret->blockName = xmlStrdup(range->blockName);
777 if (ret->blockName == NULL) {
778 xmlRegexpErrMemory(ctxt, "allocating range");
779 xmlRegFreeRange(ret);
780 return(NULL);
781 }
782 }
783 return(ret);
784}
785
786/**
787 * xmlRegNewAtom:
788 * @ctxt: the regexp parser context
789 * @type: the type of atom
790 *
791 * Allocate a new atom
792 *
793 * Returns the new atom or NULL in case of error
794 */
795static xmlRegAtomPtr
796xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
797 xmlRegAtomPtr ret;
798
799 ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
800 if (ret == NULL) {
801 xmlRegexpErrMemory(ctxt, "allocating atom");
802 return(NULL);
803 }
804 memset(ret, 0, sizeof(xmlRegAtom));
805 ret->type = type;
806 ret->quant = XML_REGEXP_QUANT_ONCE;
807 ret->min = 0;
808 ret->max = 0;
809 return(ret);
810}
811
812/**
813 * xmlRegFreeAtom:
814 * @atom: the regexp atom
815 *
816 * Free a regexp atom
817 */
818static void
819xmlRegFreeAtom(xmlRegAtomPtr atom) {
820 int i;
821
822 if (atom == NULL)
823 return;
824
825 for (i = 0;i < atom->nbRanges;i++)
826 xmlRegFreeRange(atom->ranges[i]);
827 if (atom->ranges != NULL)
828 xmlFree(atom->ranges);
829 if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
830 xmlFree(atom->valuep);
831 if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
832 xmlFree(atom->valuep2);
833 if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
834 xmlFree(atom->valuep);
835 xmlFree(atom);
836}
837
838/**
839 * xmlRegCopyAtom:
840 * @ctxt: the regexp parser context
841 * @atom: the original atom
842 *
843 * Allocate a new regexp range
844 *
845 * Returns the new atom or NULL in case of error
846 */
847static xmlRegAtomPtr
848xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
849 xmlRegAtomPtr ret;
850
851 ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
852 if (ret == NULL) {
853 xmlRegexpErrMemory(ctxt, "copying atom");
854 return(NULL);
855 }
856 memset(ret, 0, sizeof(xmlRegAtom));
857 ret->type = atom->type;
858 ret->quant = atom->quant;
859 ret->min = atom->min;
860 ret->max = atom->max;
861 if (atom->nbRanges > 0) {
862 int i;
863
864 ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
865 atom->nbRanges);
866 if (ret->ranges == NULL) {
867 xmlRegexpErrMemory(ctxt, "copying atom");
868 goto error;
869 }
870 for (i = 0;i < atom->nbRanges;i++) {
871 ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
872 if (ret->ranges[i] == NULL)
873 goto error;
874 ret->nbRanges = i + 1;
875 }
876 }
877 return(ret);
878
879error:
880 xmlRegFreeAtom(ret);
881 return(NULL);
882}
883
884static xmlRegStatePtr
885xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
886 xmlRegStatePtr ret;
887
888 ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
889 if (ret == NULL) {
890 xmlRegexpErrMemory(ctxt, "allocating state");
891 return(NULL);
892 }
893 memset(ret, 0, sizeof(xmlRegState));
894 ret->type = XML_REGEXP_TRANS_STATE;
895 ret->mark = XML_REGEXP_MARK_NORMAL;
896 return(ret);
897}
898
899/**
900 * xmlRegFreeState:
901 * @state: the regexp state
902 *
903 * Free a regexp state
904 */
905static void
906xmlRegFreeState(xmlRegStatePtr state) {
907 if (state == NULL)
908 return;
909
910 if (state->trans != NULL)
911 xmlFree(state->trans);
912 if (state->transTo != NULL)
913 xmlFree(state->transTo);
914 xmlFree(state);
915}
916
917/**
918 * xmlRegFreeParserCtxt:
919 * @ctxt: the regexp parser context
920 *
921 * Free a regexp parser context
922 */
923static void
924xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
925 int i;
926 if (ctxt == NULL)
927 return;
928
929 if (ctxt->string != NULL)
930 xmlFree(ctxt->string);
931 if (ctxt->states != NULL) {
932 for (i = 0;i < ctxt->nbStates;i++)
933 xmlRegFreeState(ctxt->states[i]);
934 xmlFree(ctxt->states);
935 }
936 if (ctxt->atoms != NULL) {
937 for (i = 0;i < ctxt->nbAtoms;i++)
938 xmlRegFreeAtom(ctxt->atoms[i]);
939 xmlFree(ctxt->atoms);
940 }
941 if (ctxt->counters != NULL)
942 xmlFree(ctxt->counters);
943 xmlFree(ctxt);
944}
945
946/************************************************************************
947 * *
948 * Display of Data structures *
949 * *
950 ************************************************************************/
951
952static void
953xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
954 switch (type) {
955 case XML_REGEXP_EPSILON:
956 fprintf(output, "epsilon "); break;
957 case XML_REGEXP_CHARVAL:
958 fprintf(output, "charval "); break;
959 case XML_REGEXP_RANGES:
960 fprintf(output, "ranges "); break;
961 case XML_REGEXP_SUBREG:
962 fprintf(output, "subexpr "); break;
963 case XML_REGEXP_STRING:
964 fprintf(output, "string "); break;
965 case XML_REGEXP_ANYCHAR:
966 fprintf(output, "anychar "); break;
967 case XML_REGEXP_ANYSPACE:
968 fprintf(output, "anyspace "); break;
969 case XML_REGEXP_NOTSPACE:
970 fprintf(output, "notspace "); break;
971 case XML_REGEXP_INITNAME:
972 fprintf(output, "initname "); break;
973 case XML_REGEXP_NOTINITNAME:
974 fprintf(output, "notinitname "); break;
975 case XML_REGEXP_NAMECHAR:
976 fprintf(output, "namechar "); break;
977 case XML_REGEXP_NOTNAMECHAR:
978 fprintf(output, "notnamechar "); break;
979 case XML_REGEXP_DECIMAL:
980 fprintf(output, "decimal "); break;
981 case XML_REGEXP_NOTDECIMAL:
982 fprintf(output, "notdecimal "); break;
983 case XML_REGEXP_REALCHAR:
984 fprintf(output, "realchar "); break;
985 case XML_REGEXP_NOTREALCHAR:
986 fprintf(output, "notrealchar "); break;
987 case XML_REGEXP_LETTER:
988 fprintf(output, "LETTER "); break;
989 case XML_REGEXP_LETTER_UPPERCASE:
990 fprintf(output, "LETTER_UPPERCASE "); break;
991 case XML_REGEXP_LETTER_LOWERCASE:
992 fprintf(output, "LETTER_LOWERCASE "); break;
993 case XML_REGEXP_LETTER_TITLECASE:
994 fprintf(output, "LETTER_TITLECASE "); break;
995 case XML_REGEXP_LETTER_MODIFIER:
996 fprintf(output, "LETTER_MODIFIER "); break;
997 case XML_REGEXP_LETTER_OTHERS:
998 fprintf(output, "LETTER_OTHERS "); break;
999 case XML_REGEXP_MARK:
1000 fprintf(output, "MARK "); break;
1001 case XML_REGEXP_MARK_NONSPACING:
1002 fprintf(output, "MARK_NONSPACING "); break;
1003 case XML_REGEXP_MARK_SPACECOMBINING:
1004 fprintf(output, "MARK_SPACECOMBINING "); break;
1005 case XML_REGEXP_MARK_ENCLOSING:
1006 fprintf(output, "MARK_ENCLOSING "); break;
1007 case XML_REGEXP_NUMBER:
1008 fprintf(output, "NUMBER "); break;
1009 case XML_REGEXP_NUMBER_DECIMAL:
1010 fprintf(output, "NUMBER_DECIMAL "); break;
1011 case XML_REGEXP_NUMBER_LETTER:
1012 fprintf(output, "NUMBER_LETTER "); break;
1013 case XML_REGEXP_NUMBER_OTHERS:
1014 fprintf(output, "NUMBER_OTHERS "); break;
1015 case XML_REGEXP_PUNCT:
1016 fprintf(output, "PUNCT "); break;
1017 case XML_REGEXP_PUNCT_CONNECTOR:
1018 fprintf(output, "PUNCT_CONNECTOR "); break;
1019 case XML_REGEXP_PUNCT_DASH:
1020 fprintf(output, "PUNCT_DASH "); break;
1021 case XML_REGEXP_PUNCT_OPEN:
1022 fprintf(output, "PUNCT_OPEN "); break;
1023 case XML_REGEXP_PUNCT_CLOSE:
1024 fprintf(output, "PUNCT_CLOSE "); break;
1025 case XML_REGEXP_PUNCT_INITQUOTE:
1026 fprintf(output, "PUNCT_INITQUOTE "); break;
1027 case XML_REGEXP_PUNCT_FINQUOTE:
1028 fprintf(output, "PUNCT_FINQUOTE "); break;
1029 case XML_REGEXP_PUNCT_OTHERS:
1030 fprintf(output, "PUNCT_OTHERS "); break;
1031 case XML_REGEXP_SEPAR:
1032 fprintf(output, "SEPAR "); break;
1033 case XML_REGEXP_SEPAR_SPACE:
1034 fprintf(output, "SEPAR_SPACE "); break;
1035 case XML_REGEXP_SEPAR_LINE:
1036 fprintf(output, "SEPAR_LINE "); break;
1037 case XML_REGEXP_SEPAR_PARA:
1038 fprintf(output, "SEPAR_PARA "); break;
1039 case XML_REGEXP_SYMBOL:
1040 fprintf(output, "SYMBOL "); break;
1041 case XML_REGEXP_SYMBOL_MATH:
1042 fprintf(output, "SYMBOL_MATH "); break;
1043 case XML_REGEXP_SYMBOL_CURRENCY:
1044 fprintf(output, "SYMBOL_CURRENCY "); break;
1045 case XML_REGEXP_SYMBOL_MODIFIER:
1046 fprintf(output, "SYMBOL_MODIFIER "); break;
1047 case XML_REGEXP_SYMBOL_OTHERS:
1048 fprintf(output, "SYMBOL_OTHERS "); break;
1049 case XML_REGEXP_OTHER:
1050 fprintf(output, "OTHER "); break;
1051 case XML_REGEXP_OTHER_CONTROL:
1052 fprintf(output, "OTHER_CONTROL "); break;
1053 case XML_REGEXP_OTHER_FORMAT:
1054 fprintf(output, "OTHER_FORMAT "); break;
1055 case XML_REGEXP_OTHER_PRIVATE:
1056 fprintf(output, "OTHER_PRIVATE "); break;
1057 case XML_REGEXP_OTHER_NA:
1058 fprintf(output, "OTHER_NA "); break;
1059 case XML_REGEXP_BLOCK_NAME:
1060 fprintf(output, "BLOCK "); break;
1061 }
1062}
1063
1064static void
1065xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
1066 switch (type) {
1067 case XML_REGEXP_QUANT_EPSILON:
1068 fprintf(output, "epsilon "); break;
1069 case XML_REGEXP_QUANT_ONCE:
1070 fprintf(output, "once "); break;
1071 case XML_REGEXP_QUANT_OPT:
1072 fprintf(output, "? "); break;
1073 case XML_REGEXP_QUANT_MULT:
1074 fprintf(output, "* "); break;
1075 case XML_REGEXP_QUANT_PLUS:
1076 fprintf(output, "+ "); break;
1077 case XML_REGEXP_QUANT_RANGE:
1078 fprintf(output, "range "); break;
1079 case XML_REGEXP_QUANT_ONCEONLY:
1080 fprintf(output, "onceonly "); break;
1081 case XML_REGEXP_QUANT_ALL:
1082 fprintf(output, "all "); break;
1083 }
1084}
1085static void
1086xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
1087 fprintf(output, " range: ");
1088 if (range->neg)
1089 fprintf(output, "negative ");
1090 xmlRegPrintAtomType(output, range->type);
1091 fprintf(output, "%c - %c\n", range->start, range->end);
1092}
1093
1094static void
1095xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
1096 fprintf(output, " atom: ");
1097 if (atom == NULL) {
1098 fprintf(output, "NULL\n");
1099 return;
1100 }
1101 if (atom->neg)
1102 fprintf(output, "not ");
1103 xmlRegPrintAtomType(output, atom->type);
1104 xmlRegPrintQuantType(output, atom->quant);
1105 if (atom->quant == XML_REGEXP_QUANT_RANGE)
1106 fprintf(output, "%d-%d ", atom->min, atom->max);
1107 if (atom->type == XML_REGEXP_STRING)
1108 fprintf(output, "'%s' ", (char *) atom->valuep);
1109 if (atom->type == XML_REGEXP_CHARVAL)
1110 fprintf(output, "char %c\n", atom->codepoint);
1111 else if (atom->type == XML_REGEXP_RANGES) {
1112 int i;
1113 fprintf(output, "%d entries\n", atom->nbRanges);
1114 for (i = 0; i < atom->nbRanges;i++)
1115 xmlRegPrintRange(output, atom->ranges[i]);
1116 } else if (atom->type == XML_REGEXP_SUBREG) {
1117 fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
1118 } else {
1119 fprintf(output, "\n");
1120 }
1121}
1122
1123static void
1124xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
1125 fprintf(output, " trans: ");
1126 if (trans == NULL) {
1127 fprintf(output, "NULL\n");
1128 return;
1129 }
1130 if (trans->to < 0) {
1131 fprintf(output, "removed\n");
1132 return;
1133 }
1134 if (trans->nd != 0) {
1135 if (trans->nd == 2)
1136 fprintf(output, "last not determinist, ");
1137 else
1138 fprintf(output, "not determinist, ");
1139 }
1140 if (trans->counter >= 0) {
1141 fprintf(output, "counted %d, ", trans->counter);
1142 }
1143 if (trans->count == REGEXP_ALL_COUNTER) {
1144 fprintf(output, "all transition, ");
1145 } else if (trans->count >= 0) {
1146 fprintf(output, "count based %d, ", trans->count);
1147 }
1148 if (trans->atom == NULL) {
1149 fprintf(output, "epsilon to %d\n", trans->to);
1150 return;
1151 }
1152 if (trans->atom->type == XML_REGEXP_CHARVAL)
1153 fprintf(output, "char %c ", trans->atom->codepoint);
1154 fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
1155}
1156
1157static void
1158xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
1159 int i;
1160
1161 fprintf(output, " state: ");
1162 if (state == NULL) {
1163 fprintf(output, "NULL\n");
1164 return;
1165 }
1166 if (state->type == XML_REGEXP_START_STATE)
1167 fprintf(output, "START ");
1168 if (state->type == XML_REGEXP_FINAL_STATE)
1169 fprintf(output, "FINAL ");
1170
1171 fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
1172 for (i = 0;i < state->nbTrans; i++) {
1173 xmlRegPrintTrans(output, &(state->trans[i]));
1174 }
1175}
1176
1177/************************************************************************
1178 * *
1179 * Finite Automata structures manipulations *
1180 * *
1181 ************************************************************************/
1182
1183static xmlRegRangePtr
1184xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
1185 int neg, xmlRegAtomType type, int start, int end,
1186 xmlChar *blockName) {
1187 xmlRegRangePtr range;
1188
1189 if (atom == NULL) {
1190 ERROR("add range: atom is NULL");
1191 return(NULL);
1192 }
1193 if (atom->type != XML_REGEXP_RANGES) {
1194 ERROR("add range: atom is not ranges");
1195 return(NULL);
1196 }
1197 if (atom->maxRanges == 0) {
1198 atom->maxRanges = 4;
1199 atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
1200 sizeof(xmlRegRangePtr));
1201 if (atom->ranges == NULL) {
1202 xmlRegexpErrMemory(ctxt, "adding ranges");
1203 atom->maxRanges = 0;
1204 return(NULL);
1205 }
1206 } else if (atom->nbRanges >= atom->maxRanges) {
1207 xmlRegRangePtr *tmp;
1208 atom->maxRanges *= 2;
1209 tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
1210 sizeof(xmlRegRangePtr));
1211 if (tmp == NULL) {
1212 xmlRegexpErrMemory(ctxt, "adding ranges");
1213 atom->maxRanges /= 2;
1214 return(NULL);
1215 }
1216 atom->ranges = tmp;
1217 }
1218 range = xmlRegNewRange(ctxt, neg, type, start, end);
1219 if (range == NULL)
1220 return(NULL);
1221 range->blockName = blockName;
1222 atom->ranges[atom->nbRanges++] = range;
1223
1224 return(range);
1225}
1226
1227static int
1228xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
1229 if (ctxt->maxCounters == 0) {
1230 ctxt->maxCounters = 4;
1231 ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
1232 sizeof(xmlRegCounter));
1233 if (ctxt->counters == NULL) {
1234 xmlRegexpErrMemory(ctxt, "allocating counter");
1235 ctxt->maxCounters = 0;
1236 return(-1);
1237 }
1238 } else if (ctxt->nbCounters >= ctxt->maxCounters) {
1239 xmlRegCounter *tmp;
1240 ctxt->maxCounters *= 2;
1241 tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
1242 sizeof(xmlRegCounter));
1243 if (tmp == NULL) {
1244 xmlRegexpErrMemory(ctxt, "allocating counter");
1245 ctxt->maxCounters /= 2;
1246 return(-1);
1247 }
1248 ctxt->counters = tmp;
1249 }
1250 ctxt->counters[ctxt->nbCounters].min = -1;
1251 ctxt->counters[ctxt->nbCounters].max = -1;
1252 return(ctxt->nbCounters++);
1253}
1254
1255static int
1256xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
1257 if (atom == NULL) {
1258 ERROR("atom push: atom is NULL");
1259 return(-1);
1260 }
1261 if (ctxt->nbAtoms >= ctxt->maxAtoms) {
1262 size_t newSize = ctxt->maxAtoms ? ctxt->maxAtoms * 2 : 4;
1263 xmlRegAtomPtr *tmp;
1264
1265 tmp = xmlRealloc(ctxt->atoms, newSize * sizeof(xmlRegAtomPtr));
1266 if (tmp == NULL) {
1267 xmlRegexpErrMemory(ctxt, "allocating counter");
1268 return(-1);
1269 }
1270 ctxt->atoms = tmp;
1271 ctxt->maxAtoms = newSize;
1272 }
1273 atom->no = ctxt->nbAtoms;
1274 ctxt->atoms[ctxt->nbAtoms++] = atom;
1275 return(0);
1276}
1277
1278static void
1279xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
1280 int from) {
1281 if (target->maxTransTo == 0) {
1282 target->maxTransTo = 8;
1283 target->transTo = (int *) xmlMalloc(target->maxTransTo *
1284 sizeof(int));
1285 if (target->transTo == NULL) {
1286 xmlRegexpErrMemory(ctxt, "adding transition");
1287 target->maxTransTo = 0;
1288 return;
1289 }
1290 } else if (target->nbTransTo >= target->maxTransTo) {
1291 int *tmp;
1292 target->maxTransTo *= 2;
1293 tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
1294 sizeof(int));
1295 if (tmp == NULL) {
1296 xmlRegexpErrMemory(ctxt, "adding transition");
1297 target->maxTransTo /= 2;
1298 return;
1299 }
1300 target->transTo = tmp;
1301 }
1302 target->transTo[target->nbTransTo] = from;
1303 target->nbTransTo++;
1304}
1305
1306static void
1307xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
1308 xmlRegAtomPtr atom, xmlRegStatePtr target,
1309 int counter, int count) {
1310
1311 int nrtrans;
1312
1313 if (state == NULL) {
1314 ERROR("add state: state is NULL");
1315 return;
1316 }
1317 if (target == NULL) {
1318 ERROR("add state: target is NULL");
1319 return;
1320 }
1321 /*
1322 * Other routines follow the philosophy 'When in doubt, add a transition'
1323 * so we check here whether such a transition is already present and, if
1324 * so, silently ignore this request.
1325 */
1326
1327 for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
1328 xmlRegTransPtr trans = &(state->trans[nrtrans]);
1329 if ((trans->atom == atom) &&
1330 (trans->to == target->no) &&
1331 (trans->counter == counter) &&
1332 (trans->count == count)) {
1333 return;
1334 }
1335 }
1336
1337 if (state->maxTrans == 0) {
1338 state->maxTrans = 8;
1339 state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
1340 sizeof(xmlRegTrans));
1341 if (state->trans == NULL) {
1342 xmlRegexpErrMemory(ctxt, "adding transition");
1343 state->maxTrans = 0;
1344 return;
1345 }
1346 } else if (state->nbTrans >= state->maxTrans) {
1347 xmlRegTrans *tmp;
1348 state->maxTrans *= 2;
1349 tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
1350 sizeof(xmlRegTrans));
1351 if (tmp == NULL) {
1352 xmlRegexpErrMemory(ctxt, "adding transition");
1353 state->maxTrans /= 2;
1354 return;
1355 }
1356 state->trans = tmp;
1357 }
1358
1359 state->trans[state->nbTrans].atom = atom;
1360 state->trans[state->nbTrans].to = target->no;
1361 state->trans[state->nbTrans].counter = counter;
1362 state->trans[state->nbTrans].count = count;
1363 state->trans[state->nbTrans].nd = 0;
1364 state->nbTrans++;
1365 xmlRegStateAddTransTo(ctxt, target, state->no);
1366}
1367
1368static xmlRegStatePtr
1369xmlRegStatePush(xmlRegParserCtxtPtr ctxt) {
1370 xmlRegStatePtr state;
1371
1372 if (ctxt->nbStates >= ctxt->maxStates) {
1373 size_t newSize = ctxt->maxStates ? ctxt->maxStates * 2 : 4;
1374 xmlRegStatePtr *tmp;
1375
1376 tmp = xmlRealloc(ctxt->states, newSize * sizeof(tmp[0]));
1377 if (tmp == NULL) {
1378 xmlRegexpErrMemory(ctxt, "adding state");
1379 return(NULL);
1380 }
1381 ctxt->states = tmp;
1382 ctxt->maxStates = newSize;
1383 }
1384
1385 state = xmlRegNewState(ctxt);
1386 if (state == NULL)
1387 return(NULL);
1388
1389 state->no = ctxt->nbStates;
1390 ctxt->states[ctxt->nbStates++] = state;
1391
1392 return(state);
1393}
1394
1395/**
1396 * xmlFAGenerateAllTransition:
1397 * @ctxt: a regexp parser context
1398 * @from: the from state
1399 * @to: the target state or NULL for building a new one
1400 * @lax:
1401 *
1402 */
1403static int
1404xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
1405 xmlRegStatePtr from, xmlRegStatePtr to,
1406 int lax) {
1407 if (to == NULL) {
1408 to = xmlRegStatePush(ctxt);
1409 if (to == NULL)
1410 return(-1);
1411 ctxt->state = to;
1412 }
1413 if (lax)
1414 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
1415 else
1416 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
1417 return(0);
1418}
1419
1420/**
1421 * xmlFAGenerateEpsilonTransition:
1422 * @ctxt: a regexp parser context
1423 * @from: the from state
1424 * @to: the target state or NULL for building a new one
1425 *
1426 */
1427static int
1428xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1429 xmlRegStatePtr from, xmlRegStatePtr to) {
1430 if (to == NULL) {
1431 to = xmlRegStatePush(ctxt);
1432 if (to == NULL)
1433 return(-1);
1434 ctxt->state = to;
1435 }
1436 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
1437 return(0);
1438}
1439
1440/**
1441 * xmlFAGenerateCountedEpsilonTransition:
1442 * @ctxt: a regexp parser context
1443 * @from: the from state
1444 * @to: the target state or NULL for building a new one
1445 * counter: the counter for that transition
1446 *
1447 */
1448static int
1449xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
1450 xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1451 if (to == NULL) {
1452 to = xmlRegStatePush(ctxt);
1453 if (to == NULL)
1454 return(-1);
1455 ctxt->state = to;
1456 }
1457 xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
1458 return(0);
1459}
1460
1461/**
1462 * xmlFAGenerateCountedTransition:
1463 * @ctxt: a regexp parser context
1464 * @from: the from state
1465 * @to: the target state or NULL for building a new one
1466 * counter: the counter for that transition
1467 *
1468 */
1469static int
1470xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
1471 xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
1472 if (to == NULL) {
1473 to = xmlRegStatePush(ctxt);
1474 if (to == NULL)
1475 return(-1);
1476 ctxt->state = to;
1477 }
1478 xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
1479 return(0);
1480}
1481
1482/**
1483 * xmlFAGenerateTransitions:
1484 * @ctxt: a regexp parser context
1485 * @from: the from state
1486 * @to: the target state or NULL for building a new one
1487 * @atom: the atom generating the transition
1488 *
1489 * Returns 0 if success and -1 in case of error.
1490 */
1491static int
1492xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
1493 xmlRegStatePtr to, xmlRegAtomPtr atom) {
1494 xmlRegStatePtr end;
1495 int nullable = 0;
1496
1497 if (atom == NULL) {
1498 ERROR("generate transition: atom == NULL");
1499 return(-1);
1500 }
1501 if (atom->type == XML_REGEXP_SUBREG) {
1502 /*
1503 * this is a subexpression handling one should not need to
1504 * create a new node except for XML_REGEXP_QUANT_RANGE.
1505 */
1506 if ((to != NULL) && (atom->stop != to) &&
1507 (atom->quant != XML_REGEXP_QUANT_RANGE)) {
1508 /*
1509 * Generate an epsilon transition to link to the target
1510 */
1511 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1512#ifdef DV
1513 } else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
1514 (atom->quant != XML_REGEXP_QUANT_ONCE)) {
1515 to = xmlRegStatePush(ctxt, to);
1516 if (to == NULL)
1517 return(-1);
1518 ctxt->state = to;
1519 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
1520#endif
1521 }
1522 switch (atom->quant) {
1523 case XML_REGEXP_QUANT_OPT:
1524 atom->quant = XML_REGEXP_QUANT_ONCE;
1525 /*
1526 * transition done to the state after end of atom.
1527 * 1. set transition from atom start to new state
1528 * 2. set transition from atom end to this state.
1529 */
1530 if (to == NULL) {
1531 xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
1532 xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
1533 ctxt->state);
1534 } else {
1535 xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
1536 }
1537 break;
1538 case XML_REGEXP_QUANT_MULT:
1539 atom->quant = XML_REGEXP_QUANT_ONCE;
1540 xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
1541 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1542 break;
1543 case XML_REGEXP_QUANT_PLUS:
1544 atom->quant = XML_REGEXP_QUANT_ONCE;
1545 xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
1546 break;
1547 case XML_REGEXP_QUANT_RANGE: {
1548 int counter;
1549 xmlRegStatePtr inter, newstate;
1550
1551 /*
1552 * create the final state now if needed
1553 */
1554 if (to != NULL) {
1555 newstate = to;
1556 } else {
1557 newstate = xmlRegStatePush(ctxt);
1558 if (newstate == NULL)
1559 return(-1);
1560 }
1561
1562 /*
1563 * The principle here is to use counted transition
1564 * to avoid explosion in the number of states in the
1565 * graph. This is clearly more complex but should not
1566 * be exploitable at runtime.
1567 */
1568 if ((atom->min == 0) && (atom->start0 == NULL)) {
1569 xmlRegAtomPtr copy;
1570 /*
1571 * duplicate a transition based on atom to count next
1572 * occurrences after 1. We cannot loop to atom->start
1573 * directly because we need an epsilon transition to
1574 * newstate.
1575 */
1576 /* ???? For some reason it seems we never reach that
1577 case, I suppose this got optimized out before when
1578 building the automata */
1579 copy = xmlRegCopyAtom(ctxt, atom);
1580 if (copy == NULL)
1581 return(-1);
1582 copy->quant = XML_REGEXP_QUANT_ONCE;
1583 copy->min = 0;
1584 copy->max = 0;
1585
1586 if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
1587 < 0) {
1588 xmlRegFreeAtom(copy);
1589 return(-1);
1590 }
1591 inter = ctxt->state;
1592 counter = xmlRegGetCounter(ctxt);
1593 if (counter < 0)
1594 return(-1);
1595 ctxt->counters[counter].min = atom->min - 1;
1596 ctxt->counters[counter].max = atom->max - 1;
1597 /* count the number of times we see it again */
1598 xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
1599 atom->stop, counter);
1600 /* allow a way out based on the count */
1601 xmlFAGenerateCountedTransition(ctxt, inter,
1602 newstate, counter);
1603 /* and also allow a direct exit for 0 */
1604 xmlFAGenerateEpsilonTransition(ctxt, atom->start,
1605 newstate);
1606 } else {
1607 /*
1608 * either we need the atom at least once or there
1609 * is an atom->start0 allowing to easily plug the
1610 * epsilon transition.
1611 */
1612 counter = xmlRegGetCounter(ctxt);
1613 if (counter < 0)
1614 return(-1);
1615 ctxt->counters[counter].min = atom->min - 1;
1616 ctxt->counters[counter].max = atom->max - 1;
1617 /* allow a way out based on the count */
1618 xmlFAGenerateCountedTransition(ctxt, atom->stop,
1619 newstate, counter);
1620 /* count the number of times we see it again */
1621 xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
1622 atom->start, counter);
1623 /* and if needed allow a direct exit for 0 */
1624 if (atom->min == 0)
1625 xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
1626 newstate);
1627
1628 }
1629 atom->min = 0;
1630 atom->max = 0;
1631 atom->quant = XML_REGEXP_QUANT_ONCE;
1632 ctxt->state = newstate;
1633 }
1634 default:
1635 break;
1636 }
1637 if (xmlRegAtomPush(ctxt, atom) < 0)
1638 return(-1);
1639 return(0);
1640 }
1641 if ((atom->min == 0) && (atom->max == 0) &&
1642 (atom->quant == XML_REGEXP_QUANT_RANGE)) {
1643 /*
1644 * we can discard the atom and generate an epsilon transition instead
1645 */
1646 if (to == NULL) {
1647 to = xmlRegStatePush(ctxt);
1648 if (to == NULL)
1649 return(-1);
1650 }
1651 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1652 ctxt->state = to;
1653 xmlRegFreeAtom(atom);
1654 return(0);
1655 }
1656 if (to == NULL) {
1657 to = xmlRegStatePush(ctxt);
1658 if (to == NULL)
1659 return(-1);
1660 }
1661 end = to;
1662 if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
1663 (atom->quant == XML_REGEXP_QUANT_PLUS)) {
1664 /*
1665 * Do not pollute the target state by adding transitions from
1666 * it as it is likely to be the shared target of multiple branches.
1667 * So isolate with an epsilon transition.
1668 */
1669 xmlRegStatePtr tmp;
1670
1671 tmp = xmlRegStatePush(ctxt);
1672 if (tmp == NULL)
1673 return(-1);
1674 xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
1675 to = tmp;
1676 }
1677 if ((atom->quant == XML_REGEXP_QUANT_RANGE) &&
1678 (atom->min == 0) && (atom->max > 0)) {
1679 nullable = 1;
1680 atom->min = 1;
1681 if (atom->max == 1)
1682 atom->quant = XML_REGEXP_QUANT_OPT;
1683 }
1684 xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
1685 ctxt->state = end;
1686 switch (atom->quant) {
1687 case XML_REGEXP_QUANT_OPT:
1688 atom->quant = XML_REGEXP_QUANT_ONCE;
1689 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1690 break;
1691 case XML_REGEXP_QUANT_MULT:
1692 atom->quant = XML_REGEXP_QUANT_ONCE;
1693 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1694 xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1695 break;
1696 case XML_REGEXP_QUANT_PLUS:
1697 atom->quant = XML_REGEXP_QUANT_ONCE;
1698 xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
1699 break;
1700 case XML_REGEXP_QUANT_RANGE:
1701 if (nullable)
1702 xmlFAGenerateEpsilonTransition(ctxt, from, to);
1703 break;
1704 default:
1705 break;
1706 }
1707 if (xmlRegAtomPush(ctxt, atom) < 0)
1708 return(-1);
1709 return(0);
1710}
1711
1712/**
1713 * xmlFAReduceEpsilonTransitions:
1714 * @ctxt: a regexp parser context
1715 * @fromnr: the from state
1716 * @tonr: the to state
1717 * @counter: should that transition be associated to a counted
1718 *
1719 */
1720static void
1721xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
1722 int tonr, int counter) {
1723 int transnr;
1724 xmlRegStatePtr from;
1725 xmlRegStatePtr to;
1726
1727 from = ctxt->states[fromnr];
1728 if (from == NULL)
1729 return;
1730 to = ctxt->states[tonr];
1731 if (to == NULL)
1732 return;
1733 if ((to->mark == XML_REGEXP_MARK_START) ||
1734 (to->mark == XML_REGEXP_MARK_VISITED))
1735 return;
1736
1737 to->mark = XML_REGEXP_MARK_VISITED;
1738 if (to->type == XML_REGEXP_FINAL_STATE) {
1739 from->type = XML_REGEXP_FINAL_STATE;
1740 }
1741 for (transnr = 0;transnr < to->nbTrans;transnr++) {
1742 xmlRegTransPtr t1 = &to->trans[transnr];
1743 int tcounter;
1744
1745 if (t1->to < 0)
1746 continue;
1747 if (t1->counter >= 0) {
1748 /* assert(counter < 0); */
1749 tcounter = t1->counter;
1750 } else {
1751 tcounter = counter;
1752 }
1753 if (t1->atom == NULL) {
1754 /*
1755 * Don't remove counted transitions
1756 * Don't loop either
1757 */
1758 if (t1->to != fromnr) {
1759 if (t1->count >= 0) {
1760 xmlRegStateAddTrans(ctxt, from, NULL, ctxt->states[t1->to],
1761 -1, t1->count);
1762 } else {
1763 xmlFAReduceEpsilonTransitions(ctxt, fromnr, t1->to,
1764 tcounter);
1765 }
1766 }
1767 } else {
1768 xmlRegStateAddTrans(ctxt, from, t1->atom,
1769 ctxt->states[t1->to], tcounter, -1);
1770 }
1771 }
1772}
1773
1774/**
1775 * xmlFAFinishReduceEpsilonTransitions:
1776 * @ctxt: a regexp parser context
1777 * @fromnr: the from state
1778 * @tonr: the to state
1779 * @counter: should that transition be associated to a counted
1780 *
1781 */
1782static void
1783xmlFAFinishReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int tonr) {
1784 int transnr;
1785 xmlRegStatePtr to;
1786
1787 to = ctxt->states[tonr];
1788 if (to == NULL)
1789 return;
1790 if ((to->mark == XML_REGEXP_MARK_START) ||
1791 (to->mark == XML_REGEXP_MARK_NORMAL))
1792 return;
1793
1794 to->mark = XML_REGEXP_MARK_NORMAL;
1795 for (transnr = 0;transnr < to->nbTrans;transnr++) {
1796 xmlRegTransPtr t1 = &to->trans[transnr];
1797 if ((t1->to >= 0) && (t1->atom == NULL))
1798 xmlFAFinishReduceEpsilonTransitions(ctxt, t1->to);
1799 }
1800}
1801
1802/**
1803 * xmlFAEliminateSimpleEpsilonTransitions:
1804 * @ctxt: a regexp parser context
1805 *
1806 * Eliminating general epsilon transitions can get costly in the general
1807 * algorithm due to the large amount of generated new transitions and
1808 * associated comparisons. However for simple epsilon transition used just
1809 * to separate building blocks when generating the automata this can be
1810 * reduced to state elimination:
1811 * - if there exists an epsilon from X to Y
1812 * - if there is no other transition from X
1813 * then X and Y are semantically equivalent and X can be eliminated
1814 * If X is the start state then make Y the start state, else replace the
1815 * target of all transitions to X by transitions to Y.
1816 *
1817 * If X is a final state, skip it.
1818 * Otherwise it would be necessary to manipulate counters for this case when
1819 * eliminating state 2:
1820 * State 1 has a transition with an atom to state 2.
1821 * State 2 is final and has an epsilon transition to state 1.
1822 */
1823static void
1824xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1825 int statenr, i, j, newto;
1826 xmlRegStatePtr state, tmp;
1827
1828 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1829 state = ctxt->states[statenr];
1830 if (state == NULL)
1831 continue;
1832 if (state->nbTrans != 1)
1833 continue;
1834 if (state->type == XML_REGEXP_UNREACH_STATE ||
1835 state->type == XML_REGEXP_FINAL_STATE)
1836 continue;
1837 /* is the only transition out a basic transition */
1838 if ((state->trans[0].atom == NULL) &&
1839 (state->trans[0].to >= 0) &&
1840 (state->trans[0].to != statenr) &&
1841 (state->trans[0].counter < 0) &&
1842 (state->trans[0].count < 0)) {
1843 newto = state->trans[0].to;
1844
1845 if (state->type == XML_REGEXP_START_STATE) {
1846 } else {
1847 for (i = 0;i < state->nbTransTo;i++) {
1848 tmp = ctxt->states[state->transTo[i]];
1849 for (j = 0;j < tmp->nbTrans;j++) {
1850 if (tmp->trans[j].to == statenr) {
1851 tmp->trans[j].to = -1;
1852 xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
1853 ctxt->states[newto],
1854 tmp->trans[j].counter,
1855 tmp->trans[j].count);
1856 }
1857 }
1858 }
1859 if (state->type == XML_REGEXP_FINAL_STATE)
1860 ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
1861 /* eliminate the transition completely */
1862 state->nbTrans = 0;
1863
1864 state->type = XML_REGEXP_UNREACH_STATE;
1865
1866 }
1867
1868 }
1869 }
1870}
1871/**
1872 * xmlFAEliminateEpsilonTransitions:
1873 * @ctxt: a regexp parser context
1874 *
1875 */
1876static void
1877xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
1878 int statenr, transnr;
1879 xmlRegStatePtr state;
1880 int has_epsilon;
1881
1882 if (ctxt->states == NULL) return;
1883
1884 /*
1885 * Eliminate simple epsilon transition and the associated unreachable
1886 * states.
1887 */
1888 xmlFAEliminateSimpleEpsilonTransitions(ctxt);
1889 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1890 state = ctxt->states[statenr];
1891 if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
1892 xmlRegFreeState(state);
1893 ctxt->states[statenr] = NULL;
1894 }
1895 }
1896
1897 has_epsilon = 0;
1898
1899 /*
1900 * Build the completed transitions bypassing the epsilons
1901 * Use a marking algorithm to avoid loops
1902 * Mark sink states too.
1903 * Process from the latest states backward to the start when
1904 * there is long cascading epsilon chains this minimize the
1905 * recursions and transition compares when adding the new ones
1906 */
1907 for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
1908 state = ctxt->states[statenr];
1909 if (state == NULL)
1910 continue;
1911 if ((state->nbTrans == 0) &&
1912 (state->type != XML_REGEXP_FINAL_STATE)) {
1913 state->type = XML_REGEXP_SINK_STATE;
1914 }
1915 for (transnr = 0;transnr < state->nbTrans;transnr++) {
1916 if ((state->trans[transnr].atom == NULL) &&
1917 (state->trans[transnr].to >= 0)) {
1918 if (state->trans[transnr].to == statenr) {
1919 state->trans[transnr].to = -1;
1920 } else if (state->trans[transnr].count < 0) {
1921 int newto = state->trans[transnr].to;
1922
1923 has_epsilon = 1;
1924 state->trans[transnr].to = -2;
1925 state->mark = XML_REGEXP_MARK_START;
1926 xmlFAReduceEpsilonTransitions(ctxt, statenr,
1927 newto, state->trans[transnr].counter);
1928 xmlFAFinishReduceEpsilonTransitions(ctxt, newto);
1929 state->mark = XML_REGEXP_MARK_NORMAL;
1930 }
1931 }
1932 }
1933 }
1934 /*
1935 * Eliminate the epsilon transitions
1936 */
1937 if (has_epsilon) {
1938 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1939 state = ctxt->states[statenr];
1940 if (state == NULL)
1941 continue;
1942 for (transnr = 0;transnr < state->nbTrans;transnr++) {
1943 xmlRegTransPtr trans = &(state->trans[transnr]);
1944 if ((trans->atom == NULL) &&
1945 (trans->count < 0) &&
1946 (trans->to >= 0)) {
1947 trans->to = -1;
1948 }
1949 }
1950 }
1951 }
1952
1953 /*
1954 * Use this pass to detect unreachable states too
1955 */
1956 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
1957 state = ctxt->states[statenr];
1958 if (state != NULL)
1959 state->reached = XML_REGEXP_MARK_NORMAL;
1960 }
1961 state = ctxt->states[0];
1962 if (state != NULL)
1963 state->reached = XML_REGEXP_MARK_START;
1964 while (state != NULL) {
1965 xmlRegStatePtr target = NULL;
1966 state->reached = XML_REGEXP_MARK_VISITED;
1967 /*
1968 * Mark all states reachable from the current reachable state
1969 */
1970 for (transnr = 0;transnr < state->nbTrans;transnr++) {
1971 if ((state->trans[transnr].to >= 0) &&
1972 ((state->trans[transnr].atom != NULL) ||
1973 (state->trans[transnr].count >= 0))) {
1974 int newto = state->trans[transnr].to;
1975
1976 if (ctxt->states[newto] == NULL)
1977 continue;
1978 if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
1979 ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
1980 target = ctxt->states[newto];
1981 }
1982 }
1983 }
1984
1985 /*
1986 * find the next accessible state not explored
1987 */
1988 if (target == NULL) {
1989 for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
1990 state = ctxt->states[statenr];
1991 if ((state != NULL) && (state->reached ==
1992 XML_REGEXP_MARK_START)) {
1993 target = state;
1994 break;
1995 }
1996 }
1997 }
1998 state = target;
1999 }
2000 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2001 state = ctxt->states[statenr];
2002 if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
2003 xmlRegFreeState(state);
2004 ctxt->states[statenr] = NULL;
2005 }
2006 }
2007
2008}
2009
2010static int
2011xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
2012 int ret = 0;
2013
2014 if ((range1->type == XML_REGEXP_RANGES) ||
2015 (range2->type == XML_REGEXP_RANGES) ||
2016 (range2->type == XML_REGEXP_SUBREG) ||
2017 (range1->type == XML_REGEXP_SUBREG) ||
2018 (range1->type == XML_REGEXP_STRING) ||
2019 (range2->type == XML_REGEXP_STRING))
2020 return(-1);
2021
2022 /* put them in order */
2023 if (range1->type > range2->type) {
2024 xmlRegRangePtr tmp;
2025
2026 tmp = range1;
2027 range1 = range2;
2028 range2 = tmp;
2029 }
2030 if ((range1->type == XML_REGEXP_ANYCHAR) ||
2031 (range2->type == XML_REGEXP_ANYCHAR)) {
2032 ret = 1;
2033 } else if ((range1->type == XML_REGEXP_EPSILON) ||
2034 (range2->type == XML_REGEXP_EPSILON)) {
2035 return(0);
2036 } else if (range1->type == range2->type) {
2037 if (range1->type != XML_REGEXP_CHARVAL)
2038 ret = 1;
2039 else if ((range1->end < range2->start) ||
2040 (range2->end < range1->start))
2041 ret = 0;
2042 else
2043 ret = 1;
2044 } else if (range1->type == XML_REGEXP_CHARVAL) {
2045 int codepoint;
2046 int neg = 0;
2047
2048 /*
2049 * just check all codepoints in the range for acceptance,
2050 * this is usually way cheaper since done only once at
2051 * compilation than testing over and over at runtime or
2052 * pushing too many states when evaluating.
2053 */
2054 if (((range1->neg == 0) && (range2->neg != 0)) ||
2055 ((range1->neg != 0) && (range2->neg == 0)))
2056 neg = 1;
2057
2058 for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
2059 ret = xmlRegCheckCharacterRange(range2->type, codepoint,
2060 0, range2->start, range2->end,
2061 range2->blockName);
2062 if (ret < 0)
2063 return(-1);
2064 if (((neg == 1) && (ret == 0)) ||
2065 ((neg == 0) && (ret == 1)))
2066 return(1);
2067 }
2068 return(0);
2069 } else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
2070 (range2->type == XML_REGEXP_BLOCK_NAME)) {
2071 if (range1->type == range2->type) {
2072 ret = xmlStrEqual(range1->blockName, range2->blockName);
2073 } else {
2074 /*
2075 * comparing a block range with anything else is way
2076 * too costly, and maintaining the table is like too much
2077 * memory too, so let's force the automata to save state
2078 * here.
2079 */
2080 return(1);
2081 }
2082 } else if ((range1->type < XML_REGEXP_LETTER) ||
2083 (range2->type < XML_REGEXP_LETTER)) {
2084 if ((range1->type == XML_REGEXP_ANYSPACE) &&
2085 (range2->type == XML_REGEXP_NOTSPACE))
2086 ret = 0;
2087 else if ((range1->type == XML_REGEXP_INITNAME) &&
2088 (range2->type == XML_REGEXP_NOTINITNAME))
2089 ret = 0;
2090 else if ((range1->type == XML_REGEXP_NAMECHAR) &&
2091 (range2->type == XML_REGEXP_NOTNAMECHAR))
2092 ret = 0;
2093 else if ((range1->type == XML_REGEXP_DECIMAL) &&
2094 (range2->type == XML_REGEXP_NOTDECIMAL))
2095 ret = 0;
2096 else if ((range1->type == XML_REGEXP_REALCHAR) &&
2097 (range2->type == XML_REGEXP_NOTREALCHAR))
2098 ret = 0;
2099 else {
2100 /* same thing to limit complexity */
2101 return(1);
2102 }
2103 } else {
2104 ret = 0;
2105 /* range1->type < range2->type here */
2106 switch (range1->type) {
2107 case XML_REGEXP_LETTER:
2108 /* all disjoint except in the subgroups */
2109 if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
2110 (range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
2111 (range2->type == XML_REGEXP_LETTER_TITLECASE) ||
2112 (range2->type == XML_REGEXP_LETTER_MODIFIER) ||
2113 (range2->type == XML_REGEXP_LETTER_OTHERS))
2114 ret = 1;
2115 break;
2116 case XML_REGEXP_MARK:
2117 if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
2118 (range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
2119 (range2->type == XML_REGEXP_MARK_ENCLOSING))
2120 ret = 1;
2121 break;
2122 case XML_REGEXP_NUMBER:
2123 if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
2124 (range2->type == XML_REGEXP_NUMBER_LETTER) ||
2125 (range2->type == XML_REGEXP_NUMBER_OTHERS))
2126 ret = 1;
2127 break;
2128 case XML_REGEXP_PUNCT:
2129 if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
2130 (range2->type == XML_REGEXP_PUNCT_DASH) ||
2131 (range2->type == XML_REGEXP_PUNCT_OPEN) ||
2132 (range2->type == XML_REGEXP_PUNCT_CLOSE) ||
2133 (range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
2134 (range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
2135 (range2->type == XML_REGEXP_PUNCT_OTHERS))
2136 ret = 1;
2137 break;
2138 case XML_REGEXP_SEPAR:
2139 if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
2140 (range2->type == XML_REGEXP_SEPAR_LINE) ||
2141 (range2->type == XML_REGEXP_SEPAR_PARA))
2142 ret = 1;
2143 break;
2144 case XML_REGEXP_SYMBOL:
2145 if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
2146 (range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
2147 (range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
2148 (range2->type == XML_REGEXP_SYMBOL_OTHERS))
2149 ret = 1;
2150 break;
2151 case XML_REGEXP_OTHER:
2152 if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
2153 (range2->type == XML_REGEXP_OTHER_FORMAT) ||
2154 (range2->type == XML_REGEXP_OTHER_PRIVATE))
2155 ret = 1;
2156 break;
2157 default:
2158 if ((range2->type >= XML_REGEXP_LETTER) &&
2159 (range2->type < XML_REGEXP_BLOCK_NAME))
2160 ret = 0;
2161 else {
2162 /* safety net ! */
2163 return(1);
2164 }
2165 }
2166 }
2167 if (((range1->neg == 0) && (range2->neg != 0)) ||
2168 ((range1->neg != 0) && (range2->neg == 0)))
2169 ret = !ret;
2170 return(ret);
2171}
2172
2173/**
2174 * xmlFACompareAtomTypes:
2175 * @type1: an atom type
2176 * @type2: an atom type
2177 *
2178 * Compares two atoms type to check whether they intersect in some ways,
2179 * this is used by xmlFACompareAtoms only
2180 *
2181 * Returns 1 if they may intersect and 0 otherwise
2182 */
2183static int
2184xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
2185 if ((type1 == XML_REGEXP_EPSILON) ||
2186 (type1 == XML_REGEXP_CHARVAL) ||
2187 (type1 == XML_REGEXP_RANGES) ||
2188 (type1 == XML_REGEXP_SUBREG) ||
2189 (type1 == XML_REGEXP_STRING) ||
2190 (type1 == XML_REGEXP_ANYCHAR))
2191 return(1);
2192 if ((type2 == XML_REGEXP_EPSILON) ||
2193 (type2 == XML_REGEXP_CHARVAL) ||
2194 (type2 == XML_REGEXP_RANGES) ||
2195 (type2 == XML_REGEXP_SUBREG) ||
2196 (type2 == XML_REGEXP_STRING) ||
2197 (type2 == XML_REGEXP_ANYCHAR))
2198 return(1);
2199
2200 if (type1 == type2) return(1);
2201
2202 /* simplify subsequent compares by making sure type1 < type2 */
2203 if (type1 > type2) {
2204 xmlRegAtomType tmp = type1;
2205 type1 = type2;
2206 type2 = tmp;
2207 }
2208 switch (type1) {
2209 case XML_REGEXP_ANYSPACE: /* \s */
2210 /* can't be a letter, number, mark, punctuation, symbol */
2211 if ((type2 == XML_REGEXP_NOTSPACE) ||
2212 ((type2 >= XML_REGEXP_LETTER) &&
2213 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2214 ((type2 >= XML_REGEXP_NUMBER) &&
2215 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2216 ((type2 >= XML_REGEXP_MARK) &&
2217 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2218 ((type2 >= XML_REGEXP_PUNCT) &&
2219 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2220 ((type2 >= XML_REGEXP_SYMBOL) &&
2221 (type2 <= XML_REGEXP_SYMBOL_OTHERS))
2222 ) return(0);
2223 break;
2224 case XML_REGEXP_NOTSPACE: /* \S */
2225 break;
2226 case XML_REGEXP_INITNAME: /* \l */
2227 /* can't be a number, mark, separator, punctuation, symbol or other */
2228 if ((type2 == XML_REGEXP_NOTINITNAME) ||
2229 ((type2 >= XML_REGEXP_NUMBER) &&
2230 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
2231 ((type2 >= XML_REGEXP_MARK) &&
2232 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2233 ((type2 >= XML_REGEXP_SEPAR) &&
2234 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2235 ((type2 >= XML_REGEXP_PUNCT) &&
2236 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2237 ((type2 >= XML_REGEXP_SYMBOL) &&
2238 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2239 ((type2 >= XML_REGEXP_OTHER) &&
2240 (type2 <= XML_REGEXP_OTHER_NA))
2241 ) return(0);
2242 break;
2243 case XML_REGEXP_NOTINITNAME: /* \L */
2244 break;
2245 case XML_REGEXP_NAMECHAR: /* \c */
2246 /* can't be a mark, separator, punctuation, symbol or other */
2247 if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
2248 ((type2 >= XML_REGEXP_MARK) &&
2249 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2250 ((type2 >= XML_REGEXP_PUNCT) &&
2251 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2252 ((type2 >= XML_REGEXP_SEPAR) &&
2253 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2254 ((type2 >= XML_REGEXP_SYMBOL) &&
2255 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2256 ((type2 >= XML_REGEXP_OTHER) &&
2257 (type2 <= XML_REGEXP_OTHER_NA))
2258 ) return(0);
2259 break;
2260 case XML_REGEXP_NOTNAMECHAR: /* \C */
2261 break;
2262 case XML_REGEXP_DECIMAL: /* \d */
2263 /* can't be a letter, mark, separator, punctuation, symbol or other */
2264 if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2265 (type2 == XML_REGEXP_REALCHAR) ||
2266 ((type2 >= XML_REGEXP_LETTER) &&
2267 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
2268 ((type2 >= XML_REGEXP_MARK) &&
2269 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2270 ((type2 >= XML_REGEXP_PUNCT) &&
2271 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2272 ((type2 >= XML_REGEXP_SEPAR) &&
2273 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2274 ((type2 >= XML_REGEXP_SYMBOL) &&
2275 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2276 ((type2 >= XML_REGEXP_OTHER) &&
2277 (type2 <= XML_REGEXP_OTHER_NA))
2278 )return(0);
2279 break;
2280 case XML_REGEXP_NOTDECIMAL: /* \D */
2281 break;
2282 case XML_REGEXP_REALCHAR: /* \w */
2283 /* can't be a mark, separator, punctuation, symbol or other */
2284 if ((type2 == XML_REGEXP_NOTDECIMAL) ||
2285 ((type2 >= XML_REGEXP_MARK) &&
2286 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
2287 ((type2 >= XML_REGEXP_PUNCT) &&
2288 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
2289 ((type2 >= XML_REGEXP_SEPAR) &&
2290 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
2291 ((type2 >= XML_REGEXP_SYMBOL) &&
2292 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
2293 ((type2 >= XML_REGEXP_OTHER) &&
2294 (type2 <= XML_REGEXP_OTHER_NA))
2295 )return(0);
2296 break;
2297 case XML_REGEXP_NOTREALCHAR: /* \W */
2298 break;
2299 /*
2300 * at that point we know both type 1 and type2 are from
2301 * character categories are ordered and are different,
2302 * it becomes simple because this is a partition
2303 */
2304 case XML_REGEXP_LETTER:
2305 if (type2 <= XML_REGEXP_LETTER_OTHERS)
2306 return(1);
2307 return(0);
2308 case XML_REGEXP_LETTER_UPPERCASE:
2309 case XML_REGEXP_LETTER_LOWERCASE:
2310 case XML_REGEXP_LETTER_TITLECASE:
2311 case XML_REGEXP_LETTER_MODIFIER:
2312 case XML_REGEXP_LETTER_OTHERS:
2313 return(0);
2314 case XML_REGEXP_MARK:
2315 if (type2 <= XML_REGEXP_MARK_ENCLOSING)
2316 return(1);
2317 return(0);
2318 case XML_REGEXP_MARK_NONSPACING:
2319 case XML_REGEXP_MARK_SPACECOMBINING:
2320 case XML_REGEXP_MARK_ENCLOSING:
2321 return(0);
2322 case XML_REGEXP_NUMBER:
2323 if (type2 <= XML_REGEXP_NUMBER_OTHERS)
2324 return(1);
2325 return(0);
2326 case XML_REGEXP_NUMBER_DECIMAL:
2327 case XML_REGEXP_NUMBER_LETTER:
2328 case XML_REGEXP_NUMBER_OTHERS:
2329 return(0);
2330 case XML_REGEXP_PUNCT:
2331 if (type2 <= XML_REGEXP_PUNCT_OTHERS)
2332 return(1);
2333 return(0);
2334 case XML_REGEXP_PUNCT_CONNECTOR:
2335 case XML_REGEXP_PUNCT_DASH:
2336 case XML_REGEXP_PUNCT_OPEN:
2337 case XML_REGEXP_PUNCT_CLOSE:
2338 case XML_REGEXP_PUNCT_INITQUOTE:
2339 case XML_REGEXP_PUNCT_FINQUOTE:
2340 case XML_REGEXP_PUNCT_OTHERS:
2341 return(0);
2342 case XML_REGEXP_SEPAR:
2343 if (type2 <= XML_REGEXP_SEPAR_PARA)
2344 return(1);
2345 return(0);
2346 case XML_REGEXP_SEPAR_SPACE:
2347 case XML_REGEXP_SEPAR_LINE:
2348 case XML_REGEXP_SEPAR_PARA:
2349 return(0);
2350 case XML_REGEXP_SYMBOL:
2351 if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
2352 return(1);
2353 return(0);
2354 case XML_REGEXP_SYMBOL_MATH:
2355 case XML_REGEXP_SYMBOL_CURRENCY:
2356 case XML_REGEXP_SYMBOL_MODIFIER:
2357 case XML_REGEXP_SYMBOL_OTHERS:
2358 return(0);
2359 case XML_REGEXP_OTHER:
2360 if (type2 <= XML_REGEXP_OTHER_NA)
2361 return(1);
2362 return(0);
2363 case XML_REGEXP_OTHER_CONTROL:
2364 case XML_REGEXP_OTHER_FORMAT:
2365 case XML_REGEXP_OTHER_PRIVATE:
2366 case XML_REGEXP_OTHER_NA:
2367 return(0);
2368 default:
2369 break;
2370 }
2371 return(1);
2372}
2373
2374/**
2375 * xmlFAEqualAtoms:
2376 * @atom1: an atom
2377 * @atom2: an atom
2378 * @deep: if not set only compare string pointers
2379 *
2380 * Compares two atoms to check whether they are the same exactly
2381 * this is used to remove equivalent transitions
2382 *
2383 * Returns 1 if same and 0 otherwise
2384 */
2385static int
2386xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2387 int ret = 0;
2388
2389 if (atom1 == atom2)
2390 return(1);
2391 if ((atom1 == NULL) || (atom2 == NULL))
2392 return(0);
2393
2394 if (atom1->type != atom2->type)
2395 return(0);
2396 switch (atom1->type) {
2397 case XML_REGEXP_EPSILON:
2398 ret = 0;
2399 break;
2400 case XML_REGEXP_STRING:
2401 if (!deep)
2402 ret = (atom1->valuep == atom2->valuep);
2403 else
2404 ret = xmlStrEqual((xmlChar *)atom1->valuep,
2405 (xmlChar *)atom2->valuep);
2406 break;
2407 case XML_REGEXP_CHARVAL:
2408 ret = (atom1->codepoint == atom2->codepoint);
2409 break;
2410 case XML_REGEXP_RANGES:
2411 /* too hard to do in the general case */
2412 ret = 0;
2413 default:
2414 break;
2415 }
2416 return(ret);
2417}
2418
2419/**
2420 * xmlFACompareAtoms:
2421 * @atom1: an atom
2422 * @atom2: an atom
2423 * @deep: if not set only compare string pointers
2424 *
2425 * Compares two atoms to check whether they intersect in some ways,
2426 * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
2427 *
2428 * Returns 1 if yes and 0 otherwise
2429 */
2430static int
2431xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
2432 int ret = 1;
2433
2434 if (atom1 == atom2)
2435 return(1);
2436 if ((atom1 == NULL) || (atom2 == NULL))
2437 return(0);
2438
2439 if ((atom1->type == XML_REGEXP_ANYCHAR) ||
2440 (atom2->type == XML_REGEXP_ANYCHAR))
2441 return(1);
2442
2443 if (atom1->type > atom2->type) {
2444 xmlRegAtomPtr tmp;
2445 tmp = atom1;
2446 atom1 = atom2;
2447 atom2 = tmp;
2448 }
2449 if (atom1->type != atom2->type) {
2450 ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
2451 /* if they can't intersect at the type level break now */
2452 if (ret == 0)
2453 return(0);
2454 }
2455 switch (atom1->type) {
2456 case XML_REGEXP_STRING:
2457 if (!deep)
2458 ret = (atom1->valuep != atom2->valuep);
2459 else {
2460 xmlChar *val1 = (xmlChar *)atom1->valuep;
2461 xmlChar *val2 = (xmlChar *)atom2->valuep;
2462 int compound1 = (xmlStrchr(val1, '|') != NULL);
2463 int compound2 = (xmlStrchr(val2, '|') != NULL);
2464
2465 /* Ignore negative match flag for ##other namespaces */
2466 if (compound1 != compound2)
2467 return(0);
2468
2469 ret = xmlRegStrEqualWildcard(val1, val2);
2470 }
2471 break;
2472 case XML_REGEXP_EPSILON:
2473 goto not_determinist;
2474 case XML_REGEXP_CHARVAL:
2475 if (atom2->type == XML_REGEXP_CHARVAL) {
2476 ret = (atom1->codepoint == atom2->codepoint);
2477 } else {
2478 ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
2479 if (ret < 0)
2480 ret = 1;
2481 }
2482 break;
2483 case XML_REGEXP_RANGES:
2484 if (atom2->type == XML_REGEXP_RANGES) {
2485 int i, j, res;
2486 xmlRegRangePtr r1, r2;
2487
2488 /*
2489 * need to check that none of the ranges eventually matches
2490 */
2491 for (i = 0;i < atom1->nbRanges;i++) {
2492 for (j = 0;j < atom2->nbRanges;j++) {
2493 r1 = atom1->ranges[i];
2494 r2 = atom2->ranges[j];
2495 res = xmlFACompareRanges(r1, r2);
2496 if (res == 1) {
2497 ret = 1;
2498 goto done;
2499 }
2500 }
2501 }
2502 ret = 0;
2503 }
2504 break;
2505 default:
2506 goto not_determinist;
2507 }
2508done:
2509 if (atom1->neg != atom2->neg) {
2510 ret = !ret;
2511 }
2512 if (ret == 0)
2513 return(0);
2514not_determinist:
2515 return(1);
2516}
2517
2518/**
2519 * xmlFARecurseDeterminism:
2520 * @ctxt: a regexp parser context
2521 *
2522 * Check whether the associated regexp is determinist,
2523 * should be called after xmlFAEliminateEpsilonTransitions()
2524 *
2525 */
2526static int
2527xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
2528 int fromnr, int tonr, xmlRegAtomPtr atom) {
2529 int ret = 1;
2530 int res;
2531 int transnr, nbTrans;
2532 xmlRegTransPtr t1;
2533 int deep = 1;
2534
2535 if (state == NULL)
2536 return(ret);
2537 if (state->markd == XML_REGEXP_MARK_VISITED)
2538 return(ret);
2539
2540 if (ctxt->flags & AM_AUTOMATA_RNG)
2541 deep = 0;
2542
2543 /*
2544 * don't recurse on transitions potentially added in the course of
2545 * the elimination.
2546 */
2547 nbTrans = state->nbTrans;
2548 for (transnr = 0;transnr < nbTrans;transnr++) {
2549 t1 = &(state->trans[transnr]);
2550 /*
2551 * check transitions conflicting with the one looked at
2552 */
2553 if ((t1->to < 0) || (t1->to == fromnr))
2554 continue;
2555 if (t1->atom == NULL) {
2556 state->markd = XML_REGEXP_MARK_VISITED;
2557 res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
2558 fromnr, tonr, atom);
2559 if (res == 0) {
2560 ret = 0;
2561 /* t1->nd = 1; */
2562 }
2563 continue;
2564 }
2565 if (xmlFACompareAtoms(t1->atom, atom, deep)) {
2566 /* Treat equal transitions as deterministic. */
2567 if ((t1->to != tonr) ||
2568 (!xmlFAEqualAtoms(t1->atom, atom, deep)))
2569 ret = 0;
2570 /* mark the transition as non-deterministic */
2571 t1->nd = 1;
2572 }
2573 }
2574 return(ret);
2575}
2576
2577/**
2578 * xmlFAFinishRecurseDeterminism:
2579 * @ctxt: a regexp parser context
2580 *
2581 * Reset flags after checking determinism.
2582 */
2583static void
2584xmlFAFinishRecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
2585 int transnr, nbTrans;
2586
2587 if (state == NULL)
2588 return;
2589 if (state->markd != XML_REGEXP_MARK_VISITED)
2590 return;
2591 state->markd = 0;
2592
2593 nbTrans = state->nbTrans;
2594 for (transnr = 0; transnr < nbTrans; transnr++) {
2595 xmlRegTransPtr t1 = &state->trans[transnr];
2596 if ((t1->atom == NULL) && (t1->to >= 0))
2597 xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t1->to]);
2598 }
2599}
2600
2601/**
2602 * xmlFAComputesDeterminism:
2603 * @ctxt: a regexp parser context
2604 *
2605 * Check whether the associated regexp is determinist,
2606 * should be called after xmlFAEliminateEpsilonTransitions()
2607 *
2608 */
2609static int
2610xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
2611 int statenr, transnr;
2612 xmlRegStatePtr state;
2613 xmlRegTransPtr t1, t2, last;
2614 int i;
2615 int ret = 1;
2616 int deep = 1;
2617
2618 if (ctxt->determinist != -1)
2619 return(ctxt->determinist);
2620
2621 if (ctxt->flags & AM_AUTOMATA_RNG)
2622 deep = 0;
2623
2624 /*
2625 * First cleanup the automata removing cancelled transitions
2626 */
2627 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2628 state = ctxt->states[statenr];
2629 if (state == NULL)
2630 continue;
2631 if (state->nbTrans < 2)
2632 continue;
2633 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2634 t1 = &(state->trans[transnr]);
2635 /*
2636 * Determinism checks in case of counted or all transitions
2637 * will have to be handled separately
2638 */
2639 if (t1->atom == NULL) {
2640 /* t1->nd = 1; */
2641 continue;
2642 }
2643 if (t1->to < 0) /* eliminated */
2644 continue;
2645 for (i = 0;i < transnr;i++) {
2646 t2 = &(state->trans[i]);
2647 if (t2->to < 0) /* eliminated */
2648 continue;
2649 if (t2->atom != NULL) {
2650 if (t1->to == t2->to) {
2651 /*
2652 * Here we use deep because we want to keep the
2653 * transitions which indicate a conflict
2654 */
2655 if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
2656 (t1->counter == t2->counter) &&
2657 (t1->count == t2->count))
2658 t2->to = -1; /* eliminated */
2659 }
2660 }
2661 }
2662 }
2663 }
2664
2665 /*
2666 * Check for all states that there aren't 2 transitions
2667 * with the same atom and a different target.
2668 */
2669 for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
2670 state = ctxt->states[statenr];
2671 if (state == NULL)
2672 continue;
2673 if (state->nbTrans < 2)
2674 continue;
2675 last = NULL;
2676 for (transnr = 0;transnr < state->nbTrans;transnr++) {
2677 t1 = &(state->trans[transnr]);
2678 /*
2679 * Determinism checks in case of counted or all transitions
2680 * will have to be handled separately
2681 */
2682 if (t1->atom == NULL) {
2683 continue;
2684 }
2685 if (t1->to < 0) /* eliminated */
2686 continue;
2687 for (i = 0;i < transnr;i++) {
2688 t2 = &(state->trans[i]);
2689 if (t2->to < 0) /* eliminated */
2690 continue;
2691 if (t2->atom != NULL) {
2692 /*
2693 * But here we don't use deep because we want to
2694 * find transitions which indicate a conflict
2695 */
2696 if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
2697 /*
2698 * Treat equal counter transitions that couldn't be
2699 * eliminated as deterministic.
2700 */
2701 if ((t1->to != t2->to) ||
2702 (t1->counter == t2->counter) ||
2703 (!xmlFAEqualAtoms(t1->atom, t2->atom, deep)))
2704 ret = 0;
2705 /* mark the transitions as non-deterministic ones */
2706 t1->nd = 1;
2707 t2->nd = 1;
2708 last = t1;
2709 }
2710 } else {
2711 int res;
2712
2713 /*
2714 * do the closure in case of remaining specific
2715 * epsilon transitions like choices or all
2716 */
2717 res = xmlFARecurseDeterminism(ctxt, ctxt->states[t2->to],
2718 statenr, t1->to, t1->atom);
2719 xmlFAFinishRecurseDeterminism(ctxt, ctxt->states[t2->to]);
2720 /* don't shortcut the computation so all non deterministic
2721 transition get marked down
2722 if (ret == 0)
2723 return(0);
2724 */
2725 if (res == 0) {
2726 t1->nd = 1;
2727 /* t2->nd = 1; */
2728 last = t1;
2729 ret = 0;
2730 }
2731 }
2732 }
2733 /* don't shortcut the computation so all non deterministic
2734 transition get marked down
2735 if (ret == 0)
2736 break; */
2737 }
2738
2739 /*
2740 * mark specifically the last non-deterministic transition
2741 * from a state since there is no need to set-up rollback
2742 * from it
2743 */
2744 if (last != NULL) {
2745 last->nd = 2;
2746 }
2747
2748 /* don't shortcut the computation so all non deterministic
2749 transition get marked down
2750 if (ret == 0)
2751 break; */
2752 }
2753
2754 ctxt->determinist = ret;
2755 return(ret);
2756}
2757
2758/************************************************************************
2759 * *
2760 * Routines to check input against transition atoms *
2761 * *
2762 ************************************************************************/
2763
2764static int
2765xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
2766 int start, int end, const xmlChar *blockName) {
2767 int ret = 0;
2768
2769 switch (type) {
2770 case XML_REGEXP_STRING:
2771 case XML_REGEXP_SUBREG:
2772 case XML_REGEXP_RANGES:
2773 case XML_REGEXP_EPSILON:
2774 return(-1);
2775 case XML_REGEXP_ANYCHAR:
2776 ret = ((codepoint != '\n') && (codepoint != '\r'));
2777 break;
2778 case XML_REGEXP_CHARVAL:
2779 ret = ((codepoint >= start) && (codepoint <= end));
2780 break;
2781 case XML_REGEXP_NOTSPACE:
2782 neg = !neg;
2783 /* Falls through. */
2784 case XML_REGEXP_ANYSPACE:
2785 ret = ((codepoint == '\n') || (codepoint == '\r') ||
2786 (codepoint == '\t') || (codepoint == ' '));
2787 break;
2788 case XML_REGEXP_NOTINITNAME:
2789 neg = !neg;
2790 /* Falls through. */
2791 case XML_REGEXP_INITNAME:
2792 ret = (IS_LETTER(codepoint) ||
2793 (codepoint == '_') || (codepoint == ':'));
2794 break;
2795 case XML_REGEXP_NOTNAMECHAR:
2796 neg = !neg;
2797 /* Falls through. */
2798 case XML_REGEXP_NAMECHAR:
2799 ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
2800 (codepoint == '.') || (codepoint == '-') ||
2801 (codepoint == '_') || (codepoint == ':') ||
2802 IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
2803 break;
2804 case XML_REGEXP_NOTDECIMAL:
2805 neg = !neg;
2806 /* Falls through. */
2807 case XML_REGEXP_DECIMAL:
2808 ret = xmlUCSIsCatNd(codepoint);
2809 break;
2810 case XML_REGEXP_REALCHAR:
2811 neg = !neg;
2812 /* Falls through. */
2813 case XML_REGEXP_NOTREALCHAR:
2814 ret = xmlUCSIsCatP(codepoint);
2815 if (ret == 0)
2816 ret = xmlUCSIsCatZ(codepoint);
2817 if (ret == 0)
2818 ret = xmlUCSIsCatC(codepoint);
2819 break;
2820 case XML_REGEXP_LETTER:
2821 ret = xmlUCSIsCatL(codepoint);
2822 break;
2823 case XML_REGEXP_LETTER_UPPERCASE:
2824 ret = xmlUCSIsCatLu(codepoint);
2825 break;
2826 case XML_REGEXP_LETTER_LOWERCASE:
2827 ret = xmlUCSIsCatLl(codepoint);
2828 break;
2829 case XML_REGEXP_LETTER_TITLECASE:
2830 ret = xmlUCSIsCatLt(codepoint);
2831 break;
2832 case XML_REGEXP_LETTER_MODIFIER:
2833 ret = xmlUCSIsCatLm(codepoint);
2834 break;
2835 case XML_REGEXP_LETTER_OTHERS:
2836 ret = xmlUCSIsCatLo(codepoint);
2837 break;
2838 case XML_REGEXP_MARK:
2839 ret = xmlUCSIsCatM(codepoint);
2840 break;
2841 case XML_REGEXP_MARK_NONSPACING:
2842 ret = xmlUCSIsCatMn(codepoint);
2843 break;
2844 case XML_REGEXP_MARK_SPACECOMBINING:
2845 ret = xmlUCSIsCatMc(codepoint);
2846 break;
2847 case XML_REGEXP_MARK_ENCLOSING:
2848 ret = xmlUCSIsCatMe(codepoint);
2849 break;
2850 case XML_REGEXP_NUMBER:
2851 ret = xmlUCSIsCatN(codepoint);
2852 break;
2853 case XML_REGEXP_NUMBER_DECIMAL:
2854 ret = xmlUCSIsCatNd(codepoint);
2855 break;
2856 case XML_REGEXP_NUMBER_LETTER:
2857 ret = xmlUCSIsCatNl(codepoint);
2858 break;
2859 case XML_REGEXP_NUMBER_OTHERS:
2860 ret = xmlUCSIsCatNo(codepoint);
2861 break;
2862 case XML_REGEXP_PUNCT:
2863 ret = xmlUCSIsCatP(codepoint);
2864 break;
2865 case XML_REGEXP_PUNCT_CONNECTOR:
2866 ret = xmlUCSIsCatPc(codepoint);
2867 break;
2868 case XML_REGEXP_PUNCT_DASH:
2869 ret = xmlUCSIsCatPd(codepoint);
2870 break;
2871 case XML_REGEXP_PUNCT_OPEN:
2872 ret = xmlUCSIsCatPs(codepoint);
2873 break;
2874 case XML_REGEXP_PUNCT_CLOSE:
2875 ret = xmlUCSIsCatPe(codepoint);
2876 break;
2877 case XML_REGEXP_PUNCT_INITQUOTE:
2878 ret = xmlUCSIsCatPi(codepoint);
2879 break;
2880 case XML_REGEXP_PUNCT_FINQUOTE:
2881 ret = xmlUCSIsCatPf(codepoint);
2882 break;
2883 case XML_REGEXP_PUNCT_OTHERS:
2884 ret = xmlUCSIsCatPo(codepoint);
2885 break;
2886 case XML_REGEXP_SEPAR:
2887 ret = xmlUCSIsCatZ(codepoint);
2888 break;
2889 case XML_REGEXP_SEPAR_SPACE:
2890 ret = xmlUCSIsCatZs(codepoint);
2891 break;
2892 case XML_REGEXP_SEPAR_LINE:
2893 ret = xmlUCSIsCatZl(codepoint);
2894 break;
2895 case XML_REGEXP_SEPAR_PARA:
2896 ret = xmlUCSIsCatZp(codepoint);
2897 break;
2898 case XML_REGEXP_SYMBOL:
2899 ret = xmlUCSIsCatS(codepoint);
2900 break;
2901 case XML_REGEXP_SYMBOL_MATH:
2902 ret = xmlUCSIsCatSm(codepoint);
2903 break;
2904 case XML_REGEXP_SYMBOL_CURRENCY:
2905 ret = xmlUCSIsCatSc(codepoint);
2906 break;
2907 case XML_REGEXP_SYMBOL_MODIFIER:
2908 ret = xmlUCSIsCatSk(codepoint);
2909 break;
2910 case XML_REGEXP_SYMBOL_OTHERS:
2911 ret = xmlUCSIsCatSo(codepoint);
2912 break;
2913 case XML_REGEXP_OTHER:
2914 ret = xmlUCSIsCatC(codepoint);
2915 break;
2916 case XML_REGEXP_OTHER_CONTROL:
2917 ret = xmlUCSIsCatCc(codepoint);
2918 break;
2919 case XML_REGEXP_OTHER_FORMAT:
2920 ret = xmlUCSIsCatCf(codepoint);
2921 break;
2922 case XML_REGEXP_OTHER_PRIVATE:
2923 ret = xmlUCSIsCatCo(codepoint);
2924 break;
2925 case XML_REGEXP_OTHER_NA:
2926 /* ret = xmlUCSIsCatCn(codepoint); */
2927 /* Seems it doesn't exist anymore in recent Unicode releases */
2928 ret = 0;
2929 break;
2930 case XML_REGEXP_BLOCK_NAME:
2931 ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
2932 break;
2933 }
2934 if (neg)
2935 return(!ret);
2936 return(ret);
2937}
2938
2939static int
2940xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
2941 int i, ret = 0;
2942 xmlRegRangePtr range;
2943
2944 if ((atom == NULL) || (!IS_CHAR(codepoint)))
2945 return(-1);
2946
2947 switch (atom->type) {
2948 case XML_REGEXP_SUBREG:
2949 case XML_REGEXP_EPSILON:
2950 return(-1);
2951 case XML_REGEXP_CHARVAL:
2952 return(codepoint == atom->codepoint);
2953 case XML_REGEXP_RANGES: {
2954 int accept = 0;
2955
2956 for (i = 0;i < atom->nbRanges;i++) {
2957 range = atom->ranges[i];
2958 if (range->neg == 2) {
2959 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2960 0, range->start, range->end,
2961 range->blockName);
2962 if (ret != 0)
2963 return(0); /* excluded char */
2964 } else if (range->neg) {
2965 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2966 0, range->start, range->end,
2967 range->blockName);
2968 if (ret == 0)
2969 accept = 1;
2970 else
2971 return(0);
2972 } else {
2973 ret = xmlRegCheckCharacterRange(range->type, codepoint,
2974 0, range->start, range->end,
2975 range->blockName);
2976 if (ret != 0)
2977 accept = 1; /* might still be excluded */
2978 }
2979 }
2980 return(accept);
2981 }
2982 case XML_REGEXP_STRING:
2983 printf("TODO: XML_REGEXP_STRING\n");
2984 return(-1);
2985 case XML_REGEXP_ANYCHAR:
2986 case XML_REGEXP_ANYSPACE:
2987 case XML_REGEXP_NOTSPACE:
2988 case XML_REGEXP_INITNAME:
2989 case XML_REGEXP_NOTINITNAME:
2990 case XML_REGEXP_NAMECHAR:
2991 case XML_REGEXP_NOTNAMECHAR:
2992 case XML_REGEXP_DECIMAL:
2993 case XML_REGEXP_NOTDECIMAL:
2994 case XML_REGEXP_REALCHAR:
2995 case XML_REGEXP_NOTREALCHAR:
2996 case XML_REGEXP_LETTER:
2997 case XML_REGEXP_LETTER_UPPERCASE:
2998 case XML_REGEXP_LETTER_LOWERCASE:
2999 case XML_REGEXP_LETTER_TITLECASE:
3000 case XML_REGEXP_LETTER_MODIFIER:
3001 case XML_REGEXP_LETTER_OTHERS:
3002 case XML_REGEXP_MARK:
3003 case XML_REGEXP_MARK_NONSPACING:
3004 case XML_REGEXP_MARK_SPACECOMBINING:
3005 case XML_REGEXP_MARK_ENCLOSING:
3006 case XML_REGEXP_NUMBER:
3007 case XML_REGEXP_NUMBER_DECIMAL:
3008 case XML_REGEXP_NUMBER_LETTER:
3009 case XML_REGEXP_NUMBER_OTHERS:
3010 case XML_REGEXP_PUNCT:
3011 case XML_REGEXP_PUNCT_CONNECTOR:
3012 case XML_REGEXP_PUNCT_DASH:
3013 case XML_REGEXP_PUNCT_OPEN:
3014 case XML_REGEXP_PUNCT_CLOSE:
3015 case XML_REGEXP_PUNCT_INITQUOTE:
3016 case XML_REGEXP_PUNCT_FINQUOTE:
3017 case XML_REGEXP_PUNCT_OTHERS:
3018 case XML_REGEXP_SEPAR:
3019 case XML_REGEXP_SEPAR_SPACE:
3020 case XML_REGEXP_SEPAR_LINE:
3021 case XML_REGEXP_SEPAR_PARA:
3022 case XML_REGEXP_SYMBOL:
3023 case XML_REGEXP_SYMBOL_MATH:
3024 case XML_REGEXP_SYMBOL_CURRENCY:
3025 case XML_REGEXP_SYMBOL_MODIFIER:
3026 case XML_REGEXP_SYMBOL_OTHERS:
3027 case XML_REGEXP_OTHER:
3028 case XML_REGEXP_OTHER_CONTROL:
3029 case XML_REGEXP_OTHER_FORMAT:
3030 case XML_REGEXP_OTHER_PRIVATE:
3031 case XML_REGEXP_OTHER_NA:
3032 case XML_REGEXP_BLOCK_NAME:
3033 ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
3034 (const xmlChar *)atom->valuep);
3035 if (atom->neg)
3036 ret = !ret;
3037 break;
3038 }
3039 return(ret);
3040}
3041
3042/************************************************************************
3043 * *
3044 * Saving and restoring state of an execution context *
3045 * *
3046 ************************************************************************/
3047
3048static void
3049xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
3050#ifdef MAX_PUSH
3051 if (exec->nbPush > MAX_PUSH) {
3052 exec->status = XML_REGEXP_INTERNAL_LIMIT;
3053 return;
3054 }
3055 exec->nbPush++;
3056#endif
3057
3058 if (exec->maxRollbacks == 0) {
3059 exec->maxRollbacks = 4;
3060 exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
3061 sizeof(xmlRegExecRollback));
3062 if (exec->rollbacks == NULL) {
3063 xmlRegexpErrMemory(NULL, "saving regexp");
3064 exec->maxRollbacks = 0;
3065 exec->status = XML_REGEXP_OUT_OF_MEMORY;
3066 return;
3067 }
3068 memset(exec->rollbacks, 0,
3069 exec->maxRollbacks * sizeof(xmlRegExecRollback));
3070 } else if (exec->nbRollbacks >= exec->maxRollbacks) {
3071 xmlRegExecRollback *tmp;
3072 int len = exec->maxRollbacks;
3073
3074 exec->maxRollbacks *= 2;
3075 tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
3076 exec->maxRollbacks * sizeof(xmlRegExecRollback));
3077 if (tmp == NULL) {
3078 xmlRegexpErrMemory(NULL, "saving regexp");
3079 exec->maxRollbacks /= 2;
3080 exec->status = XML_REGEXP_OUT_OF_MEMORY;
3081 return;
3082 }
3083 exec->rollbacks = tmp;
3084 tmp = &exec->rollbacks[len];
3085 memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
3086 }
3087 exec->rollbacks[exec->nbRollbacks].state = exec->state;
3088 exec->rollbacks[exec->nbRollbacks].index = exec->index;
3089 exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
3090 if (exec->comp->nbCounters > 0) {
3091 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3092 exec->rollbacks[exec->nbRollbacks].counts = (int *)
3093 xmlMalloc(exec->comp->nbCounters * sizeof(int));
3094 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3095 xmlRegexpErrMemory(NULL, "saving regexp");
3096 exec->status = XML_REGEXP_OUT_OF_MEMORY;
3097 return;
3098 }
3099 }
3100 memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
3101 exec->comp->nbCounters * sizeof(int));
3102 }
3103 exec->nbRollbacks++;
3104}
3105
3106static void
3107xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
3108 if (exec->status != XML_REGEXP_OK)
3109 return;
3110 if (exec->nbRollbacks <= 0) {
3111 exec->status = XML_REGEXP_NOT_FOUND;
3112 return;
3113 }
3114 exec->nbRollbacks--;
3115 exec->state = exec->rollbacks[exec->nbRollbacks].state;
3116 exec->index = exec->rollbacks[exec->nbRollbacks].index;
3117 exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
3118 if (exec->comp->nbCounters > 0) {
3119 if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
3120 fprintf(stderr, "exec save: allocation failed");
3121 exec->status = XML_REGEXP_INTERNAL_ERROR;
3122 return;
3123 }
3124 if (exec->counts) {
3125 memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
3126 exec->comp->nbCounters * sizeof(int));
3127 }
3128 }
3129}
3130
3131/************************************************************************
3132 * *
3133 * Verifier, running an input against a compiled regexp *
3134 * *
3135 ************************************************************************/
3136
3137static int
3138xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
3139 xmlRegExecCtxt execval;
3140 xmlRegExecCtxtPtr exec = &execval;
3141 int ret, codepoint = 0, len, deter;
3142
3143 exec->inputString = content;
3144 exec->index = 0;
3145 exec->nbPush = 0;
3146 exec->determinist = 1;
3147 exec->maxRollbacks = 0;
3148 exec->nbRollbacks = 0;
3149 exec->rollbacks = NULL;
3150 exec->status = XML_REGEXP_OK;
3151 exec->comp = comp;
3152 exec->state = comp->states[0];
3153 exec->transno = 0;
3154 exec->transcount = 0;
3155 exec->inputStack = NULL;
3156 exec->inputStackMax = 0;
3157 if (comp->nbCounters > 0) {
3158 exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
3159 if (exec->counts == NULL) {
3160 xmlRegexpErrMemory(NULL, "running regexp");
3161 return(XML_REGEXP_OUT_OF_MEMORY);
3162 }
3163 memset(exec->counts, 0, comp->nbCounters * sizeof(int));
3164 } else
3165 exec->counts = NULL;
3166 while ((exec->status == XML_REGEXP_OK) && (exec->state != NULL) &&
3167 ((exec->inputString[exec->index] != 0) ||
3168 ((exec->state != NULL) &&
3169 (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3170 xmlRegTransPtr trans;
3171 xmlRegAtomPtr atom;
3172
3173 /*
3174 * If end of input on non-terminal state, rollback, however we may
3175 * still have epsilon like transition for counted transitions
3176 * on counters, in that case don't break too early. Additionally,
3177 * if we are working on a range like "AB{0,2}", where B is not present,
3178 * we don't want to break.
3179 */
3180 len = 1;
3181 if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
3182 /*
3183 * if there is a transition, we must check if
3184 * atom allows minOccurs of 0
3185 */
3186 if (exec->transno < exec->state->nbTrans) {
3187 trans = &exec->state->trans[exec->transno];
3188 if (trans->to >=0) {
3189 atom = trans->atom;
3190 if (!((atom->min == 0) && (atom->max > 0)))
3191 goto rollback;
3192 }
3193 } else
3194 goto rollback;
3195 }
3196
3197 exec->transcount = 0;
3198 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3199 trans = &exec->state->trans[exec->transno];
3200 if (trans->to < 0)
3201 continue;
3202 atom = trans->atom;
3203 ret = 0;
3204 deter = 1;
3205 if (trans->count >= 0) {
3206 int count;
3207 xmlRegCounterPtr counter;
3208
3209 if (exec->counts == NULL) {
3210 exec->status = XML_REGEXP_INTERNAL_ERROR;
3211 goto error;
3212 }
3213 /*
3214 * A counted transition.
3215 */
3216
3217 count = exec->counts[trans->count];
3218 counter = &exec->comp->counters[trans->count];
3219 ret = ((count >= counter->min) && (count <= counter->max));
3220 if ((ret) && (counter->min != counter->max))
3221 deter = 0;
3222 } else if (atom == NULL) {
3223 fprintf(stderr, "epsilon transition left at runtime\n");
3224 exec->status = XML_REGEXP_INTERNAL_ERROR;
3225 break;
3226 } else if (exec->inputString[exec->index] != 0) {
3227 len = 4;
3228 codepoint = xmlGetUTF8Char(&exec->inputString[exec->index],
3229 &len);
3230 if (codepoint < 0) {
3231 exec->status = XML_REGEXP_INVALID_UTF8;
3232 goto error;
3233 }
3234 ret = xmlRegCheckCharacter(atom, codepoint);
3235 if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
3236 xmlRegStatePtr to = comp->states[trans->to];
3237
3238 /*
3239 * this is a multiple input sequence
3240 * If there is a counter associated increment it now.
3241 * do not increment if the counter is already over the
3242 * maximum limit in which case get to next transition
3243 */
3244 if (trans->counter >= 0) {
3245 xmlRegCounterPtr counter;
3246
3247 if ((exec->counts == NULL) ||
3248 (exec->comp == NULL) ||
3249 (exec->comp->counters == NULL)) {
3250 exec->status = XML_REGEXP_INTERNAL_ERROR;
3251 goto error;
3252 }
3253 counter = &exec->comp->counters[trans->counter];
3254 if (exec->counts[trans->counter] >= counter->max)
3255 continue; /* for loop on transitions */
3256 }
3257 /* Save before incrementing */
3258 if (exec->state->nbTrans > exec->transno + 1) {
3259 xmlFARegExecSave(exec);
3260 if (exec->status != XML_REGEXP_OK)
3261 goto error;
3262 }
3263 if (trans->counter >= 0) {
3264 exec->counts[trans->counter]++;
3265 }
3266 exec->transcount = 1;
3267 do {
3268 /*
3269 * Try to progress as much as possible on the input
3270 */
3271 if (exec->transcount == atom->max) {
3272 break;
3273 }
3274 exec->index += len;
3275 /*
3276 * End of input: stop here
3277 */
3278 if (exec->inputString[exec->index] == 0) {
3279 exec->index -= len;
3280 break;
3281 }
3282 if (exec->transcount >= atom->min) {
3283 int transno = exec->transno;
3284 xmlRegStatePtr state = exec->state;
3285
3286 /*
3287 * The transition is acceptable save it
3288 */
3289 exec->transno = -1; /* trick */
3290 exec->state = to;
3291 xmlFARegExecSave(exec);
3292 if (exec->status != XML_REGEXP_OK)
3293 goto error;
3294 exec->transno = transno;
3295 exec->state = state;
3296 }
3297 len = 4;
3298 codepoint = xmlGetUTF8Char(
3299 &exec->inputString[exec->index], &len);
3300 if (codepoint < 0) {
3301 exec->status = XML_REGEXP_INVALID_UTF8;
3302 goto error;
3303 }
3304 ret = xmlRegCheckCharacter(atom, codepoint);
3305 exec->transcount++;
3306 } while (ret == 1);
3307 if (exec->transcount < atom->min)
3308 ret = 0;
3309
3310 /*
3311 * If the last check failed but one transition was found
3312 * possible, rollback
3313 */
3314 if (ret < 0)
3315 ret = 0;
3316 if (ret == 0) {
3317 goto rollback;
3318 }
3319 if (trans->counter >= 0) {
3320 if (exec->counts == NULL) {
3321 exec->status = XML_REGEXP_INTERNAL_ERROR;
3322 goto error;
3323 }
3324 exec->counts[trans->counter]--;
3325 }
3326 } else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
3327 /*
3328 * we don't match on the codepoint, but minOccurs of 0
3329 * says that's ok. Setting len to 0 inhibits stepping
3330 * over the codepoint.
3331 */
3332 exec->transcount = 1;
3333 len = 0;
3334 ret = 1;
3335 }
3336 } else if ((atom->min == 0) && (atom->max > 0)) {
3337 /* another spot to match when minOccurs is 0 */
3338 exec->transcount = 1;
3339 len = 0;
3340 ret = 1;
3341 }
3342 if (ret == 1) {
3343 if ((trans->nd == 1) ||
3344 ((trans->count >= 0) && (deter == 0) &&
3345 (exec->state->nbTrans > exec->transno + 1))) {
3346 xmlFARegExecSave(exec);
3347 if (exec->status != XML_REGEXP_OK)
3348 goto error;
3349 }
3350 if (trans->counter >= 0) {
3351 xmlRegCounterPtr counter;
3352
3353 /* make sure we don't go over the counter maximum value */
3354 if ((exec->counts == NULL) ||
3355 (exec->comp == NULL) ||
3356 (exec->comp->counters == NULL)) {
3357 exec->status = XML_REGEXP_INTERNAL_ERROR;
3358 goto error;
3359 }
3360 counter = &exec->comp->counters[trans->counter];
3361 if (exec->counts[trans->counter] >= counter->max)
3362 continue; /* for loop on transitions */
3363 exec->counts[trans->counter]++;
3364 }
3365 if ((trans->count >= 0) &&
3366 (trans->count < REGEXP_ALL_COUNTER)) {
3367 if (exec->counts == NULL) {
3368 exec->status = XML_REGEXP_INTERNAL_ERROR;
3369 goto error;
3370 }
3371 exec->counts[trans->count] = 0;
3372 }
3373 exec->state = comp->states[trans->to];
3374 exec->transno = 0;
3375 if (trans->atom != NULL) {
3376 exec->index += len;
3377 }
3378 goto progress;
3379 } else if (ret < 0) {
3380 exec->status = XML_REGEXP_INTERNAL_ERROR;
3381 break;
3382 }
3383 }
3384 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
3385rollback:
3386 /*
3387 * Failed to find a way out
3388 */
3389 exec->determinist = 0;
3390 xmlFARegExecRollBack(exec);
3391 }
3392progress:
3393 continue;
3394 }
3395error:
3396 if (exec->rollbacks != NULL) {
3397 if (exec->counts != NULL) {
3398 int i;
3399
3400 for (i = 0;i < exec->maxRollbacks;i++)
3401 if (exec->rollbacks[i].counts != NULL)
3402 xmlFree(exec->rollbacks[i].counts);
3403 }
3404 xmlFree(exec->rollbacks);
3405 }
3406 if (exec->state == NULL)
3407 return(XML_REGEXP_INTERNAL_ERROR);
3408 if (exec->counts != NULL)
3409 xmlFree(exec->counts);
3410 if (exec->status == XML_REGEXP_OK)
3411 return(1);
3412 if (exec->status == XML_REGEXP_NOT_FOUND)
3413 return(0);
3414 return(exec->status);
3415}
3416
3417/************************************************************************
3418 * *
3419 * Progressive interface to the verifier one atom at a time *
3420 * *
3421 ************************************************************************/
3422
3423/**
3424 * xmlRegNewExecCtxt:
3425 * @comp: a precompiled regular expression
3426 * @callback: a callback function used for handling progresses in the
3427 * automata matching phase
3428 * @data: the context data associated to the callback in this context
3429 *
3430 * Build a context used for progressive evaluation of a regexp.
3431 *
3432 * Returns the new context
3433 */
3434xmlRegExecCtxtPtr
3435xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
3436 xmlRegExecCtxtPtr exec;
3437
3438 if (comp == NULL)
3439 return(NULL);
3440 if ((comp->compact == NULL) && (comp->states == NULL))
3441 return(NULL);
3442 exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
3443 if (exec == NULL) {
3444 xmlRegexpErrMemory(NULL, "creating execution context");
3445 return(NULL);
3446 }
3447 memset(exec, 0, sizeof(xmlRegExecCtxt));
3448 exec->inputString = NULL;
3449 exec->index = 0;
3450 exec->determinist = 1;
3451 exec->maxRollbacks = 0;
3452 exec->nbRollbacks = 0;
3453 exec->rollbacks = NULL;
3454 exec->status = XML_REGEXP_OK;
3455 exec->comp = comp;
3456 if (comp->compact == NULL)
3457 exec->state = comp->states[0];
3458 exec->transno = 0;
3459 exec->transcount = 0;
3460 exec->callback = callback;
3461 exec->data = data;
3462 if (comp->nbCounters > 0) {
3463 /*
3464 * For error handling, exec->counts is allocated twice the size
3465 * the second half is used to store the data in case of rollback
3466 */
3467 exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
3468 * 2);
3469 if (exec->counts == NULL) {
3470 xmlRegexpErrMemory(NULL, "creating execution context");
3471 xmlFree(exec);
3472 return(NULL);
3473 }
3474 memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
3475 exec->errCounts = &exec->counts[comp->nbCounters];
3476 } else {
3477 exec->counts = NULL;
3478 exec->errCounts = NULL;
3479 }
3480 exec->inputStackMax = 0;
3481 exec->inputStackNr = 0;
3482 exec->inputStack = NULL;
3483 exec->errStateNo = -1;
3484 exec->errString = NULL;
3485 exec->nbPush = 0;
3486 return(exec);
3487}
3488
3489/**
3490 * xmlRegFreeExecCtxt:
3491 * @exec: a regular expression evaluation context
3492 *
3493 * Free the structures associated to a regular expression evaluation context.
3494 */
3495void
3496xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
3497 if (exec == NULL)
3498 return;
3499
3500 if (exec->rollbacks != NULL) {
3501 if (exec->counts != NULL) {
3502 int i;
3503
3504 for (i = 0;i < exec->maxRollbacks;i++)
3505 if (exec->rollbacks[i].counts != NULL)
3506 xmlFree(exec->rollbacks[i].counts);
3507 }
3508 xmlFree(exec->rollbacks);
3509 }
3510 if (exec->counts != NULL)
3511 xmlFree(exec->counts);
3512 if (exec->inputStack != NULL) {
3513 int i;
3514
3515 for (i = 0;i < exec->inputStackNr;i++) {
3516 if (exec->inputStack[i].value != NULL)
3517 xmlFree(exec->inputStack[i].value);
3518 }
3519 xmlFree(exec->inputStack);
3520 }
3521 if (exec->errString != NULL)
3522 xmlFree(exec->errString);
3523 xmlFree(exec);
3524}
3525
3526static void
3527xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
3528 void *data) {
3529 if (exec->inputStackMax == 0) {
3530 exec->inputStackMax = 4;
3531 exec->inputStack = (xmlRegInputTokenPtr)
3532 xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
3533 if (exec->inputStack == NULL) {
3534 xmlRegexpErrMemory(NULL, "pushing input string");
3535 exec->inputStackMax = 0;
3536 return;
3537 }
3538 } else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
3539 xmlRegInputTokenPtr tmp;
3540
3541 exec->inputStackMax *= 2;
3542 tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
3543 exec->inputStackMax * sizeof(xmlRegInputToken));
3544 if (tmp == NULL) {
3545 xmlRegexpErrMemory(NULL, "pushing input string");
3546 exec->inputStackMax /= 2;
3547 return;
3548 }
3549 exec->inputStack = tmp;
3550 }
3551 exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
3552 exec->inputStack[exec->inputStackNr].data = data;
3553 exec->inputStackNr++;
3554 exec->inputStack[exec->inputStackNr].value = NULL;
3555 exec->inputStack[exec->inputStackNr].data = NULL;
3556}
3557
3558/**
3559 * xmlRegStrEqualWildcard:
3560 * @expStr: the string to be evaluated
3561 * @valStr: the validation string
3562 *
3563 * Checks if both strings are equal or have the same content. "*"
3564 * can be used as a wildcard in @valStr; "|" is used as a separator of
3565 * substrings in both @expStr and @valStr.
3566 *
3567 * Returns 1 if the comparison is satisfied and the number of substrings
3568 * is equal, 0 otherwise.
3569 */
3570
3571static int
3572xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
3573 if (expStr == valStr) return(1);
3574 if (expStr == NULL) return(0);
3575 if (valStr == NULL) return(0);
3576 do {
3577 /*
3578 * Eval if we have a wildcard for the current item.
3579 */
3580 if (*expStr != *valStr) {
3581 /* if one of them starts with a wildcard make valStr be it */
3582 if (*valStr == '*') {
3583 const xmlChar *tmp;
3584
3585 tmp = valStr;
3586 valStr = expStr;
3587 expStr = tmp;
3588 }
3589 if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
3590 do {
3591 if (*valStr == XML_REG_STRING_SEPARATOR)
3592 break;
3593 valStr++;
3594 } while (*valStr != 0);
3595 continue;
3596 } else
3597 return(0);
3598 }
3599 expStr++;
3600 valStr++;
3601 } while (*valStr != 0);
3602 if (*expStr != 0)
3603 return (0);
3604 else
3605 return (1);
3606}
3607
3608/**
3609 * xmlRegCompactPushString:
3610 * @exec: a regexp execution context
3611 * @comp: the precompiled exec with a compact table
3612 * @value: a string token input
3613 * @data: data associated to the token to reuse in callbacks
3614 *
3615 * Push one input token in the execution context
3616 *
3617 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3618 * a negative value in case of error.
3619 */
3620static int
3621xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
3622 xmlRegexpPtr comp,
3623 const xmlChar *value,
3624 void *data) {
3625 int state = exec->index;
3626 int i, target;
3627
3628 if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
3629 return(-1);
3630
3631 if (value == NULL) {
3632 /*
3633 * are we at a final state ?
3634 */
3635 if (comp->compact[state * (comp->nbstrings + 1)] ==
3636 XML_REGEXP_FINAL_STATE)
3637 return(1);
3638 return(0);
3639 }
3640
3641 /*
3642 * Examine all outside transitions from current state
3643 */
3644 for (i = 0;i < comp->nbstrings;i++) {
3645 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
3646 if ((target > 0) && (target <= comp->nbstates)) {
3647 target--; /* to avoid 0 */
3648 if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
3649 exec->index = target;
3650 if ((exec->callback != NULL) && (comp->transdata != NULL)) {
3651 exec->callback(exec->data, value,
3652 comp->transdata[state * comp->nbstrings + i], data);
3653 }
3654 if (comp->compact[target * (comp->nbstrings + 1)] ==
3655 XML_REGEXP_SINK_STATE)
3656 goto error;
3657
3658 if (comp->compact[target * (comp->nbstrings + 1)] ==
3659 XML_REGEXP_FINAL_STATE)
3660 return(1);
3661 return(0);
3662 }
3663 }
3664 }
3665 /*
3666 * Failed to find an exit transition out from current state for the
3667 * current token
3668 */
3669error:
3670 if (exec->errString != NULL)
3671 xmlFree(exec->errString);
3672 exec->errString = xmlStrdup(value);
3673 exec->errStateNo = state;
3674 exec->status = XML_REGEXP_NOT_FOUND;
3675 return(XML_REGEXP_NOT_FOUND);
3676}
3677
3678/**
3679 * xmlRegExecPushStringInternal:
3680 * @exec: a regexp execution context or NULL to indicate the end
3681 * @value: a string token input
3682 * @data: data associated to the token to reuse in callbacks
3683 * @compound: value was assembled from 2 strings
3684 *
3685 * Push one input token in the execution context
3686 *
3687 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
3688 * a negative value in case of error.
3689 */
3690static int
3691xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
3692 void *data, int compound) {
3693 xmlRegTransPtr trans;
3694 xmlRegAtomPtr atom;
3695 int ret;
3696 int final = 0;
3697 int progress = 1;
3698
3699 if (exec == NULL)
3700 return(-1);
3701 if (exec->comp == NULL)
3702 return(-1);
3703 if (exec->status != XML_REGEXP_OK)
3704 return(exec->status);
3705
3706 if (exec->comp->compact != NULL)
3707 return(xmlRegCompactPushString(exec, exec->comp, value, data));
3708
3709 if (value == NULL) {
3710 if (exec->state->type == XML_REGEXP_FINAL_STATE)
3711 return(1);
3712 final = 1;
3713 }
3714
3715 /*
3716 * If we have an active rollback stack push the new value there
3717 * and get back to where we were left
3718 */
3719 if ((value != NULL) && (exec->inputStackNr > 0)) {
3720 xmlFARegExecSaveInputString(exec, value, data);
3721 value = exec->inputStack[exec->index].value;
3722 data = exec->inputStack[exec->index].data;
3723 }
3724
3725 while ((exec->status == XML_REGEXP_OK) &&
3726 ((value != NULL) ||
3727 ((final == 1) &&
3728 (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
3729
3730 /*
3731 * End of input on non-terminal state, rollback, however we may
3732 * still have epsilon like transition for counted transitions
3733 * on counters, in that case don't break too early.
3734 */
3735 if ((value == NULL) && (exec->counts == NULL))
3736 goto rollback;
3737
3738 exec->transcount = 0;
3739 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
3740 trans = &exec->state->trans[exec->transno];
3741 if (trans->to < 0)
3742 continue;
3743 atom = trans->atom;
3744 ret = 0;
3745 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
3746 int i;
3747 int count;
3748 xmlRegTransPtr t;
3749 xmlRegCounterPtr counter;
3750
3751 ret = 0;
3752
3753 /*
3754 * Check all counted transitions from the current state
3755 */
3756 if ((value == NULL) && (final)) {
3757 ret = 1;
3758 } else if (value != NULL) {
3759 for (i = 0;i < exec->state->nbTrans;i++) {
3760 t = &exec->state->trans[i];
3761 if ((t->counter < 0) || (t == trans))
3762 continue;
3763 counter = &exec->comp->counters[t->counter];
3764 count = exec->counts[t->counter];
3765 if ((count < counter->max) &&
3766 (t->atom != NULL) &&
3767 (xmlStrEqual(value, t->atom->valuep))) {
3768 ret = 0;
3769 break;
3770 }
3771 if ((count >= counter->min) &&
3772 (count < counter->max) &&
3773 (t->atom != NULL) &&
3774 (xmlStrEqual(value, t->atom->valuep))) {
3775 ret = 1;
3776 break;
3777 }
3778 }
3779 }
3780 } else if (trans->count == REGEXP_ALL_COUNTER) {
3781 int i;
3782 int count;
3783 xmlRegTransPtr t;
3784 xmlRegCounterPtr counter;
3785
3786 ret = 1;
3787
3788 /*
3789 * Check all counted transitions from the current state
3790 */
3791 for (i = 0;i < exec->state->nbTrans;i++) {
3792 t = &exec->state->trans[i];
3793 if ((t->counter < 0) || (t == trans))
3794 continue;
3795 counter = &exec->comp->counters[t->counter];
3796 count = exec->counts[t->counter];
3797 if ((count < counter->min) || (count > counter->max)) {
3798 ret = 0;
3799 break;
3800 }
3801 }
3802 } else if (trans->count >= 0) {
3803 int count;
3804 xmlRegCounterPtr counter;
3805
3806 /*
3807 * A counted transition.
3808 */
3809
3810 count = exec->counts[trans->count];
3811 counter = &exec->comp->counters[trans->count];
3812 ret = ((count >= counter->min) && (count <= counter->max));
3813 } else if (atom == NULL) {
3814 fprintf(stderr, "epsilon transition left at runtime\n");
3815 exec->status = XML_REGEXP_INTERNAL_ERROR;
3816 break;
3817 } else if (value != NULL) {
3818 ret = xmlRegStrEqualWildcard(atom->valuep, value);
3819 if (atom->neg) {
3820 ret = !ret;
3821 if (!compound)
3822 ret = 0;
3823 }
3824 if ((ret == 1) && (trans->counter >= 0)) {
3825 xmlRegCounterPtr counter;
3826 int count;
3827
3828 count = exec->counts[trans->counter];
3829 counter = &exec->comp->counters[trans->counter];
3830 if (count >= counter->max)
3831 ret = 0;
3832 }
3833
3834 if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
3835 xmlRegStatePtr to = exec->comp->states[trans->to];
3836
3837 /*
3838 * this is a multiple input sequence
3839 */
3840 if (exec->state->nbTrans > exec->transno + 1) {
3841 if (exec->inputStackNr <= 0) {
3842 xmlFARegExecSaveInputString(exec, value, data);
3843 }
3844 xmlFARegExecSave(exec);
3845 }
3846 exec->transcount = 1;
3847 do {
3848 /*
3849 * Try to progress as much as possible on the input
3850 */
3851 if (exec->transcount == atom->max) {
3852 break;
3853 }
3854 exec->index++;
3855 value = exec->inputStack[exec->index].value;
3856 data = exec->inputStack[exec->index].data;
3857
3858 /*
3859 * End of input: stop here
3860 */
3861 if (value == NULL) {
3862 exec->index --;
3863 break;
3864 }
3865 if (exec->transcount >= atom->min) {
3866 int transno = exec->transno;
3867 xmlRegStatePtr state = exec->state;
3868
3869 /*
3870 * The transition is acceptable save it
3871 */
3872 exec->transno = -1; /* trick */
3873 exec->state = to;
3874 if (exec->inputStackNr <= 0) {
3875 xmlFARegExecSaveInputString(exec, value, data);
3876 }
3877 xmlFARegExecSave(exec);
3878 exec->transno = transno;
3879 exec->state = state;
3880 }
3881 ret = xmlStrEqual(value, atom->valuep);
3882 exec->transcount++;
3883 } while (ret == 1);
3884 if (exec->transcount < atom->min)
3885 ret = 0;
3886
3887 /*
3888 * If the last check failed but one transition was found
3889 * possible, rollback
3890 */
3891 if (ret < 0)
3892 ret = 0;
3893 if (ret == 0) {
3894 goto rollback;
3895 }
3896 }
3897 }
3898 if (ret == 1) {
3899 if ((exec->callback != NULL) && (atom != NULL) &&
3900 (data != NULL)) {
3901 exec->callback(exec->data, atom->valuep,
3902 atom->data, data);
3903 }
3904 if (exec->state->nbTrans > exec->transno + 1) {
3905 if (exec->inputStackNr <= 0) {
3906 xmlFARegExecSaveInputString(exec, value, data);
3907 }
3908 xmlFARegExecSave(exec);
3909 }
3910 if (trans->counter >= 0) {
3911 exec->counts[trans->counter]++;
3912 }
3913 if ((trans->count >= 0) &&
3914 (trans->count < REGEXP_ALL_COUNTER)) {
3915 exec->counts[trans->count] = 0;
3916 }
3917 if ((exec->comp->states[trans->to] != NULL) &&
3918 (exec->comp->states[trans->to]->type ==
3919 XML_REGEXP_SINK_STATE)) {
3920 /*
3921 * entering a sink state, save the current state as error
3922 * state.
3923 */
3924 if (exec->errString != NULL)
3925 xmlFree(exec->errString);
3926 exec->errString = xmlStrdup(value);
3927 exec->errState = exec->state;
3928 memcpy(exec->errCounts, exec->counts,
3929 exec->comp->nbCounters * sizeof(int));
3930 }
3931 exec->state = exec->comp->states[trans->to];
3932 exec->transno = 0;
3933 if (trans->atom != NULL) {
3934 if (exec->inputStack != NULL) {
3935 exec->index++;
3936 if (exec->index < exec->inputStackNr) {
3937 value = exec->inputStack[exec->index].value;
3938 data = exec->inputStack[exec->index].data;
3939 } else {
3940 value = NULL;
3941 data = NULL;
3942 }
3943 } else {
3944 value = NULL;
3945 data = NULL;
3946 }
3947 }
3948 goto progress;
3949 } else if (ret < 0) {
3950 exec->status = XML_REGEXP_INTERNAL_ERROR;
3951 break;
3952 }
3953 }
3954 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
3955rollback:
3956 /*
3957 * if we didn't yet rollback on the current input
3958 * store the current state as the error state.
3959 */
3960 if ((progress) && (exec->state != NULL) &&
3961 (exec->state->type != XML_REGEXP_SINK_STATE)) {
3962 progress = 0;
3963 if (exec->errString != NULL)
3964 xmlFree(exec->errString);
3965 exec->errString = xmlStrdup(value);
3966 exec->errState = exec->state;
3967 if (exec->comp->nbCounters)
3968 memcpy(exec->errCounts, exec->counts,
3969 exec->comp->nbCounters * sizeof(int));
3970 }
3971
3972 /*
3973 * Failed to find a way out
3974 */
3975 exec->determinist = 0;
3976 xmlFARegExecRollBack(exec);
3977 if ((exec->inputStack != NULL ) &&
3978 (exec->status == XML_REGEXP_OK)) {
3979 value = exec->inputStack[exec->index].value;
3980 data = exec->inputStack[exec->index].data;
3981 }
3982 }
3983 continue;
3984progress:
3985 progress = 1;
3986 continue;
3987 }
3988 if (exec->status == XML_REGEXP_OK) {
3989 return(exec->state->type == XML_REGEXP_FINAL_STATE);
3990 }
3991 return(exec->status);
3992}
3993
3994/**
3995 * xmlRegExecPushString:
3996 * @exec: a regexp execution context or NULL to indicate the end
3997 * @value: a string token input
3998 * @data: data associated to the token to reuse in callbacks
3999 *
4000 * Push one input token in the execution context
4001 *
4002 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4003 * a negative value in case of error.
4004 */
4005int
4006xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
4007 void *data) {
4008 return(xmlRegExecPushStringInternal(exec, value, data, 0));
4009}
4010
4011/**
4012 * xmlRegExecPushString2:
4013 * @exec: a regexp execution context or NULL to indicate the end
4014 * @value: the first string token input
4015 * @value2: the second string token input
4016 * @data: data associated to the token to reuse in callbacks
4017 *
4018 * Push one input token in the execution context
4019 *
4020 * Returns: 1 if the regexp reached a final state, 0 if non-final, and
4021 * a negative value in case of error.
4022 */
4023int
4024xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
4025 const xmlChar *value2, void *data) {
4026 xmlChar buf[150];
4027 int lenn, lenp, ret;
4028 xmlChar *str;
4029
4030 if (exec == NULL)
4031 return(-1);
4032 if (exec->comp == NULL)
4033 return(-1);
4034 if (exec->status != XML_REGEXP_OK)
4035 return(exec->status);
4036
4037 if (value2 == NULL)
4038 return(xmlRegExecPushString(exec, value, data));
4039
4040 lenn = strlen((char *) value2);
4041 lenp = strlen((char *) value);
4042
4043 if (150 < lenn + lenp + 2) {
4044 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
4045 if (str == NULL) {
4046 exec->status = XML_REGEXP_OUT_OF_MEMORY;
4047 return(-1);
4048 }
4049 } else {
4050 str = buf;
4051 }
4052 memcpy(&str[0], value, lenp);
4053 str[lenp] = XML_REG_STRING_SEPARATOR;
4054 memcpy(&str[lenp + 1], value2, lenn);
4055 str[lenn + lenp + 1] = 0;
4056
4057 if (exec->comp->compact != NULL)
4058 ret = xmlRegCompactPushString(exec, exec->comp, str, data);
4059 else
4060 ret = xmlRegExecPushStringInternal(exec, str, data, 1);
4061
4062 if (str != buf)
4063 xmlFree(str);
4064 return(ret);
4065}
4066
4067/**
4068 * xmlRegExecGetValues:
4069 * @exec: a regexp execution context
4070 * @err: error extraction or normal one
4071 * @nbval: pointer to the number of accepted values IN/OUT
4072 * @nbneg: return number of negative transitions
4073 * @values: pointer to the array of acceptable values
4074 * @terminal: return value if this was a terminal state
4075 *
4076 * Extract information from the regexp execution, internal routine to
4077 * implement xmlRegExecNextValues() and xmlRegExecErrInfo()
4078 *
4079 * Returns: 0 in case of success or -1 in case of error.
4080 */
4081static int
4082xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
4083 int *nbval, int *nbneg,
4084 xmlChar **values, int *terminal) {
4085 int maxval;
4086 int nb = 0;
4087
4088 if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
4089 (values == NULL) || (*nbval <= 0))
4090 return(-1);
4091
4092 maxval = *nbval;
4093 *nbval = 0;
4094 *nbneg = 0;
4095 if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
4096 xmlRegexpPtr comp;
4097 int target, i, state;
4098
4099 comp = exec->comp;
4100
4101 if (err) {
4102 if (exec->errStateNo == -1) return(-1);
4103 state = exec->errStateNo;
4104 } else {
4105 state = exec->index;
4106 }
4107 if (terminal != NULL) {
4108 if (comp->compact[state * (comp->nbstrings + 1)] ==
4109 XML_REGEXP_FINAL_STATE)
4110 *terminal = 1;
4111 else
4112 *terminal = 0;
4113 }
4114 for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4115 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4116 if ((target > 0) && (target <= comp->nbstates) &&
4117 (comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
4118 XML_REGEXP_SINK_STATE)) {
4119 values[nb++] = comp->stringMap[i];
4120 (*nbval)++;
4121 }
4122 }
4123 for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
4124 target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
4125 if ((target > 0) && (target <= comp->nbstates) &&
4126 (comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
4127 XML_REGEXP_SINK_STATE)) {
4128 values[nb++] = comp->stringMap[i];
4129 (*nbneg)++;
4130 }
4131 }
4132 } else {
4133 int transno;
4134 xmlRegTransPtr trans;
4135 xmlRegAtomPtr atom;
4136 xmlRegStatePtr state;
4137
4138 if (terminal != NULL) {
4139 if (exec->state->type == XML_REGEXP_FINAL_STATE)
4140 *terminal = 1;
4141 else
4142 *terminal = 0;
4143 }
4144
4145 if (err) {
4146 if (exec->errState == NULL) return(-1);
4147 state = exec->errState;
4148 } else {
4149 if (exec->state == NULL) return(-1);
4150 state = exec->state;
4151 }
4152 for (transno = 0;
4153 (transno < state->nbTrans) && (nb < maxval);
4154 transno++) {
4155 trans = &state->trans[transno];
4156 if (trans->to < 0)
4157 continue;
4158 atom = trans->atom;
4159 if ((atom == NULL) || (atom->valuep == NULL))
4160 continue;
4161 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4162 /* this should not be reached but ... */
4163 TODO;
4164 } else if (trans->count == REGEXP_ALL_COUNTER) {
4165 /* this should not be reached but ... */
4166 TODO;
4167 } else if (trans->counter >= 0) {
4168 xmlRegCounterPtr counter = NULL;
4169 int count;
4170
4171 if (err)
4172 count = exec->errCounts[trans->counter];
4173 else
4174 count = exec->counts[trans->counter];
4175 if (exec->comp != NULL)
4176 counter = &exec->comp->counters[trans->counter];
4177 if ((counter == NULL) || (count < counter->max)) {
4178 if (atom->neg)
4179 values[nb++] = (xmlChar *) atom->valuep2;
4180 else
4181 values[nb++] = (xmlChar *) atom->valuep;
4182 (*nbval)++;
4183 }
4184 } else {
4185 if ((exec->comp != NULL) && (exec->comp->states[trans->to] != NULL) &&
4186 (exec->comp->states[trans->to]->type !=
4187 XML_REGEXP_SINK_STATE)) {
4188 if (atom->neg)
4189 values[nb++] = (xmlChar *) atom->valuep2;
4190 else
4191 values[nb++] = (xmlChar *) atom->valuep;
4192 (*nbval)++;
4193 }
4194 }
4195 }
4196 for (transno = 0;
4197 (transno < state->nbTrans) && (nb < maxval);
4198 transno++) {
4199 trans = &state->trans[transno];
4200 if (trans->to < 0)
4201 continue;
4202 atom = trans->atom;
4203 if ((atom == NULL) || (atom->valuep == NULL))
4204 continue;
4205 if (trans->count == REGEXP_ALL_LAX_COUNTER) {
4206 continue;
4207 } else if (trans->count == REGEXP_ALL_COUNTER) {
4208 continue;
4209 } else if (trans->counter >= 0) {
4210 continue;
4211 } else {
4212 if ((exec->comp->states[trans->to] != NULL) &&
4213 (exec->comp->states[trans->to]->type ==
4214 XML_REGEXP_SINK_STATE)) {
4215 if (atom->neg)
4216 values[nb++] = (xmlChar *) atom->valuep2;
4217 else
4218 values[nb++] = (xmlChar *) atom->valuep;
4219 (*nbneg)++;
4220 }
4221 }
4222 }
4223 }
4224 return(0);
4225}
4226
4227/**
4228 * xmlRegExecNextValues:
4229 * @exec: a regexp execution context
4230 * @nbval: pointer to the number of accepted values IN/OUT
4231 * @nbneg: return number of negative transitions
4232 * @values: pointer to the array of acceptable values
4233 * @terminal: return value if this was a terminal state
4234 *
4235 * Extract information from the regexp execution,
4236 * the parameter @values must point to an array of @nbval string pointers
4237 * on return nbval will contain the number of possible strings in that
4238 * state and the @values array will be updated with them. The string values
4239 * returned will be freed with the @exec context and don't need to be
4240 * deallocated.
4241 *
4242 * Returns: 0 in case of success or -1 in case of error.
4243 */
4244int
4245xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
4246 xmlChar **values, int *terminal) {
4247 return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
4248}
4249
4250/**
4251 * xmlRegExecErrInfo:
4252 * @exec: a regexp execution context generating an error
4253 * @string: return value for the error string
4254 * @nbval: pointer to the number of accepted values IN/OUT
4255 * @nbneg: return number of negative transitions
4256 * @values: pointer to the array of acceptable values
4257 * @terminal: return value if this was a terminal state
4258 *
4259 * Extract error information from the regexp execution, the parameter
4260 * @string will be updated with the value pushed and not accepted,
4261 * the parameter @values must point to an array of @nbval string pointers
4262 * on return nbval will contain the number of possible strings in that
4263 * state and the @values array will be updated with them. The string values
4264 * returned will be freed with the @exec context and don't need to be
4265 * deallocated.
4266 *
4267 * Returns: 0 in case of success or -1 in case of error.
4268 */
4269int
4270xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
4271 int *nbval, int *nbneg, xmlChar **values, int *terminal) {
4272 if (exec == NULL)
4273 return(-1);
4274 if (string != NULL) {
4275 if (exec->status != XML_REGEXP_OK)
4276 *string = exec->errString;
4277 else
4278 *string = NULL;
4279 }
4280 return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
4281}
4282
4283#if 0
4284static int
4285xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
4286 xmlRegTransPtr trans;
4287 xmlRegAtomPtr atom;
4288 int ret;
4289 int codepoint, len;
4290
4291 if (exec == NULL)
4292 return(-1);
4293 if (exec->status != XML_REGEXP_OK)
4294 return(exec->status);
4295
4296 while ((exec->status == XML_REGEXP_OK) &&
4297 ((exec->inputString[exec->index] != 0) ||
4298 (exec->state->type != XML_REGEXP_FINAL_STATE))) {
4299
4300 /*
4301 * End of input on non-terminal state, rollback, however we may
4302 * still have epsilon like transition for counted transitions
4303 * on counters, in that case don't break too early.
4304 */
4305 if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
4306 goto rollback;
4307
4308 exec->transcount = 0;
4309 for (;exec->transno < exec->state->nbTrans;exec->transno++) {
4310 trans = &exec->state->trans[exec->transno];
4311 if (trans->to < 0)
4312 continue;
4313 atom = trans->atom;
4314 ret = 0;
4315 if (trans->count >= 0) {
4316 int count;
4317 xmlRegCounterPtr counter;
4318
4319 /*
4320 * A counted transition.
4321 */
4322
4323 count = exec->counts[trans->count];
4324 counter = &exec->comp->counters[trans->count];
4325 ret = ((count >= counter->min) && (count <= counter->max));
4326 } else if (atom == NULL) {
4327 fprintf(stderr, "epsilon transition left at runtime\n");
4328 exec->status = XML_REGEXP_INTERNAL_ERROR;
4329 break;
4330 } else if (exec->inputString[exec->index] != 0) {
4331 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
4332 ret = xmlRegCheckCharacter(atom, codepoint);
4333 if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
4334 xmlRegStatePtr to = exec->comp->states[trans->to];
4335
4336 /*
4337 * this is a multiple input sequence
4338 */
4339 if (exec->state->nbTrans > exec->transno + 1) {
4340 xmlFARegExecSave(exec);
4341 }
4342 exec->transcount = 1;
4343 do {
4344 /*
4345 * Try to progress as much as possible on the input
4346 */
4347 if (exec->transcount == atom->max) {
4348 break;
4349 }
4350 exec->index += len;
4351 /*
4352 * End of input: stop here
4353 */
4354 if (exec->inputString[exec->index] == 0) {
4355 exec->index -= len;
4356 break;
4357 }
4358 if (exec->transcount >= atom->min) {
4359 int transno = exec->transno;
4360 xmlRegStatePtr state = exec->state;
4361
4362 /*
4363 * The transition is acceptable save it
4364 */
4365 exec->transno = -1; /* trick */
4366 exec->state = to;
4367 xmlFARegExecSave(exec);
4368 exec->transno = transno;
4369 exec->state = state;
4370 }
4371 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
4372 len);
4373 ret = xmlRegCheckCharacter(atom, codepoint);
4374 exec->transcount++;
4375 } while (ret == 1);
4376 if (exec->transcount < atom->min)
4377 ret = 0;
4378
4379 /*
4380 * If the last check failed but one transition was found
4381 * possible, rollback
4382 */
4383 if (ret < 0)
4384 ret = 0;
4385 if (ret == 0) {
4386 goto rollback;
4387 }
4388 }
4389 }
4390 if (ret == 1) {
4391 if (exec->state->nbTrans > exec->transno + 1) {
4392 xmlFARegExecSave(exec);
4393 }
4394 /*
4395 * restart count for expressions like this ((abc){2})*
4396 */
4397 if (trans->count >= 0) {
4398 exec->counts[trans->count] = 0;
4399 }
4400 if (trans->counter >= 0) {
4401 exec->counts[trans->counter]++;
4402 }
4403 exec->state = exec->comp->states[trans->to];
4404 exec->transno = 0;
4405 if (trans->atom != NULL) {
4406 exec->index += len;
4407 }
4408 goto progress;
4409 } else if (ret < 0) {
4410 exec->status = XML_REGEXP_INTERNAL_ERROR;
4411 break;
4412 }
4413 }
4414 if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
4415rollback:
4416 /*
4417 * Failed to find a way out
4418 */
4419 exec->determinist = 0;
4420 xmlFARegExecRollBack(exec);
4421 }
4422progress:
4423 continue;
4424 }
4425}
4426#endif
4427/************************************************************************
4428 * *
4429 * Parser for the Schemas Datatype Regular Expressions *
4430 * http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs *
4431 * *
4432 ************************************************************************/
4433
4434/**
4435 * xmlFAIsChar:
4436 * @ctxt: a regexp parser context
4437 *
4438 * [10] Char ::= [^.\?*+()|#x5B#x5D]
4439 */
4440static int
4441xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
4442 int cur;
4443 int len;
4444
4445 len = 4;
4446 cur = xmlGetUTF8Char(ctxt->cur, &len);
4447 if (cur < 0) {
4448 ERROR("Invalid UTF-8");
4449 return(0);
4450 }
4451 if ((cur == '.') || (cur == '\\') || (cur == '?') ||
4452 (cur == '*') || (cur == '+') || (cur == '(') ||
4453 (cur == ')') || (cur == '|') || (cur == 0x5B) ||
4454 (cur == 0x5D) || (cur == 0))
4455 return(-1);
4456 return(cur);
4457}
4458
4459/**
4460 * xmlFAParseCharProp:
4461 * @ctxt: a regexp parser context
4462 *
4463 * [27] charProp ::= IsCategory | IsBlock
4464 * [28] IsCategory ::= Letters | Marks | Numbers | Punctuation |
4465 * Separators | Symbols | Others
4466 * [29] Letters ::= 'L' [ultmo]?
4467 * [30] Marks ::= 'M' [nce]?
4468 * [31] Numbers ::= 'N' [dlo]?
4469 * [32] Punctuation ::= 'P' [cdseifo]?
4470 * [33] Separators ::= 'Z' [slp]?
4471 * [34] Symbols ::= 'S' [mcko]?
4472 * [35] Others ::= 'C' [cfon]?
4473 * [36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+
4474 */
4475static void
4476xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
4477 int cur;
4478 xmlRegAtomType type = (xmlRegAtomType) 0;
4479 xmlChar *blockName = NULL;
4480
4481 cur = CUR;
4482 if (cur == 'L') {
4483 NEXT;
4484 cur = CUR;
4485 if (cur == 'u') {
4486 NEXT;
4487 type = XML_REGEXP_LETTER_UPPERCASE;
4488 } else if (cur == 'l') {
4489 NEXT;
4490 type = XML_REGEXP_LETTER_LOWERCASE;
4491 } else if (cur == 't') {
4492 NEXT;
4493 type = XML_REGEXP_LETTER_TITLECASE;
4494 } else if (cur == 'm') {
4495 NEXT;
4496 type = XML_REGEXP_LETTER_MODIFIER;
4497 } else if (cur == 'o') {
4498 NEXT;
4499 type = XML_REGEXP_LETTER_OTHERS;
4500 } else {
4501 type = XML_REGEXP_LETTER;
4502 }
4503 } else if (cur == 'M') {
4504 NEXT;
4505 cur = CUR;
4506 if (cur == 'n') {
4507 NEXT;
4508 /* nonspacing */
4509 type = XML_REGEXP_MARK_NONSPACING;
4510 } else if (cur == 'c') {
4511 NEXT;
4512 /* spacing combining */
4513 type = XML_REGEXP_MARK_SPACECOMBINING;
4514 } else if (cur == 'e') {
4515 NEXT;
4516 /* enclosing */
4517 type = XML_REGEXP_MARK_ENCLOSING;
4518 } else {
4519 /* all marks */
4520 type = XML_REGEXP_MARK;
4521 }
4522 } else if (cur == 'N') {
4523 NEXT;
4524 cur = CUR;
4525 if (cur == 'd') {
4526 NEXT;
4527 /* digital */
4528 type = XML_REGEXP_NUMBER_DECIMAL;
4529 } else if (cur == 'l') {
4530 NEXT;
4531 /* letter */
4532 type = XML_REGEXP_NUMBER_LETTER;
4533 } else if (cur == 'o') {
4534 NEXT;
4535 /* other */
4536 type = XML_REGEXP_NUMBER_OTHERS;
4537 } else {
4538 /* all numbers */
4539 type = XML_REGEXP_NUMBER;
4540 }
4541 } else if (cur == 'P') {
4542 NEXT;
4543 cur = CUR;
4544 if (cur == 'c') {
4545 NEXT;
4546 /* connector */
4547 type = XML_REGEXP_PUNCT_CONNECTOR;
4548 } else if (cur == 'd') {
4549 NEXT;
4550 /* dash */
4551 type = XML_REGEXP_PUNCT_DASH;
4552 } else if (cur == 's') {
4553 NEXT;
4554 /* open */
4555 type = XML_REGEXP_PUNCT_OPEN;
4556 } else if (cur == 'e') {
4557 NEXT;
4558 /* close */
4559 type = XML_REGEXP_PUNCT_CLOSE;
4560 } else if (cur == 'i') {
4561 NEXT;
4562 /* initial quote */
4563 type = XML_REGEXP_PUNCT_INITQUOTE;
4564 } else if (cur == 'f') {
4565 NEXT;
4566 /* final quote */
4567 type = XML_REGEXP_PUNCT_FINQUOTE;
4568 } else if (cur == 'o') {
4569 NEXT;
4570 /* other */
4571 type = XML_REGEXP_PUNCT_OTHERS;
4572 } else {
4573 /* all punctuation */
4574 type = XML_REGEXP_PUNCT;
4575 }
4576 } else if (cur == 'Z') {
4577 NEXT;
4578 cur = CUR;
4579 if (cur == 's') {
4580 NEXT;
4581 /* space */
4582 type = XML_REGEXP_SEPAR_SPACE;
4583 } else if (cur == 'l') {
4584 NEXT;
4585 /* line */
4586 type = XML_REGEXP_SEPAR_LINE;
4587 } else if (cur == 'p') {
4588 NEXT;
4589 /* paragraph */
4590 type = XML_REGEXP_SEPAR_PARA;
4591 } else {
4592 /* all separators */
4593 type = XML_REGEXP_SEPAR;
4594 }
4595 } else if (cur == 'S') {
4596 NEXT;
4597 cur = CUR;
4598 if (cur == 'm') {
4599 NEXT;
4600 type = XML_REGEXP_SYMBOL_MATH;
4601 /* math */
4602 } else if (cur == 'c') {
4603 NEXT;
4604 type = XML_REGEXP_SYMBOL_CURRENCY;
4605 /* currency */
4606 } else if (cur == 'k') {
4607 NEXT;
4608 type = XML_REGEXP_SYMBOL_MODIFIER;
4609 /* modifiers */
4610 } else if (cur == 'o') {
4611 NEXT;
4612 type = XML_REGEXP_SYMBOL_OTHERS;
4613 /* other */
4614 } else {
4615 /* all symbols */
4616 type = XML_REGEXP_SYMBOL;
4617 }
4618 } else if (cur == 'C') {
4619 NEXT;
4620 cur = CUR;
4621 if (cur == 'c') {
4622 NEXT;
4623 /* control */
4624 type = XML_REGEXP_OTHER_CONTROL;
4625 } else if (cur == 'f') {
4626 NEXT;
4627 /* format */
4628 type = XML_REGEXP_OTHER_FORMAT;
4629 } else if (cur == 'o') {
4630 NEXT;
4631 /* private use */
4632 type = XML_REGEXP_OTHER_PRIVATE;
4633 } else if (cur == 'n') {
4634 NEXT;
4635 /* not assigned */
4636 type = XML_REGEXP_OTHER_NA;
4637 } else {
4638 /* all others */
4639 type = XML_REGEXP_OTHER;
4640 }
4641 } else if (cur == 'I') {
4642 const xmlChar *start;
4643 NEXT;
4644 cur = CUR;
4645 if (cur != 's') {
4646 ERROR("IsXXXX expected");
4647 return;
4648 }
4649 NEXT;
4650 start = ctxt->cur;
4651 cur = CUR;
4652 if (((cur >= 'a') && (cur <= 'z')) ||
4653 ((cur >= 'A') && (cur <= 'Z')) ||
4654 ((cur >= '0') && (cur <= '9')) ||
4655 (cur == 0x2D)) {
4656 NEXT;
4657 cur = CUR;
4658 while (((cur >= 'a') && (cur <= 'z')) ||
4659 ((cur >= 'A') && (cur <= 'Z')) ||
4660 ((cur >= '0') && (cur <= '9')) ||
4661 (cur == 0x2D)) {
4662 NEXT;
4663 cur = CUR;
4664 }
4665 }
4666 type = XML_REGEXP_BLOCK_NAME;
4667 blockName = xmlStrndup(start, ctxt->cur - start);
4668 } else {
4669 ERROR("Unknown char property");
4670 return;
4671 }
4672 if (ctxt->atom == NULL) {
4673 ctxt->atom = xmlRegNewAtom(ctxt, type);
4674 if (ctxt->atom == NULL) {
4675 xmlFree(blockName);
4676 return;
4677 }
4678 ctxt->atom->valuep = blockName;
4679 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4680 if (xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4681 type, 0, 0, blockName) == NULL) {
4682 xmlFree(blockName);
4683 }
4684 }
4685}
4686
4687static int parse_escaped_codeunit(xmlRegParserCtxtPtr ctxt)
4688{
4689 int val = 0, i, cur;
4690 for (i = 0; i < 4; i++) {
4691 NEXT;
4692 val *= 16;
4693 cur = CUR;
4694 if (cur >= '0' && cur <= '9') {
4695 val += cur - '0';
4696 } else if (cur >= 'A' && cur <= 'F') {
4697 val += cur - 'A' + 10;
4698 } else if (cur >= 'a' && cur <= 'f') {
4699 val += cur - 'a' + 10;
4700 } else {
4701 ERROR("Expecting hex digit");
4702 return -1;
4703 }
4704 }
4705 return val;
4706}
4707
4708static int parse_escaped_codepoint(xmlRegParserCtxtPtr ctxt)
4709{
4710 int val = parse_escaped_codeunit(ctxt);
4711 if (0xD800 <= val && val <= 0xDBFF) {
4712 NEXT;
4713 if (CUR == '\\') {
4714 NEXT;
4715 if (CUR == 'u') {
4716 int low = parse_escaped_codeunit(ctxt);
4717 if (0xDC00 <= low && low <= 0xDFFF) {
4718 return (val - 0xD800) * 0x400 + (low - 0xDC00) + 0x10000;
4719 }
4720 }
4721 }
4722 ERROR("Invalid low surrogate pair code unit");
4723 val = -1;
4724 }
4725 return val;
4726}
4727
4728/**
4729 * xmlFAParseCharClassEsc:
4730 * @ctxt: a regexp parser context
4731 *
4732 * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
4733 * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
4734 * [25] catEsc ::= '\p{' charProp '}'
4735 * [26] complEsc ::= '\P{' charProp '}'
4736 * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
4737 */
4738static void
4739xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
4740 int cur;
4741
4742 if (CUR == '.') {
4743 if (ctxt->atom == NULL) {
4744 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
4745 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4746 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4747 XML_REGEXP_ANYCHAR, 0, 0, NULL);
4748 }
4749 NEXT;
4750 return;
4751 }
4752 if (CUR != '\\') {
4753 ERROR("Escaped sequence: expecting \\");
4754 return;
4755 }
4756 NEXT;
4757 cur = CUR;
4758 if (cur == 'p') {
4759 NEXT;
4760 if (CUR != '{') {
4761 ERROR("Expecting '{'");
4762 return;
4763 }
4764 NEXT;
4765 xmlFAParseCharProp(ctxt);
4766 if (CUR != '}') {
4767 ERROR("Expecting '}'");
4768 return;
4769 }
4770 NEXT;
4771 } else if (cur == 'P') {
4772 NEXT;
4773 if (CUR != '{') {
4774 ERROR("Expecting '{'");
4775 return;
4776 }
4777 NEXT;
4778 xmlFAParseCharProp(ctxt);
4779 if (ctxt->atom != NULL)
4780 ctxt->atom->neg = 1;
4781 if (CUR != '}') {
4782 ERROR("Expecting '}'");
4783 return;
4784 }
4785 NEXT;
4786 } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
4787 (cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
4788 (cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
4789 (cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
4790 (cur == 0x5E) ||
4791
4792 /* Non-standard escape sequences:
4793 * Java 1.8|.NET Core 3.1|MSXML 6 */
4794 (cur == '!') || /* + | + | + */
4795 (cur == '"') || /* + | + | + */
4796 (cur == '#') || /* + | + | + */
4797 (cur == '$') || /* + | + | + */
4798 (cur == '%') || /* + | + | + */
4799 (cur == ',') || /* + | + | + */
4800 (cur == '/') || /* + | + | + */
4801 (cur == ':') || /* + | + | + */
4802 (cur == ';') || /* + | + | + */
4803 (cur == '=') || /* + | + | + */
4804 (cur == '>') || /* | + | + */
4805 (cur == '@') || /* + | + | + */
4806 (cur == '`') || /* + | + | + */
4807 (cur == '~') || /* + | + | + */
4808 (cur == 'u')) { /* | + | + */
4809 if (ctxt->atom == NULL) {
4810 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
4811 if (ctxt->atom != NULL) {
4812 switch (cur) {
4813 case 'n':
4814 ctxt->atom->codepoint = '\n';
4815 break;
4816 case 'r':
4817 ctxt->atom->codepoint = '\r';
4818 break;
4819 case 't':
4820 ctxt->atom->codepoint = '\t';
4821 break;
4822 case 'u':
4823 cur = parse_escaped_codepoint(ctxt);
4824 if (cur < 0) {
4825 return;
4826 }
4827 ctxt->atom->codepoint = cur;
4828 break;
4829 default:
4830 ctxt->atom->codepoint = cur;
4831 }
4832 }
4833 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4834 switch (cur) {
4835 case 'n':
4836 cur = '\n';
4837 break;
4838 case 'r':
4839 cur = '\r';
4840 break;
4841 case 't':
4842 cur = '\t';
4843 break;
4844 }
4845 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4846 XML_REGEXP_CHARVAL, cur, cur, NULL);
4847 }
4848 NEXT;
4849 } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
4850 (cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
4851 (cur == 'w') || (cur == 'W')) {
4852 xmlRegAtomType type = XML_REGEXP_ANYSPACE;
4853
4854 switch (cur) {
4855 case 's':
4856 type = XML_REGEXP_ANYSPACE;
4857 break;
4858 case 'S':
4859 type = XML_REGEXP_NOTSPACE;
4860 break;
4861 case 'i':
4862 type = XML_REGEXP_INITNAME;
4863 break;
4864 case 'I':
4865 type = XML_REGEXP_NOTINITNAME;
4866 break;
4867 case 'c':
4868 type = XML_REGEXP_NAMECHAR;
4869 break;
4870 case 'C':
4871 type = XML_REGEXP_NOTNAMECHAR;
4872 break;
4873 case 'd':
4874 type = XML_REGEXP_DECIMAL;
4875 break;
4876 case 'D':
4877 type = XML_REGEXP_NOTDECIMAL;
4878 break;
4879 case 'w':
4880 type = XML_REGEXP_REALCHAR;
4881 break;
4882 case 'W':
4883 type = XML_REGEXP_NOTREALCHAR;
4884 break;
4885 }
4886 NEXT;
4887 if (ctxt->atom == NULL) {
4888 ctxt->atom = xmlRegNewAtom(ctxt, type);
4889 } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
4890 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4891 type, 0, 0, NULL);
4892 }
4893 } else {
4894 ERROR("Wrong escape sequence, misuse of character '\\'");
4895 }
4896}
4897
4898/**
4899 * xmlFAParseCharRange:
4900 * @ctxt: a regexp parser context
4901 *
4902 * [17] charRange ::= seRange | XmlCharRef | XmlCharIncDash
4903 * [18] seRange ::= charOrEsc '-' charOrEsc
4904 * [20] charOrEsc ::= XmlChar | SingleCharEsc
4905 * [21] XmlChar ::= [^\#x2D#x5B#x5D]
4906 * [22] XmlCharIncDash ::= [^\#x5B#x5D]
4907 */
4908static void
4909xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
4910 int cur, len;
4911 int start = -1;
4912 int end = -1;
4913
4914 if (CUR == '\0') {
4915 ERROR("Expecting ']'");
4916 return;
4917 }
4918
4919 cur = CUR;
4920 if (cur == '\\') {
4921 NEXT;
4922 cur = CUR;
4923 switch (cur) {
4924 case 'n': start = 0xA; break;
4925 case 'r': start = 0xD; break;
4926 case 't': start = 0x9; break;
4927 case '\\': case '|': case '.': case '-': case '^': case '?':
4928 case '*': case '+': case '{': case '}': case '(': case ')':
4929 case '[': case ']':
4930 start = cur; break;
4931 default:
4932 ERROR("Invalid escape value");
4933 return;
4934 }
4935 end = start;
4936 len = 1;
4937 } else if ((cur != 0x5B) && (cur != 0x5D)) {
4938 len = 4;
4939 end = start = xmlGetUTF8Char(ctxt->cur, &len);
4940 if (start < 0) {
4941 ERROR("Invalid UTF-8");
4942 return;
4943 }
4944 } else {
4945 ERROR("Expecting a char range");
4946 return;
4947 }
4948 /*
4949 * Since we are "inside" a range, we can assume ctxt->cur is past
4950 * the start of ctxt->string, and PREV should be safe
4951 */
4952 if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
4953 NEXTL(len);
4954 return;
4955 }
4956 NEXTL(len);
4957 cur = CUR;
4958 if ((cur != '-') || (NXT(1) == '[') || (NXT(1) == ']')) {
4959 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4960 XML_REGEXP_CHARVAL, start, end, NULL);
4961 return;
4962 }
4963 NEXT;
4964 cur = CUR;
4965 if (cur == '\\') {
4966 NEXT;
4967 cur = CUR;
4968 switch (cur) {
4969 case 'n': end = 0xA; break;
4970 case 'r': end = 0xD; break;
4971 case 't': end = 0x9; break;
4972 case '\\': case '|': case '.': case '-': case '^': case '?':
4973 case '*': case '+': case '{': case '}': case '(': case ')':
4974 case '[': case ']':
4975 end = cur; break;
4976 default:
4977 ERROR("Invalid escape value");
4978 return;
4979 }
4980 len = 1;
4981 } else if ((cur != '\0') && (cur != 0x5B) && (cur != 0x5D)) {
4982 len = 4;
4983 end = xmlGetUTF8Char(ctxt->cur, &len);
4984 if (end < 0) {
4985 ERROR("Invalid UTF-8");
4986 return;
4987 }
4988 } else {
4989 ERROR("Expecting the end of a char range");
4990 return;
4991 }
4992
4993 /* TODO check that the values are acceptable character ranges for XML */
4994 if (end < start) {
4995 ERROR("End of range is before start of range");
4996 } else {
4997 NEXTL(len);
4998 xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
4999 XML_REGEXP_CHARVAL, start, end, NULL);
5000 }
5001 return;
5002}
5003
5004/**
5005 * xmlFAParsePosCharGroup:
5006 * @ctxt: a regexp parser context
5007 *
5008 * [14] posCharGroup ::= ( charRange | charClassEsc )+
5009 */
5010static void
5011xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
5012 do {
5013 if (CUR == '\\') {
5014 xmlFAParseCharClassEsc(ctxt);
5015 } else {
5016 xmlFAParseCharRange(ctxt);
5017 }
5018 } while ((CUR != ']') && (CUR != '-') &&
5019 (CUR != 0) && (ctxt->error == 0));
5020}
5021
5022/**
5023 * xmlFAParseCharGroup:
5024 * @ctxt: a regexp parser context
5025 *
5026 * [13] charGroup ::= posCharGroup | negCharGroup | charClassSub
5027 * [15] negCharGroup ::= '^' posCharGroup
5028 * [16] charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
5029 * [12] charClassExpr ::= '[' charGroup ']'
5030 */
5031static void
5032xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
5033 int neg = ctxt->neg;
5034
5035 if (CUR == '^') {
5036 NEXT;
5037 ctxt->neg = !ctxt->neg;
5038 xmlFAParsePosCharGroup(ctxt);
5039 ctxt->neg = neg;
5040 }
5041 while ((CUR != ']') && (ctxt->error == 0)) {
5042 if ((CUR == '-') && (NXT(1) == '[')) {
5043 NEXT; /* eat the '-' */
5044 NEXT; /* eat the '[' */
5045 ctxt->neg = 2;
5046 xmlFAParseCharGroup(ctxt);
5047 ctxt->neg = neg;
5048 if (CUR == ']') {
5049 NEXT;
5050 } else {
5051 ERROR("charClassExpr: ']' expected");
5052 }
5053 break;
5054 } else {
5055 xmlFAParsePosCharGroup(ctxt);
5056 }
5057 }
5058}
5059
5060/**
5061 * xmlFAParseCharClass:
5062 * @ctxt: a regexp parser context
5063 *
5064 * [11] charClass ::= charClassEsc | charClassExpr
5065 * [12] charClassExpr ::= '[' charGroup ']'
5066 */
5067static void
5068xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
5069 if (CUR == '[') {
5070 NEXT;
5071 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
5072 if (ctxt->atom == NULL)
5073 return;
5074 xmlFAParseCharGroup(ctxt);
5075 if (CUR == ']') {
5076 NEXT;
5077 } else {
5078 ERROR("xmlFAParseCharClass: ']' expected");
5079 }
5080 } else {
5081 xmlFAParseCharClassEsc(ctxt);
5082 }
5083}
5084
5085/**
5086 * xmlFAParseQuantExact:
5087 * @ctxt: a regexp parser context
5088 *
5089 * [8] QuantExact ::= [0-9]+
5090 *
5091 * Returns 0 if success or -1 in case of error
5092 */
5093static int
5094xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
5095 int ret = 0;
5096 int ok = 0;
5097 int overflow = 0;
5098
5099 while ((CUR >= '0') && (CUR <= '9')) {
5100 if (ret > INT_MAX / 10) {
5101 overflow = 1;
5102 } else {
5103 int digit = CUR - '0';
5104
5105 ret *= 10;
5106 if (ret > INT_MAX - digit)
5107 overflow = 1;
5108 else
5109 ret += digit;
5110 }
5111 ok = 1;
5112 NEXT;
5113 }
5114 if ((ok != 1) || (overflow == 1)) {
5115 return(-1);
5116 }
5117 return(ret);
5118}
5119
5120/**
5121 * xmlFAParseQuantifier:
5122 * @ctxt: a regexp parser context
5123 *
5124 * [4] quantifier ::= [?*+] | ( '{' quantity '}' )
5125 * [5] quantity ::= quantRange | quantMin | QuantExact
5126 * [6] quantRange ::= QuantExact ',' QuantExact
5127 * [7] quantMin ::= QuantExact ','
5128 * [8] QuantExact ::= [0-9]+
5129 */
5130static int
5131xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
5132 int cur;
5133
5134 cur = CUR;
5135 if ((cur == '?') || (cur == '*') || (cur == '+')) {
5136 if (ctxt->atom != NULL) {
5137 if (cur == '?')
5138 ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
5139 else if (cur == '*')
5140 ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
5141 else if (cur == '+')
5142 ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
5143 }
5144 NEXT;
5145 return(1);
5146 }
5147 if (cur == '{') {
5148 int min = 0, max = 0;
5149
5150 NEXT;
5151 cur = xmlFAParseQuantExact(ctxt);
5152 if (cur >= 0)
5153 min = cur;
5154 else {
5155 ERROR("Improper quantifier");
5156 }
5157 if (CUR == ',') {
5158 NEXT;
5159 if (CUR == '}')
5160 max = INT_MAX;
5161 else {
5162 cur = xmlFAParseQuantExact(ctxt);
5163 if (cur >= 0)
5164 max = cur;
5165 else {
5166 ERROR("Improper quantifier");
5167 }
5168 }
5169 }
5170 if (CUR == '}') {
5171 NEXT;
5172 } else {
5173 ERROR("Unterminated quantifier");
5174 }
5175 if (max == 0)
5176 max = min;
5177 if (ctxt->atom != NULL) {
5178 ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
5179 ctxt->atom->min = min;
5180 ctxt->atom->max = max;
5181 }
5182 return(1);
5183 }
5184 return(0);
5185}
5186
5187/**
5188 * xmlFAParseAtom:
5189 * @ctxt: a regexp parser context
5190 *
5191 * [9] atom ::= Char | charClass | ( '(' regExp ')' )
5192 */
5193static int
5194xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
5195 int codepoint, len;
5196
5197 codepoint = xmlFAIsChar(ctxt);
5198 if (codepoint > 0) {
5199 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
5200 if (ctxt->atom == NULL)
5201 return(-1);
5202 len = 4;
5203 codepoint = xmlGetUTF8Char(ctxt->cur, &len);
5204 if (codepoint < 0) {
5205 ERROR("Invalid UTF-8");
5206 return(-1);
5207 }
5208 ctxt->atom->codepoint = codepoint;
5209 NEXTL(len);
5210 return(1);
5211 } else if (CUR == '|') {
5212 return(0);
5213 } else if (CUR == 0) {
5214 return(0);
5215 } else if (CUR == ')') {
5216 return(0);
5217 } else if (CUR == '(') {
5218 xmlRegStatePtr start, oldend, start0;
5219
5220 NEXT;
5221 if (ctxt->depth >= 50) {
5222 ERROR("xmlFAParseAtom: maximum nesting depth exceeded");
5223 return(-1);
5224 }
5225 /*
5226 * this extra Epsilon transition is needed if we count with 0 allowed
5227 * unfortunately this can't be known at that point
5228 */
5229 xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5230 start0 = ctxt->state;
5231 xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
5232 start = ctxt->state;
5233 oldend = ctxt->end;
5234 ctxt->end = NULL;
5235 ctxt->atom = NULL;
5236 ctxt->depth++;
5237 xmlFAParseRegExp(ctxt, 0);
5238 ctxt->depth--;
5239 if (CUR == ')') {
5240 NEXT;
5241 } else {
5242 ERROR("xmlFAParseAtom: expecting ')'");
5243 }
5244 ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
5245 if (ctxt->atom == NULL)
5246 return(-1);
5247 ctxt->atom->start = start;
5248 ctxt->atom->start0 = start0;
5249 ctxt->atom->stop = ctxt->state;
5250 ctxt->end = oldend;
5251 return(1);
5252 } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
5253 xmlFAParseCharClass(ctxt);
5254 return(1);
5255 }
5256 return(0);
5257}
5258
5259/**
5260 * xmlFAParsePiece:
5261 * @ctxt: a regexp parser context
5262 *
5263 * [3] piece ::= atom quantifier?
5264 */
5265static int
5266xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
5267 int ret;
5268
5269 ctxt->atom = NULL;
5270 ret = xmlFAParseAtom(ctxt);
5271 if (ret == 0)
5272 return(0);
5273 if (ctxt->atom == NULL) {
5274 ERROR("internal: no atom generated");
5275 }
5276 xmlFAParseQuantifier(ctxt);
5277 return(1);
5278}
5279
5280/**
5281 * xmlFAParseBranch:
5282 * @ctxt: a regexp parser context
5283 * @to: optional target to the end of the branch
5284 *
5285 * @to is used to optimize by removing duplicate path in automata
5286 * in expressions like (a|b)(c|d)
5287 *
5288 * [2] branch ::= piece*
5289 */
5290static int
5291xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
5292 xmlRegStatePtr previous;
5293 int ret;
5294
5295 previous = ctxt->state;
5296 ret = xmlFAParsePiece(ctxt);
5297 if (ret == 0) {
5298 /* Empty branch */
5299 xmlFAGenerateEpsilonTransition(ctxt, previous, to);
5300 } else {
5301 if (xmlFAGenerateTransitions(ctxt, previous,
5302 (CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
5303 ctxt->atom) < 0) {
5304 xmlRegFreeAtom(ctxt->atom);
5305 ctxt->atom = NULL;
5306 return(-1);
5307 }
5308 previous = ctxt->state;
5309 ctxt->atom = NULL;
5310 }
5311 while ((ret != 0) && (ctxt->error == 0)) {
5312 ret = xmlFAParsePiece(ctxt);
5313 if (ret != 0) {
5314 if (xmlFAGenerateTransitions(ctxt, previous,
5315 (CUR=='|' || CUR==')' || CUR==0) ? to : NULL,
5316 ctxt->atom) < 0) {
5317 xmlRegFreeAtom(ctxt->atom);
5318 ctxt->atom = NULL;
5319 return(-1);
5320 }
5321 previous = ctxt->state;
5322 ctxt->atom = NULL;
5323 }
5324 }
5325 return(0);
5326}
5327
5328/**
5329 * xmlFAParseRegExp:
5330 * @ctxt: a regexp parser context
5331 * @top: is this the top-level expression ?
5332 *
5333 * [1] regExp ::= branch ( '|' branch )*
5334 */
5335static void
5336xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
5337 xmlRegStatePtr start, end;
5338
5339 /* if not top start should have been generated by an epsilon trans */
5340 start = ctxt->state;
5341 ctxt->end = NULL;
5342 xmlFAParseBranch(ctxt, NULL);
5343 if (top) {
5344 ctxt->state->type = XML_REGEXP_FINAL_STATE;
5345 }
5346 if (CUR != '|') {
5347 ctxt->end = ctxt->state;
5348 return;
5349 }
5350 end = ctxt->state;
5351 while ((CUR == '|') && (ctxt->error == 0)) {
5352 NEXT;
5353 ctxt->state = start;
5354 ctxt->end = NULL;
5355 xmlFAParseBranch(ctxt, end);
5356 }
5357 if (!top) {
5358 ctxt->state = end;
5359 ctxt->end = end;
5360 }
5361}
5362
5363/************************************************************************
5364 * *
5365 * The basic API *
5366 * *
5367 ************************************************************************/
5368
5369/**
5370 * xmlRegexpPrint:
5371 * @output: the file for the output debug
5372 * @regexp: the compiled regexp
5373 *
5374 * Print the content of the compiled regular expression
5375 */
5376void
5377xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
5378 int i;
5379
5380 if (output == NULL)
5381 return;
5382 fprintf(output, " regexp: ");
5383 if (regexp == NULL) {
5384 fprintf(output, "NULL\n");
5385 return;
5386 }
5387 fprintf(output, "'%s' ", regexp->string);
5388 fprintf(output, "\n");
5389 fprintf(output, "%d atoms:\n", regexp->nbAtoms);
5390 for (i = 0;i < regexp->nbAtoms; i++) {
5391 fprintf(output, " %02d ", i);
5392 xmlRegPrintAtom(output, regexp->atoms[i]);
5393 }
5394 fprintf(output, "%d states:", regexp->nbStates);
5395 fprintf(output, "\n");
5396 for (i = 0;i < regexp->nbStates; i++) {
5397 xmlRegPrintState(output, regexp->states[i]);
5398 }
5399 fprintf(output, "%d counters:\n", regexp->nbCounters);
5400 for (i = 0;i < regexp->nbCounters; i++) {
5401 fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
5402 regexp->counters[i].max);
5403 }
5404}
5405
5406/**
5407 * xmlRegexpCompile:
5408 * @regexp: a regular expression string
5409 *
5410 * Parses a regular expression conforming to XML Schemas Part 2 Datatype
5411 * Appendix F and builds an automata suitable for testing strings against
5412 * that regular expression
5413 *
5414 * Returns the compiled expression or NULL in case of error
5415 */
5416xmlRegexpPtr
5417xmlRegexpCompile(const xmlChar *regexp) {
5418 xmlRegexpPtr ret = NULL;
5419 xmlRegParserCtxtPtr ctxt;
5420
5421 if (regexp == NULL)
5422 return(NULL);
5423
5424 ctxt = xmlRegNewParserCtxt(regexp);
5425 if (ctxt == NULL)
5426 return(NULL);
5427
5428 /* initialize the parser */
5429 ctxt->state = xmlRegStatePush(ctxt);
5430 if (ctxt->state == NULL)
5431 goto error;
5432 ctxt->start = ctxt->state;
5433 ctxt->end = NULL;
5434
5435 /* parse the expression building an automata */
5436 xmlFAParseRegExp(ctxt, 1);
5437 if (CUR != 0) {
5438 ERROR("xmlFAParseRegExp: extra characters");
5439 }
5440 if (ctxt->error != 0)
5441 goto error;
5442 ctxt->end = ctxt->state;
5443 ctxt->start->type = XML_REGEXP_START_STATE;
5444 ctxt->end->type = XML_REGEXP_FINAL_STATE;
5445
5446 /* remove the Epsilon except for counted transitions */
5447 xmlFAEliminateEpsilonTransitions(ctxt);
5448
5449
5450 if (ctxt->error != 0)
5451 goto error;
5452 ret = xmlRegEpxFromParse(ctxt);
5453
5454error:
5455 xmlRegFreeParserCtxt(ctxt);
5456 return(ret);
5457}
5458
5459/**
5460 * xmlRegexpExec:
5461 * @comp: the compiled regular expression
5462 * @content: the value to check against the regular expression
5463 *
5464 * Check if the regular expression generates the value
5465 *
5466 * Returns 1 if it matches, 0 if not and a negative value in case of error
5467 */
5468int
5469xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
5470 if ((comp == NULL) || (content == NULL))
5471 return(-1);
5472 return(xmlFARegExec(comp, content));
5473}
5474
5475/**
5476 * xmlRegexpIsDeterminist:
5477 * @comp: the compiled regular expression
5478 *
5479 * Check if the regular expression is determinist
5480 *
5481 * Returns 1 if it yes, 0 if not and a negative value in case of error
5482 */
5483int
5484xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
5485 xmlAutomataPtr am;
5486 int ret;
5487
5488 if (comp == NULL)
5489 return(-1);
5490 if (comp->determinist != -1)
5491 return(comp->determinist);
5492
5493 am = xmlNewAutomata();
5494 if (am == NULL)
5495 return(-1);
5496 if (am->states != NULL) {
5497 int i;
5498
5499 for (i = 0;i < am->nbStates;i++)
5500 xmlRegFreeState(am->states[i]);
5501 xmlFree(am->states);
5502 }
5503 am->nbAtoms = comp->nbAtoms;
5504 am->atoms = comp->atoms;
5505 am->nbStates = comp->nbStates;
5506 am->states = comp->states;
5507 am->determinist = -1;
5508 am->flags = comp->flags;
5509 ret = xmlFAComputesDeterminism(am);
5510 am->atoms = NULL;
5511 am->states = NULL;
5512 xmlFreeAutomata(am);
5513 comp->determinist = ret;
5514 return(ret);
5515}
5516
5517/**
5518 * xmlRegFreeRegexp:
5519 * @regexp: the regexp
5520 *
5521 * Free a regexp
5522 */
5523void
5524xmlRegFreeRegexp(xmlRegexpPtr regexp) {
5525 int i;
5526 if (regexp == NULL)
5527 return;
5528
5529 if (regexp->string != NULL)
5530 xmlFree(regexp->string);
5531 if (regexp->states != NULL) {
5532 for (i = 0;i < regexp->nbStates;i++)
5533 xmlRegFreeState(regexp->states[i]);
5534 xmlFree(regexp->states);
5535 }
5536 if (regexp->atoms != NULL) {
5537 for (i = 0;i < regexp->nbAtoms;i++)
5538 xmlRegFreeAtom(regexp->atoms[i]);
5539 xmlFree(regexp->atoms);
5540 }
5541 if (regexp->counters != NULL)
5542 xmlFree(regexp->counters);
5543 if (regexp->compact != NULL)
5544 xmlFree(regexp->compact);
5545 if (regexp->transdata != NULL)
5546 xmlFree(regexp->transdata);
5547 if (regexp->stringMap != NULL) {
5548 for (i = 0; i < regexp->nbstrings;i++)
5549 xmlFree(regexp->stringMap[i]);
5550 xmlFree(regexp->stringMap);
5551 }
5552
5553 xmlFree(regexp);
5554}
5555
5556#ifdef LIBXML_AUTOMATA_ENABLED
5557/************************************************************************
5558 * *
5559 * The Automata interface *
5560 * *
5561 ************************************************************************/
5562
5563/**
5564 * xmlNewAutomata:
5565 *
5566 * Create a new automata
5567 *
5568 * Returns the new object or NULL in case of failure
5569 */
5570xmlAutomataPtr
5571xmlNewAutomata(void) {
5572 xmlAutomataPtr ctxt;
5573
5574 ctxt = xmlRegNewParserCtxt(NULL);
5575 if (ctxt == NULL)
5576 return(NULL);
5577
5578 /* initialize the parser */
5579 ctxt->state = xmlRegStatePush(ctxt);
5580 if (ctxt->state == NULL) {
5581 xmlFreeAutomata(ctxt);
5582 return(NULL);
5583 }
5584 ctxt->start = ctxt->state;
5585 ctxt->end = NULL;
5586
5587 ctxt->start->type = XML_REGEXP_START_STATE;
5588 ctxt->flags = 0;
5589
5590 return(ctxt);
5591}
5592
5593/**
5594 * xmlFreeAutomata:
5595 * @am: an automata
5596 *
5597 * Free an automata
5598 */
5599void
5600xmlFreeAutomata(xmlAutomataPtr am) {
5601 if (am == NULL)
5602 return;
5603 xmlRegFreeParserCtxt(am);
5604}
5605
5606/**
5607 * xmlAutomataSetFlags:
5608 * @am: an automata
5609 * @flags: a set of internal flags
5610 *
5611 * Set some flags on the automata
5612 */
5613void
5614xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
5615 if (am == NULL)
5616 return;
5617 am->flags |= flags;
5618}
5619
5620/**
5621 * xmlAutomataGetInitState:
5622 * @am: an automata
5623 *
5624 * Initial state lookup
5625 *
5626 * Returns the initial state of the automata
5627 */
5628xmlAutomataStatePtr
5629xmlAutomataGetInitState(xmlAutomataPtr am) {
5630 if (am == NULL)
5631 return(NULL);
5632 return(am->start);
5633}
5634
5635/**
5636 * xmlAutomataSetFinalState:
5637 * @am: an automata
5638 * @state: a state in this automata
5639 *
5640 * Makes that state a final state
5641 *
5642 * Returns 0 or -1 in case of error
5643 */
5644int
5645xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
5646 if ((am == NULL) || (state == NULL))
5647 return(-1);
5648 state->type = XML_REGEXP_FINAL_STATE;
5649 return(0);
5650}
5651
5652/**
5653 * xmlAutomataNewTransition:
5654 * @am: an automata
5655 * @from: the starting point of the transition
5656 * @to: the target point of the transition or NULL
5657 * @token: the input string associated to that transition
5658 * @data: data passed to the callback function if the transition is activated
5659 *
5660 * If @to is NULL, this creates first a new target state in the automata
5661 * and then adds a transition from the @from state to the target state
5662 * activated by the value of @token
5663 *
5664 * Returns the target state or NULL in case of error
5665 */
5666xmlAutomataStatePtr
5667xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
5668 xmlAutomataStatePtr to, const xmlChar *token,
5669 void *data) {
5670 xmlRegAtomPtr atom;
5671
5672 if ((am == NULL) || (from == NULL) || (token == NULL))
5673 return(NULL);
5674 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5675 if (atom == NULL)
5676 return(NULL);
5677 atom->data = data;
5678 atom->valuep = xmlStrdup(token);
5679
5680 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5681 xmlRegFreeAtom(atom);
5682 return(NULL);
5683 }
5684 if (to == NULL)
5685 return(am->state);
5686 return(to);
5687}
5688
5689/**
5690 * xmlAutomataNewTransition2:
5691 * @am: an automata
5692 * @from: the starting point of the transition
5693 * @to: the target point of the transition or NULL
5694 * @token: the first input string associated to that transition
5695 * @token2: the second input string associated to that transition
5696 * @data: data passed to the callback function if the transition is activated
5697 *
5698 * If @to is NULL, this creates first a new target state in the automata
5699 * and then adds a transition from the @from state to the target state
5700 * activated by the value of @token
5701 *
5702 * Returns the target state or NULL in case of error
5703 */
5704xmlAutomataStatePtr
5705xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5706 xmlAutomataStatePtr to, const xmlChar *token,
5707 const xmlChar *token2, void *data) {
5708 xmlRegAtomPtr atom;
5709
5710 if ((am == NULL) || (from == NULL) || (token == NULL))
5711 return(NULL);
5712 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5713 if (atom == NULL)
5714 return(NULL);
5715 atom->data = data;
5716 if ((token2 == NULL) || (*token2 == 0)) {
5717 atom->valuep = xmlStrdup(token);
5718 } else {
5719 int lenn, lenp;
5720 xmlChar *str;
5721
5722 lenn = strlen((char *) token2);
5723 lenp = strlen((char *) token);
5724
5725 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5726 if (str == NULL) {
5727 xmlRegFreeAtom(atom);
5728 return(NULL);
5729 }
5730 memcpy(&str[0], token, lenp);
5731 str[lenp] = '|';
5732 memcpy(&str[lenp + 1], token2, lenn);
5733 str[lenn + lenp + 1] = 0;
5734
5735 atom->valuep = str;
5736 }
5737
5738 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5739 xmlRegFreeAtom(atom);
5740 return(NULL);
5741 }
5742 if (to == NULL)
5743 return(am->state);
5744 return(to);
5745}
5746
5747/**
5748 * xmlAutomataNewNegTrans:
5749 * @am: an automata
5750 * @from: the starting point of the transition
5751 * @to: the target point of the transition or NULL
5752 * @token: the first input string associated to that transition
5753 * @token2: the second input string associated to that transition
5754 * @data: data passed to the callback function if the transition is activated
5755 *
5756 * If @to is NULL, this creates first a new target state in the automata
5757 * and then adds a transition from the @from state to the target state
5758 * activated by any value except (@token,@token2)
5759 * Note that if @token2 is not NULL, then (X, NULL) won't match to follow
5760 # the semantic of XSD ##other
5761 *
5762 * Returns the target state or NULL in case of error
5763 */
5764xmlAutomataStatePtr
5765xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5766 xmlAutomataStatePtr to, const xmlChar *token,
5767 const xmlChar *token2, void *data) {
5768 xmlRegAtomPtr atom;
5769 xmlChar err_msg[200];
5770
5771 if ((am == NULL) || (from == NULL) || (token == NULL))
5772 return(NULL);
5773 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5774 if (atom == NULL)
5775 return(NULL);
5776 atom->data = data;
5777 atom->neg = 1;
5778 if ((token2 == NULL) || (*token2 == 0)) {
5779 atom->valuep = xmlStrdup(token);
5780 } else {
5781 int lenn, lenp;
5782 xmlChar *str;
5783
5784 lenn = strlen((char *) token2);
5785 lenp = strlen((char *) token);
5786
5787 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5788 if (str == NULL) {
5789 xmlRegFreeAtom(atom);
5790 return(NULL);
5791 }
5792 memcpy(&str[0], token, lenp);
5793 str[lenp] = '|';
5794 memcpy(&str[lenp + 1], token2, lenn);
5795 str[lenn + lenp + 1] = 0;
5796
5797 atom->valuep = str;
5798 }
5799 snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
5800 err_msg[199] = 0;
5801 atom->valuep2 = xmlStrdup(err_msg);
5802
5803 if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
5804 xmlRegFreeAtom(atom);
5805 return(NULL);
5806 }
5807 am->negs++;
5808 if (to == NULL)
5809 return(am->state);
5810 return(to);
5811}
5812
5813/**
5814 * xmlAutomataNewCountTrans2:
5815 * @am: an automata
5816 * @from: the starting point of the transition
5817 * @to: the target point of the transition or NULL
5818 * @token: the input string associated to that transition
5819 * @token2: the second input string associated to that transition
5820 * @min: the minimum successive occurrences of token
5821 * @max: the maximum successive occurrences of token
5822 * @data: data associated to the transition
5823 *
5824 * If @to is NULL, this creates first a new target state in the automata
5825 * and then adds a transition from the @from state to the target state
5826 * activated by a succession of input of value @token and @token2 and
5827 * whose number is between @min and @max
5828 *
5829 * Returns the target state or NULL in case of error
5830 */
5831xmlAutomataStatePtr
5832xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
5833 xmlAutomataStatePtr to, const xmlChar *token,
5834 const xmlChar *token2,
5835 int min, int max, void *data) {
5836 xmlRegAtomPtr atom;
5837 int counter;
5838
5839 if ((am == NULL) || (from == NULL) || (token == NULL))
5840 return(NULL);
5841 if (min < 0)
5842 return(NULL);
5843 if ((max < min) || (max < 1))
5844 return(NULL);
5845 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5846 if (atom == NULL)
5847 return(NULL);
5848 if ((token2 == NULL) || (*token2 == 0)) {
5849 atom->valuep = xmlStrdup(token);
5850 if (atom->valuep == NULL)
5851 goto error;
5852 } else {
5853 int lenn, lenp;
5854 xmlChar *str;
5855
5856 lenn = strlen((char *) token2);
5857 lenp = strlen((char *) token);
5858
5859 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
5860 if (str == NULL)
5861 goto error;
5862 memcpy(&str[0], token, lenp);
5863 str[lenp] = '|';
5864 memcpy(&str[lenp + 1], token2, lenn);
5865 str[lenn + lenp + 1] = 0;
5866
5867 atom->valuep = str;
5868 }
5869 atom->data = data;
5870 if (min == 0)
5871 atom->min = 1;
5872 else
5873 atom->min = min;
5874 atom->max = max;
5875
5876 /*
5877 * associate a counter to the transition.
5878 */
5879 counter = xmlRegGetCounter(am);
5880 if (counter < 0)
5881 goto error;
5882 am->counters[counter].min = min;
5883 am->counters[counter].max = max;
5884
5885 /* xmlFAGenerateTransitions(am, from, to, atom); */
5886 if (to == NULL) {
5887 to = xmlRegStatePush(am);
5888 if (to == NULL)
5889 goto error;
5890 }
5891 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
5892 if (xmlRegAtomPush(am, atom) < 0)
5893 goto error;
5894 am->state = to;
5895
5896 if (to == NULL)
5897 to = am->state;
5898 if (to == NULL)
5899 return(NULL);
5900 if (min == 0)
5901 xmlFAGenerateEpsilonTransition(am, from, to);
5902 return(to);
5903
5904error:
5905 xmlRegFreeAtom(atom);
5906 return(NULL);
5907}
5908
5909/**
5910 * xmlAutomataNewCountTrans:
5911 * @am: an automata
5912 * @from: the starting point of the transition
5913 * @to: the target point of the transition or NULL
5914 * @token: the input string associated to that transition
5915 * @min: the minimum successive occurrences of token
5916 * @max: the maximum successive occurrences of token
5917 * @data: data associated to the transition
5918 *
5919 * If @to is NULL, this creates first a new target state in the automata
5920 * and then adds a transition from the @from state to the target state
5921 * activated by a succession of input of value @token and whose number
5922 * is between @min and @max
5923 *
5924 * Returns the target state or NULL in case of error
5925 */
5926xmlAutomataStatePtr
5927xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
5928 xmlAutomataStatePtr to, const xmlChar *token,
5929 int min, int max, void *data) {
5930 xmlRegAtomPtr atom;
5931 int counter;
5932
5933 if ((am == NULL) || (from == NULL) || (token == NULL))
5934 return(NULL);
5935 if (min < 0)
5936 return(NULL);
5937 if ((max < min) || (max < 1))
5938 return(NULL);
5939 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
5940 if (atom == NULL)
5941 return(NULL);
5942 atom->valuep = xmlStrdup(token);
5943 if (atom->valuep == NULL)
5944 goto error;
5945 atom->data = data;
5946 if (min == 0)
5947 atom->min = 1;
5948 else
5949 atom->min = min;
5950 atom->max = max;
5951
5952 /*
5953 * associate a counter to the transition.
5954 */
5955 counter = xmlRegGetCounter(am);
5956 if (counter < 0)
5957 goto error;
5958 am->counters[counter].min = min;
5959 am->counters[counter].max = max;
5960
5961 /* xmlFAGenerateTransitions(am, from, to, atom); */
5962 if (to == NULL) {
5963 to = xmlRegStatePush(am);
5964 if (to == NULL)
5965 goto error;
5966 }
5967 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
5968 if (xmlRegAtomPush(am, atom) < 0)
5969 goto error;
5970 am->state = to;
5971
5972 if (to == NULL)
5973 to = am->state;
5974 if (to == NULL)
5975 return(NULL);
5976 if (min == 0)
5977 xmlFAGenerateEpsilonTransition(am, from, to);
5978 return(to);
5979
5980error:
5981 xmlRegFreeAtom(atom);
5982 return(NULL);
5983}
5984
5985/**
5986 * xmlAutomataNewOnceTrans2:
5987 * @am: an automata
5988 * @from: the starting point of the transition
5989 * @to: the target point of the transition or NULL
5990 * @token: the input string associated to that transition
5991 * @token2: the second input string associated to that transition
5992 * @min: the minimum successive occurrences of token
5993 * @max: the maximum successive occurrences of token
5994 * @data: data associated to the transition
5995 *
5996 * If @to is NULL, this creates first a new target state in the automata
5997 * and then adds a transition from the @from state to the target state
5998 * activated by a succession of input of value @token and @token2 and whose
5999 * number is between @min and @max, moreover that transition can only be
6000 * crossed once.
6001 *
6002 * Returns the target state or NULL in case of error
6003 */
6004xmlAutomataStatePtr
6005xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
6006 xmlAutomataStatePtr to, const xmlChar *token,
6007 const xmlChar *token2,
6008 int min, int max, void *data) {
6009 xmlRegAtomPtr atom;
6010 int counter;
6011
6012 if ((am == NULL) || (from == NULL) || (token == NULL))
6013 return(NULL);
6014 if (min < 1)
6015 return(NULL);
6016 if (max < min)
6017 return(NULL);
6018 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6019 if (atom == NULL)
6020 return(NULL);
6021 if ((token2 == NULL) || (*token2 == 0)) {
6022 atom->valuep = xmlStrdup(token);
6023 if (atom->valuep == NULL)
6024 goto error;
6025 } else {
6026 int lenn, lenp;
6027 xmlChar *str;
6028
6029 lenn = strlen((char *) token2);
6030 lenp = strlen((char *) token);
6031
6032 str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
6033 if (str == NULL)
6034 goto error;
6035 memcpy(&str[0], token, lenp);
6036 str[lenp] = '|';
6037 memcpy(&str[lenp + 1], token2, lenn);
6038 str[lenn + lenp + 1] = 0;
6039
6040 atom->valuep = str;
6041 }
6042 atom->data = data;
6043 atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6044 atom->min = min;
6045 atom->max = max;
6046 /*
6047 * associate a counter to the transition.
6048 */
6049 counter = xmlRegGetCounter(am);
6050 if (counter < 0)
6051 goto error;
6052 am->counters[counter].min = 1;
6053 am->counters[counter].max = 1;
6054
6055 /* xmlFAGenerateTransitions(am, from, to, atom); */
6056 if (to == NULL) {
6057 to = xmlRegStatePush(am);
6058 if (to == NULL)
6059 goto error;
6060 }
6061 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6062 if (xmlRegAtomPush(am, atom) < 0)
6063 goto error;
6064 am->state = to;
6065 return(to);
6066
6067error:
6068 xmlRegFreeAtom(atom);
6069 return(NULL);
6070}
6071
6072
6073
6074/**
6075 * xmlAutomataNewOnceTrans:
6076 * @am: an automata
6077 * @from: the starting point of the transition
6078 * @to: the target point of the transition or NULL
6079 * @token: the input string associated to that transition
6080 * @min: the minimum successive occurrences of token
6081 * @max: the maximum successive occurrences of token
6082 * @data: data associated to the transition
6083 *
6084 * If @to is NULL, this creates first a new target state in the automata
6085 * and then adds a transition from the @from state to the target state
6086 * activated by a succession of input of value @token and whose number
6087 * is between @min and @max, moreover that transition can only be crossed
6088 * once.
6089 *
6090 * Returns the target state or NULL in case of error
6091 */
6092xmlAutomataStatePtr
6093xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6094 xmlAutomataStatePtr to, const xmlChar *token,
6095 int min, int max, void *data) {
6096 xmlRegAtomPtr atom;
6097 int counter;
6098
6099 if ((am == NULL) || (from == NULL) || (token == NULL))
6100 return(NULL);
6101 if (min < 1)
6102 return(NULL);
6103 if (max < min)
6104 return(NULL);
6105 atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
6106 if (atom == NULL)
6107 return(NULL);
6108 atom->valuep = xmlStrdup(token);
6109 atom->data = data;
6110 atom->quant = XML_REGEXP_QUANT_ONCEONLY;
6111 atom->min = min;
6112 atom->max = max;
6113 /*
6114 * associate a counter to the transition.
6115 */
6116 counter = xmlRegGetCounter(am);
6117 if (counter < 0)
6118 goto error;
6119 am->counters[counter].min = 1;
6120 am->counters[counter].max = 1;
6121
6122 /* xmlFAGenerateTransitions(am, from, to, atom); */
6123 if (to == NULL) {
6124 to = xmlRegStatePush(am);
6125 if (to == NULL)
6126 goto error;
6127 }
6128 xmlRegStateAddTrans(am, from, atom, to, counter, -1);
6129 if (xmlRegAtomPush(am, atom) < 0)
6130 goto error;
6131 am->state = to;
6132 return(to);
6133
6134error:
6135 xmlRegFreeAtom(atom);
6136 return(NULL);
6137}
6138
6139/**
6140 * xmlAutomataNewState:
6141 * @am: an automata
6142 *
6143 * Create a new disconnected state in the automata
6144 *
6145 * Returns the new state or NULL in case of error
6146 */
6147xmlAutomataStatePtr
6148xmlAutomataNewState(xmlAutomataPtr am) {
6149 if (am == NULL)
6150 return(NULL);
6151 return(xmlRegStatePush(am));
6152}
6153
6154/**
6155 * xmlAutomataNewEpsilon:
6156 * @am: an automata
6157 * @from: the starting point of the transition
6158 * @to: the target point of the transition or NULL
6159 *
6160 * If @to is NULL, this creates first a new target state in the automata
6161 * and then adds an epsilon transition from the @from state to the
6162 * target state
6163 *
6164 * Returns the target state or NULL in case of error
6165 */
6166xmlAutomataStatePtr
6167xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
6168 xmlAutomataStatePtr to) {
6169 if ((am == NULL) || (from == NULL))
6170 return(NULL);
6171 xmlFAGenerateEpsilonTransition(am, from, to);
6172 if (to == NULL)
6173 return(am->state);
6174 return(to);
6175}
6176
6177/**
6178 * xmlAutomataNewAllTrans:
6179 * @am: an automata
6180 * @from: the starting point of the transition
6181 * @to: the target point of the transition or NULL
6182 * @lax: allow to transition if not all all transitions have been activated
6183 *
6184 * If @to is NULL, this creates first a new target state in the automata
6185 * and then adds a an ALL transition from the @from state to the
6186 * target state. That transition is an epsilon transition allowed only when
6187 * all transitions from the @from node have been activated.
6188 *
6189 * Returns the target state or NULL in case of error
6190 */
6191xmlAutomataStatePtr
6192xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6193 xmlAutomataStatePtr to, int lax) {
6194 if ((am == NULL) || (from == NULL))
6195 return(NULL);
6196 xmlFAGenerateAllTransition(am, from, to, lax);
6197 if (to == NULL)
6198 return(am->state);
6199 return(to);
6200}
6201
6202/**
6203 * xmlAutomataNewCounter:
6204 * @am: an automata
6205 * @min: the minimal value on the counter
6206 * @max: the maximal value on the counter
6207 *
6208 * Create a new counter
6209 *
6210 * Returns the counter number or -1 in case of error
6211 */
6212int
6213xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
6214 int ret;
6215
6216 if (am == NULL)
6217 return(-1);
6218
6219 ret = xmlRegGetCounter(am);
6220 if (ret < 0)
6221 return(-1);
6222 am->counters[ret].min = min;
6223 am->counters[ret].max = max;
6224 return(ret);
6225}
6226
6227/**
6228 * xmlAutomataNewCountedTrans:
6229 * @am: an automata
6230 * @from: the starting point of the transition
6231 * @to: the target point of the transition or NULL
6232 * @counter: the counter associated to that transition
6233 *
6234 * If @to is NULL, this creates first a new target state in the automata
6235 * and then adds an epsilon transition from the @from state to the target state
6236 * which will increment the counter provided
6237 *
6238 * Returns the target state or NULL in case of error
6239 */
6240xmlAutomataStatePtr
6241xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6242 xmlAutomataStatePtr to, int counter) {
6243 if ((am == NULL) || (from == NULL) || (counter < 0))
6244 return(NULL);
6245 xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
6246 if (to == NULL)
6247 return(am->state);
6248 return(to);
6249}
6250
6251/**
6252 * xmlAutomataNewCounterTrans:
6253 * @am: an automata
6254 * @from: the starting point of the transition
6255 * @to: the target point of the transition or NULL
6256 * @counter: the counter associated to that transition
6257 *
6258 * If @to is NULL, this creates first a new target state in the automata
6259 * and then adds an epsilon transition from the @from state to the target state
6260 * which will be allowed only if the counter is within the right range.
6261 *
6262 * Returns the target state or NULL in case of error
6263 */
6264xmlAutomataStatePtr
6265xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
6266 xmlAutomataStatePtr to, int counter) {
6267 if ((am == NULL) || (from == NULL) || (counter < 0))
6268 return(NULL);
6269 xmlFAGenerateCountedTransition(am, from, to, counter);
6270 if (to == NULL)
6271 return(am->state);
6272 return(to);
6273}
6274
6275/**
6276 * xmlAutomataCompile:
6277 * @am: an automata
6278 *
6279 * Compile the automata into a Reg Exp ready for being executed.
6280 * The automata should be free after this point.
6281 *
6282 * Returns the compiled regexp or NULL in case of error
6283 */
6284xmlRegexpPtr
6285xmlAutomataCompile(xmlAutomataPtr am) {
6286 xmlRegexpPtr ret;
6287
6288 if ((am == NULL) || (am->error != 0)) return(NULL);
6289 xmlFAEliminateEpsilonTransitions(am);
6290 /* xmlFAComputesDeterminism(am); */
6291 ret = xmlRegEpxFromParse(am);
6292
6293 return(ret);
6294}
6295
6296/**
6297 * xmlAutomataIsDeterminist:
6298 * @am: an automata
6299 *
6300 * Checks if an automata is determinist.
6301 *
6302 * Returns 1 if true, 0 if not, and -1 in case of error
6303 */
6304int
6305xmlAutomataIsDeterminist(xmlAutomataPtr am) {
6306 int ret;
6307
6308 if (am == NULL)
6309 return(-1);
6310
6311 ret = xmlFAComputesDeterminism(am);
6312 return(ret);
6313}
6314#endif /* LIBXML_AUTOMATA_ENABLED */
6315
6316#ifdef LIBXML_EXPR_ENABLED
6317/************************************************************************
6318 * *
6319 * Formal Expression handling code *
6320 * *
6321 ************************************************************************/
6322/************************************************************************
6323 * *
6324 * Expression handling context *
6325 * *
6326 ************************************************************************/
6327
6328struct _xmlExpCtxt {
6329 xmlDictPtr dict;
6330 xmlExpNodePtr *table;
6331 int size;
6332 int nbElems;
6333 int nb_nodes;
6334 int maxNodes;
6335 const char *expr;
6336 const char *cur;
6337 int nb_cons;
6338 int tabSize;
6339};
6340
6341/**
6342 * xmlExpNewCtxt:
6343 * @maxNodes: the maximum number of nodes
6344 * @dict: optional dictionary to use internally
6345 *
6346 * Creates a new context for manipulating expressions
6347 *
6348 * Returns the context or NULL in case of error
6349 */
6350xmlExpCtxtPtr
6351xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
6352 xmlExpCtxtPtr ret;
6353 int size = 256;
6354
6355 if (maxNodes <= 4096)
6356 maxNodes = 4096;
6357
6358 ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
6359 if (ret == NULL)
6360 return(NULL);
6361 memset(ret, 0, sizeof(xmlExpCtxt));
6362 ret->size = size;
6363 ret->nbElems = 0;
6364 ret->maxNodes = maxNodes;
6365 ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
6366 if (ret->table == NULL) {
6367 xmlFree(ret);
6368 return(NULL);
6369 }
6370 memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
6371 if (dict == NULL) {
6372 ret->dict = xmlDictCreate();
6373 if (ret->dict == NULL) {
6374 xmlFree(ret->table);
6375 xmlFree(ret);
6376 return(NULL);
6377 }
6378 } else {
6379 ret->dict = dict;
6380 xmlDictReference(ret->dict);
6381 }
6382 return(ret);
6383}
6384
6385/**
6386 * xmlExpFreeCtxt:
6387 * @ctxt: an expression context
6388 *
6389 * Free an expression context
6390 */
6391void
6392xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
6393 if (ctxt == NULL)
6394 return;
6395 xmlDictFree(ctxt->dict);
6396 if (ctxt->table != NULL)
6397 xmlFree(ctxt->table);
6398 xmlFree(ctxt);
6399}
6400
6401/************************************************************************
6402 * *
6403 * Structure associated to an expression node *
6404 * *
6405 ************************************************************************/
6406#define MAX_NODES 10000
6407
6408/*
6409 * TODO:
6410 * - Wildcards
6411 * - public API for creation
6412 *
6413 * Started
6414 * - regression testing
6415 *
6416 * Done
6417 * - split into module and test tool
6418 * - memleaks
6419 */
6420
6421typedef enum {
6422 XML_EXP_NILABLE = (1 << 0)
6423} xmlExpNodeInfo;
6424
6425#define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
6426
6427struct _xmlExpNode {
6428 unsigned char type;/* xmlExpNodeType */
6429 unsigned char info;/* OR of xmlExpNodeInfo */
6430 unsigned short key; /* the hash key */
6431 unsigned int ref; /* The number of references */
6432 int c_max; /* the maximum length it can consume */
6433 xmlExpNodePtr exp_left;
6434 xmlExpNodePtr next;/* the next node in the hash table or free list */
6435 union {
6436 struct {
6437 int f_min;
6438 int f_max;
6439 } count;
6440 struct {
6441 xmlExpNodePtr f_right;
6442 } children;
6443 const xmlChar *f_str;
6444 } field;
6445};
6446
6447#define exp_min field.count.f_min
6448#define exp_max field.count.f_max
6449/* #define exp_left field.children.f_left */
6450#define exp_right field.children.f_right
6451#define exp_str field.f_str
6452
6453static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
6454static xmlExpNode forbiddenExpNode = {
6455 XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6456};
6457xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
6458static xmlExpNode emptyExpNode = {
6459 XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
6460};
6461xmlExpNodePtr emptyExp = &emptyExpNode;
6462
6463/************************************************************************
6464 * *
6465 * The custom hash table for unicity and canonicalization *
6466 * of sub-expressions pointers *
6467 * *
6468 ************************************************************************/
6469/*
6470 * xmlExpHashNameComputeKey:
6471 * Calculate the hash key for a token
6472 */
6473static unsigned short
6474xmlExpHashNameComputeKey(const xmlChar *name) {
6475 unsigned short value = 0L;
6476 char ch;
6477
6478 if (name != NULL) {
6479 value += 30 * (*name);
6480 while ((ch = *name++) != 0) {
6481 value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
6482 }
6483 }
6484 return (value);
6485}
6486
6487/*
6488 * xmlExpHashComputeKey:
6489 * Calculate the hash key for a compound expression
6490 */
6491static unsigned short
6492xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
6493 xmlExpNodePtr right) {
6494 unsigned long value;
6495 unsigned short ret;
6496
6497 switch (type) {
6498 case XML_EXP_SEQ:
6499 value = left->key;
6500 value += right->key;
6501 value *= 3;
6502 ret = (unsigned short) value;
6503 break;
6504 case XML_EXP_OR:
6505 value = left->key;
6506 value += right->key;
6507 value *= 7;
6508 ret = (unsigned short) value;
6509 break;
6510 case XML_EXP_COUNT:
6511 value = left->key;
6512 value += right->key;
6513 ret = (unsigned short) value;
6514 break;
6515 default:
6516 ret = 0;
6517 }
6518 return(ret);
6519}
6520
6521
6522static xmlExpNodePtr
6523xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
6524 xmlExpNodePtr ret;
6525
6526 if (ctxt->nb_nodes >= MAX_NODES)
6527 return(NULL);
6528 ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
6529 if (ret == NULL)
6530 return(NULL);
6531 memset(ret, 0, sizeof(xmlExpNode));
6532 ret->type = type;
6533 ret->next = NULL;
6534 ctxt->nb_nodes++;
6535 ctxt->nb_cons++;
6536 return(ret);
6537}
6538
6539/**
6540 * xmlExpHashGetEntry:
6541 * @table: the hash table
6542 *
6543 * Get the unique entry from the hash table. The entry is created if
6544 * needed. @left and @right are consumed, i.e. their ref count will
6545 * be decremented by the operation.
6546 *
6547 * Returns the pointer or NULL in case of error
6548 */
6549static xmlExpNodePtr
6550xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
6551 xmlExpNodePtr left, xmlExpNodePtr right,
6552 const xmlChar *name, int min, int max) {
6553 unsigned short kbase, key;
6554 xmlExpNodePtr entry;
6555 xmlExpNodePtr insert;
6556
6557 if (ctxt == NULL)
6558 return(NULL);
6559
6560 /*
6561 * Check for duplicate and insertion location.
6562 */
6563 if (type == XML_EXP_ATOM) {
6564 kbase = xmlExpHashNameComputeKey(name);
6565 } else if (type == XML_EXP_COUNT) {
6566 /* COUNT reduction rule 1 */
6567 /* a{1} -> a */
6568 if (min == max) {
6569 if (min == 1) {
6570 return(left);
6571 }
6572 if (min == 0) {
6573 xmlExpFree(ctxt, left);
6574 return(emptyExp);
6575 }
6576 }
6577 if (min < 0) {
6578 xmlExpFree(ctxt, left);
6579 return(forbiddenExp);
6580 }
6581 if (max == -1)
6582 kbase = min + 79;
6583 else
6584 kbase = max - min;
6585 kbase += left->key;
6586 } else if (type == XML_EXP_OR) {
6587 /* Forbid reduction rules */
6588 if (left->type == XML_EXP_FORBID) {
6589 xmlExpFree(ctxt, left);
6590 return(right);
6591 }
6592 if (right->type == XML_EXP_FORBID) {
6593 xmlExpFree(ctxt, right);
6594 return(left);
6595 }
6596
6597 /* OR reduction rule 1 */
6598 /* a | a reduced to a */
6599 if (left == right) {
6600 xmlExpFree(ctxt, right);
6601 return(left);
6602 }
6603 /* OR canonicalization rule 1 */
6604 /* linearize (a | b) | c into a | (b | c) */
6605 if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
6606 xmlExpNodePtr tmp = left;
6607 left = right;
6608 right = tmp;
6609 }
6610 /* OR reduction rule 2 */
6611 /* a | (a | b) and b | (a | b) are reduced to a | b */
6612 if (right->type == XML_EXP_OR) {
6613 if ((left == right->exp_left) ||
6614 (left == right->exp_right)) {
6615 xmlExpFree(ctxt, left);
6616 return(right);
6617 }
6618 }
6619 /* OR canonicalization rule 2 */
6620 /* linearize (a | b) | c into a | (b | c) */
6621 if (left->type == XML_EXP_OR) {
6622 xmlExpNodePtr tmp;
6623
6624 /* OR canonicalization rule 2 */
6625 if ((left->exp_right->type != XML_EXP_OR) &&
6626 (left->exp_right->key < left->exp_left->key)) {
6627 tmp = left->exp_right;
6628 left->exp_right = left->exp_left;
6629 left->exp_left = tmp;
6630 }
6631 left->exp_right->ref++;
6632 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
6633 NULL, 0, 0);
6634 left->exp_left->ref++;
6635 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
6636 NULL, 0, 0);
6637
6638 xmlExpFree(ctxt, left);
6639 return(tmp);
6640 }
6641 if (right->type == XML_EXP_OR) {
6642 /* Ordering in the tree */
6643 /* C | (A | B) -> A | (B | C) */
6644 if (left->key > right->exp_right->key) {
6645 xmlExpNodePtr tmp;
6646 right->exp_right->ref++;
6647 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
6648 left, NULL, 0, 0);
6649 right->exp_left->ref++;
6650 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6651 tmp, NULL, 0, 0);
6652 xmlExpFree(ctxt, right);
6653 return(tmp);
6654 }
6655 /* Ordering in the tree */
6656 /* B | (A | C) -> A | (B | C) */
6657 if (left->key > right->exp_left->key) {
6658 xmlExpNodePtr tmp;
6659 right->exp_right->ref++;
6660 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
6661 right->exp_right, NULL, 0, 0);
6662 right->exp_left->ref++;
6663 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
6664 tmp, NULL, 0, 0);
6665 xmlExpFree(ctxt, right);
6666 return(tmp);
6667 }
6668 }
6669 /* we know both types are != XML_EXP_OR here */
6670 else if (left->key > right->key) {
6671 xmlExpNodePtr tmp = left;
6672 left = right;
6673 right = tmp;
6674 }
6675 kbase = xmlExpHashComputeKey(type, left, right);
6676 } else if (type == XML_EXP_SEQ) {
6677 /* Forbid reduction rules */
6678 if (left->type == XML_EXP_FORBID) {
6679 xmlExpFree(ctxt, right);
6680 return(left);
6681 }
6682 if (right->type == XML_EXP_FORBID) {
6683 xmlExpFree(ctxt, left);
6684 return(right);
6685 }
6686 /* Empty reduction rules */
6687 if (right->type == XML_EXP_EMPTY) {
6688 return(left);
6689 }
6690 if (left->type == XML_EXP_EMPTY) {
6691 return(right);
6692 }
6693 kbase = xmlExpHashComputeKey(type, left, right);
6694 } else
6695 return(NULL);
6696
6697 key = kbase % ctxt->size;
6698 if (ctxt->table[key] != NULL) {
6699 for (insert = ctxt->table[key]; insert != NULL;
6700 insert = insert->next) {
6701 if ((insert->key == kbase) &&
6702 (insert->type == type)) {
6703 if (type == XML_EXP_ATOM) {
6704 if (name == insert->exp_str) {
6705 insert->ref++;
6706 return(insert);
6707 }
6708 } else if (type == XML_EXP_COUNT) {
6709 if ((insert->exp_min == min) && (insert->exp_max == max) &&
6710 (insert->exp_left == left)) {
6711 insert->ref++;
6712 left->ref--;
6713 return(insert);
6714 }
6715 } else if ((insert->exp_left == left) &&
6716 (insert->exp_right == right)) {
6717 insert->ref++;
6718 left->ref--;
6719 right->ref--;
6720 return(insert);
6721 }
6722 }
6723 }
6724 }
6725
6726 entry = xmlExpNewNode(ctxt, type);
6727 if (entry == NULL)
6728 return(NULL);
6729 entry->key = kbase;
6730 if (type == XML_EXP_ATOM) {
6731 entry->exp_str = name;
6732 entry->c_max = 1;
6733 } else if (type == XML_EXP_COUNT) {
6734 entry->exp_min = min;
6735 entry->exp_max = max;
6736 entry->exp_left = left;
6737 if ((min == 0) || (IS_NILLABLE(left)))
6738 entry->info |= XML_EXP_NILABLE;
6739 if (max < 0)
6740 entry->c_max = -1;
6741 else
6742 entry->c_max = max * entry->exp_left->c_max;
6743 } else {
6744 entry->exp_left = left;
6745 entry->exp_right = right;
6746 if (type == XML_EXP_OR) {
6747 if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
6748 entry->info |= XML_EXP_NILABLE;
6749 if ((entry->exp_left->c_max == -1) ||
6750 (entry->exp_right->c_max == -1))
6751 entry->c_max = -1;
6752 else if (entry->exp_left->c_max > entry->exp_right->c_max)
6753 entry->c_max = entry->exp_left->c_max;
6754 else
6755 entry->c_max = entry->exp_right->c_max;
6756 } else {
6757 if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
6758 entry->info |= XML_EXP_NILABLE;
6759 if ((entry->exp_left->c_max == -1) ||
6760 (entry->exp_right->c_max == -1))
6761 entry->c_max = -1;
6762 else
6763 entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
6764 }
6765 }
6766 entry->ref = 1;
6767 if (ctxt->table[key] != NULL)
6768 entry->next = ctxt->table[key];
6769
6770 ctxt->table[key] = entry;
6771 ctxt->nbElems++;
6772
6773 return(entry);
6774}
6775
6776/**
6777 * xmlExpFree:
6778 * @ctxt: the expression context
6779 * @exp: the expression
6780 *
6781 * Dereference the expression
6782 */
6783void
6784xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
6785 if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
6786 return;
6787 exp->ref--;
6788 if (exp->ref == 0) {
6789 unsigned short key;
6790
6791 /* Unlink it first from the hash table */
6792 key = exp->key % ctxt->size;
6793 if (ctxt->table[key] == exp) {
6794 ctxt->table[key] = exp->next;
6795 } else {
6796 xmlExpNodePtr tmp;
6797
6798 tmp = ctxt->table[key];
6799 while (tmp != NULL) {
6800 if (tmp->next == exp) {
6801 tmp->next = exp->next;
6802 break;
6803 }
6804 tmp = tmp->next;
6805 }
6806 }
6807
6808 if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
6809 xmlExpFree(ctxt, exp->exp_left);
6810 xmlExpFree(ctxt, exp->exp_right);
6811 } else if (exp->type == XML_EXP_COUNT) {
6812 xmlExpFree(ctxt, exp->exp_left);
6813 }
6814 xmlFree(exp);
6815 ctxt->nb_nodes--;
6816 }
6817}
6818
6819/**
6820 * xmlExpRef:
6821 * @exp: the expression
6822 *
6823 * Increase the reference count of the expression
6824 */
6825void
6826xmlExpRef(xmlExpNodePtr exp) {
6827 if (exp != NULL)
6828 exp->ref++;
6829}
6830
6831/**
6832 * xmlExpNewAtom:
6833 * @ctxt: the expression context
6834 * @name: the atom name
6835 * @len: the atom name length in byte (or -1);
6836 *
6837 * Get the atom associated to this name from that context
6838 *
6839 * Returns the node or NULL in case of error
6840 */
6841xmlExpNodePtr
6842xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
6843 if ((ctxt == NULL) || (name == NULL))
6844 return(NULL);
6845 name = xmlDictLookup(ctxt->dict, name, len);
6846 if (name == NULL)
6847 return(NULL);
6848 return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
6849}
6850
6851/**
6852 * xmlExpNewOr:
6853 * @ctxt: the expression context
6854 * @left: left expression
6855 * @right: right expression
6856 *
6857 * Get the atom associated to the choice @left | @right
6858 * Note that @left and @right are consumed in the operation, to keep
6859 * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6860 * this is true even in case of failure (unless ctxt == NULL).
6861 *
6862 * Returns the node or NULL in case of error
6863 */
6864xmlExpNodePtr
6865xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6866 if (ctxt == NULL)
6867 return(NULL);
6868 if ((left == NULL) || (right == NULL)) {
6869 xmlExpFree(ctxt, left);
6870 xmlExpFree(ctxt, right);
6871 return(NULL);
6872 }
6873 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
6874}
6875
6876/**
6877 * xmlExpNewSeq:
6878 * @ctxt: the expression context
6879 * @left: left expression
6880 * @right: right expression
6881 *
6882 * Get the atom associated to the sequence @left , @right
6883 * Note that @left and @right are consumed in the operation, to keep
6884 * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
6885 * this is true even in case of failure (unless ctxt == NULL).
6886 *
6887 * Returns the node or NULL in case of error
6888 */
6889xmlExpNodePtr
6890xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
6891 if (ctxt == NULL)
6892 return(NULL);
6893 if ((left == NULL) || (right == NULL)) {
6894 xmlExpFree(ctxt, left);
6895 xmlExpFree(ctxt, right);
6896 return(NULL);
6897 }
6898 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
6899}
6900
6901/**
6902 * xmlExpNewRange:
6903 * @ctxt: the expression context
6904 * @subset: the expression to be repeated
6905 * @min: the lower bound for the repetition
6906 * @max: the upper bound for the repetition, -1 means infinite
6907 *
6908 * Get the atom associated to the range (@subset){@min, @max}
6909 * Note that @subset is consumed in the operation, to keep
6910 * an handle on it use xmlExpRef() and use xmlExpFree() to release it,
6911 * this is true even in case of failure (unless ctxt == NULL).
6912 *
6913 * Returns the node or NULL in case of error
6914 */
6915xmlExpNodePtr
6916xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
6917 if (ctxt == NULL)
6918 return(NULL);
6919 if ((subset == NULL) || (min < 0) || (max < -1) ||
6920 ((max >= 0) && (min > max))) {
6921 xmlExpFree(ctxt, subset);
6922 return(NULL);
6923 }
6924 return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
6925 NULL, NULL, min, max));
6926}
6927
6928/************************************************************************
6929 * *
6930 * Public API for operations on expressions *
6931 * *
6932 ************************************************************************/
6933
6934static int
6935xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6936 const xmlChar**list, int len, int nb) {
6937 int tmp, tmp2;
6938tail:
6939 switch (exp->type) {
6940 case XML_EXP_EMPTY:
6941 return(0);
6942 case XML_EXP_ATOM:
6943 for (tmp = 0;tmp < nb;tmp++)
6944 if (list[tmp] == exp->exp_str)
6945 return(0);
6946 if (nb >= len)
6947 return(-2);
6948 list[nb] = exp->exp_str;
6949 return(1);
6950 case XML_EXP_COUNT:
6951 exp = exp->exp_left;
6952 goto tail;
6953 case XML_EXP_SEQ:
6954 case XML_EXP_OR:
6955 tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
6956 if (tmp < 0)
6957 return(tmp);
6958 tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
6959 nb + tmp);
6960 if (tmp2 < 0)
6961 return(tmp2);
6962 return(tmp + tmp2);
6963 }
6964 return(-1);
6965}
6966
6967/**
6968 * xmlExpGetLanguage:
6969 * @ctxt: the expression context
6970 * @exp: the expression
6971 * @langList: where to store the tokens
6972 * @len: the allocated length of @list
6973 *
6974 * Find all the strings used in @exp and store them in @list
6975 *
6976 * Returns the number of unique strings found, -1 in case of errors and
6977 * -2 if there is more than @len strings
6978 */
6979int
6980xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6981 const xmlChar**langList, int len) {
6982 if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
6983 return(-1);
6984 return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
6985}
6986
6987static int
6988xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
6989 const xmlChar**list, int len, int nb) {
6990 int tmp, tmp2;
6991tail:
6992 switch (exp->type) {
6993 case XML_EXP_FORBID:
6994 return(0);
6995 case XML_EXP_EMPTY:
6996 return(0);
6997 case XML_EXP_ATOM:
6998 for (tmp = 0;tmp < nb;tmp++)
6999 if (list[tmp] == exp->exp_str)
7000 return(0);
7001 if (nb >= len)
7002 return(-2);
7003 list[nb] = exp->exp_str;
7004 return(1);
7005 case XML_EXP_COUNT:
7006 exp = exp->exp_left;
7007 goto tail;
7008 case XML_EXP_SEQ:
7009 tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7010 if (tmp < 0)
7011 return(tmp);
7012 if (IS_NILLABLE(exp->exp_left)) {
7013 tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7014 nb + tmp);
7015 if (tmp2 < 0)
7016 return(tmp2);
7017 tmp += tmp2;
7018 }
7019 return(tmp);
7020 case XML_EXP_OR:
7021 tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
7022 if (tmp < 0)
7023 return(tmp);
7024 tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
7025 nb + tmp);
7026 if (tmp2 < 0)
7027 return(tmp2);
7028 return(tmp + tmp2);
7029 }
7030 return(-1);
7031}
7032
7033/**
7034 * xmlExpGetStart:
7035 * @ctxt: the expression context
7036 * @exp: the expression
7037 * @tokList: where to store the tokens
7038 * @len: the allocated length of @list
7039 *
7040 * Find all the strings that appears at the start of the languages
7041 * accepted by @exp and store them in @list. E.g. for (a, b) | c
7042 * it will return the list [a, c]
7043 *
7044 * Returns the number of unique strings found, -1 in case of errors and
7045 * -2 if there is more than @len strings
7046 */
7047int
7048xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7049 const xmlChar**tokList, int len) {
7050 if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
7051 return(-1);
7052 return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
7053}
7054
7055/**
7056 * xmlExpIsNillable:
7057 * @exp: the expression
7058 *
7059 * Finds if the expression is nillable, i.e. if it accepts the empty sequence
7060 *
7061 * Returns 1 if nillable, 0 if not and -1 in case of error
7062 */
7063int
7064xmlExpIsNillable(xmlExpNodePtr exp) {
7065 if (exp == NULL)
7066 return(-1);
7067 return(IS_NILLABLE(exp) != 0);
7068}
7069
7070static xmlExpNodePtr
7071xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
7072{
7073 xmlExpNodePtr ret;
7074
7075 switch (exp->type) {
7076 case XML_EXP_EMPTY:
7077 return(forbiddenExp);
7078 case XML_EXP_FORBID:
7079 return(forbiddenExp);
7080 case XML_EXP_ATOM:
7081 if (exp->exp_str == str) {
7082 ret = emptyExp;
7083 } else {
7084 /* TODO wildcards here */
7085 ret = forbiddenExp;
7086 }
7087 return(ret);
7088 case XML_EXP_OR: {
7089 xmlExpNodePtr tmp;
7090
7091 tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7092 if (tmp == NULL) {
7093 return(NULL);
7094 }
7095 ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7096 if (ret == NULL) {
7097 xmlExpFree(ctxt, tmp);
7098 return(NULL);
7099 }
7100 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
7101 NULL, 0, 0);
7102 return(ret);
7103 }
7104 case XML_EXP_SEQ:
7105 ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7106 if (ret == NULL) {
7107 return(NULL);
7108 } else if (ret == forbiddenExp) {
7109 if (IS_NILLABLE(exp->exp_left)) {
7110 ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
7111 }
7112 } else {
7113 exp->exp_right->ref++;
7114 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
7115 NULL, 0, 0);
7116 }
7117 return(ret);
7118 case XML_EXP_COUNT: {
7119 int min, max;
7120 xmlExpNodePtr tmp;
7121
7122 if (exp->exp_max == 0)
7123 return(forbiddenExp);
7124 ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
7125 if (ret == NULL)
7126 return(NULL);
7127 if (ret == forbiddenExp) {
7128 return(ret);
7129 }
7130 if (exp->exp_max == 1)
7131 return(ret);
7132 if (exp->exp_max < 0) /* unbounded */
7133 max = -1;
7134 else
7135 max = exp->exp_max - 1;
7136 if (exp->exp_min > 0)
7137 min = exp->exp_min - 1;
7138 else
7139 min = 0;
7140 exp->exp_left->ref++;
7141 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
7142 NULL, min, max);
7143 if (ret == emptyExp) {
7144 return(tmp);
7145 }
7146 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
7147 NULL, 0, 0));
7148 }
7149 }
7150 return(NULL);
7151}
7152
7153/**
7154 * xmlExpStringDerive:
7155 * @ctxt: the expression context
7156 * @exp: the expression
7157 * @str: the string
7158 * @len: the string len in bytes if available
7159 *
7160 * Do one step of Brzozowski derivation of the expression @exp with
7161 * respect to the input string
7162 *
7163 * Returns the resulting expression or NULL in case of internal error
7164 */
7165xmlExpNodePtr
7166xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7167 const xmlChar *str, int len) {
7168 const xmlChar *input;
7169
7170 if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
7171 return(NULL);
7172 }
7173 /*
7174 * check the string is in the dictionary, if yes use an interned
7175 * copy, otherwise we know it's not an acceptable input
7176 */
7177 input = xmlDictExists(ctxt->dict, str, len);
7178 if (input == NULL) {
7179 return(forbiddenExp);
7180 }
7181 return(xmlExpStringDeriveInt(ctxt, exp, input));
7182}
7183
7184static int
7185xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
7186 int ret = 1;
7187
7188 if (sub->c_max == -1) {
7189 if (exp->c_max != -1)
7190 ret = 0;
7191 } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
7192 ret = 0;
7193 }
7194#if 0
7195 if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
7196 ret = 0;
7197#endif
7198 return(ret);
7199}
7200
7201static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
7202 xmlExpNodePtr sub);
7203/**
7204 * xmlExpDivide:
7205 * @ctxt: the expressions context
7206 * @exp: the englobing expression
7207 * @sub: the subexpression
7208 * @mult: the multiple expression
7209 * @remain: the remain from the derivation of the multiple
7210 *
7211 * Check if exp is a multiple of sub, i.e. if there is a finite number n
7212 * so that sub{n} subsume exp
7213 *
7214 * Returns the multiple value if successful, 0 if it is not a multiple
7215 * and -1 in case of internal error.
7216 */
7217
7218static int
7219xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
7220 xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
7221 int i;
7222 xmlExpNodePtr tmp, tmp2;
7223
7224 if (mult != NULL) *mult = NULL;
7225 if (remain != NULL) *remain = NULL;
7226 if (exp->c_max == -1) return(0);
7227 if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
7228
7229 for (i = 1;i <= exp->c_max;i++) {
7230 sub->ref++;
7231 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7232 sub, NULL, NULL, i, i);
7233 if (tmp == NULL) {
7234 return(-1);
7235 }
7236 if (!xmlExpCheckCard(tmp, exp)) {
7237 xmlExpFree(ctxt, tmp);
7238 continue;
7239 }
7240 tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
7241 if (tmp2 == NULL) {
7242 xmlExpFree(ctxt, tmp);
7243 return(-1);
7244 }
7245 if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
7246 if (remain != NULL)
7247 *remain = tmp2;
7248 else
7249 xmlExpFree(ctxt, tmp2);
7250 if (mult != NULL)
7251 *mult = tmp;
7252 else
7253 xmlExpFree(ctxt, tmp);
7254 return(i);
7255 }
7256 xmlExpFree(ctxt, tmp);
7257 xmlExpFree(ctxt, tmp2);
7258 }
7259 return(0);
7260}
7261
7262/**
7263 * xmlExpExpDeriveInt:
7264 * @ctxt: the expressions context
7265 * @exp: the englobing expression
7266 * @sub: the subexpression
7267 *
7268 * Try to do a step of Brzozowski derivation but at a higher level
7269 * the input being a subexpression.
7270 *
7271 * Returns the resulting expression or NULL in case of internal error
7272 */
7273static xmlExpNodePtr
7274xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7275 xmlExpNodePtr ret, tmp, tmp2, tmp3;
7276 const xmlChar **tab;
7277 int len, i;
7278
7279 /*
7280 * In case of equality and if the expression can only consume a finite
7281 * amount, then the derivation is empty
7282 */
7283 if ((exp == sub) && (exp->c_max >= 0)) {
7284 return(emptyExp);
7285 }
7286 /*
7287 * decompose sub sequence first
7288 */
7289 if (sub->type == XML_EXP_EMPTY) {
7290 exp->ref++;
7291 return(exp);
7292 }
7293 if (sub->type == XML_EXP_SEQ) {
7294 tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7295 if (tmp == NULL)
7296 return(NULL);
7297 if (tmp == forbiddenExp)
7298 return(tmp);
7299 ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
7300 xmlExpFree(ctxt, tmp);
7301 return(ret);
7302 }
7303 if (sub->type == XML_EXP_OR) {
7304 tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
7305 if (tmp == forbiddenExp)
7306 return(tmp);
7307 if (tmp == NULL)
7308 return(NULL);
7309 ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
7310 if ((ret == NULL) || (ret == forbiddenExp)) {
7311 xmlExpFree(ctxt, tmp);
7312 return(ret);
7313 }
7314 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
7315 }
7316 if (!xmlExpCheckCard(exp, sub)) {
7317 return(forbiddenExp);
7318 }
7319 switch (exp->type) {
7320 case XML_EXP_EMPTY:
7321 if (sub == emptyExp)
7322 return(emptyExp);
7323 return(forbiddenExp);
7324 case XML_EXP_FORBID:
7325 return(forbiddenExp);
7326 case XML_EXP_ATOM:
7327 if (sub->type == XML_EXP_ATOM) {
7328 /* TODO: handle wildcards */
7329 if (exp->exp_str == sub->exp_str) {
7330 return(emptyExp);
7331 }
7332 return(forbiddenExp);
7333 }
7334 if ((sub->type == XML_EXP_COUNT) &&
7335 (sub->exp_max == 1) &&
7336 (sub->exp_left->type == XML_EXP_ATOM)) {
7337 /* TODO: handle wildcards */
7338 if (exp->exp_str == sub->exp_left->exp_str) {
7339 return(emptyExp);
7340 }
7341 return(forbiddenExp);
7342 }
7343 return(forbiddenExp);
7344 case XML_EXP_SEQ:
7345 /* try to get the sequence consumed only if possible */
7346 if (xmlExpCheckCard(exp->exp_left, sub)) {
7347 /* See if the sequence can be consumed directly */
7348 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7349 if ((ret != forbiddenExp) && (ret != NULL)) {
7350 /*
7351 * TODO: assumption here that we are determinist
7352 * i.e. we won't get to a nillable exp left
7353 * subset which could be matched by the right
7354 * part too.
7355 * e.g.: (a | b)+,(a | c) and 'a+,a'
7356 */
7357 exp->exp_right->ref++;
7358 return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7359 exp->exp_right, NULL, 0, 0));
7360 }
7361 }
7362 /* Try instead to decompose */
7363 if (sub->type == XML_EXP_COUNT) {
7364 int min, max;
7365
7366 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7367 if (ret == NULL)
7368 return(NULL);
7369 if (ret != forbiddenExp) {
7370 if (sub->exp_max < 0)
7371 max = -1;
7372 else
7373 max = sub->exp_max -1;
7374 if (sub->exp_min > 0)
7375 min = sub->exp_min -1;
7376 else
7377 min = 0;
7378 exp->exp_right->ref++;
7379 tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
7380 exp->exp_right, NULL, 0, 0);
7381 if (tmp == NULL)
7382 return(NULL);
7383
7384 sub->exp_left->ref++;
7385 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
7386 sub->exp_left, NULL, NULL, min, max);
7387 if (tmp2 == NULL) {
7388 xmlExpFree(ctxt, tmp);
7389 return(NULL);
7390 }
7391 ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7392 xmlExpFree(ctxt, tmp);
7393 xmlExpFree(ctxt, tmp2);
7394 return(ret);
7395 }
7396 }
7397 /* we made no progress on structured operations */
7398 break;
7399 case XML_EXP_OR:
7400 ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7401 if (ret == NULL)
7402 return(NULL);
7403 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
7404 if (tmp == NULL) {
7405 xmlExpFree(ctxt, ret);
7406 return(NULL);
7407 }
7408 return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
7409 case XML_EXP_COUNT: {
7410 int min, max;
7411
7412 if (sub->type == XML_EXP_COUNT) {
7413 /*
7414 * Try to see if the loop is completely subsumed
7415 */
7416 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
7417 if (tmp == NULL)
7418 return(NULL);
7419 if (tmp == forbiddenExp) {
7420 int mult;
7421
7422 mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
7423 NULL, &tmp);
7424 if (mult <= 0) {
7425 return(forbiddenExp);
7426 }
7427 if (sub->exp_max == -1) {
7428 max = -1;
7429 if (exp->exp_max == -1) {
7430 if (exp->exp_min <= sub->exp_min * mult)
7431 min = 0;
7432 else
7433 min = exp->exp_min - sub->exp_min * mult;
7434 } else {
7435 xmlExpFree(ctxt, tmp);
7436 return(forbiddenExp);
7437 }
7438 } else {
7439 if (exp->exp_max == -1) {
7440 if (exp->exp_min > sub->exp_min * mult) {
7441 max = -1;
7442 min = exp->exp_min - sub->exp_min * mult;
7443 } else {
7444 max = -1;
7445 min = 0;
7446 }
7447 } else {
7448 if (exp->exp_max < sub->exp_max * mult) {
7449 xmlExpFree(ctxt, tmp);
7450 return(forbiddenExp);
7451 }
7452 if (sub->exp_max * mult > exp->exp_min)
7453 min = 0;
7454 else
7455 min = exp->exp_min - sub->exp_max * mult;
7456 max = exp->exp_max - sub->exp_max * mult;
7457 }
7458 }
7459 } else if (!IS_NILLABLE(tmp)) {
7460 /*
7461 * TODO: loop here to try to grow if working on finite
7462 * blocks.
7463 */
7464 xmlExpFree(ctxt, tmp);
7465 return(forbiddenExp);
7466 } else if (sub->exp_max == -1) {
7467 if (exp->exp_max == -1) {
7468 if (exp->exp_min <= sub->exp_min) {
7469 max = -1;
7470 min = 0;
7471 } else {
7472 max = -1;
7473 min = exp->exp_min - sub->exp_min;
7474 }
7475 } else if (exp->exp_min > sub->exp_min) {
7476 xmlExpFree(ctxt, tmp);
7477 return(forbiddenExp);
7478 } else {
7479 max = -1;
7480 min = 0;
7481 }
7482 } else {
7483 if (exp->exp_max == -1) {
7484 if (exp->exp_min > sub->exp_min) {
7485 max = -1;
7486 min = exp->exp_min - sub->exp_min;
7487 } else {
7488 max = -1;
7489 min = 0;
7490 }
7491 } else {
7492 if (exp->exp_max < sub->exp_max) {
7493 xmlExpFree(ctxt, tmp);
7494 return(forbiddenExp);
7495 }
7496 if (sub->exp_max > exp->exp_min)
7497 min = 0;
7498 else
7499 min = exp->exp_min - sub->exp_max;
7500 max = exp->exp_max - sub->exp_max;
7501 }
7502 }
7503 exp->exp_left->ref++;
7504 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7505 NULL, NULL, min, max);
7506 if (tmp2 == NULL) {
7507 return(NULL);
7508 }
7509 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7510 NULL, 0, 0);
7511 return(ret);
7512 }
7513 tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
7514 if (tmp == NULL)
7515 return(NULL);
7516 if (tmp == forbiddenExp) {
7517 return(forbiddenExp);
7518 }
7519 if (exp->exp_min > 0)
7520 min = exp->exp_min - 1;
7521 else
7522 min = 0;
7523 if (exp->exp_max < 0)
7524 max = -1;
7525 else
7526 max = exp->exp_max - 1;
7527
7528 exp->exp_left->ref++;
7529 tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
7530 NULL, NULL, min, max);
7531 if (tmp2 == NULL)
7532 return(NULL);
7533 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
7534 NULL, 0, 0);
7535 return(ret);
7536 }
7537 }
7538
7539 if (IS_NILLABLE(sub)) {
7540 if (!(IS_NILLABLE(exp)))
7541 return(forbiddenExp);
7542 else
7543 ret = emptyExp;
7544 } else
7545 ret = NULL;
7546 /*
7547 * here the structured derivation made no progress so
7548 * we use the default token based derivation to force one more step
7549 */
7550 if (ctxt->tabSize == 0)
7551 ctxt->tabSize = 40;
7552
7553 tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
7554 sizeof(const xmlChar *));
7555 if (tab == NULL) {
7556 return(NULL);
7557 }
7558
7559 /*
7560 * collect all the strings accepted by the subexpression on input
7561 */
7562 len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7563 while (len < 0) {
7564 const xmlChar **temp;
7565 temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
7566 sizeof(const xmlChar *));
7567 if (temp == NULL) {
7568 xmlFree((xmlChar **) tab);
7569 return(NULL);
7570 }
7571 tab = temp;
7572 ctxt->tabSize *= 2;
7573 len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
7574 }
7575 for (i = 0;i < len;i++) {
7576 tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
7577 if ((tmp == NULL) || (tmp == forbiddenExp)) {
7578 xmlExpFree(ctxt, ret);
7579 xmlFree((xmlChar **) tab);
7580 return(tmp);
7581 }
7582 tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
7583 if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
7584 xmlExpFree(ctxt, tmp);
7585 xmlExpFree(ctxt, ret);
7586 xmlFree((xmlChar **) tab);
7587 return(tmp);
7588 }
7589 tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
7590 xmlExpFree(ctxt, tmp);
7591 xmlExpFree(ctxt, tmp2);
7592
7593 if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
7594 xmlExpFree(ctxt, ret);
7595 xmlFree((xmlChar **) tab);
7596 return(tmp3);
7597 }
7598
7599 if (ret == NULL)
7600 ret = tmp3;
7601 else {
7602 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
7603 if (ret == NULL) {
7604 xmlFree((xmlChar **) tab);
7605 return(NULL);
7606 }
7607 }
7608 }
7609 xmlFree((xmlChar **) tab);
7610 return(ret);
7611}
7612
7613/**
7614 * xmlExpExpDerive:
7615 * @ctxt: the expressions context
7616 * @exp: the englobing expression
7617 * @sub: the subexpression
7618 *
7619 * Evaluates the expression resulting from @exp consuming a sub expression @sub
7620 * Based on algebraic derivation and sometimes direct Brzozowski derivation
7621 * it usually takes less than linear time and can handle expressions generating
7622 * infinite languages.
7623 *
7624 * Returns the resulting expression or NULL in case of internal error, the
7625 * result must be freed
7626 */
7627xmlExpNodePtr
7628xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7629 if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7630 return(NULL);
7631
7632 /*
7633 * O(1) speedups
7634 */
7635 if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7636 return(forbiddenExp);
7637 }
7638 if (xmlExpCheckCard(exp, sub) == 0) {
7639 return(forbiddenExp);
7640 }
7641 return(xmlExpExpDeriveInt(ctxt, exp, sub));
7642}
7643
7644/**
7645 * xmlExpSubsume:
7646 * @ctxt: the expressions context
7647 * @exp: the englobing expression
7648 * @sub: the subexpression
7649 *
7650 * Check whether @exp accepts all the languages accepted by @sub
7651 * the input being a subexpression.
7652 *
7653 * Returns 1 if true 0 if false and -1 in case of failure.
7654 */
7655int
7656xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
7657 xmlExpNodePtr tmp;
7658
7659 if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
7660 return(-1);
7661
7662 /*
7663 * TODO: speedup by checking the language of sub is a subset of the
7664 * language of exp
7665 */
7666 /*
7667 * O(1) speedups
7668 */
7669 if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
7670 return(0);
7671 }
7672 if (xmlExpCheckCard(exp, sub) == 0) {
7673 return(0);
7674 }
7675 tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
7676 if (tmp == NULL)
7677 return(-1);
7678 if (tmp == forbiddenExp)
7679 return(0);
7680 if (tmp == emptyExp)
7681 return(1);
7682 if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
7683 xmlExpFree(ctxt, tmp);
7684 return(1);
7685 }
7686 xmlExpFree(ctxt, tmp);
7687 return(0);
7688}
7689
7690/************************************************************************
7691 * *
7692 * Parsing expression *
7693 * *
7694 ************************************************************************/
7695
7696static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
7697
7698#undef CUR
7699#define CUR (*ctxt->cur)
7700#undef NEXT
7701#define NEXT ctxt->cur++;
7702#undef IS_BLANK
7703#define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
7704#define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
7705
7706static int
7707xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
7708 int ret = 0;
7709
7710 SKIP_BLANKS
7711 if (CUR == '*') {
7712 NEXT
7713 return(-1);
7714 }
7715 if ((CUR < '0') || (CUR > '9'))
7716 return(-1);
7717 while ((CUR >= '0') && (CUR <= '9')) {
7718 ret = ret * 10 + (CUR - '0');
7719 NEXT
7720 }
7721 return(ret);
7722}
7723
7724static xmlExpNodePtr
7725xmlExpParseOr(xmlExpCtxtPtr ctxt) {
7726 const char *base;
7727 xmlExpNodePtr ret;
7728 const xmlChar *val;
7729
7730 SKIP_BLANKS
7731 base = ctxt->cur;
7732 if (*ctxt->cur == '(') {
7733 NEXT
7734 ret = xmlExpParseExpr(ctxt);
7735 SKIP_BLANKS
7736 if (*ctxt->cur != ')') {
7737 fprintf(stderr, "unbalanced '(' : %s\n", base);
7738 xmlExpFree(ctxt, ret);
7739 return(NULL);
7740 }
7741 NEXT;
7742 SKIP_BLANKS
7743 goto parse_quantifier;
7744 }
7745 while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
7746 (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
7747 (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
7748 NEXT;
7749 val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
7750 if (val == NULL)
7751 return(NULL);
7752 ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
7753 if (ret == NULL)
7754 return(NULL);
7755 SKIP_BLANKS
7756parse_quantifier:
7757 if (CUR == '{') {
7758 int min, max;
7759
7760 NEXT
7761 min = xmlExpParseNumber(ctxt);
7762 if (min < 0) {
7763 xmlExpFree(ctxt, ret);
7764 return(NULL);
7765 }
7766 SKIP_BLANKS
7767 if (CUR == ',') {
7768 NEXT
7769 max = xmlExpParseNumber(ctxt);
7770 SKIP_BLANKS
7771 } else
7772 max = min;
7773 if (CUR != '}') {
7774 xmlExpFree(ctxt, ret);
7775 return(NULL);
7776 }
7777 NEXT
7778 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7779 min, max);
7780 SKIP_BLANKS
7781 } else if (CUR == '?') {
7782 NEXT
7783 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7784 0, 1);
7785 SKIP_BLANKS
7786 } else if (CUR == '+') {
7787 NEXT
7788 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7789 1, -1);
7790 SKIP_BLANKS
7791 } else if (CUR == '*') {
7792 NEXT
7793 ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
7794 0, -1);
7795 SKIP_BLANKS
7796 }
7797 return(ret);
7798}
7799
7800
7801static xmlExpNodePtr
7802xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
7803 xmlExpNodePtr ret, right;
7804
7805 ret = xmlExpParseOr(ctxt);
7806 SKIP_BLANKS
7807 while (CUR == '|') {
7808 NEXT
7809 right = xmlExpParseOr(ctxt);
7810 if (right == NULL) {
7811 xmlExpFree(ctxt, ret);
7812 return(NULL);
7813 }
7814 ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
7815 if (ret == NULL)
7816 return(NULL);
7817 }
7818 return(ret);
7819}
7820
7821static xmlExpNodePtr
7822xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
7823 xmlExpNodePtr ret, right;
7824
7825 ret = xmlExpParseSeq(ctxt);
7826 SKIP_BLANKS
7827 while (CUR == ',') {
7828 NEXT
7829 right = xmlExpParseSeq(ctxt);
7830 if (right == NULL) {
7831 xmlExpFree(ctxt, ret);
7832 return(NULL);
7833 }
7834 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
7835 if (ret == NULL)
7836 return(NULL);
7837 }
7838 return(ret);
7839}
7840
7841/**
7842 * xmlExpParse:
7843 * @ctxt: the expressions context
7844 * @expr: the 0 terminated string
7845 *
7846 * Minimal parser for regexps, it understand the following constructs
7847 * - string terminals
7848 * - choice operator |
7849 * - sequence operator ,
7850 * - subexpressions (...)
7851 * - usual cardinality operators + * and ?
7852 * - finite sequences { min, max }
7853 * - infinite sequences { min, * }
7854 * There is minimal checkings made especially no checking on strings values
7855 *
7856 * Returns a new expression or NULL in case of failure
7857 */
7858xmlExpNodePtr
7859xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
7860 xmlExpNodePtr ret;
7861
7862 ctxt->expr = expr;
7863 ctxt->cur = expr;
7864
7865 ret = xmlExpParseExpr(ctxt);
7866 SKIP_BLANKS
7867 if (*ctxt->cur != 0) {
7868 xmlExpFree(ctxt, ret);
7869 return(NULL);
7870 }
7871 return(ret);
7872}
7873
7874static void
7875xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
7876 xmlExpNodePtr c;
7877
7878 if (expr == NULL) return;
7879 if (glob) xmlBufferWriteChar(buf, "(");
7880 switch (expr->type) {
7881 case XML_EXP_EMPTY:
7882 xmlBufferWriteChar(buf, "empty");
7883 break;
7884 case XML_EXP_FORBID:
7885 xmlBufferWriteChar(buf, "forbidden");
7886 break;
7887 case XML_EXP_ATOM:
7888 xmlBufferWriteCHAR(buf, expr->exp_str);
7889 break;
7890 case XML_EXP_SEQ:
7891 c = expr->exp_left;
7892 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
7893 xmlExpDumpInt(buf, c, 1);
7894 else
7895 xmlExpDumpInt(buf, c, 0);
7896 xmlBufferWriteChar(buf, " , ");
7897 c = expr->exp_right;
7898 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
7899 xmlExpDumpInt(buf, c, 1);
7900 else
7901 xmlExpDumpInt(buf, c, 0);
7902 break;
7903 case XML_EXP_OR:
7904 c = expr->exp_left;
7905 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
7906 xmlExpDumpInt(buf, c, 1);
7907 else
7908 xmlExpDumpInt(buf, c, 0);
7909 xmlBufferWriteChar(buf, " | ");
7910 c = expr->exp_right;
7911 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
7912 xmlExpDumpInt(buf, c, 1);
7913 else
7914 xmlExpDumpInt(buf, c, 0);
7915 break;
7916 case XML_EXP_COUNT: {
7917 char rep[40];
7918
7919 c = expr->exp_left;
7920 if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
7921 xmlExpDumpInt(buf, c, 1);
7922 else
7923 xmlExpDumpInt(buf, c, 0);
7924 if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
7925 rep[0] = '?';
7926 rep[1] = 0;
7927 } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
7928 rep[0] = '*';
7929 rep[1] = 0;
7930 } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
7931 rep[0] = '+';
7932 rep[1] = 0;
7933 } else if (expr->exp_max == expr->exp_min) {
7934 snprintf(rep, 39, "{%d}", expr->exp_min);
7935 } else if (expr->exp_max < 0) {
7936 snprintf(rep, 39, "{%d,inf}", expr->exp_min);
7937 } else {
7938 snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
7939 }
7940 rep[39] = 0;
7941 xmlBufferWriteChar(buf, rep);
7942 break;
7943 }
7944 default:
7945 fprintf(stderr, "Error in tree\n");
7946 }
7947 if (glob)
7948 xmlBufferWriteChar(buf, ")");
7949}
7950/**
7951 * xmlExpDump:
7952 * @buf: a buffer to receive the output
7953 * @expr: the compiled expression
7954 *
7955 * Serialize the expression as compiled to the buffer
7956 */
7957void
7958xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
7959 if ((buf == NULL) || (expr == NULL))
7960 return;
7961 xmlExpDumpInt(buf, expr, 0);
7962}
7963
7964/**
7965 * xmlExpMaxToken:
7966 * @expr: a compiled expression
7967 *
7968 * Indicate the maximum number of input a expression can accept
7969 *
7970 * Returns the maximum length or -1 in case of error
7971 */
7972int
7973xmlExpMaxToken(xmlExpNodePtr expr) {
7974 if (expr == NULL)
7975 return(-1);
7976 return(expr->c_max);
7977}
7978
7979/**
7980 * xmlExpCtxtNbNodes:
7981 * @ctxt: an expression context
7982 *
7983 * Debugging facility provides the number of allocated nodes at a that point
7984 *
7985 * Returns the number of nodes in use or -1 in case of error
7986 */
7987int
7988xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
7989 if (ctxt == NULL)
7990 return(-1);
7991 return(ctxt->nb_nodes);
7992}
7993
7994/**
7995 * xmlExpCtxtNbCons:
7996 * @ctxt: an expression context
7997 *
7998 * Debugging facility provides the number of allocated nodes over lifetime
7999 *
8000 * Returns the number of nodes ever allocated or -1 in case of error
8001 */
8002int
8003xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
8004 if (ctxt == NULL)
8005 return(-1);
8006 return(ctxt->nb_cons);
8007}
8008
8009#endif /* LIBXML_EXPR_ENABLED */
8010
8011#endif /* LIBXML_REGEXP_ENABLED */
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette