1 | /*
|
---|
2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/constant_time.h"
|
---|
11 |
|
---|
12 | #include <stdio.h>
|
---|
13 | #include "internal/cryptlib.h"
|
---|
14 | #include <openssl/bn.h>
|
---|
15 | #include <openssl/rsa.h>
|
---|
16 | #include <openssl/rand.h>
|
---|
17 |
|
---|
18 | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
|
---|
19 | const unsigned char *from, int flen)
|
---|
20 | {
|
---|
21 | int j;
|
---|
22 | unsigned char *p;
|
---|
23 |
|
---|
24 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
---|
25 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1,
|
---|
26 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
---|
27 | return 0;
|
---|
28 | }
|
---|
29 |
|
---|
30 | p = (unsigned char *)to;
|
---|
31 |
|
---|
32 | *(p++) = 0;
|
---|
33 | *(p++) = 1; /* Private Key BT (Block Type) */
|
---|
34 |
|
---|
35 | /* pad out with 0xff data */
|
---|
36 | j = tlen - 3 - flen;
|
---|
37 | memset(p, 0xff, j);
|
---|
38 | p += j;
|
---|
39 | *(p++) = '\0';
|
---|
40 | memcpy(p, from, (unsigned int)flen);
|
---|
41 | return 1;
|
---|
42 | }
|
---|
43 |
|
---|
44 | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
|
---|
45 | const unsigned char *from, int flen,
|
---|
46 | int num)
|
---|
47 | {
|
---|
48 | int i, j;
|
---|
49 | const unsigned char *p;
|
---|
50 |
|
---|
51 | p = from;
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * The format is
|
---|
55 | * 00 || 01 || PS || 00 || D
|
---|
56 | * PS - padding string, at least 8 bytes of FF
|
---|
57 | * D - data.
|
---|
58 | */
|
---|
59 |
|
---|
60 | if (num < RSA_PKCS1_PADDING_SIZE)
|
---|
61 | return -1;
|
---|
62 |
|
---|
63 | /* Accept inputs with and without the leading 0-byte. */
|
---|
64 | if (num == flen) {
|
---|
65 | if ((*p++) != 0x00) {
|
---|
66 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
---|
67 | RSA_R_INVALID_PADDING);
|
---|
68 | return -1;
|
---|
69 | }
|
---|
70 | flen--;
|
---|
71 | }
|
---|
72 |
|
---|
73 | if ((num != (flen + 1)) || (*(p++) != 0x01)) {
|
---|
74 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
---|
75 | RSA_R_BLOCK_TYPE_IS_NOT_01);
|
---|
76 | return -1;
|
---|
77 | }
|
---|
78 |
|
---|
79 | /* scan over padding data */
|
---|
80 | j = flen - 1; /* one for type. */
|
---|
81 | for (i = 0; i < j; i++) {
|
---|
82 | if (*p != 0xff) { /* should decrypt to 0xff */
|
---|
83 | if (*p == 0) {
|
---|
84 | p++;
|
---|
85 | break;
|
---|
86 | } else {
|
---|
87 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
---|
88 | RSA_R_BAD_FIXED_HEADER_DECRYPT);
|
---|
89 | return -1;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | p++;
|
---|
93 | }
|
---|
94 |
|
---|
95 | if (i == j) {
|
---|
96 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
---|
97 | RSA_R_NULL_BEFORE_BLOCK_MISSING);
|
---|
98 | return -1;
|
---|
99 | }
|
---|
100 |
|
---|
101 | if (i < 8) {
|
---|
102 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
---|
103 | RSA_R_BAD_PAD_BYTE_COUNT);
|
---|
104 | return -1;
|
---|
105 | }
|
---|
106 | i++; /* Skip over the '\0' */
|
---|
107 | j -= i;
|
---|
108 | if (j > tlen) {
|
---|
109 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE);
|
---|
110 | return -1;
|
---|
111 | }
|
---|
112 | memcpy(to, p, (unsigned int)j);
|
---|
113 |
|
---|
114 | return j;
|
---|
115 | }
|
---|
116 |
|
---|
117 | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
|
---|
118 | const unsigned char *from, int flen)
|
---|
119 | {
|
---|
120 | int i, j;
|
---|
121 | unsigned char *p;
|
---|
122 |
|
---|
123 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
---|
124 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2,
|
---|
125 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
---|
126 | return 0;
|
---|
127 | }
|
---|
128 |
|
---|
129 | p = (unsigned char *)to;
|
---|
130 |
|
---|
131 | *(p++) = 0;
|
---|
132 | *(p++) = 2; /* Public Key BT (Block Type) */
|
---|
133 |
|
---|
134 | /* pad out with non-zero random data */
|
---|
135 | j = tlen - 3 - flen;
|
---|
136 |
|
---|
137 | if (RAND_bytes(p, j) <= 0)
|
---|
138 | return 0;
|
---|
139 | for (i = 0; i < j; i++) {
|
---|
140 | if (*p == '\0')
|
---|
141 | do {
|
---|
142 | if (RAND_bytes(p, 1) <= 0)
|
---|
143 | return 0;
|
---|
144 | } while (*p == '\0');
|
---|
145 | p++;
|
---|
146 | }
|
---|
147 |
|
---|
148 | *(p++) = '\0';
|
---|
149 |
|
---|
150 | memcpy(p, from, (unsigned int)flen);
|
---|
151 | return 1;
|
---|
152 | }
|
---|
153 |
|
---|
154 | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
|
---|
155 | const unsigned char *from, int flen,
|
---|
156 | int num)
|
---|
157 | {
|
---|
158 | int i;
|
---|
159 | /* |em| is the encoded message, zero-padded to exactly |num| bytes */
|
---|
160 | unsigned char *em = NULL;
|
---|
161 | unsigned int good, found_zero_byte, mask;
|
---|
162 | int zero_index = 0, msg_index, mlen = -1;
|
---|
163 |
|
---|
164 | if (tlen <= 0 || flen <= 0)
|
---|
165 | return -1;
|
---|
166 |
|
---|
167 | /*
|
---|
168 | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
|
---|
169 | * section 7.2.2.
|
---|
170 | */
|
---|
171 |
|
---|
172 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
|
---|
173 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,
|
---|
174 | RSA_R_PKCS_DECODING_ERROR);
|
---|
175 | return -1;
|
---|
176 | }
|
---|
177 |
|
---|
178 | em = OPENSSL_malloc(num);
|
---|
179 | if (em == NULL) {
|
---|
180 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE);
|
---|
181 | return -1;
|
---|
182 | }
|
---|
183 | /*
|
---|
184 | * Caller is encouraged to pass zero-padded message created with
|
---|
185 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
|
---|
186 | * bounds, it's impossible to have an invariant memory access pattern
|
---|
187 | * in case |from| was not zero-padded in advance.
|
---|
188 | */
|
---|
189 | for (from += flen, em += num, i = 0; i < num; i++) {
|
---|
190 | mask = ~constant_time_is_zero(flen);
|
---|
191 | flen -= 1 & mask;
|
---|
192 | from -= 1 & mask;
|
---|
193 | *--em = *from & mask;
|
---|
194 | }
|
---|
195 |
|
---|
196 | good = constant_time_is_zero(em[0]);
|
---|
197 | good &= constant_time_eq(em[1], 2);
|
---|
198 |
|
---|
199 | /* scan over padding data */
|
---|
200 | found_zero_byte = 0;
|
---|
201 | for (i = 2; i < num; i++) {
|
---|
202 | unsigned int equals0 = constant_time_is_zero(em[i]);
|
---|
203 |
|
---|
204 | zero_index = constant_time_select_int(~found_zero_byte & equals0,
|
---|
205 | i, zero_index);
|
---|
206 | found_zero_byte |= equals0;
|
---|
207 | }
|
---|
208 |
|
---|
209 | /*
|
---|
210 | * PS must be at least 8 bytes long, and it starts two bytes into |em|.
|
---|
211 | * If we never found a 0-byte, then |zero_index| is 0 and the check
|
---|
212 | * also fails.
|
---|
213 | */
|
---|
214 | good &= constant_time_ge(zero_index, 2 + 8);
|
---|
215 |
|
---|
216 | /*
|
---|
217 | * Skip the zero byte. This is incorrect if we never found a zero-byte
|
---|
218 | * but in this case we also do not copy the message out.
|
---|
219 | */
|
---|
220 | msg_index = zero_index + 1;
|
---|
221 | mlen = num - msg_index;
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * For good measure, do this check in constant time as well.
|
---|
225 | */
|
---|
226 | good &= constant_time_ge(tlen, mlen);
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
|
---|
230 | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
|
---|
231 | * Otherwise leave |to| unchanged.
|
---|
232 | * Copy the memory back in a way that does not reveal the size of
|
---|
233 | * the data being copied via a timing side channel. This requires copying
|
---|
234 | * parts of the buffer multiple times based on the bits set in the real
|
---|
235 | * length. Clear bits do a non-copy with identical access pattern.
|
---|
236 | * The loop below has overall complexity of O(N*log(N)).
|
---|
237 | */
|
---|
238 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
|
---|
239 | num - RSA_PKCS1_PADDING_SIZE, tlen);
|
---|
240 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
|
---|
241 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
|
---|
242 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
|
---|
243 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
|
---|
244 | }
|
---|
245 | for (i = 0; i < tlen; i++) {
|
---|
246 | mask = good & constant_time_lt(i, mlen);
|
---|
247 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
|
---|
248 | }
|
---|
249 |
|
---|
250 | OPENSSL_clear_free(em, num);
|
---|
251 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR);
|
---|
252 | err_clear_last_constant_time(1 & good);
|
---|
253 |
|
---|
254 | return constant_time_select_int(good, mlen, -1);
|
---|
255 | }
|
---|